// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #if V8_TARGET_ARCH_IA32 #include "src/full-codegen/full-codegen.h" #include "src/ast/compile-time-value.h" #include "src/ast/scopes.h" #include "src/code-factory.h" #include "src/code-stubs.h" #include "src/codegen.h" #include "src/compilation-info.h" #include "src/compiler.h" #include "src/debug/debug.h" #include "src/ia32/frames-ia32.h" #include "src/ic/ic.h" namespace v8 { namespace internal { #define __ ACCESS_MASM(masm()) class JumpPatchSite BASE_EMBEDDED { public: explicit JumpPatchSite(MacroAssembler* masm) : masm_(masm) { #ifdef DEBUG info_emitted_ = false; #endif } ~JumpPatchSite() { DCHECK(patch_site_.is_bound() == info_emitted_); } void EmitJumpIfNotSmi(Register reg, Label* target, Label::Distance distance = Label::kFar) { __ test(reg, Immediate(kSmiTagMask)); EmitJump(not_carry, target, distance); // Always taken before patched. } void EmitJumpIfSmi(Register reg, Label* target, Label::Distance distance = Label::kFar) { __ test(reg, Immediate(kSmiTagMask)); EmitJump(carry, target, distance); // Never taken before patched. } void EmitPatchInfo() { if (patch_site_.is_bound()) { int delta_to_patch_site = masm_->SizeOfCodeGeneratedSince(&patch_site_); DCHECK(is_uint8(delta_to_patch_site)); __ test(eax, Immediate(delta_to_patch_site)); #ifdef DEBUG info_emitted_ = true; #endif } else { __ nop(); // Signals no inlined code. } } private: // jc will be patched with jz, jnc will become jnz. void EmitJump(Condition cc, Label* target, Label::Distance distance) { DCHECK(!patch_site_.is_bound() && !info_emitted_); DCHECK(cc == carry || cc == not_carry); __ bind(&patch_site_); __ j(cc, target, distance); } MacroAssembler* masm() { return masm_; } MacroAssembler* masm_; Label patch_site_; #ifdef DEBUG bool info_emitted_; #endif }; // Generate code for a JS function. On entry to the function the receiver // and arguments have been pushed on the stack left to right, with the // return address on top of them. The actual argument count matches the // formal parameter count expected by the function. // // The live registers are: // o edi: the JS function object being called (i.e. ourselves) // o edx: the new target value // o esi: our context // o ebp: our caller's frame pointer // o esp: stack pointer (pointing to return address) // // The function builds a JS frame. Please see JavaScriptFrameConstants in // frames-ia32.h for its layout. void FullCodeGenerator::Generate() { CompilationInfo* info = info_; profiling_counter_ = isolate()->factory()->NewCell( Handle<Smi>(Smi::FromInt(FLAG_interrupt_budget), isolate())); SetFunctionPosition(literal()); Comment cmnt(masm_, "[ function compiled by full code generator"); ProfileEntryHookStub::MaybeCallEntryHook(masm_); if (FLAG_debug_code && info->ExpectsJSReceiverAsReceiver()) { int receiver_offset = (info->scope()->num_parameters() + 1) * kPointerSize; __ mov(ecx, Operand(esp, receiver_offset)); __ AssertNotSmi(ecx); __ CmpObjectType(ecx, FIRST_JS_RECEIVER_TYPE, ecx); __ Assert(above_equal, kSloppyFunctionExpectsJSReceiverReceiver); } // Open a frame scope to indicate that there is a frame on the stack. The // MANUAL indicates that the scope shouldn't actually generate code to set up // the frame (that is done below). FrameScope frame_scope(masm_, StackFrame::MANUAL); info->set_prologue_offset(masm_->pc_offset()); __ Prologue(info->GeneratePreagedPrologue()); // Increment invocation count for the function. { Comment cmnt(masm_, "[ Increment invocation count"); __ mov(ecx, FieldOperand(edi, JSFunction::kLiteralsOffset)); __ mov(ecx, FieldOperand(ecx, LiteralsArray::kFeedbackVectorOffset)); __ add(FieldOperand( ecx, TypeFeedbackVector::kInvocationCountIndex * kPointerSize + TypeFeedbackVector::kHeaderSize), Immediate(Smi::FromInt(1))); } { Comment cmnt(masm_, "[ Allocate locals"); int locals_count = info->scope()->num_stack_slots(); // Generators allocate locals, if any, in context slots. DCHECK(!IsGeneratorFunction(literal()->kind()) || locals_count == 0); OperandStackDepthIncrement(locals_count); if (locals_count == 1) { __ push(Immediate(isolate()->factory()->undefined_value())); } else if (locals_count > 1) { if (locals_count >= 128) { Label ok; __ mov(ecx, esp); __ sub(ecx, Immediate(locals_count * kPointerSize)); ExternalReference stack_limit = ExternalReference::address_of_real_stack_limit(isolate()); __ cmp(ecx, Operand::StaticVariable(stack_limit)); __ j(above_equal, &ok, Label::kNear); __ CallRuntime(Runtime::kThrowStackOverflow); __ bind(&ok); } __ mov(eax, Immediate(isolate()->factory()->undefined_value())); const int kMaxPushes = 32; if (locals_count >= kMaxPushes) { int loop_iterations = locals_count / kMaxPushes; __ mov(ecx, loop_iterations); Label loop_header; __ bind(&loop_header); // Do pushes. for (int i = 0; i < kMaxPushes; i++) { __ push(eax); } __ dec(ecx); __ j(not_zero, &loop_header, Label::kNear); } int remaining = locals_count % kMaxPushes; // Emit the remaining pushes. for (int i = 0; i < remaining; i++) { __ push(eax); } } } bool function_in_register = true; // Possibly allocate a local context. if (info->scope()->NeedsContext()) { Comment cmnt(masm_, "[ Allocate context"); bool need_write_barrier = true; int slots = info->scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS; // Argument to NewContext is the function, which is still in edi. if (info->scope()->is_script_scope()) { __ push(edi); __ Push(info->scope()->scope_info()); __ CallRuntime(Runtime::kNewScriptContext); PrepareForBailoutForId(BailoutId::ScriptContext(), BailoutState::TOS_REGISTER); // The new target value is not used, clobbering is safe. DCHECK_NULL(info->scope()->new_target_var()); } else { if (info->scope()->new_target_var() != nullptr) { __ push(edx); // Preserve new target. } if (slots <= FastNewFunctionContextStub::kMaximumSlots) { FastNewFunctionContextStub stub(isolate()); __ mov(FastNewFunctionContextDescriptor::SlotsRegister(), Immediate(slots)); __ CallStub(&stub); // Result of FastNewFunctionContextStub is always in new space. need_write_barrier = false; } else { __ push(edi); __ CallRuntime(Runtime::kNewFunctionContext); } if (info->scope()->new_target_var() != nullptr) { __ pop(edx); // Restore new target. } } function_in_register = false; // Context is returned in eax. It replaces the context passed to us. // It's saved in the stack and kept live in esi. __ mov(esi, eax); __ mov(Operand(ebp, StandardFrameConstants::kContextOffset), eax); // Copy parameters into context if necessary. int num_parameters = info->scope()->num_parameters(); int first_parameter = info->scope()->has_this_declaration() ? -1 : 0; for (int i = first_parameter; i < num_parameters; i++) { Variable* var = (i == -1) ? info->scope()->receiver() : info->scope()->parameter(i); if (var->IsContextSlot()) { int parameter_offset = StandardFrameConstants::kCallerSPOffset + (num_parameters - 1 - i) * kPointerSize; // Load parameter from stack. __ mov(eax, Operand(ebp, parameter_offset)); // Store it in the context. int context_offset = Context::SlotOffset(var->index()); __ mov(Operand(esi, context_offset), eax); // Update the write barrier. This clobbers eax and ebx. if (need_write_barrier) { __ RecordWriteContextSlot(esi, context_offset, eax, ebx, kDontSaveFPRegs); } else if (FLAG_debug_code) { Label done; __ JumpIfInNewSpace(esi, eax, &done, Label::kNear); __ Abort(kExpectedNewSpaceObject); __ bind(&done); } } } } // Register holding this function and new target are both trashed in case we // bailout here. But since that can happen only when new target is not used // and we allocate a context, the value of |function_in_register| is correct. PrepareForBailoutForId(BailoutId::FunctionContext(), BailoutState::NO_REGISTERS); // Possibly set up a local binding to the this function which is used in // derived constructors with super calls. Variable* this_function_var = info->scope()->this_function_var(); if (this_function_var != nullptr) { Comment cmnt(masm_, "[ This function"); if (!function_in_register) { __ mov(edi, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset)); // The write barrier clobbers register again, keep it marked as such. } SetVar(this_function_var, edi, ebx, ecx); } // Possibly set up a local binding to the new target value. Variable* new_target_var = info->scope()->new_target_var(); if (new_target_var != nullptr) { Comment cmnt(masm_, "[ new.target"); SetVar(new_target_var, edx, ebx, ecx); } // Possibly allocate RestParameters Variable* rest_param = info->scope()->rest_parameter(); if (rest_param != nullptr) { Comment cmnt(masm_, "[ Allocate rest parameter array"); if (!function_in_register) { __ mov(edi, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset)); } FastNewRestParameterStub stub(isolate()); __ CallStub(&stub); function_in_register = false; SetVar(rest_param, eax, ebx, edx); } Variable* arguments = info->scope()->arguments(); if (arguments != NULL) { // Arguments object must be allocated after the context object, in // case the "arguments" or ".arguments" variables are in the context. Comment cmnt(masm_, "[ Allocate arguments object"); if (!function_in_register) { __ mov(edi, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset)); } if (is_strict(language_mode()) || !has_simple_parameters()) { FastNewStrictArgumentsStub stub(isolate()); __ CallStub(&stub); } else if (literal()->has_duplicate_parameters()) { __ Push(edi); __ CallRuntime(Runtime::kNewSloppyArguments_Generic); } else { FastNewSloppyArgumentsStub stub(isolate()); __ CallStub(&stub); } SetVar(arguments, eax, ebx, edx); } if (FLAG_trace) { __ CallRuntime(Runtime::kTraceEnter); } // Visit the declarations and body. PrepareForBailoutForId(BailoutId::FunctionEntry(), BailoutState::NO_REGISTERS); { Comment cmnt(masm_, "[ Declarations"); VisitDeclarations(info->scope()->declarations()); } // Assert that the declarations do not use ICs. Otherwise the debugger // won't be able to redirect a PC at an IC to the correct IC in newly // recompiled code. DCHECK_EQ(0, ic_total_count_); { Comment cmnt(masm_, "[ Stack check"); PrepareForBailoutForId(BailoutId::Declarations(), BailoutState::NO_REGISTERS); Label ok; ExternalReference stack_limit = ExternalReference::address_of_stack_limit(isolate()); __ cmp(esp, Operand::StaticVariable(stack_limit)); __ j(above_equal, &ok, Label::kNear); __ call(isolate()->builtins()->StackCheck(), RelocInfo::CODE_TARGET); __ bind(&ok); } { Comment cmnt(masm_, "[ Body"); DCHECK(loop_depth() == 0); VisitStatements(literal()->body()); DCHECK(loop_depth() == 0); } // Always emit a 'return undefined' in case control fell off the end of // the body. { Comment cmnt(masm_, "[ return <undefined>;"); __ mov(eax, isolate()->factory()->undefined_value()); EmitReturnSequence(); } } void FullCodeGenerator::ClearAccumulator() { __ Move(eax, Immediate(Smi::kZero)); } void FullCodeGenerator::EmitProfilingCounterDecrement(int delta) { __ mov(ebx, Immediate(profiling_counter_)); __ sub(FieldOperand(ebx, Cell::kValueOffset), Immediate(Smi::FromInt(delta))); } void FullCodeGenerator::EmitProfilingCounterReset() { int reset_value = FLAG_interrupt_budget; __ mov(ebx, Immediate(profiling_counter_)); __ mov(FieldOperand(ebx, Cell::kValueOffset), Immediate(Smi::FromInt(reset_value))); } void FullCodeGenerator::EmitBackEdgeBookkeeping(IterationStatement* stmt, Label* back_edge_target) { Comment cmnt(masm_, "[ Back edge bookkeeping"); Label ok; DCHECK(back_edge_target->is_bound()); int distance = masm_->SizeOfCodeGeneratedSince(back_edge_target); int weight = Min(kMaxBackEdgeWeight, Max(1, distance / kCodeSizeMultiplier)); EmitProfilingCounterDecrement(weight); __ j(positive, &ok, Label::kNear); __ call(isolate()->builtins()->InterruptCheck(), RelocInfo::CODE_TARGET); // Record a mapping of this PC offset to the OSR id. This is used to find // the AST id from the unoptimized code in order to use it as a key into // the deoptimization input data found in the optimized code. RecordBackEdge(stmt->OsrEntryId()); EmitProfilingCounterReset(); __ bind(&ok); PrepareForBailoutForId(stmt->EntryId(), BailoutState::NO_REGISTERS); // Record a mapping of the OSR id to this PC. This is used if the OSR // entry becomes the target of a bailout. We don't expect it to be, but // we want it to work if it is. PrepareForBailoutForId(stmt->OsrEntryId(), BailoutState::NO_REGISTERS); } void FullCodeGenerator::EmitProfilingCounterHandlingForReturnSequence( bool is_tail_call) { // Pretend that the exit is a backwards jump to the entry. int weight = 1; if (info_->ShouldSelfOptimize()) { weight = FLAG_interrupt_budget / FLAG_self_opt_count; } else { int distance = masm_->pc_offset(); weight = Min(kMaxBackEdgeWeight, Max(1, distance / kCodeSizeMultiplier)); } EmitProfilingCounterDecrement(weight); Label ok; __ j(positive, &ok, Label::kNear); // Don't need to save result register if we are going to do a tail call. if (!is_tail_call) { __ push(eax); } __ call(isolate()->builtins()->InterruptCheck(), RelocInfo::CODE_TARGET); if (!is_tail_call) { __ pop(eax); } EmitProfilingCounterReset(); __ bind(&ok); } void FullCodeGenerator::EmitReturnSequence() { Comment cmnt(masm_, "[ Return sequence"); if (return_label_.is_bound()) { __ jmp(&return_label_); } else { // Common return label __ bind(&return_label_); if (FLAG_trace) { __ push(eax); __ CallRuntime(Runtime::kTraceExit); } EmitProfilingCounterHandlingForReturnSequence(false); SetReturnPosition(literal()); __ leave(); int arg_count = info_->scope()->num_parameters() + 1; int arguments_bytes = arg_count * kPointerSize; __ Ret(arguments_bytes, ecx); } } void FullCodeGenerator::RestoreContext() { __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset)); } void FullCodeGenerator::StackValueContext::Plug(Variable* var) const { DCHECK(var->IsStackAllocated() || var->IsContextSlot()); MemOperand operand = codegen()->VarOperand(var, result_register()); // Memory operands can be pushed directly. codegen()->PushOperand(operand); } void FullCodeGenerator::EffectContext::Plug(Heap::RootListIndex index) const { UNREACHABLE(); // Not used on IA32. } void FullCodeGenerator::AccumulatorValueContext::Plug( Heap::RootListIndex index) const { UNREACHABLE(); // Not used on IA32. } void FullCodeGenerator::StackValueContext::Plug( Heap::RootListIndex index) const { UNREACHABLE(); // Not used on IA32. } void FullCodeGenerator::TestContext::Plug(Heap::RootListIndex index) const { UNREACHABLE(); // Not used on IA32. } void FullCodeGenerator::EffectContext::Plug(Handle<Object> lit) const { } void FullCodeGenerator::AccumulatorValueContext::Plug( Handle<Object> lit) const { if (lit->IsSmi()) { __ SafeMove(result_register(), Immediate(lit)); } else { __ Move(result_register(), Immediate(lit)); } } void FullCodeGenerator::StackValueContext::Plug(Handle<Object> lit) const { codegen()->OperandStackDepthIncrement(1); if (lit->IsSmi()) { __ SafePush(Immediate(lit)); } else { __ push(Immediate(lit)); } } void FullCodeGenerator::TestContext::Plug(Handle<Object> lit) const { codegen()->PrepareForBailoutBeforeSplit(condition(), true, true_label_, false_label_); DCHECK(lit->IsNull(isolate()) || lit->IsUndefined(isolate()) || !lit->IsUndetectable()); if (lit->IsUndefined(isolate()) || lit->IsNull(isolate()) || lit->IsFalse(isolate())) { if (false_label_ != fall_through_) __ jmp(false_label_); } else if (lit->IsTrue(isolate()) || lit->IsJSObject()) { if (true_label_ != fall_through_) __ jmp(true_label_); } else if (lit->IsString()) { if (String::cast(*lit)->length() == 0) { if (false_label_ != fall_through_) __ jmp(false_label_); } else { if (true_label_ != fall_through_) __ jmp(true_label_); } } else if (lit->IsSmi()) { if (Smi::cast(*lit)->value() == 0) { if (false_label_ != fall_through_) __ jmp(false_label_); } else { if (true_label_ != fall_through_) __ jmp(true_label_); } } else { // For simplicity we always test the accumulator register. __ mov(result_register(), lit); codegen()->DoTest(this); } } void FullCodeGenerator::StackValueContext::DropAndPlug(int count, Register reg) const { DCHECK(count > 0); if (count > 1) codegen()->DropOperands(count - 1); __ mov(Operand(esp, 0), reg); } void FullCodeGenerator::EffectContext::Plug(Label* materialize_true, Label* materialize_false) const { DCHECK(materialize_true == materialize_false); __ bind(materialize_true); } void FullCodeGenerator::AccumulatorValueContext::Plug( Label* materialize_true, Label* materialize_false) const { Label done; __ bind(materialize_true); __ mov(result_register(), isolate()->factory()->true_value()); __ jmp(&done, Label::kNear); __ bind(materialize_false); __ mov(result_register(), isolate()->factory()->false_value()); __ bind(&done); } void FullCodeGenerator::StackValueContext::Plug( Label* materialize_true, Label* materialize_false) const { codegen()->OperandStackDepthIncrement(1); Label done; __ bind(materialize_true); __ push(Immediate(isolate()->factory()->true_value())); __ jmp(&done, Label::kNear); __ bind(materialize_false); __ push(Immediate(isolate()->factory()->false_value())); __ bind(&done); } void FullCodeGenerator::TestContext::Plug(Label* materialize_true, Label* materialize_false) const { DCHECK(materialize_true == true_label_); DCHECK(materialize_false == false_label_); } void FullCodeGenerator::AccumulatorValueContext::Plug(bool flag) const { Handle<Object> value = flag ? isolate()->factory()->true_value() : isolate()->factory()->false_value(); __ mov(result_register(), value); } void FullCodeGenerator::StackValueContext::Plug(bool flag) const { codegen()->OperandStackDepthIncrement(1); Handle<Object> value = flag ? isolate()->factory()->true_value() : isolate()->factory()->false_value(); __ push(Immediate(value)); } void FullCodeGenerator::TestContext::Plug(bool flag) const { codegen()->PrepareForBailoutBeforeSplit(condition(), true, true_label_, false_label_); if (flag) { if (true_label_ != fall_through_) __ jmp(true_label_); } else { if (false_label_ != fall_through_) __ jmp(false_label_); } } void FullCodeGenerator::DoTest(Expression* condition, Label* if_true, Label* if_false, Label* fall_through) { Handle<Code> ic = ToBooleanICStub::GetUninitialized(isolate()); CallIC(ic, condition->test_id()); __ CompareRoot(result_register(), Heap::kTrueValueRootIndex); Split(equal, if_true, if_false, fall_through); } void FullCodeGenerator::Split(Condition cc, Label* if_true, Label* if_false, Label* fall_through) { if (if_false == fall_through) { __ j(cc, if_true); } else if (if_true == fall_through) { __ j(NegateCondition(cc), if_false); } else { __ j(cc, if_true); __ jmp(if_false); } } MemOperand FullCodeGenerator::StackOperand(Variable* var) { DCHECK(var->IsStackAllocated()); // Offset is negative because higher indexes are at lower addresses. int offset = -var->index() * kPointerSize; // Adjust by a (parameter or local) base offset. if (var->IsParameter()) { offset += (info_->scope()->num_parameters() + 1) * kPointerSize; } else { offset += JavaScriptFrameConstants::kLocal0Offset; } return Operand(ebp, offset); } MemOperand FullCodeGenerator::VarOperand(Variable* var, Register scratch) { DCHECK(var->IsContextSlot() || var->IsStackAllocated()); if (var->IsContextSlot()) { int context_chain_length = scope()->ContextChainLength(var->scope()); __ LoadContext(scratch, context_chain_length); return ContextOperand(scratch, var->index()); } else { return StackOperand(var); } } void FullCodeGenerator::GetVar(Register dest, Variable* var) { DCHECK(var->IsContextSlot() || var->IsStackAllocated()); MemOperand location = VarOperand(var, dest); __ mov(dest, location); } void FullCodeGenerator::SetVar(Variable* var, Register src, Register scratch0, Register scratch1) { DCHECK(var->IsContextSlot() || var->IsStackAllocated()); DCHECK(!scratch0.is(src)); DCHECK(!scratch0.is(scratch1)); DCHECK(!scratch1.is(src)); MemOperand location = VarOperand(var, scratch0); __ mov(location, src); // Emit the write barrier code if the location is in the heap. if (var->IsContextSlot()) { int offset = Context::SlotOffset(var->index()); DCHECK(!scratch0.is(esi) && !src.is(esi) && !scratch1.is(esi)); __ RecordWriteContextSlot(scratch0, offset, src, scratch1, kDontSaveFPRegs); } } void FullCodeGenerator::PrepareForBailoutBeforeSplit(Expression* expr, bool should_normalize, Label* if_true, Label* if_false) { // Only prepare for bailouts before splits if we're in a test // context. Otherwise, we let the Visit function deal with the // preparation to avoid preparing with the same AST id twice. if (!context()->IsTest()) return; Label skip; if (should_normalize) __ jmp(&skip, Label::kNear); PrepareForBailout(expr, BailoutState::TOS_REGISTER); if (should_normalize) { __ cmp(eax, isolate()->factory()->true_value()); Split(equal, if_true, if_false, NULL); __ bind(&skip); } } void FullCodeGenerator::EmitDebugCheckDeclarationContext(Variable* variable) { // The variable in the declaration always resides in the current context. DCHECK_EQ(0, scope()->ContextChainLength(variable->scope())); if (FLAG_debug_code) { // Check that we're not inside a with or catch context. __ mov(ebx, FieldOperand(esi, HeapObject::kMapOffset)); __ cmp(ebx, isolate()->factory()->with_context_map()); __ Check(not_equal, kDeclarationInWithContext); __ cmp(ebx, isolate()->factory()->catch_context_map()); __ Check(not_equal, kDeclarationInCatchContext); } } void FullCodeGenerator::VisitVariableDeclaration( VariableDeclaration* declaration) { VariableProxy* proxy = declaration->proxy(); Variable* variable = proxy->var(); switch (variable->location()) { case VariableLocation::UNALLOCATED: { DCHECK(!variable->binding_needs_init()); FeedbackVectorSlot slot = proxy->VariableFeedbackSlot(); DCHECK(!slot.IsInvalid()); globals_->Add(handle(Smi::FromInt(slot.ToInt()), isolate()), zone()); globals_->Add(isolate()->factory()->undefined_value(), zone()); break; } case VariableLocation::PARAMETER: case VariableLocation::LOCAL: if (variable->binding_needs_init()) { Comment cmnt(masm_, "[ VariableDeclaration"); __ mov(StackOperand(variable), Immediate(isolate()->factory()->the_hole_value())); } break; case VariableLocation::CONTEXT: if (variable->binding_needs_init()) { Comment cmnt(masm_, "[ VariableDeclaration"); EmitDebugCheckDeclarationContext(variable); __ mov(ContextOperand(esi, variable->index()), Immediate(isolate()->factory()->the_hole_value())); // No write barrier since the hole value is in old space. PrepareForBailoutForId(proxy->id(), BailoutState::NO_REGISTERS); } break; case VariableLocation::LOOKUP: { Comment cmnt(masm_, "[ VariableDeclaration"); DCHECK_EQ(VAR, variable->mode()); DCHECK(!variable->binding_needs_init()); __ push(Immediate(variable->name())); __ CallRuntime(Runtime::kDeclareEvalVar); PrepareForBailoutForId(proxy->id(), BailoutState::NO_REGISTERS); break; } case VariableLocation::MODULE: UNREACHABLE(); } } void FullCodeGenerator::VisitFunctionDeclaration( FunctionDeclaration* declaration) { VariableProxy* proxy = declaration->proxy(); Variable* variable = proxy->var(); switch (variable->location()) { case VariableLocation::UNALLOCATED: { FeedbackVectorSlot slot = proxy->VariableFeedbackSlot(); DCHECK(!slot.IsInvalid()); globals_->Add(handle(Smi::FromInt(slot.ToInt()), isolate()), zone()); Handle<SharedFunctionInfo> function = Compiler::GetSharedFunctionInfo(declaration->fun(), script(), info_); // Check for stack-overflow exception. if (function.is_null()) return SetStackOverflow(); globals_->Add(function, zone()); break; } case VariableLocation::PARAMETER: case VariableLocation::LOCAL: { Comment cmnt(masm_, "[ FunctionDeclaration"); VisitForAccumulatorValue(declaration->fun()); __ mov(StackOperand(variable), result_register()); break; } case VariableLocation::CONTEXT: { Comment cmnt(masm_, "[ FunctionDeclaration"); EmitDebugCheckDeclarationContext(variable); VisitForAccumulatorValue(declaration->fun()); __ mov(ContextOperand(esi, variable->index()), result_register()); // We know that we have written a function, which is not a smi. __ RecordWriteContextSlot(esi, Context::SlotOffset(variable->index()), result_register(), ecx, kDontSaveFPRegs, EMIT_REMEMBERED_SET, OMIT_SMI_CHECK); PrepareForBailoutForId(proxy->id(), BailoutState::NO_REGISTERS); break; } case VariableLocation::LOOKUP: { Comment cmnt(masm_, "[ FunctionDeclaration"); PushOperand(variable->name()); VisitForStackValue(declaration->fun()); CallRuntimeWithOperands(Runtime::kDeclareEvalFunction); PrepareForBailoutForId(proxy->id(), BailoutState::NO_REGISTERS); break; } case VariableLocation::MODULE: UNREACHABLE(); } } void FullCodeGenerator::DeclareGlobals(Handle<FixedArray> pairs) { // Call the runtime to declare the globals. __ Push(pairs); __ Push(Smi::FromInt(DeclareGlobalsFlags())); __ EmitLoadTypeFeedbackVector(eax); __ Push(eax); __ CallRuntime(Runtime::kDeclareGlobals); // Return value is ignored. } void FullCodeGenerator::VisitSwitchStatement(SwitchStatement* stmt) { Comment cmnt(masm_, "[ SwitchStatement"); Breakable nested_statement(this, stmt); SetStatementPosition(stmt); // Keep the switch value on the stack until a case matches. VisitForStackValue(stmt->tag()); PrepareForBailoutForId(stmt->EntryId(), BailoutState::NO_REGISTERS); ZoneList<CaseClause*>* clauses = stmt->cases(); CaseClause* default_clause = NULL; // Can occur anywhere in the list. Label next_test; // Recycled for each test. // Compile all the tests with branches to their bodies. for (int i = 0; i < clauses->length(); i++) { CaseClause* clause = clauses->at(i); clause->body_target()->Unuse(); // The default is not a test, but remember it as final fall through. if (clause->is_default()) { default_clause = clause; continue; } Comment cmnt(masm_, "[ Case comparison"); __ bind(&next_test); next_test.Unuse(); // Compile the label expression. VisitForAccumulatorValue(clause->label()); // Perform the comparison as if via '==='. __ mov(edx, Operand(esp, 0)); // Switch value. bool inline_smi_code = ShouldInlineSmiCase(Token::EQ_STRICT); JumpPatchSite patch_site(masm_); if (inline_smi_code) { Label slow_case; __ mov(ecx, edx); __ or_(ecx, eax); patch_site.EmitJumpIfNotSmi(ecx, &slow_case, Label::kNear); __ cmp(edx, eax); __ j(not_equal, &next_test); __ Drop(1); // Switch value is no longer needed. __ jmp(clause->body_target()); __ bind(&slow_case); } SetExpressionPosition(clause); Handle<Code> ic = CodeFactory::CompareIC(isolate(), Token::EQ_STRICT).code(); CallIC(ic, clause->CompareId()); patch_site.EmitPatchInfo(); Label skip; __ jmp(&skip, Label::kNear); PrepareForBailout(clause, BailoutState::TOS_REGISTER); __ cmp(eax, isolate()->factory()->true_value()); __ j(not_equal, &next_test); __ Drop(1); __ jmp(clause->body_target()); __ bind(&skip); __ test(eax, eax); __ j(not_equal, &next_test); __ Drop(1); // Switch value is no longer needed. __ jmp(clause->body_target()); } // Discard the test value and jump to the default if present, otherwise to // the end of the statement. __ bind(&next_test); DropOperands(1); // Switch value is no longer needed. if (default_clause == NULL) { __ jmp(nested_statement.break_label()); } else { __ jmp(default_clause->body_target()); } // Compile all the case bodies. for (int i = 0; i < clauses->length(); i++) { Comment cmnt(masm_, "[ Case body"); CaseClause* clause = clauses->at(i); __ bind(clause->body_target()); PrepareForBailoutForId(clause->EntryId(), BailoutState::NO_REGISTERS); VisitStatements(clause->statements()); } __ bind(nested_statement.break_label()); PrepareForBailoutForId(stmt->ExitId(), BailoutState::NO_REGISTERS); } void FullCodeGenerator::VisitForInStatement(ForInStatement* stmt) { Comment cmnt(masm_, "[ ForInStatement"); SetStatementPosition(stmt, SKIP_BREAK); FeedbackVectorSlot slot = stmt->ForInFeedbackSlot(); // Get the object to enumerate over. SetExpressionAsStatementPosition(stmt->enumerable()); VisitForAccumulatorValue(stmt->enumerable()); OperandStackDepthIncrement(5); Label loop, exit; Iteration loop_statement(this, stmt); increment_loop_depth(); // If the object is null or undefined, skip over the loop, otherwise convert // it to a JS receiver. See ECMA-262 version 5, section 12.6.4. Label convert, done_convert; __ JumpIfSmi(eax, &convert, Label::kNear); __ CmpObjectType(eax, FIRST_JS_RECEIVER_TYPE, ecx); __ j(above_equal, &done_convert, Label::kNear); __ cmp(eax, isolate()->factory()->undefined_value()); __ j(equal, &exit); __ cmp(eax, isolate()->factory()->null_value()); __ j(equal, &exit); __ bind(&convert); __ Call(isolate()->builtins()->ToObject(), RelocInfo::CODE_TARGET); RestoreContext(); __ bind(&done_convert); PrepareForBailoutForId(stmt->ToObjectId(), BailoutState::TOS_REGISTER); __ push(eax); // Check cache validity in generated code. If we cannot guarantee cache // validity, call the runtime system to check cache validity or get the // property names in a fixed array. Note: Proxies never have an enum cache, // so will always take the slow path. Label call_runtime, use_cache, fixed_array; __ CheckEnumCache(&call_runtime); __ mov(eax, FieldOperand(eax, HeapObject::kMapOffset)); __ jmp(&use_cache, Label::kNear); // Get the set of properties to enumerate. __ bind(&call_runtime); __ push(eax); __ CallRuntime(Runtime::kForInEnumerate); PrepareForBailoutForId(stmt->EnumId(), BailoutState::TOS_REGISTER); __ cmp(FieldOperand(eax, HeapObject::kMapOffset), isolate()->factory()->meta_map()); __ j(not_equal, &fixed_array); // We got a map in register eax. Get the enumeration cache from it. Label no_descriptors; __ bind(&use_cache); __ EnumLength(edx, eax); __ cmp(edx, Immediate(Smi::kZero)); __ j(equal, &no_descriptors); __ LoadInstanceDescriptors(eax, ecx); __ mov(ecx, FieldOperand(ecx, DescriptorArray::kEnumCacheOffset)); __ mov(ecx, FieldOperand(ecx, DescriptorArray::kEnumCacheBridgeCacheOffset)); // Set up the four remaining stack slots. __ push(eax); // Map. __ push(ecx); // Enumeration cache. __ push(edx); // Number of valid entries for the map in the enum cache. __ push(Immediate(Smi::kZero)); // Initial index. __ jmp(&loop); __ bind(&no_descriptors); __ add(esp, Immediate(kPointerSize)); __ jmp(&exit); // We got a fixed array in register eax. Iterate through that. __ bind(&fixed_array); __ push(Immediate(Smi::FromInt(1))); // Smi(1) indicates slow check __ push(eax); // Array __ mov(eax, FieldOperand(eax, FixedArray::kLengthOffset)); __ push(eax); // Fixed array length (as smi). PrepareForBailoutForId(stmt->PrepareId(), BailoutState::NO_REGISTERS); __ push(Immediate(Smi::kZero)); // Initial index. // Generate code for doing the condition check. __ bind(&loop); SetExpressionAsStatementPosition(stmt->each()); __ mov(eax, Operand(esp, 0 * kPointerSize)); // Get the current index. __ cmp(eax, Operand(esp, 1 * kPointerSize)); // Compare to the array length. __ j(above_equal, loop_statement.break_label()); // Get the current entry of the array into register eax. __ mov(ebx, Operand(esp, 2 * kPointerSize)); __ mov(eax, FieldOperand(ebx, eax, times_2, FixedArray::kHeaderSize)); // Get the expected map from the stack or a smi in the // permanent slow case into register edx. __ mov(edx, Operand(esp, 3 * kPointerSize)); // Check if the expected map still matches that of the enumerable. // If not, we may have to filter the key. Label update_each; __ mov(ebx, Operand(esp, 4 * kPointerSize)); __ cmp(edx, FieldOperand(ebx, HeapObject::kMapOffset)); __ j(equal, &update_each, Label::kNear); // We need to filter the key, record slow-path here. int const vector_index = SmiFromSlot(slot)->value(); __ EmitLoadTypeFeedbackVector(edx); __ mov(FieldOperand(edx, FixedArray::OffsetOfElementAt(vector_index)), Immediate(TypeFeedbackVector::MegamorphicSentinel(isolate()))); // eax contains the key. The receiver in ebx is the second argument to the // ForInFilter. ForInFilter returns undefined if the receiver doesn't // have the key or returns the name-converted key. __ Call(isolate()->builtins()->ForInFilter(), RelocInfo::CODE_TARGET); RestoreContext(); PrepareForBailoutForId(stmt->FilterId(), BailoutState::TOS_REGISTER); __ JumpIfRoot(result_register(), Heap::kUndefinedValueRootIndex, loop_statement.continue_label()); // Update the 'each' property or variable from the possibly filtered // entry in register eax. __ bind(&update_each); // Perform the assignment as if via '='. { EffectContext context(this); EmitAssignment(stmt->each(), stmt->EachFeedbackSlot()); PrepareForBailoutForId(stmt->AssignmentId(), BailoutState::NO_REGISTERS); } // Both Crankshaft and Turbofan expect BodyId to be right before stmt->body(). PrepareForBailoutForId(stmt->BodyId(), BailoutState::NO_REGISTERS); // Generate code for the body of the loop. Visit(stmt->body()); // Generate code for going to the next element by incrementing the // index (smi) stored on top of the stack. __ bind(loop_statement.continue_label()); PrepareForBailoutForId(stmt->IncrementId(), BailoutState::NO_REGISTERS); __ add(Operand(esp, 0 * kPointerSize), Immediate(Smi::FromInt(1))); EmitBackEdgeBookkeeping(stmt, &loop); __ jmp(&loop); // Remove the pointers stored on the stack. __ bind(loop_statement.break_label()); DropOperands(5); // Exit and decrement the loop depth. PrepareForBailoutForId(stmt->ExitId(), BailoutState::NO_REGISTERS); __ bind(&exit); decrement_loop_depth(); } void FullCodeGenerator::EmitSetHomeObject(Expression* initializer, int offset, FeedbackVectorSlot slot) { DCHECK(NeedsHomeObject(initializer)); __ mov(StoreDescriptor::ReceiverRegister(), Operand(esp, 0)); __ mov(StoreDescriptor::ValueRegister(), Operand(esp, offset * kPointerSize)); CallStoreIC(slot, isolate()->factory()->home_object_symbol()); } void FullCodeGenerator::EmitSetHomeObjectAccumulator(Expression* initializer, int offset, FeedbackVectorSlot slot) { DCHECK(NeedsHomeObject(initializer)); __ mov(StoreDescriptor::ReceiverRegister(), eax); __ mov(StoreDescriptor::ValueRegister(), Operand(esp, offset * kPointerSize)); CallStoreIC(slot, isolate()->factory()->home_object_symbol()); } void FullCodeGenerator::EmitLoadGlobalCheckExtensions(VariableProxy* proxy, TypeofMode typeof_mode, Label* slow) { Register context = esi; Register temp = edx; int to_check = scope()->ContextChainLengthUntilOutermostSloppyEval(); for (Scope* s = scope(); to_check > 0; s = s->outer_scope()) { if (!s->NeedsContext()) continue; if (s->calls_sloppy_eval()) { // Check that extension is "the hole". __ JumpIfNotRoot(ContextOperand(context, Context::EXTENSION_INDEX), Heap::kTheHoleValueRootIndex, slow); } // Load next context in chain. __ mov(temp, ContextOperand(context, Context::PREVIOUS_INDEX)); // Walk the rest of the chain without clobbering esi. context = temp; to_check--; } // All extension objects were empty and it is safe to use a normal global // load machinery. EmitGlobalVariableLoad(proxy, typeof_mode); } MemOperand FullCodeGenerator::ContextSlotOperandCheckExtensions(Variable* var, Label* slow) { DCHECK(var->IsContextSlot()); Register context = esi; Register temp = ebx; for (Scope* s = scope(); s != var->scope(); s = s->outer_scope()) { if (s->NeedsContext()) { if (s->calls_sloppy_eval()) { // Check that extension is "the hole". __ JumpIfNotRoot(ContextOperand(context, Context::EXTENSION_INDEX), Heap::kTheHoleValueRootIndex, slow); } __ mov(temp, ContextOperand(context, Context::PREVIOUS_INDEX)); // Walk the rest of the chain without clobbering esi. context = temp; } } // Check that last extension is "the hole". __ JumpIfNotRoot(ContextOperand(context, Context::EXTENSION_INDEX), Heap::kTheHoleValueRootIndex, slow); // This function is used only for loads, not stores, so it's safe to // return an esi-based operand (the write barrier cannot be allowed to // destroy the esi register). return ContextOperand(context, var->index()); } void FullCodeGenerator::EmitDynamicLookupFastCase(VariableProxy* proxy, TypeofMode typeof_mode, Label* slow, Label* done) { // Generate fast-case code for variables that might be shadowed by // eval-introduced variables. Eval is used a lot without // introducing variables. In those cases, we do not want to // perform a runtime call for all variables in the scope // containing the eval. Variable* var = proxy->var(); if (var->mode() == DYNAMIC_GLOBAL) { EmitLoadGlobalCheckExtensions(proxy, typeof_mode, slow); __ jmp(done); } else if (var->mode() == DYNAMIC_LOCAL) { Variable* local = var->local_if_not_shadowed(); __ mov(eax, ContextSlotOperandCheckExtensions(local, slow)); if (local->binding_needs_init()) { __ cmp(eax, isolate()->factory()->the_hole_value()); __ j(not_equal, done); __ push(Immediate(var->name())); __ CallRuntime(Runtime::kThrowReferenceError); } else { __ jmp(done); } } } void FullCodeGenerator::EmitVariableLoad(VariableProxy* proxy, TypeofMode typeof_mode) { SetExpressionPosition(proxy); PrepareForBailoutForId(proxy->BeforeId(), BailoutState::NO_REGISTERS); Variable* var = proxy->var(); // Three cases: global variables, lookup variables, and all other types of // variables. switch (var->location()) { case VariableLocation::UNALLOCATED: { Comment cmnt(masm_, "[ Global variable"); EmitGlobalVariableLoad(proxy, typeof_mode); context()->Plug(eax); break; } case VariableLocation::PARAMETER: case VariableLocation::LOCAL: case VariableLocation::CONTEXT: { DCHECK_EQ(NOT_INSIDE_TYPEOF, typeof_mode); Comment cmnt(masm_, var->IsContextSlot() ? "[ Context variable" : "[ Stack variable"); if (proxy->hole_check_mode() == HoleCheckMode::kRequired) { // Throw a reference error when using an uninitialized let/const // binding in harmony mode. Label done; GetVar(eax, var); __ cmp(eax, isolate()->factory()->the_hole_value()); __ j(not_equal, &done, Label::kNear); __ push(Immediate(var->name())); __ CallRuntime(Runtime::kThrowReferenceError); __ bind(&done); context()->Plug(eax); break; } context()->Plug(var); break; } case VariableLocation::LOOKUP: { Comment cmnt(masm_, "[ Lookup variable"); Label done, slow; // Generate code for loading from variables potentially shadowed // by eval-introduced variables. EmitDynamicLookupFastCase(proxy, typeof_mode, &slow, &done); __ bind(&slow); __ push(Immediate(var->name())); Runtime::FunctionId function_id = typeof_mode == NOT_INSIDE_TYPEOF ? Runtime::kLoadLookupSlot : Runtime::kLoadLookupSlotInsideTypeof; __ CallRuntime(function_id); __ bind(&done); context()->Plug(eax); break; } case VariableLocation::MODULE: UNREACHABLE(); } } void FullCodeGenerator::EmitAccessor(ObjectLiteralProperty* property) { Expression* expression = (property == NULL) ? NULL : property->value(); if (expression == NULL) { PushOperand(isolate()->factory()->null_value()); } else { VisitForStackValue(expression); if (NeedsHomeObject(expression)) { DCHECK(property->kind() == ObjectLiteral::Property::GETTER || property->kind() == ObjectLiteral::Property::SETTER); int offset = property->kind() == ObjectLiteral::Property::GETTER ? 2 : 3; EmitSetHomeObject(expression, offset, property->GetSlot()); } } } void FullCodeGenerator::VisitObjectLiteral(ObjectLiteral* expr) { Comment cmnt(masm_, "[ ObjectLiteral"); Handle<FixedArray> constant_properties = expr->constant_properties(); int flags = expr->ComputeFlags(); // If any of the keys would store to the elements array, then we shouldn't // allow it. if (MustCreateObjectLiteralWithRuntime(expr)) { __ push(Operand(ebp, JavaScriptFrameConstants::kFunctionOffset)); __ push(Immediate(Smi::FromInt(expr->literal_index()))); __ push(Immediate(constant_properties)); __ push(Immediate(Smi::FromInt(flags))); __ CallRuntime(Runtime::kCreateObjectLiteral); } else { __ mov(eax, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset)); __ mov(ebx, Immediate(Smi::FromInt(expr->literal_index()))); __ mov(ecx, Immediate(constant_properties)); __ mov(edx, Immediate(Smi::FromInt(flags))); FastCloneShallowObjectStub stub(isolate(), expr->properties_count()); __ CallStub(&stub); RestoreContext(); } PrepareForBailoutForId(expr->CreateLiteralId(), BailoutState::TOS_REGISTER); // If result_saved is true the result is on top of the stack. If // result_saved is false the result is in eax. bool result_saved = false; AccessorTable accessor_table(zone()); int property_index = 0; for (; property_index < expr->properties()->length(); property_index++) { ObjectLiteral::Property* property = expr->properties()->at(property_index); if (property->is_computed_name()) break; if (property->IsCompileTimeValue()) continue; Literal* key = property->key()->AsLiteral(); Expression* value = property->value(); if (!result_saved) { PushOperand(eax); // Save result on the stack result_saved = true; } switch (property->kind()) { case ObjectLiteral::Property::CONSTANT: UNREACHABLE(); case ObjectLiteral::Property::MATERIALIZED_LITERAL: DCHECK(!CompileTimeValue::IsCompileTimeValue(value)); // Fall through. case ObjectLiteral::Property::COMPUTED: // It is safe to use [[Put]] here because the boilerplate already // contains computed properties with an uninitialized value. if (key->IsStringLiteral()) { DCHECK(key->IsPropertyName()); if (property->emit_store()) { VisitForAccumulatorValue(value); DCHECK(StoreDescriptor::ValueRegister().is(eax)); __ mov(StoreDescriptor::ReceiverRegister(), Operand(esp, 0)); CallStoreIC(property->GetSlot(0), key->value()); PrepareForBailoutForId(key->id(), BailoutState::NO_REGISTERS); if (NeedsHomeObject(value)) { EmitSetHomeObjectAccumulator(value, 0, property->GetSlot(1)); } } else { VisitForEffect(value); } break; } PushOperand(Operand(esp, 0)); // Duplicate receiver. VisitForStackValue(key); VisitForStackValue(value); if (property->emit_store()) { if (NeedsHomeObject(value)) { EmitSetHomeObject(value, 2, property->GetSlot()); } PushOperand(Smi::FromInt(SLOPPY)); // Language mode CallRuntimeWithOperands(Runtime::kSetProperty); } else { DropOperands(3); } break; case ObjectLiteral::Property::PROTOTYPE: PushOperand(Operand(esp, 0)); // Duplicate receiver. VisitForStackValue(value); DCHECK(property->emit_store()); CallRuntimeWithOperands(Runtime::kInternalSetPrototype); PrepareForBailoutForId(expr->GetIdForPropertySet(property_index), BailoutState::NO_REGISTERS); break; case ObjectLiteral::Property::GETTER: if (property->emit_store()) { AccessorTable::Iterator it = accessor_table.lookup(key); it->second->bailout_id = expr->GetIdForPropertySet(property_index); it->second->getter = property; } break; case ObjectLiteral::Property::SETTER: if (property->emit_store()) { AccessorTable::Iterator it = accessor_table.lookup(key); it->second->bailout_id = expr->GetIdForPropertySet(property_index); it->second->setter = property; } break; } } // Emit code to define accessors, using only a single call to the runtime for // each pair of corresponding getters and setters. for (AccessorTable::Iterator it = accessor_table.begin(); it != accessor_table.end(); ++it) { PushOperand(Operand(esp, 0)); // Duplicate receiver. VisitForStackValue(it->first); EmitAccessor(it->second->getter); EmitAccessor(it->second->setter); PushOperand(Smi::FromInt(NONE)); CallRuntimeWithOperands(Runtime::kDefineAccessorPropertyUnchecked); PrepareForBailoutForId(it->second->bailout_id, BailoutState::NO_REGISTERS); } // Object literals have two parts. The "static" part on the left contains no // computed property names, and so we can compute its map ahead of time; see // runtime.cc::CreateObjectLiteralBoilerplate. The second "dynamic" part // starts with the first computed property name, and continues with all // properties to its right. All the code from above initializes the static // component of the object literal, and arranges for the map of the result to // reflect the static order in which the keys appear. For the dynamic // properties, we compile them into a series of "SetOwnProperty" runtime // calls. This will preserve insertion order. for (; property_index < expr->properties()->length(); property_index++) { ObjectLiteral::Property* property = expr->properties()->at(property_index); Expression* value = property->value(); if (!result_saved) { PushOperand(eax); // Save result on the stack result_saved = true; } PushOperand(Operand(esp, 0)); // Duplicate receiver. if (property->kind() == ObjectLiteral::Property::PROTOTYPE) { DCHECK(!property->is_computed_name()); VisitForStackValue(value); DCHECK(property->emit_store()); CallRuntimeWithOperands(Runtime::kInternalSetPrototype); PrepareForBailoutForId(expr->GetIdForPropertySet(property_index), BailoutState::NO_REGISTERS); } else { EmitPropertyKey(property, expr->GetIdForPropertyName(property_index)); VisitForStackValue(value); if (NeedsHomeObject(value)) { EmitSetHomeObject(value, 2, property->GetSlot()); } switch (property->kind()) { case ObjectLiteral::Property::CONSTANT: case ObjectLiteral::Property::MATERIALIZED_LITERAL: case ObjectLiteral::Property::COMPUTED: if (property->emit_store()) { PushOperand(Smi::FromInt(NONE)); PushOperand(Smi::FromInt(property->NeedsSetFunctionName())); CallRuntimeWithOperands(Runtime::kDefineDataPropertyInLiteral); PrepareForBailoutForId(expr->GetIdForPropertySet(property_index), BailoutState::NO_REGISTERS); } else { DropOperands(3); } break; case ObjectLiteral::Property::PROTOTYPE: UNREACHABLE(); break; case ObjectLiteral::Property::GETTER: PushOperand(Smi::FromInt(NONE)); CallRuntimeWithOperands(Runtime::kDefineGetterPropertyUnchecked); break; case ObjectLiteral::Property::SETTER: PushOperand(Smi::FromInt(NONE)); CallRuntimeWithOperands(Runtime::kDefineSetterPropertyUnchecked); break; } } } if (result_saved) { context()->PlugTOS(); } else { context()->Plug(eax); } } void FullCodeGenerator::VisitArrayLiteral(ArrayLiteral* expr) { Comment cmnt(masm_, "[ ArrayLiteral"); Handle<FixedArray> constant_elements = expr->constant_elements(); bool has_constant_fast_elements = IsFastObjectElementsKind(expr->constant_elements_kind()); AllocationSiteMode allocation_site_mode = TRACK_ALLOCATION_SITE; if (has_constant_fast_elements && !FLAG_allocation_site_pretenuring) { // If the only customer of allocation sites is transitioning, then // we can turn it off if we don't have anywhere else to transition to. allocation_site_mode = DONT_TRACK_ALLOCATION_SITE; } if (MustCreateArrayLiteralWithRuntime(expr)) { __ push(Operand(ebp, JavaScriptFrameConstants::kFunctionOffset)); __ push(Immediate(Smi::FromInt(expr->literal_index()))); __ push(Immediate(constant_elements)); __ push(Immediate(Smi::FromInt(expr->ComputeFlags()))); __ CallRuntime(Runtime::kCreateArrayLiteral); } else { __ mov(eax, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset)); __ mov(ebx, Immediate(Smi::FromInt(expr->literal_index()))); __ mov(ecx, Immediate(constant_elements)); FastCloneShallowArrayStub stub(isolate(), allocation_site_mode); __ CallStub(&stub); RestoreContext(); } PrepareForBailoutForId(expr->CreateLiteralId(), BailoutState::TOS_REGISTER); bool result_saved = false; // Is the result saved to the stack? ZoneList<Expression*>* subexprs = expr->values(); int length = subexprs->length(); // Emit code to evaluate all the non-constant subexpressions and to store // them into the newly cloned array. for (int array_index = 0; array_index < length; array_index++) { Expression* subexpr = subexprs->at(array_index); DCHECK(!subexpr->IsSpread()); // If the subexpression is a literal or a simple materialized literal it // is already set in the cloned array. if (CompileTimeValue::IsCompileTimeValue(subexpr)) continue; if (!result_saved) { PushOperand(eax); // array literal. result_saved = true; } VisitForAccumulatorValue(subexpr); __ mov(StoreDescriptor::NameRegister(), Immediate(Smi::FromInt(array_index))); __ mov(StoreDescriptor::ReceiverRegister(), Operand(esp, 0)); CallKeyedStoreIC(expr->LiteralFeedbackSlot()); PrepareForBailoutForId(expr->GetIdForElement(array_index), BailoutState::NO_REGISTERS); } if (result_saved) { context()->PlugTOS(); } else { context()->Plug(eax); } } void FullCodeGenerator::VisitAssignment(Assignment* expr) { DCHECK(expr->target()->IsValidReferenceExpressionOrThis()); Comment cmnt(masm_, "[ Assignment"); Property* property = expr->target()->AsProperty(); LhsKind assign_type = Property::GetAssignType(property); // Evaluate LHS expression. switch (assign_type) { case VARIABLE: // Nothing to do here. break; case NAMED_SUPER_PROPERTY: VisitForStackValue( property->obj()->AsSuperPropertyReference()->this_var()); VisitForAccumulatorValue( property->obj()->AsSuperPropertyReference()->home_object()); PushOperand(result_register()); if (expr->is_compound()) { PushOperand(MemOperand(esp, kPointerSize)); PushOperand(result_register()); } break; case NAMED_PROPERTY: if (expr->is_compound()) { // We need the receiver both on the stack and in the register. VisitForStackValue(property->obj()); __ mov(LoadDescriptor::ReceiverRegister(), Operand(esp, 0)); } else { VisitForStackValue(property->obj()); } break; case KEYED_SUPER_PROPERTY: VisitForStackValue( property->obj()->AsSuperPropertyReference()->this_var()); VisitForStackValue( property->obj()->AsSuperPropertyReference()->home_object()); VisitForAccumulatorValue(property->key()); PushOperand(result_register()); if (expr->is_compound()) { PushOperand(MemOperand(esp, 2 * kPointerSize)); PushOperand(MemOperand(esp, 2 * kPointerSize)); PushOperand(result_register()); } break; case KEYED_PROPERTY: { if (expr->is_compound()) { VisitForStackValue(property->obj()); VisitForStackValue(property->key()); __ mov(LoadDescriptor::ReceiverRegister(), Operand(esp, kPointerSize)); __ mov(LoadDescriptor::NameRegister(), Operand(esp, 0)); } else { VisitForStackValue(property->obj()); VisitForStackValue(property->key()); } break; } } // For compound assignments we need another deoptimization point after the // variable/property load. if (expr->is_compound()) { AccumulatorValueContext result_context(this); { AccumulatorValueContext left_operand_context(this); switch (assign_type) { case VARIABLE: EmitVariableLoad(expr->target()->AsVariableProxy()); PrepareForBailout(expr->target(), BailoutState::TOS_REGISTER); break; case NAMED_SUPER_PROPERTY: EmitNamedSuperPropertyLoad(property); PrepareForBailoutForId(property->LoadId(), BailoutState::TOS_REGISTER); break; case NAMED_PROPERTY: EmitNamedPropertyLoad(property); PrepareForBailoutForId(property->LoadId(), BailoutState::TOS_REGISTER); break; case KEYED_SUPER_PROPERTY: EmitKeyedSuperPropertyLoad(property); PrepareForBailoutForId(property->LoadId(), BailoutState::TOS_REGISTER); break; case KEYED_PROPERTY: EmitKeyedPropertyLoad(property); PrepareForBailoutForId(property->LoadId(), BailoutState::TOS_REGISTER); break; } } Token::Value op = expr->binary_op(); PushOperand(eax); // Left operand goes on the stack. VisitForAccumulatorValue(expr->value()); if (ShouldInlineSmiCase(op)) { EmitInlineSmiBinaryOp(expr->binary_operation(), op, expr->target(), expr->value()); } else { EmitBinaryOp(expr->binary_operation(), op); } // Deoptimization point in case the binary operation may have side effects. PrepareForBailout(expr->binary_operation(), BailoutState::TOS_REGISTER); } else { VisitForAccumulatorValue(expr->value()); } SetExpressionPosition(expr); // Store the value. switch (assign_type) { case VARIABLE: { VariableProxy* proxy = expr->target()->AsVariableProxy(); EmitVariableAssignment(proxy->var(), expr->op(), expr->AssignmentSlot(), proxy->hole_check_mode()); PrepareForBailoutForId(expr->AssignmentId(), BailoutState::TOS_REGISTER); context()->Plug(eax); break; } case NAMED_PROPERTY: EmitNamedPropertyAssignment(expr); break; case NAMED_SUPER_PROPERTY: EmitNamedSuperPropertyStore(property); context()->Plug(result_register()); break; case KEYED_SUPER_PROPERTY: EmitKeyedSuperPropertyStore(property); context()->Plug(result_register()); break; case KEYED_PROPERTY: EmitKeyedPropertyAssignment(expr); break; } } void FullCodeGenerator::VisitYield(Yield* expr) { Comment cmnt(masm_, "[ Yield"); SetExpressionPosition(expr); // Evaluate yielded value first; the initial iterator definition depends on // this. It stays on the stack while we update the iterator. VisitForStackValue(expr->expression()); Label suspend, continuation, post_runtime, resume, exception; __ jmp(&suspend); __ bind(&continuation); // When we arrive here, eax holds the generator object. __ RecordGeneratorContinuation(); __ mov(ebx, FieldOperand(eax, JSGeneratorObject::kResumeModeOffset)); __ mov(eax, FieldOperand(eax, JSGeneratorObject::kInputOrDebugPosOffset)); STATIC_ASSERT(JSGeneratorObject::kNext < JSGeneratorObject::kReturn); STATIC_ASSERT(JSGeneratorObject::kThrow > JSGeneratorObject::kReturn); __ cmp(ebx, Immediate(Smi::FromInt(JSGeneratorObject::kReturn))); __ j(less, &resume); __ Push(result_register()); __ j(greater, &exception); EmitCreateIteratorResult(true); EmitUnwindAndReturn(); __ bind(&exception); __ CallRuntime(expr->rethrow_on_exception() ? Runtime::kReThrow : Runtime::kThrow); __ bind(&suspend); OperandStackDepthIncrement(1); // Not popped on this path. VisitForAccumulatorValue(expr->generator_object()); DCHECK(continuation.pos() > 0 && Smi::IsValid(continuation.pos())); __ mov(FieldOperand(eax, JSGeneratorObject::kContinuationOffset), Immediate(Smi::FromInt(continuation.pos()))); __ mov(FieldOperand(eax, JSGeneratorObject::kContextOffset), esi); __ mov(ecx, esi); __ RecordWriteField(eax, JSGeneratorObject::kContextOffset, ecx, edx, kDontSaveFPRegs); __ lea(ebx, Operand(ebp, StandardFrameConstants::kExpressionsOffset)); __ cmp(esp, ebx); __ j(equal, &post_runtime); __ push(eax); // generator object __ CallRuntime(Runtime::kSuspendJSGeneratorObject, 1); RestoreContext(); __ bind(&post_runtime); PopOperand(result_register()); EmitReturnSequence(); __ bind(&resume); context()->Plug(result_register()); } void FullCodeGenerator::PushOperand(MemOperand operand) { OperandStackDepthIncrement(1); __ Push(operand); } void FullCodeGenerator::EmitOperandStackDepthCheck() { if (FLAG_debug_code) { int expected_diff = StandardFrameConstants::kFixedFrameSizeFromFp + operand_stack_depth_ * kPointerSize; __ mov(eax, ebp); __ sub(eax, esp); __ cmp(eax, Immediate(expected_diff)); __ Assert(equal, kUnexpectedStackDepth); } } void FullCodeGenerator::EmitCreateIteratorResult(bool done) { Label allocate, done_allocate; __ Allocate(JSIteratorResult::kSize, eax, ecx, edx, &allocate, NO_ALLOCATION_FLAGS); __ jmp(&done_allocate, Label::kNear); __ bind(&allocate); __ Push(Smi::FromInt(JSIteratorResult::kSize)); __ CallRuntime(Runtime::kAllocateInNewSpace); __ bind(&done_allocate); __ mov(ebx, NativeContextOperand()); __ mov(ebx, ContextOperand(ebx, Context::ITERATOR_RESULT_MAP_INDEX)); __ mov(FieldOperand(eax, HeapObject::kMapOffset), ebx); __ mov(FieldOperand(eax, JSObject::kPropertiesOffset), isolate()->factory()->empty_fixed_array()); __ mov(FieldOperand(eax, JSObject::kElementsOffset), isolate()->factory()->empty_fixed_array()); __ pop(FieldOperand(eax, JSIteratorResult::kValueOffset)); __ mov(FieldOperand(eax, JSIteratorResult::kDoneOffset), isolate()->factory()->ToBoolean(done)); STATIC_ASSERT(JSIteratorResult::kSize == 5 * kPointerSize); OperandStackDepthDecrement(1); } void FullCodeGenerator::EmitInlineSmiBinaryOp(BinaryOperation* expr, Token::Value op, Expression* left, Expression* right) { // Do combined smi check of the operands. Left operand is on the // stack. Right operand is in eax. Label smi_case, done, stub_call; PopOperand(edx); __ mov(ecx, eax); __ or_(eax, edx); JumpPatchSite patch_site(masm_); patch_site.EmitJumpIfSmi(eax, &smi_case, Label::kNear); __ bind(&stub_call); __ mov(eax, ecx); Handle<Code> code = CodeFactory::BinaryOpIC(isolate(), op).code(); CallIC(code, expr->BinaryOperationFeedbackId()); patch_site.EmitPatchInfo(); __ jmp(&done, Label::kNear); // Smi case. __ bind(&smi_case); __ mov(eax, edx); // Copy left operand in case of a stub call. switch (op) { case Token::SAR: __ SmiUntag(ecx); __ sar_cl(eax); // No checks of result necessary __ and_(eax, Immediate(~kSmiTagMask)); break; case Token::SHL: { Label result_ok; __ SmiUntag(eax); __ SmiUntag(ecx); __ shl_cl(eax); // Check that the *signed* result fits in a smi. __ cmp(eax, 0xc0000000); __ j(positive, &result_ok); __ SmiTag(ecx); __ jmp(&stub_call); __ bind(&result_ok); __ SmiTag(eax); break; } case Token::SHR: { Label result_ok; __ SmiUntag(eax); __ SmiUntag(ecx); __ shr_cl(eax); __ test(eax, Immediate(0xc0000000)); __ j(zero, &result_ok); __ SmiTag(ecx); __ jmp(&stub_call); __ bind(&result_ok); __ SmiTag(eax); break; } case Token::ADD: __ add(eax, ecx); __ j(overflow, &stub_call); break; case Token::SUB: __ sub(eax, ecx); __ j(overflow, &stub_call); break; case Token::MUL: { __ SmiUntag(eax); __ imul(eax, ecx); __ j(overflow, &stub_call); __ test(eax, eax); __ j(not_zero, &done, Label::kNear); __ mov(ebx, edx); __ or_(ebx, ecx); __ j(negative, &stub_call); break; } case Token::BIT_OR: __ or_(eax, ecx); break; case Token::BIT_AND: __ and_(eax, ecx); break; case Token::BIT_XOR: __ xor_(eax, ecx); break; default: UNREACHABLE(); } __ bind(&done); context()->Plug(eax); } void FullCodeGenerator::EmitClassDefineProperties(ClassLiteral* lit) { for (int i = 0; i < lit->properties()->length(); i++) { ClassLiteral::Property* property = lit->properties()->at(i); Expression* value = property->value(); if (property->is_static()) { PushOperand(Operand(esp, kPointerSize)); // constructor } else { PushOperand(Operand(esp, 0)); // prototype } EmitPropertyKey(property, lit->GetIdForProperty(i)); // The static prototype property is read only. We handle the non computed // property name case in the parser. Since this is the only case where we // need to check for an own read only property we special case this so we do // not need to do this for every property. if (property->is_static() && property->is_computed_name()) { __ CallRuntime(Runtime::kThrowIfStaticPrototype); __ push(eax); } VisitForStackValue(value); if (NeedsHomeObject(value)) { EmitSetHomeObject(value, 2, property->GetSlot()); } switch (property->kind()) { case ClassLiteral::Property::METHOD: PushOperand(Smi::FromInt(DONT_ENUM)); PushOperand(Smi::FromInt(property->NeedsSetFunctionName())); CallRuntimeWithOperands(Runtime::kDefineDataPropertyInLiteral); break; case ClassLiteral::Property::GETTER: PushOperand(Smi::FromInt(DONT_ENUM)); CallRuntimeWithOperands(Runtime::kDefineGetterPropertyUnchecked); break; case ClassLiteral::Property::SETTER: PushOperand(Smi::FromInt(DONT_ENUM)); CallRuntimeWithOperands(Runtime::kDefineSetterPropertyUnchecked); break; case ClassLiteral::Property::FIELD: UNREACHABLE(); break; } } } void FullCodeGenerator::EmitBinaryOp(BinaryOperation* expr, Token::Value op) { PopOperand(edx); Handle<Code> code = CodeFactory::BinaryOpIC(isolate(), op).code(); JumpPatchSite patch_site(masm_); // unbound, signals no inlined smi code. CallIC(code, expr->BinaryOperationFeedbackId()); patch_site.EmitPatchInfo(); context()->Plug(eax); } void FullCodeGenerator::EmitAssignment(Expression* expr, FeedbackVectorSlot slot) { DCHECK(expr->IsValidReferenceExpressionOrThis()); Property* prop = expr->AsProperty(); LhsKind assign_type = Property::GetAssignType(prop); switch (assign_type) { case VARIABLE: { VariableProxy* proxy = expr->AsVariableProxy(); EffectContext context(this); EmitVariableAssignment(proxy->var(), Token::ASSIGN, slot, proxy->hole_check_mode()); break; } case NAMED_PROPERTY: { PushOperand(eax); // Preserve value. VisitForAccumulatorValue(prop->obj()); __ Move(StoreDescriptor::ReceiverRegister(), eax); PopOperand(StoreDescriptor::ValueRegister()); // Restore value. CallStoreIC(slot, prop->key()->AsLiteral()->value()); break; } case NAMED_SUPER_PROPERTY: { PushOperand(eax); VisitForStackValue(prop->obj()->AsSuperPropertyReference()->this_var()); VisitForAccumulatorValue( prop->obj()->AsSuperPropertyReference()->home_object()); // stack: value, this; eax: home_object Register scratch = ecx; Register scratch2 = edx; __ mov(scratch, result_register()); // home_object __ mov(eax, MemOperand(esp, kPointerSize)); // value __ mov(scratch2, MemOperand(esp, 0)); // this __ mov(MemOperand(esp, kPointerSize), scratch2); // this __ mov(MemOperand(esp, 0), scratch); // home_object // stack: this, home_object. eax: value EmitNamedSuperPropertyStore(prop); break; } case KEYED_SUPER_PROPERTY: { PushOperand(eax); VisitForStackValue(prop->obj()->AsSuperPropertyReference()->this_var()); VisitForStackValue( prop->obj()->AsSuperPropertyReference()->home_object()); VisitForAccumulatorValue(prop->key()); Register scratch = ecx; Register scratch2 = edx; __ mov(scratch2, MemOperand(esp, 2 * kPointerSize)); // value // stack: value, this, home_object; eax: key, edx: value __ mov(scratch, MemOperand(esp, kPointerSize)); // this __ mov(MemOperand(esp, 2 * kPointerSize), scratch); __ mov(scratch, MemOperand(esp, 0)); // home_object __ mov(MemOperand(esp, kPointerSize), scratch); __ mov(MemOperand(esp, 0), eax); __ mov(eax, scratch2); // stack: this, home_object, key; eax: value. EmitKeyedSuperPropertyStore(prop); break; } case KEYED_PROPERTY: { PushOperand(eax); // Preserve value. VisitForStackValue(prop->obj()); VisitForAccumulatorValue(prop->key()); __ Move(StoreDescriptor::NameRegister(), eax); PopOperand(StoreDescriptor::ReceiverRegister()); // Receiver. PopOperand(StoreDescriptor::ValueRegister()); // Restore value. CallKeyedStoreIC(slot); break; } } context()->Plug(eax); } void FullCodeGenerator::EmitStoreToStackLocalOrContextSlot( Variable* var, MemOperand location) { __ mov(location, eax); if (var->IsContextSlot()) { __ mov(edx, eax); int offset = Context::SlotOffset(var->index()); __ RecordWriteContextSlot(ecx, offset, edx, ebx, kDontSaveFPRegs); } } void FullCodeGenerator::EmitVariableAssignment(Variable* var, Token::Value op, FeedbackVectorSlot slot, HoleCheckMode hole_check_mode) { if (var->IsUnallocated()) { // Global var, const, or let. __ mov(StoreDescriptor::ReceiverRegister(), NativeContextOperand()); __ mov(StoreDescriptor::ReceiverRegister(), ContextOperand(StoreDescriptor::ReceiverRegister(), Context::EXTENSION_INDEX)); CallStoreIC(slot, var->name()); } else if (IsLexicalVariableMode(var->mode()) && op != Token::INIT) { DCHECK(!var->IsLookupSlot()); DCHECK(var->IsStackAllocated() || var->IsContextSlot()); MemOperand location = VarOperand(var, ecx); // Perform an initialization check for lexically declared variables. if (hole_check_mode == HoleCheckMode::kRequired) { Label assign; __ mov(edx, location); __ cmp(edx, isolate()->factory()->the_hole_value()); __ j(not_equal, &assign, Label::kNear); __ push(Immediate(var->name())); __ CallRuntime(Runtime::kThrowReferenceError); __ bind(&assign); } if (var->mode() != CONST) { EmitStoreToStackLocalOrContextSlot(var, location); } else if (var->throw_on_const_assignment(language_mode())) { __ CallRuntime(Runtime::kThrowConstAssignError); } } else if (var->is_this() && var->mode() == CONST && op == Token::INIT) { // Initializing assignment to const {this} needs a write barrier. DCHECK(var->IsStackAllocated() || var->IsContextSlot()); Label uninitialized_this; MemOperand location = VarOperand(var, ecx); __ mov(edx, location); __ cmp(edx, isolate()->factory()->the_hole_value()); __ j(equal, &uninitialized_this); __ push(Immediate(var->name())); __ CallRuntime(Runtime::kThrowReferenceError); __ bind(&uninitialized_this); EmitStoreToStackLocalOrContextSlot(var, location); } else { DCHECK(var->mode() != CONST || op == Token::INIT); if (var->IsLookupSlot()) { // Assignment to var. __ Push(Immediate(var->name())); __ Push(eax); __ CallRuntime(is_strict(language_mode()) ? Runtime::kStoreLookupSlot_Strict : Runtime::kStoreLookupSlot_Sloppy); } else { // Assignment to var or initializing assignment to let/const in harmony // mode. DCHECK(var->IsStackAllocated() || var->IsContextSlot()); MemOperand location = VarOperand(var, ecx); if (FLAG_debug_code && var->mode() == LET && op == Token::INIT) { // Check for an uninitialized let binding. __ mov(edx, location); __ cmp(edx, isolate()->factory()->the_hole_value()); __ Check(equal, kLetBindingReInitialization); } EmitStoreToStackLocalOrContextSlot(var, location); } } } void FullCodeGenerator::EmitNamedPropertyAssignment(Assignment* expr) { // Assignment to a property, using a named store IC. // eax : value // esp[0] : receiver Property* prop = expr->target()->AsProperty(); DCHECK(prop != NULL); DCHECK(prop->key()->IsLiteral()); PopOperand(StoreDescriptor::ReceiverRegister()); CallStoreIC(expr->AssignmentSlot(), prop->key()->AsLiteral()->value()); PrepareForBailoutForId(expr->AssignmentId(), BailoutState::TOS_REGISTER); context()->Plug(eax); } void FullCodeGenerator::EmitNamedSuperPropertyStore(Property* prop) { // Assignment to named property of super. // eax : value // stack : receiver ('this'), home_object DCHECK(prop != NULL); Literal* key = prop->key()->AsLiteral(); DCHECK(key != NULL); PushOperand(key->value()); PushOperand(eax); CallRuntimeWithOperands(is_strict(language_mode()) ? Runtime::kStoreToSuper_Strict : Runtime::kStoreToSuper_Sloppy); } void FullCodeGenerator::EmitKeyedSuperPropertyStore(Property* prop) { // Assignment to named property of super. // eax : value // stack : receiver ('this'), home_object, key PushOperand(eax); CallRuntimeWithOperands(is_strict(language_mode()) ? Runtime::kStoreKeyedToSuper_Strict : Runtime::kStoreKeyedToSuper_Sloppy); } void FullCodeGenerator::EmitKeyedPropertyAssignment(Assignment* expr) { // Assignment to a property, using a keyed store IC. // eax : value // esp[0] : key // esp[kPointerSize] : receiver PopOperand(StoreDescriptor::NameRegister()); // Key. PopOperand(StoreDescriptor::ReceiverRegister()); DCHECK(StoreDescriptor::ValueRegister().is(eax)); CallKeyedStoreIC(expr->AssignmentSlot()); PrepareForBailoutForId(expr->AssignmentId(), BailoutState::TOS_REGISTER); context()->Plug(eax); } // Code common for calls using the IC. void FullCodeGenerator::EmitCallWithLoadIC(Call* expr) { Expression* callee = expr->expression(); // Get the target function. ConvertReceiverMode convert_mode; if (callee->IsVariableProxy()) { { StackValueContext context(this); EmitVariableLoad(callee->AsVariableProxy()); PrepareForBailout(callee, BailoutState::NO_REGISTERS); } // Push undefined as receiver. This is patched in the method prologue if it // is a sloppy mode method. PushOperand(isolate()->factory()->undefined_value()); convert_mode = ConvertReceiverMode::kNullOrUndefined; } else { // Load the function from the receiver. DCHECK(callee->IsProperty()); DCHECK(!callee->AsProperty()->IsSuperAccess()); __ mov(LoadDescriptor::ReceiverRegister(), Operand(esp, 0)); EmitNamedPropertyLoad(callee->AsProperty()); PrepareForBailoutForId(callee->AsProperty()->LoadId(), BailoutState::TOS_REGISTER); // Push the target function under the receiver. PushOperand(Operand(esp, 0)); __ mov(Operand(esp, kPointerSize), eax); convert_mode = ConvertReceiverMode::kNotNullOrUndefined; } EmitCall(expr, convert_mode); } void FullCodeGenerator::EmitSuperCallWithLoadIC(Call* expr) { SetExpressionPosition(expr); Expression* callee = expr->expression(); DCHECK(callee->IsProperty()); Property* prop = callee->AsProperty(); DCHECK(prop->IsSuperAccess()); Literal* key = prop->key()->AsLiteral(); DCHECK(!key->value()->IsSmi()); // Load the function from the receiver. SuperPropertyReference* super_ref = prop->obj()->AsSuperPropertyReference(); VisitForStackValue(super_ref->home_object()); VisitForAccumulatorValue(super_ref->this_var()); PushOperand(eax); PushOperand(eax); PushOperand(Operand(esp, kPointerSize * 2)); PushOperand(key->value()); // Stack here: // - home_object // - this (receiver) // - this (receiver) <-- LoadFromSuper will pop here and below. // - home_object // - key CallRuntimeWithOperands(Runtime::kLoadFromSuper); PrepareForBailoutForId(prop->LoadId(), BailoutState::TOS_REGISTER); // Replace home_object with target function. __ mov(Operand(esp, kPointerSize), eax); // Stack here: // - target function // - this (receiver) EmitCall(expr); } // Code common for calls using the IC. void FullCodeGenerator::EmitKeyedCallWithLoadIC(Call* expr, Expression* key) { // Load the key. VisitForAccumulatorValue(key); Expression* callee = expr->expression(); // Load the function from the receiver. DCHECK(callee->IsProperty()); __ mov(LoadDescriptor::ReceiverRegister(), Operand(esp, 0)); __ mov(LoadDescriptor::NameRegister(), eax); EmitKeyedPropertyLoad(callee->AsProperty()); PrepareForBailoutForId(callee->AsProperty()->LoadId(), BailoutState::TOS_REGISTER); // Push the target function under the receiver. PushOperand(Operand(esp, 0)); __ mov(Operand(esp, kPointerSize), eax); EmitCall(expr, ConvertReceiverMode::kNotNullOrUndefined); } void FullCodeGenerator::EmitKeyedSuperCallWithLoadIC(Call* expr) { Expression* callee = expr->expression(); DCHECK(callee->IsProperty()); Property* prop = callee->AsProperty(); DCHECK(prop->IsSuperAccess()); SetExpressionPosition(prop); // Load the function from the receiver. SuperPropertyReference* super_ref = prop->obj()->AsSuperPropertyReference(); VisitForStackValue(super_ref->home_object()); VisitForAccumulatorValue(super_ref->this_var()); PushOperand(eax); PushOperand(eax); PushOperand(Operand(esp, kPointerSize * 2)); VisitForStackValue(prop->key()); // Stack here: // - home_object // - this (receiver) // - this (receiver) <-- LoadKeyedFromSuper will pop here and below. // - home_object // - key CallRuntimeWithOperands(Runtime::kLoadKeyedFromSuper); PrepareForBailoutForId(prop->LoadId(), BailoutState::TOS_REGISTER); // Replace home_object with target function. __ mov(Operand(esp, kPointerSize), eax); // Stack here: // - target function // - this (receiver) EmitCall(expr); } void FullCodeGenerator::EmitCall(Call* expr, ConvertReceiverMode mode) { // Load the arguments. ZoneList<Expression*>* args = expr->arguments(); int arg_count = args->length(); for (int i = 0; i < arg_count; i++) { VisitForStackValue(args->at(i)); } PrepareForBailoutForId(expr->CallId(), BailoutState::NO_REGISTERS); SetCallPosition(expr, expr->tail_call_mode()); if (expr->tail_call_mode() == TailCallMode::kAllow) { if (FLAG_trace) { __ CallRuntime(Runtime::kTraceTailCall); } // Update profiling counters before the tail call since we will // not return to this function. EmitProfilingCounterHandlingForReturnSequence(true); } Handle<Code> code = CodeFactory::CallIC(isolate(), mode, expr->tail_call_mode()).code(); __ Move(edx, Immediate(SmiFromSlot(expr->CallFeedbackICSlot()))); __ mov(edi, Operand(esp, (arg_count + 1) * kPointerSize)); __ Move(eax, Immediate(arg_count)); CallIC(code); OperandStackDepthDecrement(arg_count + 1); RecordJSReturnSite(expr); RestoreContext(); context()->DropAndPlug(1, eax); } void FullCodeGenerator::EmitResolvePossiblyDirectEval(Call* expr) { int arg_count = expr->arguments()->length(); // Push copy of the first argument or undefined if it doesn't exist. if (arg_count > 0) { __ push(Operand(esp, arg_count * kPointerSize)); } else { __ push(Immediate(isolate()->factory()->undefined_value())); } // Push the enclosing function. __ push(Operand(ebp, JavaScriptFrameConstants::kFunctionOffset)); // Push the language mode. __ push(Immediate(Smi::FromInt(language_mode()))); // Push the start position of the scope the calls resides in. __ push(Immediate(Smi::FromInt(scope()->start_position()))); // Push the source position of the eval call. __ push(Immediate(Smi::FromInt(expr->position()))); // Do the runtime call. __ CallRuntime(Runtime::kResolvePossiblyDirectEval); } // See http://www.ecma-international.org/ecma-262/6.0/#sec-function-calls. void FullCodeGenerator::PushCalleeAndWithBaseObject(Call* expr) { VariableProxy* callee = expr->expression()->AsVariableProxy(); if (callee->var()->IsLookupSlot()) { Label slow, done; SetExpressionPosition(callee); // Generate code for loading from variables potentially shadowed by // eval-introduced variables. EmitDynamicLookupFastCase(callee, NOT_INSIDE_TYPEOF, &slow, &done); __ bind(&slow); // Call the runtime to find the function to call (returned in eax) and // the object holding it (returned in edx). __ Push(callee->name()); __ CallRuntime(Runtime::kLoadLookupSlotForCall); PushOperand(eax); // Function. PushOperand(edx); // Receiver. PrepareForBailoutForId(expr->LookupId(), BailoutState::NO_REGISTERS); // If fast case code has been generated, emit code to push the function // and receiver and have the slow path jump around this code. if (done.is_linked()) { Label call; __ jmp(&call, Label::kNear); __ bind(&done); // Push function. __ push(eax); // The receiver is implicitly the global receiver. Indicate this by // passing the hole to the call function stub. __ push(Immediate(isolate()->factory()->undefined_value())); __ bind(&call); } } else { VisitForStackValue(callee); // refEnv.WithBaseObject() PushOperand(isolate()->factory()->undefined_value()); } } void FullCodeGenerator::EmitPossiblyEvalCall(Call* expr) { // In a call to eval, we first call Runtime_ResolvePossiblyDirectEval // to resolve the function we need to call. Then we call the resolved // function using the given arguments. ZoneList<Expression*>* args = expr->arguments(); int arg_count = args->length(); PushCalleeAndWithBaseObject(expr); // Push the arguments. for (int i = 0; i < arg_count; i++) { VisitForStackValue(args->at(i)); } // Push a copy of the function (found below the arguments) and // resolve eval. __ push(Operand(esp, (arg_count + 1) * kPointerSize)); EmitResolvePossiblyDirectEval(expr); // Touch up the stack with the resolved function. __ mov(Operand(esp, (arg_count + 1) * kPointerSize), eax); PrepareForBailoutForId(expr->EvalId(), BailoutState::NO_REGISTERS); SetCallPosition(expr); Handle<Code> code = CodeFactory::CallIC(isolate(), ConvertReceiverMode::kAny, expr->tail_call_mode()) .code(); __ Move(edx, Immediate(SmiFromSlot(expr->CallFeedbackICSlot()))); __ mov(edi, Operand(esp, (arg_count + 1) * kPointerSize)); __ Move(eax, Immediate(arg_count)); __ call(code, RelocInfo::CODE_TARGET); OperandStackDepthDecrement(arg_count + 1); RecordJSReturnSite(expr); RestoreContext(); context()->DropAndPlug(1, eax); } void FullCodeGenerator::VisitCallNew(CallNew* expr) { Comment cmnt(masm_, "[ CallNew"); // According to ECMA-262, section 11.2.2, page 44, the function // expression in new calls must be evaluated before the // arguments. // Push constructor on the stack. If it's not a function it's used as // receiver for CALL_NON_FUNCTION, otherwise the value on the stack is // ignored. DCHECK(!expr->expression()->IsSuperPropertyReference()); VisitForStackValue(expr->expression()); // Push the arguments ("left-to-right") on the stack. ZoneList<Expression*>* args = expr->arguments(); int arg_count = args->length(); for (int i = 0; i < arg_count; i++) { VisitForStackValue(args->at(i)); } // Call the construct call builtin that handles allocation and // constructor invocation. SetConstructCallPosition(expr); // Load function and argument count into edi and eax. __ Move(eax, Immediate(arg_count)); __ mov(edi, Operand(esp, arg_count * kPointerSize)); // Record call targets in unoptimized code. __ EmitLoadTypeFeedbackVector(ebx); __ mov(edx, Immediate(SmiFromSlot(expr->CallNewFeedbackSlot()))); CallConstructStub stub(isolate()); CallIC(stub.GetCode()); OperandStackDepthDecrement(arg_count + 1); PrepareForBailoutForId(expr->ReturnId(), BailoutState::TOS_REGISTER); RestoreContext(); context()->Plug(eax); } void FullCodeGenerator::EmitSuperConstructorCall(Call* expr) { SuperCallReference* super_call_ref = expr->expression()->AsSuperCallReference(); DCHECK_NOT_NULL(super_call_ref); // Push the super constructor target on the stack (may be null, // but the Construct builtin can deal with that properly). VisitForAccumulatorValue(super_call_ref->this_function_var()); __ AssertFunction(result_register()); __ mov(result_register(), FieldOperand(result_register(), HeapObject::kMapOffset)); PushOperand(FieldOperand(result_register(), Map::kPrototypeOffset)); // Push the arguments ("left-to-right") on the stack. ZoneList<Expression*>* args = expr->arguments(); int arg_count = args->length(); for (int i = 0; i < arg_count; i++) { VisitForStackValue(args->at(i)); } // Call the construct call builtin that handles allocation and // constructor invocation. SetConstructCallPosition(expr); // Load new target into edx. VisitForAccumulatorValue(super_call_ref->new_target_var()); __ mov(edx, result_register()); // Load function and argument count into edi and eax. __ Move(eax, Immediate(arg_count)); __ mov(edi, Operand(esp, arg_count * kPointerSize)); __ Call(isolate()->builtins()->Construct(), RelocInfo::CODE_TARGET); OperandStackDepthDecrement(arg_count + 1); RecordJSReturnSite(expr); RestoreContext(); context()->Plug(eax); } void FullCodeGenerator::EmitIsSmi(CallRuntime* expr) { ZoneList<Expression*>* args = expr->arguments(); DCHECK(args->length() == 1); VisitForAccumulatorValue(args->at(0)); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); __ test(eax, Immediate(kSmiTagMask)); Split(zero, if_true, if_false, fall_through); context()->Plug(if_true, if_false); } void FullCodeGenerator::EmitIsJSReceiver(CallRuntime* expr) { ZoneList<Expression*>* args = expr->arguments(); DCHECK(args->length() == 1); VisitForAccumulatorValue(args->at(0)); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); __ JumpIfSmi(eax, if_false); __ CmpObjectType(eax, FIRST_JS_RECEIVER_TYPE, ebx); PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); Split(above_equal, if_true, if_false, fall_through); context()->Plug(if_true, if_false); } void FullCodeGenerator::EmitIsArray(CallRuntime* expr) { ZoneList<Expression*>* args = expr->arguments(); DCHECK(args->length() == 1); VisitForAccumulatorValue(args->at(0)); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); __ JumpIfSmi(eax, if_false); __ CmpObjectType(eax, JS_ARRAY_TYPE, ebx); PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); Split(equal, if_true, if_false, fall_through); context()->Plug(if_true, if_false); } void FullCodeGenerator::EmitIsTypedArray(CallRuntime* expr) { ZoneList<Expression*>* args = expr->arguments(); DCHECK(args->length() == 1); VisitForAccumulatorValue(args->at(0)); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); __ JumpIfSmi(eax, if_false); __ CmpObjectType(eax, JS_TYPED_ARRAY_TYPE, ebx); PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); Split(equal, if_true, if_false, fall_through); context()->Plug(if_true, if_false); } void FullCodeGenerator::EmitIsRegExp(CallRuntime* expr) { ZoneList<Expression*>* args = expr->arguments(); DCHECK(args->length() == 1); VisitForAccumulatorValue(args->at(0)); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); __ JumpIfSmi(eax, if_false); __ CmpObjectType(eax, JS_REGEXP_TYPE, ebx); PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); Split(equal, if_true, if_false, fall_through); context()->Plug(if_true, if_false); } void FullCodeGenerator::EmitIsJSProxy(CallRuntime* expr) { ZoneList<Expression*>* args = expr->arguments(); DCHECK(args->length() == 1); VisitForAccumulatorValue(args->at(0)); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); __ JumpIfSmi(eax, if_false); __ CmpObjectType(eax, JS_PROXY_TYPE, ebx); PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); Split(equal, if_true, if_false, fall_through); context()->Plug(if_true, if_false); } void FullCodeGenerator::EmitClassOf(CallRuntime* expr) { ZoneList<Expression*>* args = expr->arguments(); DCHECK(args->length() == 1); Label done, null, function, non_function_constructor; VisitForAccumulatorValue(args->at(0)); // If the object is not a JSReceiver, we return null. __ JumpIfSmi(eax, &null, Label::kNear); STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE); __ CmpObjectType(eax, FIRST_JS_RECEIVER_TYPE, eax); __ j(below, &null, Label::kNear); // Return 'Function' for JSFunction and JSBoundFunction objects. __ CmpInstanceType(eax, FIRST_FUNCTION_TYPE); STATIC_ASSERT(LAST_FUNCTION_TYPE == LAST_TYPE); __ j(above_equal, &function, Label::kNear); // Check if the constructor in the map is a JS function. __ GetMapConstructor(eax, eax, ebx); __ CmpInstanceType(ebx, JS_FUNCTION_TYPE); __ j(not_equal, &non_function_constructor, Label::kNear); // eax now contains the constructor function. Grab the // instance class name from there. __ mov(eax, FieldOperand(eax, JSFunction::kSharedFunctionInfoOffset)); __ mov(eax, FieldOperand(eax, SharedFunctionInfo::kInstanceClassNameOffset)); __ jmp(&done, Label::kNear); // Non-JS objects have class null. __ bind(&null); __ mov(eax, isolate()->factory()->null_value()); __ jmp(&done, Label::kNear); // Functions have class 'Function'. __ bind(&function); __ mov(eax, isolate()->factory()->Function_string()); __ jmp(&done, Label::kNear); // Objects with a non-function constructor have class 'Object'. __ bind(&non_function_constructor); __ mov(eax, isolate()->factory()->Object_string()); // All done. __ bind(&done); context()->Plug(eax); } void FullCodeGenerator::EmitStringCharCodeAt(CallRuntime* expr) { ZoneList<Expression*>* args = expr->arguments(); DCHECK(args->length() == 2); VisitForStackValue(args->at(0)); VisitForAccumulatorValue(args->at(1)); Register object = ebx; Register index = eax; Register result = edx; PopOperand(object); Label need_conversion; Label index_out_of_range; Label done; StringCharCodeAtGenerator generator(object, index, result, &need_conversion, &need_conversion, &index_out_of_range); generator.GenerateFast(masm_); __ jmp(&done); __ bind(&index_out_of_range); // When the index is out of range, the spec requires us to return // NaN. __ Move(result, Immediate(isolate()->factory()->nan_value())); __ jmp(&done); __ bind(&need_conversion); // Move the undefined value into the result register, which will // trigger conversion. __ Move(result, Immediate(isolate()->factory()->undefined_value())); __ jmp(&done); NopRuntimeCallHelper call_helper; generator.GenerateSlow(masm_, NOT_PART_OF_IC_HANDLER, call_helper); __ bind(&done); context()->Plug(result); } void FullCodeGenerator::EmitCall(CallRuntime* expr) { ZoneList<Expression*>* args = expr->arguments(); DCHECK_LE(2, args->length()); // Push target, receiver and arguments onto the stack. for (Expression* const arg : *args) { VisitForStackValue(arg); } PrepareForBailoutForId(expr->CallId(), BailoutState::NO_REGISTERS); // Move target to edi. int const argc = args->length() - 2; __ mov(edi, Operand(esp, (argc + 1) * kPointerSize)); // Call the target. __ mov(eax, Immediate(argc)); __ Call(isolate()->builtins()->Call(), RelocInfo::CODE_TARGET); OperandStackDepthDecrement(argc + 1); RestoreContext(); // Discard the function left on TOS. context()->DropAndPlug(1, eax); } void FullCodeGenerator::EmitGetSuperConstructor(CallRuntime* expr) { ZoneList<Expression*>* args = expr->arguments(); DCHECK_EQ(1, args->length()); VisitForAccumulatorValue(args->at(0)); __ AssertFunction(eax); __ mov(eax, FieldOperand(eax, HeapObject::kMapOffset)); __ mov(eax, FieldOperand(eax, Map::kPrototypeOffset)); context()->Plug(eax); } void FullCodeGenerator::EmitDebugIsActive(CallRuntime* expr) { DCHECK(expr->arguments()->length() == 0); ExternalReference debug_is_active = ExternalReference::debug_is_active_address(isolate()); __ movzx_b(eax, Operand::StaticVariable(debug_is_active)); __ SmiTag(eax); context()->Plug(eax); } void FullCodeGenerator::EmitCreateIterResultObject(CallRuntime* expr) { ZoneList<Expression*>* args = expr->arguments(); DCHECK_EQ(2, args->length()); VisitForStackValue(args->at(0)); VisitForStackValue(args->at(1)); Label runtime, done; __ Allocate(JSIteratorResult::kSize, eax, ecx, edx, &runtime, NO_ALLOCATION_FLAGS); __ mov(ebx, NativeContextOperand()); __ mov(ebx, ContextOperand(ebx, Context::ITERATOR_RESULT_MAP_INDEX)); __ mov(FieldOperand(eax, HeapObject::kMapOffset), ebx); __ mov(FieldOperand(eax, JSObject::kPropertiesOffset), isolate()->factory()->empty_fixed_array()); __ mov(FieldOperand(eax, JSObject::kElementsOffset), isolate()->factory()->empty_fixed_array()); __ pop(FieldOperand(eax, JSIteratorResult::kDoneOffset)); __ pop(FieldOperand(eax, JSIteratorResult::kValueOffset)); STATIC_ASSERT(JSIteratorResult::kSize == 5 * kPointerSize); __ jmp(&done, Label::kNear); __ bind(&runtime); CallRuntimeWithOperands(Runtime::kCreateIterResultObject); __ bind(&done); context()->Plug(eax); } void FullCodeGenerator::EmitLoadJSRuntimeFunction(CallRuntime* expr) { // Push function. __ LoadGlobalFunction(expr->context_index(), eax); PushOperand(eax); // Push undefined as receiver. PushOperand(isolate()->factory()->undefined_value()); } void FullCodeGenerator::EmitCallJSRuntimeFunction(CallRuntime* expr) { ZoneList<Expression*>* args = expr->arguments(); int arg_count = args->length(); SetCallPosition(expr); __ mov(edi, Operand(esp, (arg_count + 1) * kPointerSize)); __ Set(eax, arg_count); __ Call(isolate()->builtins()->Call(ConvertReceiverMode::kNullOrUndefined), RelocInfo::CODE_TARGET); OperandStackDepthDecrement(arg_count + 1); RestoreContext(); } void FullCodeGenerator::VisitUnaryOperation(UnaryOperation* expr) { switch (expr->op()) { case Token::DELETE: { Comment cmnt(masm_, "[ UnaryOperation (DELETE)"); Property* property = expr->expression()->AsProperty(); VariableProxy* proxy = expr->expression()->AsVariableProxy(); if (property != NULL) { VisitForStackValue(property->obj()); VisitForStackValue(property->key()); CallRuntimeWithOperands(is_strict(language_mode()) ? Runtime::kDeleteProperty_Strict : Runtime::kDeleteProperty_Sloppy); context()->Plug(eax); } else if (proxy != NULL) { Variable* var = proxy->var(); // Delete of an unqualified identifier is disallowed in strict mode but // "delete this" is allowed. bool is_this = var->is_this(); DCHECK(is_sloppy(language_mode()) || is_this); if (var->IsUnallocated()) { __ mov(eax, NativeContextOperand()); __ push(ContextOperand(eax, Context::EXTENSION_INDEX)); __ push(Immediate(var->name())); __ CallRuntime(Runtime::kDeleteProperty_Sloppy); context()->Plug(eax); } else if (var->IsStackAllocated() || var->IsContextSlot()) { // Result of deleting non-global variables is false. 'this' is // not really a variable, though we implement it as one. The // subexpression does not have side effects. context()->Plug(is_this); } else { // Non-global variable. Call the runtime to try to delete from the // context where the variable was introduced. __ Push(var->name()); __ CallRuntime(Runtime::kDeleteLookupSlot); context()->Plug(eax); } } else { // Result of deleting non-property, non-variable reference is true. // The subexpression may have side effects. VisitForEffect(expr->expression()); context()->Plug(true); } break; } case Token::VOID: { Comment cmnt(masm_, "[ UnaryOperation (VOID)"); VisitForEffect(expr->expression()); context()->Plug(isolate()->factory()->undefined_value()); break; } case Token::NOT: { Comment cmnt(masm_, "[ UnaryOperation (NOT)"); if (context()->IsEffect()) { // Unary NOT has no side effects so it's only necessary to visit the // subexpression. Match the optimizing compiler by not branching. VisitForEffect(expr->expression()); } else if (context()->IsTest()) { const TestContext* test = TestContext::cast(context()); // The labels are swapped for the recursive call. VisitForControl(expr->expression(), test->false_label(), test->true_label(), test->fall_through()); context()->Plug(test->true_label(), test->false_label()); } else { // We handle value contexts explicitly rather than simply visiting // for control and plugging the control flow into the context, // because we need to prepare a pair of extra administrative AST ids // for the optimizing compiler. DCHECK(context()->IsAccumulatorValue() || context()->IsStackValue()); Label materialize_true, materialize_false, done; VisitForControl(expr->expression(), &materialize_false, &materialize_true, &materialize_true); if (!context()->IsAccumulatorValue()) OperandStackDepthIncrement(1); __ bind(&materialize_true); PrepareForBailoutForId(expr->MaterializeTrueId(), BailoutState::NO_REGISTERS); if (context()->IsAccumulatorValue()) { __ mov(eax, isolate()->factory()->true_value()); } else { __ Push(isolate()->factory()->true_value()); } __ jmp(&done, Label::kNear); __ bind(&materialize_false); PrepareForBailoutForId(expr->MaterializeFalseId(), BailoutState::NO_REGISTERS); if (context()->IsAccumulatorValue()) { __ mov(eax, isolate()->factory()->false_value()); } else { __ Push(isolate()->factory()->false_value()); } __ bind(&done); } break; } case Token::TYPEOF: { Comment cmnt(masm_, "[ UnaryOperation (TYPEOF)"); { AccumulatorValueContext context(this); VisitForTypeofValue(expr->expression()); } __ mov(ebx, eax); __ Call(isolate()->builtins()->Typeof(), RelocInfo::CODE_TARGET); context()->Plug(eax); break; } default: UNREACHABLE(); } } void FullCodeGenerator::VisitCountOperation(CountOperation* expr) { DCHECK(expr->expression()->IsValidReferenceExpressionOrThis()); Comment cmnt(masm_, "[ CountOperation"); Property* prop = expr->expression()->AsProperty(); LhsKind assign_type = Property::GetAssignType(prop); // Evaluate expression and get value. if (assign_type == VARIABLE) { DCHECK(expr->expression()->AsVariableProxy()->var() != NULL); AccumulatorValueContext context(this); EmitVariableLoad(expr->expression()->AsVariableProxy()); } else { // Reserve space for result of postfix operation. if (expr->is_postfix() && !context()->IsEffect()) { PushOperand(Smi::kZero); } switch (assign_type) { case NAMED_PROPERTY: { // Put the object both on the stack and in the register. VisitForStackValue(prop->obj()); __ mov(LoadDescriptor::ReceiverRegister(), Operand(esp, 0)); EmitNamedPropertyLoad(prop); break; } case NAMED_SUPER_PROPERTY: { VisitForStackValue(prop->obj()->AsSuperPropertyReference()->this_var()); VisitForAccumulatorValue( prop->obj()->AsSuperPropertyReference()->home_object()); PushOperand(result_register()); PushOperand(MemOperand(esp, kPointerSize)); PushOperand(result_register()); EmitNamedSuperPropertyLoad(prop); break; } case KEYED_SUPER_PROPERTY: { VisitForStackValue(prop->obj()->AsSuperPropertyReference()->this_var()); VisitForStackValue( prop->obj()->AsSuperPropertyReference()->home_object()); VisitForAccumulatorValue(prop->key()); PushOperand(result_register()); PushOperand(MemOperand(esp, 2 * kPointerSize)); PushOperand(MemOperand(esp, 2 * kPointerSize)); PushOperand(result_register()); EmitKeyedSuperPropertyLoad(prop); break; } case KEYED_PROPERTY: { VisitForStackValue(prop->obj()); VisitForStackValue(prop->key()); __ mov(LoadDescriptor::ReceiverRegister(), Operand(esp, kPointerSize)); // Object. __ mov(LoadDescriptor::NameRegister(), Operand(esp, 0)); // Key. EmitKeyedPropertyLoad(prop); break; } case VARIABLE: UNREACHABLE(); } } // We need a second deoptimization point after loading the value // in case evaluating the property load my have a side effect. if (assign_type == VARIABLE) { PrepareForBailout(expr->expression(), BailoutState::TOS_REGISTER); } else { PrepareForBailoutForId(prop->LoadId(), BailoutState::TOS_REGISTER); } // Inline smi case if we are in a loop. Label done, stub_call; JumpPatchSite patch_site(masm_); if (ShouldInlineSmiCase(expr->op())) { Label slow; patch_site.EmitJumpIfNotSmi(eax, &slow, Label::kNear); // Save result for postfix expressions. if (expr->is_postfix()) { if (!context()->IsEffect()) { // Save the result on the stack. If we have a named or keyed property // we store the result under the receiver that is currently on top // of the stack. switch (assign_type) { case VARIABLE: __ push(eax); break; case NAMED_PROPERTY: __ mov(Operand(esp, kPointerSize), eax); break; case NAMED_SUPER_PROPERTY: __ mov(Operand(esp, 2 * kPointerSize), eax); break; case KEYED_PROPERTY: __ mov(Operand(esp, 2 * kPointerSize), eax); break; case KEYED_SUPER_PROPERTY: __ mov(Operand(esp, 3 * kPointerSize), eax); break; } } } if (expr->op() == Token::INC) { __ add(eax, Immediate(Smi::FromInt(1))); } else { __ sub(eax, Immediate(Smi::FromInt(1))); } __ j(no_overflow, &done, Label::kNear); // Call stub. Undo operation first. if (expr->op() == Token::INC) { __ sub(eax, Immediate(Smi::FromInt(1))); } else { __ add(eax, Immediate(Smi::FromInt(1))); } __ jmp(&stub_call, Label::kNear); __ bind(&slow); } // Convert old value into a number. __ Call(isolate()->builtins()->ToNumber(), RelocInfo::CODE_TARGET); RestoreContext(); PrepareForBailoutForId(expr->ToNumberId(), BailoutState::TOS_REGISTER); // Save result for postfix expressions. if (expr->is_postfix()) { if (!context()->IsEffect()) { // Save the result on the stack. If we have a named or keyed property // we store the result under the receiver that is currently on top // of the stack. switch (assign_type) { case VARIABLE: PushOperand(eax); break; case NAMED_PROPERTY: __ mov(Operand(esp, kPointerSize), eax); break; case NAMED_SUPER_PROPERTY: __ mov(Operand(esp, 2 * kPointerSize), eax); break; case KEYED_PROPERTY: __ mov(Operand(esp, 2 * kPointerSize), eax); break; case KEYED_SUPER_PROPERTY: __ mov(Operand(esp, 3 * kPointerSize), eax); break; } } } SetExpressionPosition(expr); // Call stub for +1/-1. __ bind(&stub_call); __ mov(edx, eax); __ mov(eax, Immediate(Smi::FromInt(1))); Handle<Code> code = CodeFactory::BinaryOpIC(isolate(), expr->binary_op()).code(); CallIC(code, expr->CountBinOpFeedbackId()); patch_site.EmitPatchInfo(); __ bind(&done); // Store the value returned in eax. switch (assign_type) { case VARIABLE: { VariableProxy* proxy = expr->expression()->AsVariableProxy(); if (expr->is_postfix()) { // Perform the assignment as if via '='. { EffectContext context(this); EmitVariableAssignment(proxy->var(), Token::ASSIGN, expr->CountSlot(), proxy->hole_check_mode()); PrepareForBailoutForId(expr->AssignmentId(), BailoutState::TOS_REGISTER); context.Plug(eax); } // For all contexts except EffectContext We have the result on // top of the stack. if (!context()->IsEffect()) { context()->PlugTOS(); } } else { // Perform the assignment as if via '='. EmitVariableAssignment(proxy->var(), Token::ASSIGN, expr->CountSlot(), proxy->hole_check_mode()); PrepareForBailoutForId(expr->AssignmentId(), BailoutState::TOS_REGISTER); context()->Plug(eax); } break; } case NAMED_PROPERTY: { PopOperand(StoreDescriptor::ReceiverRegister()); CallStoreIC(expr->CountSlot(), prop->key()->AsLiteral()->value()); PrepareForBailoutForId(expr->AssignmentId(), BailoutState::TOS_REGISTER); if (expr->is_postfix()) { if (!context()->IsEffect()) { context()->PlugTOS(); } } else { context()->Plug(eax); } break; } case NAMED_SUPER_PROPERTY: { EmitNamedSuperPropertyStore(prop); PrepareForBailoutForId(expr->AssignmentId(), BailoutState::TOS_REGISTER); if (expr->is_postfix()) { if (!context()->IsEffect()) { context()->PlugTOS(); } } else { context()->Plug(eax); } break; } case KEYED_SUPER_PROPERTY: { EmitKeyedSuperPropertyStore(prop); PrepareForBailoutForId(expr->AssignmentId(), BailoutState::TOS_REGISTER); if (expr->is_postfix()) { if (!context()->IsEffect()) { context()->PlugTOS(); } } else { context()->Plug(eax); } break; } case KEYED_PROPERTY: { PopOperand(StoreDescriptor::NameRegister()); PopOperand(StoreDescriptor::ReceiverRegister()); CallKeyedStoreIC(expr->CountSlot()); PrepareForBailoutForId(expr->AssignmentId(), BailoutState::TOS_REGISTER); if (expr->is_postfix()) { // Result is on the stack if (!context()->IsEffect()) { context()->PlugTOS(); } } else { context()->Plug(eax); } break; } } } void FullCodeGenerator::EmitLiteralCompareTypeof(Expression* expr, Expression* sub_expr, Handle<String> check) { Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); { AccumulatorValueContext context(this); VisitForTypeofValue(sub_expr); } PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); Factory* factory = isolate()->factory(); if (String::Equals(check, factory->number_string())) { __ JumpIfSmi(eax, if_true); __ cmp(FieldOperand(eax, HeapObject::kMapOffset), isolate()->factory()->heap_number_map()); Split(equal, if_true, if_false, fall_through); } else if (String::Equals(check, factory->string_string())) { __ JumpIfSmi(eax, if_false); __ CmpObjectType(eax, FIRST_NONSTRING_TYPE, edx); Split(below, if_true, if_false, fall_through); } else if (String::Equals(check, factory->symbol_string())) { __ JumpIfSmi(eax, if_false); __ CmpObjectType(eax, SYMBOL_TYPE, edx); Split(equal, if_true, if_false, fall_through); } else if (String::Equals(check, factory->boolean_string())) { __ cmp(eax, isolate()->factory()->true_value()); __ j(equal, if_true); __ cmp(eax, isolate()->factory()->false_value()); Split(equal, if_true, if_false, fall_through); } else if (String::Equals(check, factory->undefined_string())) { __ cmp(eax, isolate()->factory()->null_value()); __ j(equal, if_false); __ JumpIfSmi(eax, if_false); // Check for undetectable objects => true. __ mov(edx, FieldOperand(eax, HeapObject::kMapOffset)); __ test_b(FieldOperand(edx, Map::kBitFieldOffset), Immediate(1 << Map::kIsUndetectable)); Split(not_zero, if_true, if_false, fall_through); } else if (String::Equals(check, factory->function_string())) { __ JumpIfSmi(eax, if_false); // Check for callable and not undetectable objects => true. __ mov(edx, FieldOperand(eax, HeapObject::kMapOffset)); __ movzx_b(ecx, FieldOperand(edx, Map::kBitFieldOffset)); __ and_(ecx, (1 << Map::kIsCallable) | (1 << Map::kIsUndetectable)); __ cmp(ecx, 1 << Map::kIsCallable); Split(equal, if_true, if_false, fall_through); } else if (String::Equals(check, factory->object_string())) { __ JumpIfSmi(eax, if_false); __ cmp(eax, isolate()->factory()->null_value()); __ j(equal, if_true); STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE); __ CmpObjectType(eax, FIRST_JS_RECEIVER_TYPE, edx); __ j(below, if_false); // Check for callable or undetectable objects => false. __ test_b(FieldOperand(edx, Map::kBitFieldOffset), Immediate((1 << Map::kIsCallable) | (1 << Map::kIsUndetectable))); Split(zero, if_true, if_false, fall_through); // clang-format off #define SIMD128_TYPE(TYPE, Type, type, lane_count, lane_type) \ } else if (String::Equals(check, factory->type##_string())) { \ __ JumpIfSmi(eax, if_false); \ __ cmp(FieldOperand(eax, HeapObject::kMapOffset), \ isolate()->factory()->type##_map()); \ Split(equal, if_true, if_false, fall_through); SIMD128_TYPES(SIMD128_TYPE) #undef SIMD128_TYPE // clang-format on } else { if (if_false != fall_through) __ jmp(if_false); } context()->Plug(if_true, if_false); } void FullCodeGenerator::VisitCompareOperation(CompareOperation* expr) { Comment cmnt(masm_, "[ CompareOperation"); // First we try a fast inlined version of the compare when one of // the operands is a literal. if (TryLiteralCompare(expr)) return; // Always perform the comparison for its control flow. Pack the result // into the expression's context after the comparison is performed. Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); Token::Value op = expr->op(); VisitForStackValue(expr->left()); switch (op) { case Token::IN: VisitForStackValue(expr->right()); SetExpressionPosition(expr); EmitHasProperty(); PrepareForBailoutBeforeSplit(expr, false, NULL, NULL); __ cmp(eax, isolate()->factory()->true_value()); Split(equal, if_true, if_false, fall_through); break; case Token::INSTANCEOF: { VisitForAccumulatorValue(expr->right()); SetExpressionPosition(expr); PopOperand(edx); __ Call(isolate()->builtins()->InstanceOf(), RelocInfo::CODE_TARGET); PrepareForBailoutBeforeSplit(expr, false, NULL, NULL); __ cmp(eax, isolate()->factory()->true_value()); Split(equal, if_true, if_false, fall_through); break; } default: { VisitForAccumulatorValue(expr->right()); SetExpressionPosition(expr); Condition cc = CompareIC::ComputeCondition(op); PopOperand(edx); bool inline_smi_code = ShouldInlineSmiCase(op); JumpPatchSite patch_site(masm_); if (inline_smi_code) { Label slow_case; __ mov(ecx, edx); __ or_(ecx, eax); patch_site.EmitJumpIfNotSmi(ecx, &slow_case, Label::kNear); __ cmp(edx, eax); Split(cc, if_true, if_false, NULL); __ bind(&slow_case); } Handle<Code> ic = CodeFactory::CompareIC(isolate(), op).code(); CallIC(ic, expr->CompareOperationFeedbackId()); patch_site.EmitPatchInfo(); PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); __ test(eax, eax); Split(cc, if_true, if_false, fall_through); } } // Convert the result of the comparison into one expected for this // expression's context. context()->Plug(if_true, if_false); } void FullCodeGenerator::EmitLiteralCompareNil(CompareOperation* expr, Expression* sub_expr, NilValue nil) { Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); VisitForAccumulatorValue(sub_expr); PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); Handle<Object> nil_value = nil == kNullValue ? isolate()->factory()->null_value() : isolate()->factory()->undefined_value(); if (expr->op() == Token::EQ_STRICT) { __ cmp(eax, nil_value); Split(equal, if_true, if_false, fall_through); } else { __ JumpIfSmi(eax, if_false); __ mov(eax, FieldOperand(eax, HeapObject::kMapOffset)); __ test_b(FieldOperand(eax, Map::kBitFieldOffset), Immediate(1 << Map::kIsUndetectable)); Split(not_zero, if_true, if_false, fall_through); } context()->Plug(if_true, if_false); } Register FullCodeGenerator::result_register() { return eax; } Register FullCodeGenerator::context_register() { return esi; } void FullCodeGenerator::LoadFromFrameField(int frame_offset, Register value) { DCHECK_EQ(POINTER_SIZE_ALIGN(frame_offset), frame_offset); __ mov(value, Operand(ebp, frame_offset)); } void FullCodeGenerator::StoreToFrameField(int frame_offset, Register value) { DCHECK_EQ(POINTER_SIZE_ALIGN(frame_offset), frame_offset); __ mov(Operand(ebp, frame_offset), value); } void FullCodeGenerator::LoadContextField(Register dst, int context_index) { __ mov(dst, ContextOperand(esi, context_index)); } void FullCodeGenerator::PushFunctionArgumentForContextAllocation() { DeclarationScope* closure_scope = scope()->GetClosureScope(); if (closure_scope->is_script_scope() || closure_scope->is_module_scope()) { // Contexts nested in the native context have a canonical empty function // as their closure, not the anonymous closure containing the global // code. __ mov(eax, NativeContextOperand()); PushOperand(ContextOperand(eax, Context::CLOSURE_INDEX)); } else if (closure_scope->is_eval_scope()) { // Contexts nested inside eval code have the same closure as the context // calling eval, not the anonymous closure containing the eval code. // Fetch it from the context. PushOperand(ContextOperand(esi, Context::CLOSURE_INDEX)); } else { DCHECK(closure_scope->is_function_scope()); PushOperand(Operand(ebp, JavaScriptFrameConstants::kFunctionOffset)); } } // ---------------------------------------------------------------------------- // Non-local control flow support. void FullCodeGenerator::EnterFinallyBlock() { // Store pending message while executing finally block. ExternalReference pending_message_obj = ExternalReference::address_of_pending_message_obj(isolate()); __ mov(edx, Operand::StaticVariable(pending_message_obj)); PushOperand(edx); ClearPendingMessage(); } void FullCodeGenerator::ExitFinallyBlock() { DCHECK(!result_register().is(edx)); // Restore pending message from stack. PopOperand(edx); ExternalReference pending_message_obj = ExternalReference::address_of_pending_message_obj(isolate()); __ mov(Operand::StaticVariable(pending_message_obj), edx); } void FullCodeGenerator::ClearPendingMessage() { DCHECK(!result_register().is(edx)); ExternalReference pending_message_obj = ExternalReference::address_of_pending_message_obj(isolate()); __ mov(edx, Immediate(isolate()->factory()->the_hole_value())); __ mov(Operand::StaticVariable(pending_message_obj), edx); } void FullCodeGenerator::DeferredCommands::EmitCommands() { DCHECK(!result_register().is(edx)); __ Pop(result_register()); // Restore the accumulator. __ Pop(edx); // Get the token. for (DeferredCommand cmd : commands_) { Label skip; __ cmp(edx, Immediate(Smi::FromInt(cmd.token))); __ j(not_equal, &skip); switch (cmd.command) { case kReturn: codegen_->EmitUnwindAndReturn(); break; case kThrow: __ Push(result_register()); __ CallRuntime(Runtime::kReThrow); break; case kContinue: codegen_->EmitContinue(cmd.target); break; case kBreak: codegen_->EmitBreak(cmd.target); break; } __ bind(&skip); } } #undef __ static const byte kJnsInstruction = 0x79; static const byte kJnsOffset = 0x11; static const byte kNopByteOne = 0x66; static const byte kNopByteTwo = 0x90; #ifdef DEBUG static const byte kCallInstruction = 0xe8; #endif void BackEdgeTable::PatchAt(Code* unoptimized_code, Address pc, BackEdgeState target_state, Code* replacement_code) { Address call_target_address = pc - kIntSize; Address jns_instr_address = call_target_address - 3; Address jns_offset_address = call_target_address - 2; switch (target_state) { case INTERRUPT: // sub <profiling_counter>, <delta> ;; Not changed // jns ok // call <interrupt stub> // ok: *jns_instr_address = kJnsInstruction; *jns_offset_address = kJnsOffset; break; case ON_STACK_REPLACEMENT: // sub <profiling_counter>, <delta> ;; Not changed // nop // nop // call <on-stack replacment> // ok: *jns_instr_address = kNopByteOne; *jns_offset_address = kNopByteTwo; break; } Assembler::set_target_address_at(unoptimized_code->GetIsolate(), call_target_address, unoptimized_code, replacement_code->entry()); unoptimized_code->GetHeap()->incremental_marking()->RecordCodeTargetPatch( unoptimized_code, call_target_address, replacement_code); } BackEdgeTable::BackEdgeState BackEdgeTable::GetBackEdgeState( Isolate* isolate, Code* unoptimized_code, Address pc) { Address call_target_address = pc - kIntSize; Address jns_instr_address = call_target_address - 3; DCHECK_EQ(kCallInstruction, *(call_target_address - 1)); if (*jns_instr_address == kJnsInstruction) { DCHECK_EQ(kJnsOffset, *(call_target_address - 2)); DCHECK_EQ(isolate->builtins()->InterruptCheck()->entry(), Assembler::target_address_at(call_target_address, unoptimized_code)); return INTERRUPT; } DCHECK_EQ(kNopByteOne, *jns_instr_address); DCHECK_EQ(kNopByteTwo, *(call_target_address - 2)); DCHECK_EQ( isolate->builtins()->OnStackReplacement()->entry(), Assembler::target_address_at(call_target_address, unoptimized_code)); return ON_STACK_REPLACEMENT; } } // namespace internal } // namespace v8 #endif // V8_TARGET_ARCH_IA32