// Copyright 2014 the V8 project authors. All rights reserved. // // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/crankshaft/s390/lithium-codegen-s390.h" #include "src/base/bits.h" #include "src/code-factory.h" #include "src/code-stubs.h" #include "src/crankshaft/hydrogen-osr.h" #include "src/crankshaft/s390/lithium-gap-resolver-s390.h" #include "src/ic/ic.h" #include "src/ic/stub-cache.h" namespace v8 { namespace internal { class SafepointGenerator final : public CallWrapper { public: SafepointGenerator(LCodeGen* codegen, LPointerMap* pointers, Safepoint::DeoptMode mode) : codegen_(codegen), pointers_(pointers), deopt_mode_(mode) {} virtual ~SafepointGenerator() {} void BeforeCall(int call_size) const override {} void AfterCall() const override { codegen_->RecordSafepoint(pointers_, deopt_mode_); } private: LCodeGen* codegen_; LPointerMap* pointers_; Safepoint::DeoptMode deopt_mode_; }; LCodeGen::PushSafepointRegistersScope::PushSafepointRegistersScope( LCodeGen* codegen) : codegen_(codegen) { DCHECK(codegen_->info()->is_calling()); DCHECK(codegen_->expected_safepoint_kind_ == Safepoint::kSimple); codegen_->expected_safepoint_kind_ = Safepoint::kWithRegisters; StoreRegistersStateStub stub(codegen_->isolate()); codegen_->masm_->CallStub(&stub); } LCodeGen::PushSafepointRegistersScope::~PushSafepointRegistersScope() { DCHECK(codegen_->expected_safepoint_kind_ == Safepoint::kWithRegisters); RestoreRegistersStateStub stub(codegen_->isolate()); codegen_->masm_->CallStub(&stub); codegen_->expected_safepoint_kind_ = Safepoint::kSimple; } #define __ masm()-> bool LCodeGen::GenerateCode() { LPhase phase("Z_Code generation", chunk()); DCHECK(is_unused()); status_ = GENERATING; // Open a frame scope to indicate that there is a frame on the stack. The // NONE indicates that the scope shouldn't actually generate code to set up // the frame (that is done in GeneratePrologue). FrameScope frame_scope(masm_, StackFrame::NONE); return GeneratePrologue() && GenerateBody() && GenerateDeferredCode() && GenerateJumpTable() && GenerateSafepointTable(); } void LCodeGen::FinishCode(Handle<Code> code) { DCHECK(is_done()); code->set_stack_slots(GetTotalFrameSlotCount()); code->set_safepoint_table_offset(safepoints_.GetCodeOffset()); PopulateDeoptimizationData(code); } void LCodeGen::SaveCallerDoubles() { DCHECK(info()->saves_caller_doubles()); DCHECK(NeedsEagerFrame()); Comment(";;; Save clobbered callee double registers"); int count = 0; BitVector* doubles = chunk()->allocated_double_registers(); BitVector::Iterator save_iterator(doubles); while (!save_iterator.Done()) { __ StoreDouble(DoubleRegister::from_code(save_iterator.Current()), MemOperand(sp, count * kDoubleSize)); save_iterator.Advance(); count++; } } void LCodeGen::RestoreCallerDoubles() { DCHECK(info()->saves_caller_doubles()); DCHECK(NeedsEagerFrame()); Comment(";;; Restore clobbered callee double registers"); BitVector* doubles = chunk()->allocated_double_registers(); BitVector::Iterator save_iterator(doubles); int count = 0; while (!save_iterator.Done()) { __ LoadDouble(DoubleRegister::from_code(save_iterator.Current()), MemOperand(sp, count * kDoubleSize)); save_iterator.Advance(); count++; } } bool LCodeGen::GeneratePrologue() { DCHECK(is_generating()); if (info()->IsOptimizing()) { ProfileEntryHookStub::MaybeCallEntryHook(masm_); // r3: Callee's JS function. // cp: Callee's context. // fp: Caller's frame pointer. // lr: Caller's pc. // ip: Our own function entry (required by the prologue) } int prologue_offset = masm_->pc_offset(); if (prologue_offset) { // Prologue logic requires its starting address in ip and the // corresponding offset from the function entry. Need to add // 4 bytes for the size of AHI/AGHI that AddP expands into. prologue_offset += sizeof(FourByteInstr); __ AddP(ip, ip, Operand(prologue_offset)); } info()->set_prologue_offset(prologue_offset); if (NeedsEagerFrame()) { if (info()->IsStub()) { __ StubPrologue(StackFrame::STUB, ip, prologue_offset); } else { __ Prologue(info()->GeneratePreagedPrologue(), ip, prologue_offset); } frame_is_built_ = true; } // Reserve space for the stack slots needed by the code. int slots = GetStackSlotCount(); if (slots > 0) { __ lay(sp, MemOperand(sp, -(slots * kPointerSize))); if (FLAG_debug_code) { __ Push(r2, r3); __ mov(r2, Operand(slots * kPointerSize)); __ mov(r3, Operand(kSlotsZapValue)); Label loop; __ bind(&loop); __ StoreP(r3, MemOperand(sp, r2, kPointerSize)); __ lay(r2, MemOperand(r2, -kPointerSize)); __ CmpP(r2, Operand::Zero()); __ bne(&loop); __ Pop(r2, r3); } } if (info()->saves_caller_doubles()) { SaveCallerDoubles(); } return !is_aborted(); } void LCodeGen::DoPrologue(LPrologue* instr) { Comment(";;; Prologue begin"); // Possibly allocate a local context. if (info()->scope()->NeedsContext()) { Comment(";;; Allocate local context"); bool need_write_barrier = true; // Argument to NewContext is the function, which is in r3. int slots = info()->scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS; Safepoint::DeoptMode deopt_mode = Safepoint::kNoLazyDeopt; if (info()->scope()->is_script_scope()) { __ push(r3); __ Push(info()->scope()->scope_info()); __ CallRuntime(Runtime::kNewScriptContext); deopt_mode = Safepoint::kLazyDeopt; } else { if (slots <= FastNewFunctionContextStub::kMaximumSlots) { FastNewFunctionContextStub stub(isolate()); __ mov(FastNewFunctionContextDescriptor::SlotsRegister(), Operand(slots)); __ CallStub(&stub); // Result of FastNewFunctionContextStub is always in new space. need_write_barrier = false; } else { __ push(r3); __ CallRuntime(Runtime::kNewFunctionContext); } } RecordSafepoint(deopt_mode); // Context is returned in both r2 and cp. It replaces the context // passed to us. It's saved in the stack and kept live in cp. __ LoadRR(cp, r2); __ StoreP(r2, MemOperand(fp, StandardFrameConstants::kContextOffset)); // Copy any necessary parameters into the context. int num_parameters = info()->scope()->num_parameters(); int first_parameter = info()->scope()->has_this_declaration() ? -1 : 0; for (int i = first_parameter; i < num_parameters; i++) { Variable* var = (i == -1) ? info()->scope()->receiver() : info()->scope()->parameter(i); if (var->IsContextSlot()) { int parameter_offset = StandardFrameConstants::kCallerSPOffset + (num_parameters - 1 - i) * kPointerSize; // Load parameter from stack. __ LoadP(r2, MemOperand(fp, parameter_offset)); // Store it in the context. MemOperand target = ContextMemOperand(cp, var->index()); __ StoreP(r2, target); // Update the write barrier. This clobbers r5 and r2. if (need_write_barrier) { __ RecordWriteContextSlot(cp, target.offset(), r2, r5, GetLinkRegisterState(), kSaveFPRegs); } else if (FLAG_debug_code) { Label done; __ JumpIfInNewSpace(cp, r2, &done); __ Abort(kExpectedNewSpaceObject); __ bind(&done); } } } Comment(";;; End allocate local context"); } Comment(";;; Prologue end"); } void LCodeGen::GenerateOsrPrologue() { // Generate the OSR entry prologue at the first unknown OSR value, or if there // are none, at the OSR entrypoint instruction. if (osr_pc_offset_ >= 0) return; osr_pc_offset_ = masm()->pc_offset(); // Adjust the frame size, subsuming the unoptimized frame into the // optimized frame. int slots = GetStackSlotCount() - graph()->osr()->UnoptimizedFrameSlots(); DCHECK(slots >= 0); __ lay(sp, MemOperand(sp, -slots * kPointerSize)); } void LCodeGen::GenerateBodyInstructionPre(LInstruction* instr) { if (instr->IsCall()) { EnsureSpaceForLazyDeopt(Deoptimizer::patch_size()); } if (!instr->IsLazyBailout() && !instr->IsGap()) { safepoints_.BumpLastLazySafepointIndex(); } } bool LCodeGen::GenerateDeferredCode() { DCHECK(is_generating()); if (deferred_.length() > 0) { for (int i = 0; !is_aborted() && i < deferred_.length(); i++) { LDeferredCode* code = deferred_[i]; HValue* value = instructions_->at(code->instruction_index())->hydrogen_value(); RecordAndWritePosition(value->position()); Comment( ";;; <@%d,#%d> " "-------------------- Deferred %s --------------------", code->instruction_index(), code->instr()->hydrogen_value()->id(), code->instr()->Mnemonic()); __ bind(code->entry()); if (NeedsDeferredFrame()) { Comment(";;; Build frame"); DCHECK(!frame_is_built_); DCHECK(info()->IsStub()); frame_is_built_ = true; __ LoadSmiLiteral(scratch0(), Smi::FromInt(StackFrame::STUB)); __ PushCommonFrame(scratch0()); Comment(";;; Deferred code"); } code->Generate(); if (NeedsDeferredFrame()) { Comment(";;; Destroy frame"); DCHECK(frame_is_built_); __ PopCommonFrame(scratch0()); frame_is_built_ = false; } __ b(code->exit()); } } return !is_aborted(); } bool LCodeGen::GenerateJumpTable() { // Check that the jump table is accessible from everywhere in the function // code, i.e. that offsets in halfworld to the table can be encoded in the // 32-bit signed immediate of a branch instruction. // To simplify we consider the code size from the first instruction to the // end of the jump table. We also don't consider the pc load delta. // Each entry in the jump table generates one instruction and inlines one // 32bit data after it. // TODO(joransiu): The Int24 condition can likely be relaxed for S390 if (!is_int24(masm()->pc_offset() + jump_table_.length() * 7)) { Abort(kGeneratedCodeIsTooLarge); } if (jump_table_.length() > 0) { Label needs_frame, call_deopt_entry; Comment(";;; -------------------- Jump table --------------------"); Address base = jump_table_[0].address; Register entry_offset = scratch0(); int length = jump_table_.length(); for (int i = 0; i < length; i++) { Deoptimizer::JumpTableEntry* table_entry = &jump_table_[i]; __ bind(&table_entry->label); DCHECK_EQ(jump_table_[0].bailout_type, table_entry->bailout_type); Address entry = table_entry->address; DeoptComment(table_entry->deopt_info); // Second-level deopt table entries are contiguous and small, so instead // of loading the full, absolute address of each one, load an immediate // offset which will be added to the base address later. __ mov(entry_offset, Operand(entry - base)); if (table_entry->needs_frame) { DCHECK(!info()->saves_caller_doubles()); Comment(";;; call deopt with frame"); __ PushCommonFrame(); __ b(r14, &needs_frame); } else { __ b(r14, &call_deopt_entry); } } if (needs_frame.is_linked()) { __ bind(&needs_frame); // This variant of deopt can only be used with stubs. Since we don't // have a function pointer to install in the stack frame that we're // building, install a special marker there instead. DCHECK(info()->IsStub()); __ LoadSmiLiteral(ip, Smi::FromInt(StackFrame::STUB)); __ push(ip); DCHECK(info()->IsStub()); } Comment(";;; call deopt"); __ bind(&call_deopt_entry); if (info()->saves_caller_doubles()) { DCHECK(info()->IsStub()); RestoreCallerDoubles(); } // Add the base address to the offset previously loaded in entry_offset. __ mov(ip, Operand(ExternalReference::ForDeoptEntry(base))); __ AddP(ip, entry_offset, ip); __ Jump(ip); } // The deoptimization jump table is the last part of the instruction // sequence. Mark the generated code as done unless we bailed out. if (!is_aborted()) status_ = DONE; return !is_aborted(); } bool LCodeGen::GenerateSafepointTable() { DCHECK(is_done()); safepoints_.Emit(masm(), GetTotalFrameSlotCount()); return !is_aborted(); } Register LCodeGen::ToRegister(int code) const { return Register::from_code(code); } DoubleRegister LCodeGen::ToDoubleRegister(int code) const { return DoubleRegister::from_code(code); } Register LCodeGen::ToRegister(LOperand* op) const { DCHECK(op->IsRegister()); return ToRegister(op->index()); } Register LCodeGen::EmitLoadRegister(LOperand* op, Register scratch) { if (op->IsRegister()) { return ToRegister(op->index()); } else if (op->IsConstantOperand()) { LConstantOperand* const_op = LConstantOperand::cast(op); HConstant* constant = chunk_->LookupConstant(const_op); Handle<Object> literal = constant->handle(isolate()); Representation r = chunk_->LookupLiteralRepresentation(const_op); if (r.IsInteger32()) { AllowDeferredHandleDereference get_number; DCHECK(literal->IsNumber()); __ LoadIntLiteral(scratch, static_cast<int32_t>(literal->Number())); } else if (r.IsDouble()) { Abort(kEmitLoadRegisterUnsupportedDoubleImmediate); } else { DCHECK(r.IsSmiOrTagged()); __ Move(scratch, literal); } return scratch; } else if (op->IsStackSlot()) { __ LoadP(scratch, ToMemOperand(op)); return scratch; } UNREACHABLE(); return scratch; } void LCodeGen::EmitLoadIntegerConstant(LConstantOperand* const_op, Register dst) { DCHECK(IsInteger32(const_op)); HConstant* constant = chunk_->LookupConstant(const_op); int32_t value = constant->Integer32Value(); if (IsSmi(const_op)) { __ LoadSmiLiteral(dst, Smi::FromInt(value)); } else { __ LoadIntLiteral(dst, value); } } DoubleRegister LCodeGen::ToDoubleRegister(LOperand* op) const { DCHECK(op->IsDoubleRegister()); return ToDoubleRegister(op->index()); } Handle<Object> LCodeGen::ToHandle(LConstantOperand* op) const { HConstant* constant = chunk_->LookupConstant(op); DCHECK(chunk_->LookupLiteralRepresentation(op).IsSmiOrTagged()); return constant->handle(isolate()); } bool LCodeGen::IsInteger32(LConstantOperand* op) const { return chunk_->LookupLiteralRepresentation(op).IsSmiOrInteger32(); } bool LCodeGen::IsSmi(LConstantOperand* op) const { return chunk_->LookupLiteralRepresentation(op).IsSmi(); } int32_t LCodeGen::ToInteger32(LConstantOperand* op) const { return ToRepresentation(op, Representation::Integer32()); } intptr_t LCodeGen::ToRepresentation(LConstantOperand* op, const Representation& r) const { HConstant* constant = chunk_->LookupConstant(op); int32_t value = constant->Integer32Value(); if (r.IsInteger32()) return value; DCHECK(r.IsSmiOrTagged()); return reinterpret_cast<intptr_t>(Smi::FromInt(value)); } Smi* LCodeGen::ToSmi(LConstantOperand* op) const { HConstant* constant = chunk_->LookupConstant(op); return Smi::FromInt(constant->Integer32Value()); } double LCodeGen::ToDouble(LConstantOperand* op) const { HConstant* constant = chunk_->LookupConstant(op); DCHECK(constant->HasDoubleValue()); return constant->DoubleValue(); } Operand LCodeGen::ToOperand(LOperand* op) { if (op->IsConstantOperand()) { LConstantOperand* const_op = LConstantOperand::cast(op); HConstant* constant = chunk()->LookupConstant(const_op); Representation r = chunk_->LookupLiteralRepresentation(const_op); if (r.IsSmi()) { DCHECK(constant->HasSmiValue()); return Operand(Smi::FromInt(constant->Integer32Value())); } else if (r.IsInteger32()) { DCHECK(constant->HasInteger32Value()); return Operand(constant->Integer32Value()); } else if (r.IsDouble()) { Abort(kToOperandUnsupportedDoubleImmediate); } DCHECK(r.IsTagged()); return Operand(constant->handle(isolate())); } else if (op->IsRegister()) { return Operand(ToRegister(op)); } else if (op->IsDoubleRegister()) { Abort(kToOperandIsDoubleRegisterUnimplemented); return Operand::Zero(); } // Stack slots not implemented, use ToMemOperand instead. UNREACHABLE(); return Operand::Zero(); } static int ArgumentsOffsetWithoutFrame(int index) { DCHECK(index < 0); return -(index + 1) * kPointerSize; } MemOperand LCodeGen::ToMemOperand(LOperand* op) const { DCHECK(!op->IsRegister()); DCHECK(!op->IsDoubleRegister()); DCHECK(op->IsStackSlot() || op->IsDoubleStackSlot()); if (NeedsEagerFrame()) { return MemOperand(fp, FrameSlotToFPOffset(op->index())); } else { // Retrieve parameter without eager stack-frame relative to the // stack-pointer. return MemOperand(sp, ArgumentsOffsetWithoutFrame(op->index())); } } MemOperand LCodeGen::ToHighMemOperand(LOperand* op) const { DCHECK(op->IsDoubleStackSlot()); if (NeedsEagerFrame()) { return MemOperand(fp, FrameSlotToFPOffset(op->index()) + kPointerSize); } else { // Retrieve parameter without eager stack-frame relative to the // stack-pointer. return MemOperand(sp, ArgumentsOffsetWithoutFrame(op->index()) + kPointerSize); } } void LCodeGen::WriteTranslation(LEnvironment* environment, Translation* translation) { if (environment == NULL) return; // The translation includes one command per value in the environment. int translation_size = environment->translation_size(); WriteTranslation(environment->outer(), translation); WriteTranslationFrame(environment, translation); int object_index = 0; int dematerialized_index = 0; for (int i = 0; i < translation_size; ++i) { LOperand* value = environment->values()->at(i); AddToTranslation( environment, translation, value, environment->HasTaggedValueAt(i), environment->HasUint32ValueAt(i), &object_index, &dematerialized_index); } } void LCodeGen::AddToTranslation(LEnvironment* environment, Translation* translation, LOperand* op, bool is_tagged, bool is_uint32, int* object_index_pointer, int* dematerialized_index_pointer) { if (op == LEnvironment::materialization_marker()) { int object_index = (*object_index_pointer)++; if (environment->ObjectIsDuplicateAt(object_index)) { int dupe_of = environment->ObjectDuplicateOfAt(object_index); translation->DuplicateObject(dupe_of); return; } int object_length = environment->ObjectLengthAt(object_index); if (environment->ObjectIsArgumentsAt(object_index)) { translation->BeginArgumentsObject(object_length); } else { translation->BeginCapturedObject(object_length); } int dematerialized_index = *dematerialized_index_pointer; int env_offset = environment->translation_size() + dematerialized_index; *dematerialized_index_pointer += object_length; for (int i = 0; i < object_length; ++i) { LOperand* value = environment->values()->at(env_offset + i); AddToTranslation(environment, translation, value, environment->HasTaggedValueAt(env_offset + i), environment->HasUint32ValueAt(env_offset + i), object_index_pointer, dematerialized_index_pointer); } return; } if (op->IsStackSlot()) { int index = op->index(); if (is_tagged) { translation->StoreStackSlot(index); } else if (is_uint32) { translation->StoreUint32StackSlot(index); } else { translation->StoreInt32StackSlot(index); } } else if (op->IsDoubleStackSlot()) { int index = op->index(); translation->StoreDoubleStackSlot(index); } else if (op->IsRegister()) { Register reg = ToRegister(op); if (is_tagged) { translation->StoreRegister(reg); } else if (is_uint32) { translation->StoreUint32Register(reg); } else { translation->StoreInt32Register(reg); } } else if (op->IsDoubleRegister()) { DoubleRegister reg = ToDoubleRegister(op); translation->StoreDoubleRegister(reg); } else if (op->IsConstantOperand()) { HConstant* constant = chunk()->LookupConstant(LConstantOperand::cast(op)); int src_index = DefineDeoptimizationLiteral(constant->handle(isolate())); translation->StoreLiteral(src_index); } else { UNREACHABLE(); } } void LCodeGen::CallCode(Handle<Code> code, RelocInfo::Mode mode, LInstruction* instr) { CallCodeGeneric(code, mode, instr, RECORD_SIMPLE_SAFEPOINT); } void LCodeGen::CallCodeGeneric(Handle<Code> code, RelocInfo::Mode mode, LInstruction* instr, SafepointMode safepoint_mode) { DCHECK(instr != NULL); __ Call(code, mode); RecordSafepointWithLazyDeopt(instr, safepoint_mode); // Signal that we don't inline smi code before these stubs in the // optimizing code generator. if (code->kind() == Code::BINARY_OP_IC || code->kind() == Code::COMPARE_IC) { __ nop(); } } void LCodeGen::CallRuntime(const Runtime::Function* function, int num_arguments, LInstruction* instr, SaveFPRegsMode save_doubles) { DCHECK(instr != NULL); __ CallRuntime(function, num_arguments, save_doubles); RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT); } void LCodeGen::LoadContextFromDeferred(LOperand* context) { if (context->IsRegister()) { __ Move(cp, ToRegister(context)); } else if (context->IsStackSlot()) { __ LoadP(cp, ToMemOperand(context)); } else if (context->IsConstantOperand()) { HConstant* constant = chunk_->LookupConstant(LConstantOperand::cast(context)); __ Move(cp, Handle<Object>::cast(constant->handle(isolate()))); } else { UNREACHABLE(); } } void LCodeGen::CallRuntimeFromDeferred(Runtime::FunctionId id, int argc, LInstruction* instr, LOperand* context) { LoadContextFromDeferred(context); __ CallRuntimeSaveDoubles(id); RecordSafepointWithRegisters(instr->pointer_map(), argc, Safepoint::kNoLazyDeopt); } void LCodeGen::RegisterEnvironmentForDeoptimization(LEnvironment* environment, Safepoint::DeoptMode mode) { environment->set_has_been_used(); if (!environment->HasBeenRegistered()) { // Physical stack frame layout: // -x ............. -4 0 ..................................... y // [incoming arguments] [spill slots] [pushed outgoing arguments] // Layout of the environment: // 0 ..................................................... size-1 // [parameters] [locals] [expression stack including arguments] // Layout of the translation: // 0 ........................................................ size - 1 + 4 // [expression stack including arguments] [locals] [4 words] [parameters] // |>------------ translation_size ------------<| int frame_count = 0; int jsframe_count = 0; for (LEnvironment* e = environment; e != NULL; e = e->outer()) { ++frame_count; if (e->frame_type() == JS_FUNCTION) { ++jsframe_count; } } Translation translation(&translations_, frame_count, jsframe_count, zone()); WriteTranslation(environment, &translation); int deoptimization_index = deoptimizations_.length(); int pc_offset = masm()->pc_offset(); environment->Register(deoptimization_index, translation.index(), (mode == Safepoint::kLazyDeopt) ? pc_offset : -1); deoptimizations_.Add(environment, zone()); } } void LCodeGen::DeoptimizeIf(Condition cond, LInstruction* instr, DeoptimizeReason deopt_reason, Deoptimizer::BailoutType bailout_type, CRegister cr) { LEnvironment* environment = instr->environment(); RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt); DCHECK(environment->HasBeenRegistered()); int id = environment->deoptimization_index(); Address entry = Deoptimizer::GetDeoptimizationEntry(isolate(), id, bailout_type); if (entry == NULL) { Abort(kBailoutWasNotPrepared); return; } if (FLAG_deopt_every_n_times != 0 && !info()->IsStub()) { Register scratch = scratch0(); ExternalReference count = ExternalReference::stress_deopt_count(isolate()); Label no_deopt; // Store the condition on the stack if necessary if (cond != al) { Label done; __ LoadImmP(scratch, Operand::Zero()); __ b(NegateCondition(cond), &done, Label::kNear); __ LoadImmP(scratch, Operand(1)); __ bind(&done); __ push(scratch); } Label done; __ Push(r3); __ mov(scratch, Operand(count)); __ LoadW(r3, MemOperand(scratch)); __ Sub32(r3, r3, Operand(1)); __ Cmp32(r3, Operand::Zero()); __ bne(&no_deopt, Label::kNear); __ LoadImmP(r3, Operand(FLAG_deopt_every_n_times)); __ StoreW(r3, MemOperand(scratch)); __ Pop(r3); if (cond != al) { // Clean up the stack before the deoptimizer call __ pop(scratch); } __ Call(entry, RelocInfo::RUNTIME_ENTRY); __ b(&done); __ bind(&no_deopt); __ StoreW(r3, MemOperand(scratch)); __ Pop(r3); if (cond != al) { // Clean up the stack before the deoptimizer call __ pop(scratch); } __ bind(&done); if (cond != al) { cond = ne; __ CmpP(scratch, Operand::Zero()); } } if (info()->ShouldTrapOnDeopt()) { __ stop("trap_on_deopt", cond, kDefaultStopCode, cr); } Deoptimizer::DeoptInfo deopt_info = MakeDeoptInfo(instr, deopt_reason, id); DCHECK(info()->IsStub() || frame_is_built_); // Go through jump table if we need to handle condition, build frame, or // restore caller doubles. if (cond == al && frame_is_built_ && !info()->saves_caller_doubles()) { __ Call(entry, RelocInfo::RUNTIME_ENTRY); } else { Deoptimizer::JumpTableEntry table_entry(entry, deopt_info, bailout_type, !frame_is_built_); // We often have several deopts to the same entry, reuse the last // jump entry if this is the case. if (FLAG_trace_deopt || isolate()->is_profiling() || jump_table_.is_empty() || !table_entry.IsEquivalentTo(jump_table_.last())) { jump_table_.Add(table_entry, zone()); } __ b(cond, &jump_table_.last().label /*, cr*/); } } void LCodeGen::DeoptimizeIf(Condition cond, LInstruction* instr, DeoptimizeReason deopt_reason, CRegister cr) { Deoptimizer::BailoutType bailout_type = info()->IsStub() ? Deoptimizer::LAZY : Deoptimizer::EAGER; DeoptimizeIf(cond, instr, deopt_reason, bailout_type, cr); } void LCodeGen::RecordSafepointWithLazyDeopt(LInstruction* instr, SafepointMode safepoint_mode) { if (safepoint_mode == RECORD_SIMPLE_SAFEPOINT) { RecordSafepoint(instr->pointer_map(), Safepoint::kLazyDeopt); } else { DCHECK(safepoint_mode == RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS); RecordSafepointWithRegisters(instr->pointer_map(), 0, Safepoint::kLazyDeopt); } } void LCodeGen::RecordSafepoint(LPointerMap* pointers, Safepoint::Kind kind, int arguments, Safepoint::DeoptMode deopt_mode) { DCHECK(expected_safepoint_kind_ == kind); const ZoneList<LOperand*>* operands = pointers->GetNormalizedOperands(); Safepoint safepoint = safepoints_.DefineSafepoint(masm(), kind, arguments, deopt_mode); for (int i = 0; i < operands->length(); i++) { LOperand* pointer = operands->at(i); if (pointer->IsStackSlot()) { safepoint.DefinePointerSlot(pointer->index(), zone()); } else if (pointer->IsRegister() && (kind & Safepoint::kWithRegisters)) { safepoint.DefinePointerRegister(ToRegister(pointer), zone()); } } } void LCodeGen::RecordSafepoint(LPointerMap* pointers, Safepoint::DeoptMode deopt_mode) { RecordSafepoint(pointers, Safepoint::kSimple, 0, deopt_mode); } void LCodeGen::RecordSafepoint(Safepoint::DeoptMode deopt_mode) { LPointerMap empty_pointers(zone()); RecordSafepoint(&empty_pointers, deopt_mode); } void LCodeGen::RecordSafepointWithRegisters(LPointerMap* pointers, int arguments, Safepoint::DeoptMode deopt_mode) { RecordSafepoint(pointers, Safepoint::kWithRegisters, arguments, deopt_mode); } static const char* LabelType(LLabel* label) { if (label->is_loop_header()) return " (loop header)"; if (label->is_osr_entry()) return " (OSR entry)"; return ""; } void LCodeGen::DoLabel(LLabel* label) { Comment(";;; <@%d,#%d> -------------------- B%d%s --------------------", current_instruction_, label->hydrogen_value()->id(), label->block_id(), LabelType(label)); __ bind(label->label()); current_block_ = label->block_id(); DoGap(label); } void LCodeGen::DoParallelMove(LParallelMove* move) { resolver_.Resolve(move); } void LCodeGen::DoGap(LGap* gap) { for (int i = LGap::FIRST_INNER_POSITION; i <= LGap::LAST_INNER_POSITION; i++) { LGap::InnerPosition inner_pos = static_cast<LGap::InnerPosition>(i); LParallelMove* move = gap->GetParallelMove(inner_pos); if (move != NULL) DoParallelMove(move); } } void LCodeGen::DoInstructionGap(LInstructionGap* instr) { DoGap(instr); } void LCodeGen::DoParameter(LParameter* instr) { // Nothing to do. } void LCodeGen::DoUnknownOSRValue(LUnknownOSRValue* instr) { GenerateOsrPrologue(); } void LCodeGen::DoModByPowerOf2I(LModByPowerOf2I* instr) { Register dividend = ToRegister(instr->dividend()); int32_t divisor = instr->divisor(); DCHECK(dividend.is(ToRegister(instr->result()))); // Theoretically, a variation of the branch-free code for integer division by // a power of 2 (calculating the remainder via an additional multiplication // (which gets simplified to an 'and') and subtraction) should be faster, and // this is exactly what GCC and clang emit. Nevertheless, benchmarks seem to // indicate that positive dividends are heavily favored, so the branching // version performs better. HMod* hmod = instr->hydrogen(); int32_t shift = WhichPowerOf2Abs(divisor); Label dividend_is_not_negative, done; if (hmod->CheckFlag(HValue::kLeftCanBeNegative)) { __ CmpP(dividend, Operand::Zero()); __ bge(÷nd_is_not_negative, Label::kNear); if (shift) { // Note that this is correct even for kMinInt operands. __ LoadComplementRR(dividend, dividend); __ ExtractBitRange(dividend, dividend, shift - 1, 0); __ LoadComplementRR(dividend, dividend); if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) { DeoptimizeIf(eq, instr, DeoptimizeReason::kMinusZero); } } else if (!hmod->CheckFlag(HValue::kBailoutOnMinusZero)) { __ mov(dividend, Operand::Zero()); } else { DeoptimizeIf(al, instr, DeoptimizeReason::kMinusZero); } __ b(&done, Label::kNear); } __ bind(÷nd_is_not_negative); if (shift) { __ ExtractBitRange(dividend, dividend, shift - 1, 0); } else { __ mov(dividend, Operand::Zero()); } __ bind(&done); } void LCodeGen::DoModByConstI(LModByConstI* instr) { Register dividend = ToRegister(instr->dividend()); int32_t divisor = instr->divisor(); Register result = ToRegister(instr->result()); DCHECK(!dividend.is(result)); if (divisor == 0) { DeoptimizeIf(al, instr, DeoptimizeReason::kDivisionByZero); return; } __ TruncatingDiv(result, dividend, Abs(divisor)); __ mov(ip, Operand(Abs(divisor))); __ Mul(result, result, ip); __ SubP(result, dividend, result /*, LeaveOE, SetRC*/); // Check for negative zero. HMod* hmod = instr->hydrogen(); if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) { Label remainder_not_zero; __ bne(&remainder_not_zero, Label::kNear /*, cr0*/); __ Cmp32(dividend, Operand::Zero()); DeoptimizeIf(lt, instr, DeoptimizeReason::kMinusZero); __ bind(&remainder_not_zero); } } void LCodeGen::DoModI(LModI* instr) { HMod* hmod = instr->hydrogen(); Register left_reg = ToRegister(instr->left()); Register right_reg = ToRegister(instr->right()); Register result_reg = ToRegister(instr->result()); Label done; // Check for x % 0. if (hmod->CheckFlag(HValue::kCanBeDivByZero)) { __ Cmp32(right_reg, Operand::Zero()); DeoptimizeIf(eq, instr, DeoptimizeReason::kDivisionByZero); } // Check for kMinInt % -1, dr will return undefined, which is not what we // want. We have to deopt if we care about -0, because we can't return that. if (hmod->CheckFlag(HValue::kCanOverflow)) { Label no_overflow_possible; __ Cmp32(left_reg, Operand(kMinInt)); __ bne(&no_overflow_possible, Label::kNear); __ Cmp32(right_reg, Operand(-1)); if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) { DeoptimizeIf(eq, instr, DeoptimizeReason::kMinusZero); } else { __ b(ne, &no_overflow_possible, Label::kNear); __ mov(result_reg, Operand::Zero()); __ b(&done, Label::kNear); } __ bind(&no_overflow_possible); } // Divide instruction dr will implicity use register pair // r0 & r1 below. DCHECK(!left_reg.is(r1)); DCHECK(!right_reg.is(r1)); DCHECK(!result_reg.is(r1)); __ LoadRR(r0, left_reg); __ srda(r0, Operand(32)); __ dr(r0, right_reg); // R0:R1 = R1 / divisor - R0 remainder __ LoadAndTestP_ExtendSrc(result_reg, r0); // Copy remainder to resultreg // If we care about -0, test if the dividend is <0 and the result is 0. if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) { __ bne(&done, Label::kNear); __ Cmp32(left_reg, Operand::Zero()); DeoptimizeIf(lt, instr, DeoptimizeReason::kMinusZero); } __ bind(&done); } void LCodeGen::DoDivByPowerOf2I(LDivByPowerOf2I* instr) { Register dividend = ToRegister(instr->dividend()); int32_t divisor = instr->divisor(); Register result = ToRegister(instr->result()); DCHECK(divisor == kMinInt || base::bits::IsPowerOfTwo32(Abs(divisor))); DCHECK(!result.is(dividend)); // Check for (0 / -x) that will produce negative zero. HDiv* hdiv = instr->hydrogen(); if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) { __ Cmp32(dividend, Operand::Zero()); DeoptimizeIf(eq, instr, DeoptimizeReason::kMinusZero); } // Check for (kMinInt / -1). if (hdiv->CheckFlag(HValue::kCanOverflow) && divisor == -1) { __ Cmp32(dividend, Operand(0x80000000)); DeoptimizeIf(eq, instr, DeoptimizeReason::kOverflow); } int32_t shift = WhichPowerOf2Abs(divisor); // Deoptimize if remainder will not be 0. if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32) && shift) { __ TestBitRange(dividend, shift - 1, 0, r0); DeoptimizeIf(ne, instr, DeoptimizeReason::kLostPrecision, cr0); } if (divisor == -1) { // Nice shortcut, not needed for correctness. __ LoadComplementRR(result, dividend); return; } if (shift == 0) { __ LoadRR(result, dividend); } else { if (shift == 1) { __ ShiftRight(result, dividend, Operand(31)); } else { __ ShiftRightArith(result, dividend, Operand(31)); __ ShiftRight(result, result, Operand(32 - shift)); } __ AddP(result, dividend, result); __ ShiftRightArith(result, result, Operand(shift)); #if V8_TARGET_ARCH_S390X __ lgfr(result, result); #endif } if (divisor < 0) __ LoadComplementRR(result, result); } void LCodeGen::DoDivByConstI(LDivByConstI* instr) { Register dividend = ToRegister(instr->dividend()); int32_t divisor = instr->divisor(); Register result = ToRegister(instr->result()); DCHECK(!dividend.is(result)); if (divisor == 0) { DeoptimizeIf(al, instr, DeoptimizeReason::kDivisionByZero); return; } // Check for (0 / -x) that will produce negative zero. HDiv* hdiv = instr->hydrogen(); if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) { __ Cmp32(dividend, Operand::Zero()); DeoptimizeIf(eq, instr, DeoptimizeReason::kMinusZero); } __ TruncatingDiv(result, dividend, Abs(divisor)); if (divisor < 0) __ LoadComplementRR(result, result); if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32)) { Register scratch = scratch0(); __ mov(ip, Operand(divisor)); __ Mul(scratch, result, ip); __ Cmp32(scratch, dividend); DeoptimizeIf(ne, instr, DeoptimizeReason::kLostPrecision); } } // TODO(svenpanne) Refactor this to avoid code duplication with DoFlooringDivI. void LCodeGen::DoDivI(LDivI* instr) { HBinaryOperation* hdiv = instr->hydrogen(); const Register dividend = ToRegister(instr->dividend()); const Register divisor = ToRegister(instr->divisor()); Register result = ToRegister(instr->result()); DCHECK(!dividend.is(result)); DCHECK(!divisor.is(result)); // Check for x / 0. if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) { __ Cmp32(divisor, Operand::Zero()); DeoptimizeIf(eq, instr, DeoptimizeReason::kDivisionByZero); } // Check for (0 / -x) that will produce negative zero. if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) { Label dividend_not_zero; __ Cmp32(dividend, Operand::Zero()); __ bne(÷nd_not_zero, Label::kNear); __ Cmp32(divisor, Operand::Zero()); DeoptimizeIf(lt, instr, DeoptimizeReason::kMinusZero); __ bind(÷nd_not_zero); } // Check for (kMinInt / -1). if (hdiv->CheckFlag(HValue::kCanOverflow)) { Label dividend_not_min_int; __ Cmp32(dividend, Operand(kMinInt)); __ bne(÷nd_not_min_int, Label::kNear); __ Cmp32(divisor, Operand(-1)); DeoptimizeIf(eq, instr, DeoptimizeReason::kOverflow); __ bind(÷nd_not_min_int); } __ LoadRR(r0, dividend); __ srda(r0, Operand(32)); __ dr(r0, divisor); // R0:R1 = R1 / divisor - R0 remainder - R1 quotient __ LoadAndTestP_ExtendSrc(result, r1); // Move quotient to result register if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32)) { // Deoptimize if remainder is not 0. __ Cmp32(r0, Operand::Zero()); DeoptimizeIf(ne, instr, DeoptimizeReason::kLostPrecision); } } void LCodeGen::DoFlooringDivByPowerOf2I(LFlooringDivByPowerOf2I* instr) { HBinaryOperation* hdiv = instr->hydrogen(); Register dividend = ToRegister(instr->dividend()); Register result = ToRegister(instr->result()); int32_t divisor = instr->divisor(); bool can_overflow = hdiv->CheckFlag(HValue::kLeftCanBeMinInt); // If the divisor is positive, things are easy: There can be no deopts and we // can simply do an arithmetic right shift. int32_t shift = WhichPowerOf2Abs(divisor); if (divisor > 0) { if (shift || !result.is(dividend)) { __ ShiftRightArith(result, dividend, Operand(shift)); #if V8_TARGET_ARCH_S390X __ lgfr(result, result); #endif } return; } // If the divisor is negative, we have to negate and handle edge cases. #if V8_TARGET_ARCH_S390X if (divisor == -1 && can_overflow) { __ Cmp32(dividend, Operand(0x80000000)); DeoptimizeIf(eq, instr, DeoptimizeReason::kOverflow); } #endif __ LoadComplementRR(result, dividend); if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) { DeoptimizeIf(eq, instr, DeoptimizeReason::kMinusZero, cr0); } // If the negation could not overflow, simply shifting is OK. #if !V8_TARGET_ARCH_S390X if (!can_overflow) { #endif if (shift) { __ ShiftRightArithP(result, result, Operand(shift)); } return; #if !V8_TARGET_ARCH_S390X } // Dividing by -1 is basically negation, unless we overflow. if (divisor == -1) { DeoptimizeIf(overflow, instr, DeoptimizeReason::kOverflow, cr0); return; } Label overflow_label, done; __ b(overflow, &overflow_label, Label::kNear); __ ShiftRightArith(result, result, Operand(shift)); #if V8_TARGET_ARCH_S390X __ lgfr(result, result); #endif __ b(&done, Label::kNear); __ bind(&overflow_label); __ mov(result, Operand(kMinInt / divisor)); __ bind(&done); #endif } void LCodeGen::DoFlooringDivByConstI(LFlooringDivByConstI* instr) { Register dividend = ToRegister(instr->dividend()); int32_t divisor = instr->divisor(); Register result = ToRegister(instr->result()); DCHECK(!dividend.is(result)); if (divisor == 0) { DeoptimizeIf(al, instr, DeoptimizeReason::kDivisionByZero); return; } // Check for (0 / -x) that will produce negative zero. HMathFloorOfDiv* hdiv = instr->hydrogen(); if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) { __ Cmp32(dividend, Operand::Zero()); DeoptimizeIf(eq, instr, DeoptimizeReason::kMinusZero); } // Easy case: We need no dynamic check for the dividend and the flooring // division is the same as the truncating division. if ((divisor > 0 && !hdiv->CheckFlag(HValue::kLeftCanBeNegative)) || (divisor < 0 && !hdiv->CheckFlag(HValue::kLeftCanBePositive))) { __ TruncatingDiv(result, dividend, Abs(divisor)); if (divisor < 0) __ LoadComplementRR(result, result); return; } // In the general case we may need to adjust before and after the truncating // division to get a flooring division. Register temp = ToRegister(instr->temp()); DCHECK(!temp.is(dividend) && !temp.is(result)); Label needs_adjustment, done; __ Cmp32(dividend, Operand::Zero()); __ b(divisor > 0 ? lt : gt, &needs_adjustment); __ TruncatingDiv(result, dividend, Abs(divisor)); if (divisor < 0) __ LoadComplementRR(result, result); __ b(&done, Label::kNear); __ bind(&needs_adjustment); __ AddP(temp, dividend, Operand(divisor > 0 ? 1 : -1)); __ TruncatingDiv(result, temp, Abs(divisor)); if (divisor < 0) __ LoadComplementRR(result, result); __ SubP(result, result, Operand(1)); __ bind(&done); } // TODO(svenpanne) Refactor this to avoid code duplication with DoDivI. void LCodeGen::DoFlooringDivI(LFlooringDivI* instr) { HBinaryOperation* hdiv = instr->hydrogen(); const Register dividend = ToRegister(instr->dividend()); const Register divisor = ToRegister(instr->divisor()); Register result = ToRegister(instr->result()); DCHECK(!dividend.is(result)); DCHECK(!divisor.is(result)); // Check for x / 0. if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) { __ Cmp32(divisor, Operand::Zero()); DeoptimizeIf(eq, instr, DeoptimizeReason::kDivisionByZero); } // Check for (0 / -x) that will produce negative zero. if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) { Label dividend_not_zero; __ Cmp32(dividend, Operand::Zero()); __ bne(÷nd_not_zero, Label::kNear); __ Cmp32(divisor, Operand::Zero()); DeoptimizeIf(lt, instr, DeoptimizeReason::kMinusZero); __ bind(÷nd_not_zero); } // Check for (kMinInt / -1). if (hdiv->CheckFlag(HValue::kCanOverflow)) { Label no_overflow_possible; __ Cmp32(dividend, Operand(kMinInt)); __ bne(&no_overflow_possible, Label::kNear); __ Cmp32(divisor, Operand(-1)); if (!hdiv->CheckFlag(HValue::kAllUsesTruncatingToInt32)) { DeoptimizeIf(eq, instr, DeoptimizeReason::kOverflow); } else { __ bne(&no_overflow_possible, Label::kNear); __ LoadRR(result, dividend); } __ bind(&no_overflow_possible); } __ LoadRR(r0, dividend); __ srda(r0, Operand(32)); __ dr(r0, divisor); // R0:R1 = R1 / divisor - R0 remainder - R1 quotient __ lr(result, r1); // Move quotient to result register Label done; Register scratch = scratch0(); // If both operands have the same sign then we are done. __ Xor(scratch, dividend, divisor); __ ltr(scratch, scratch); // use 32 bit version LoadAndTestRR even in 64 bit __ bge(&done, Label::kNear); // If there is no remainder then we are done. __ lr(scratch, result); __ msr(scratch, divisor); __ Cmp32(dividend, scratch); __ beq(&done, Label::kNear); // We performed a truncating division. Correct the result. __ Sub32(result, result, Operand(1)); __ bind(&done); } void LCodeGen::DoMultiplyAddD(LMultiplyAddD* instr) { DoubleRegister addend = ToDoubleRegister(instr->addend()); DoubleRegister multiplier = ToDoubleRegister(instr->multiplier()); DoubleRegister multiplicand = ToDoubleRegister(instr->multiplicand()); DoubleRegister result = ToDoubleRegister(instr->result()); // Unable to use madbr as the intermediate value is not rounded // to proper precision __ ldr(result, multiplier); __ mdbr(result, multiplicand); __ adbr(result, addend); } void LCodeGen::DoMultiplySubD(LMultiplySubD* instr) { DoubleRegister minuend = ToDoubleRegister(instr->minuend()); DoubleRegister multiplier = ToDoubleRegister(instr->multiplier()); DoubleRegister multiplicand = ToDoubleRegister(instr->multiplicand()); DoubleRegister result = ToDoubleRegister(instr->result()); // Unable to use msdbr as the intermediate value is not rounded // to proper precision __ ldr(result, multiplier); __ mdbr(result, multiplicand); __ sdbr(result, minuend); } void LCodeGen::DoMulI(LMulI* instr) { Register scratch = scratch0(); Register result = ToRegister(instr->result()); // Note that result may alias left. Register left = ToRegister(instr->left()); LOperand* right_op = instr->right(); bool bailout_on_minus_zero = instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero); bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow); if (right_op->IsConstantOperand()) { int32_t constant = ToInteger32(LConstantOperand::cast(right_op)); if (bailout_on_minus_zero && (constant < 0)) { // The case of a null constant will be handled separately. // If constant is negative and left is null, the result should be -0. __ CmpP(left, Operand::Zero()); DeoptimizeIf(eq, instr, DeoptimizeReason::kMinusZero); } switch (constant) { case -1: if (can_overflow) { #if V8_TARGET_ARCH_S390X if (instr->hydrogen()->representation().IsSmi()) { #endif __ LoadComplementRR(result, left); DeoptimizeIf(overflow, instr, DeoptimizeReason::kOverflow); #if V8_TARGET_ARCH_S390X } else { __ LoadComplementRR(result, left); __ TestIfInt32(result, r0); DeoptimizeIf(ne, instr, DeoptimizeReason::kOverflow); } #endif } else { __ LoadComplementRR(result, left); } break; case 0: if (bailout_on_minus_zero) { // If left is strictly negative and the constant is null, the // result is -0. Deoptimize if required, otherwise return 0. #if V8_TARGET_ARCH_S390X if (instr->hydrogen()->representation().IsSmi()) { #endif __ Cmp32(left, Operand::Zero()); #if V8_TARGET_ARCH_S390X } else { __ Cmp32(left, Operand::Zero()); } #endif DeoptimizeIf(lt, instr, DeoptimizeReason::kMinusZero); } __ LoadImmP(result, Operand::Zero()); break; case 1: __ Move(result, left); break; default: // Multiplying by powers of two and powers of two plus or minus // one can be done faster with shifted operands. // For other constants we emit standard code. int32_t mask = constant >> 31; uint32_t constant_abs = (constant + mask) ^ mask; if (base::bits::IsPowerOfTwo32(constant_abs)) { int32_t shift = WhichPowerOf2(constant_abs); __ ShiftLeftP(result, left, Operand(shift)); // Correct the sign of the result if the constant is negative. if (constant < 0) __ LoadComplementRR(result, result); } else if (base::bits::IsPowerOfTwo32(constant_abs - 1)) { int32_t shift = WhichPowerOf2(constant_abs - 1); __ ShiftLeftP(scratch, left, Operand(shift)); __ AddP(result, scratch, left); // Correct the sign of the result if the constant is negative. if (constant < 0) __ LoadComplementRR(result, result); } else if (base::bits::IsPowerOfTwo32(constant_abs + 1)) { int32_t shift = WhichPowerOf2(constant_abs + 1); __ ShiftLeftP(scratch, left, Operand(shift)); __ SubP(result, scratch, left); // Correct the sign of the result if the constant is negative. if (constant < 0) __ LoadComplementRR(result, result); } else { // Generate standard code. __ Move(result, left); __ MulP(result, Operand(constant)); } } } else { DCHECK(right_op->IsRegister()); Register right = ToRegister(right_op); if (can_overflow) { #if V8_TARGET_ARCH_S390X // result = left * right. if (instr->hydrogen()->representation().IsSmi()) { __ SmiUntag(result, left); __ SmiUntag(scratch, right); __ msgr(result, scratch); } else { __ LoadRR(result, left); __ msgr(result, right); } __ TestIfInt32(result, r0); DeoptimizeIf(ne, instr, DeoptimizeReason::kOverflow); if (instr->hydrogen()->representation().IsSmi()) { __ SmiTag(result); } #else // r0:scratch = scratch * right if (instr->hydrogen()->representation().IsSmi()) { __ SmiUntag(scratch, left); __ mr_z(r0, right); __ LoadRR(result, scratch); } else { // r0:scratch = scratch * right __ LoadRR(scratch, left); __ mr_z(r0, right); __ LoadRR(result, scratch); } __ TestIfInt32(r0, result, scratch); DeoptimizeIf(ne, instr, DeoptimizeReason::kOverflow); #endif } else { if (instr->hydrogen()->representation().IsSmi()) { __ SmiUntag(result, left); __ Mul(result, result, right); } else { __ Mul(result, left, right); } } if (bailout_on_minus_zero) { Label done; #if V8_TARGET_ARCH_S390X if (instr->hydrogen()->representation().IsSmi()) { #endif __ XorP(r0, left, right); __ LoadAndTestRR(r0, r0); __ bge(&done, Label::kNear); #if V8_TARGET_ARCH_S390X } else { __ XorP(r0, left, right); __ Cmp32(r0, Operand::Zero()); __ bge(&done, Label::kNear); } #endif // Bail out if the result is minus zero. __ CmpP(result, Operand::Zero()); DeoptimizeIf(eq, instr, DeoptimizeReason::kMinusZero); __ bind(&done); } } } void LCodeGen::DoBitI(LBitI* instr) { LOperand* left_op = instr->left(); LOperand* right_op = instr->right(); DCHECK(left_op->IsRegister()); Register left = ToRegister(left_op); Register result = ToRegister(instr->result()); if (right_op->IsConstantOperand()) { switch (instr->op()) { case Token::BIT_AND: __ AndP(result, left, Operand(ToOperand(right_op))); break; case Token::BIT_OR: __ OrP(result, left, Operand(ToOperand(right_op))); break; case Token::BIT_XOR: __ XorP(result, left, Operand(ToOperand(right_op))); break; default: UNREACHABLE(); break; } } else if (right_op->IsStackSlot()) { // Reg-Mem instruction clobbers, so copy src to dst first. if (!left.is(result)) __ LoadRR(result, left); switch (instr->op()) { case Token::BIT_AND: __ AndP(result, ToMemOperand(right_op)); break; case Token::BIT_OR: __ OrP(result, ToMemOperand(right_op)); break; case Token::BIT_XOR: __ XorP(result, ToMemOperand(right_op)); break; default: UNREACHABLE(); break; } } else { DCHECK(right_op->IsRegister()); switch (instr->op()) { case Token::BIT_AND: __ AndP(result, left, ToRegister(right_op)); break; case Token::BIT_OR: __ OrP(result, left, ToRegister(right_op)); break; case Token::BIT_XOR: __ XorP(result, left, ToRegister(right_op)); break; default: UNREACHABLE(); break; } } } void LCodeGen::DoShiftI(LShiftI* instr) { // Both 'left' and 'right' are "used at start" (see LCodeGen::DoShift), so // result may alias either of them. LOperand* right_op = instr->right(); Register left = ToRegister(instr->left()); Register result = ToRegister(instr->result()); Register scratch = scratch0(); if (right_op->IsRegister()) { // Mask the right_op operand. __ AndP(scratch, ToRegister(right_op), Operand(0x1F)); switch (instr->op()) { case Token::ROR: // rotate_right(a, b) == rotate_left(a, 32 - b) __ LoadComplementRR(scratch, scratch); __ rll(result, left, scratch, Operand(32)); #if V8_TARGET_ARCH_S390X __ lgfr(result, result); #endif break; case Token::SAR: __ ShiftRightArith(result, left, scratch); #if V8_TARGET_ARCH_S390X __ lgfr(result, result); #endif break; case Token::SHR: __ ShiftRight(result, left, scratch); #if V8_TARGET_ARCH_S390X __ lgfr(result, result); #endif if (instr->can_deopt()) { #if V8_TARGET_ARCH_S390X __ ltgfr(result, result /*, SetRC*/); #else __ ltr(result, result); // Set the <,==,> condition #endif DeoptimizeIf(lt, instr, DeoptimizeReason::kNegativeValue, cr0); } break; case Token::SHL: __ ShiftLeft(result, left, scratch); #if V8_TARGET_ARCH_S390X __ lgfr(result, result); #endif break; default: UNREACHABLE(); break; } } else { // Mask the right_op operand. int value = ToInteger32(LConstantOperand::cast(right_op)); uint8_t shift_count = static_cast<uint8_t>(value & 0x1F); switch (instr->op()) { case Token::ROR: if (shift_count != 0) { __ rll(result, left, Operand(32 - shift_count)); #if V8_TARGET_ARCH_S390X __ lgfr(result, result); #endif } else { __ Move(result, left); } break; case Token::SAR: if (shift_count != 0) { __ ShiftRightArith(result, left, Operand(shift_count)); #if V8_TARGET_ARCH_S390X __ lgfr(result, result); #endif } else { __ Move(result, left); } break; case Token::SHR: if (shift_count != 0) { __ ShiftRight(result, left, Operand(shift_count)); #if V8_TARGET_ARCH_S390X __ lgfr(result, result); #endif } else { if (instr->can_deopt()) { __ Cmp32(left, Operand::Zero()); DeoptimizeIf(lt, instr, DeoptimizeReason::kNegativeValue); } __ Move(result, left); } break; case Token::SHL: if (shift_count != 0) { #if V8_TARGET_ARCH_S390X if (instr->hydrogen_value()->representation().IsSmi()) { __ ShiftLeftP(result, left, Operand(shift_count)); #else if (instr->hydrogen_value()->representation().IsSmi() && instr->can_deopt()) { if (shift_count != 1) { __ ShiftLeft(result, left, Operand(shift_count - 1)); #if V8_TARGET_ARCH_S390X __ lgfr(result, result); #endif __ SmiTagCheckOverflow(result, result, scratch); } else { __ SmiTagCheckOverflow(result, left, scratch); } DeoptimizeIf(lt, instr, DeoptimizeReason::kOverflow, cr0); #endif } else { __ ShiftLeft(result, left, Operand(shift_count)); #if V8_TARGET_ARCH_S390X __ lgfr(result, result); #endif } } else { __ Move(result, left); } break; default: UNREACHABLE(); break; } } } void LCodeGen::DoSubI(LSubI* instr) { LOperand* left = instr->left(); LOperand* right = instr->right(); LOperand* result = instr->result(); bool isInteger = !(instr->hydrogen()->representation().IsSmi() || instr->hydrogen()->representation().IsExternal()); #if V8_TARGET_ARCH_S390X // The overflow detection needs to be tested on the lower 32-bits. // As a result, on 64-bit, we need to force 32-bit arithmetic operations // to set the CC overflow bit properly. The result is then sign-extended. bool checkOverflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow); #else bool checkOverflow = true; #endif if (right->IsConstantOperand()) { if (!isInteger || !checkOverflow) __ SubP(ToRegister(result), ToRegister(left), ToOperand(right)); else __ Sub32(ToRegister(result), ToRegister(left), ToOperand(right)); } else if (right->IsRegister()) { if (!isInteger) __ SubP(ToRegister(result), ToRegister(left), ToRegister(right)); else if (!checkOverflow) __ SubP_ExtendSrc(ToRegister(result), ToRegister(left), ToRegister(right)); else __ Sub32(ToRegister(result), ToRegister(left), ToRegister(right)); } else { if (!left->Equals(instr->result())) __ LoadRR(ToRegister(result), ToRegister(left)); MemOperand mem = ToMemOperand(right); if (!isInteger) { __ SubP(ToRegister(result), mem); } else { #if V8_TARGET_ARCH_S390X && !V8_TARGET_LITTLE_ENDIAN // We want to read the 32-bits directly from memory MemOperand Upper32Mem = MemOperand(mem.rb(), mem.rx(), mem.offset() + 4); #else MemOperand Upper32Mem = ToMemOperand(right); #endif if (checkOverflow) { __ Sub32(ToRegister(result), Upper32Mem); } else { __ SubP_ExtendSrc(ToRegister(result), Upper32Mem); } } } #if V8_TARGET_ARCH_S390X if (isInteger && checkOverflow) __ lgfr(ToRegister(result), ToRegister(result)); #endif if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) { DeoptimizeIf(overflow, instr, DeoptimizeReason::kOverflow); } } void LCodeGen::DoRSubI(LRSubI* instr) { LOperand* left = instr->left(); LOperand* right = instr->right(); LOperand* result = instr->result(); DCHECK(!instr->hydrogen()->CheckFlag(HValue::kCanOverflow) && right->IsConstantOperand()); #if V8_TARGET_ARCH_S390X // The overflow detection needs to be tested on the lower 32-bits. // As a result, on 64-bit, we need to force 32-bit arithmetic operations // to set the CC overflow bit properly. The result is then sign-extended. bool checkOverflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow); #else bool checkOverflow = true; #endif Operand right_operand = ToOperand(right); __ mov(r0, right_operand); if (!checkOverflow) { __ SubP_ExtendSrc(ToRegister(result), r0, ToRegister(left)); } else { __ Sub32(ToRegister(result), r0, ToRegister(left)); } } void LCodeGen::DoConstantI(LConstantI* instr) { __ mov(ToRegister(instr->result()), Operand(instr->value())); } void LCodeGen::DoConstantS(LConstantS* instr) { __ LoadSmiLiteral(ToRegister(instr->result()), instr->value()); } void LCodeGen::DoConstantD(LConstantD* instr) { DCHECK(instr->result()->IsDoubleRegister()); DoubleRegister result = ToDoubleRegister(instr->result()); uint64_t bits = instr->bits(); __ LoadDoubleLiteral(result, bits, scratch0()); } void LCodeGen::DoConstantE(LConstantE* instr) { __ mov(ToRegister(instr->result()), Operand(instr->value())); } void LCodeGen::DoConstantT(LConstantT* instr) { Handle<Object> object = instr->value(isolate()); AllowDeferredHandleDereference smi_check; __ Move(ToRegister(instr->result()), object); } MemOperand LCodeGen::BuildSeqStringOperand(Register string, LOperand* index, String::Encoding encoding) { if (index->IsConstantOperand()) { int offset = ToInteger32(LConstantOperand::cast(index)); if (encoding == String::TWO_BYTE_ENCODING) { offset *= kUC16Size; } STATIC_ASSERT(kCharSize == 1); return FieldMemOperand(string, SeqString::kHeaderSize + offset); } Register scratch = scratch0(); DCHECK(!scratch.is(string)); DCHECK(!scratch.is(ToRegister(index))); // TODO(joransiu) : Fold Add into FieldMemOperand if (encoding == String::ONE_BYTE_ENCODING) { __ AddP(scratch, string, ToRegister(index)); } else { STATIC_ASSERT(kUC16Size == 2); __ ShiftLeftP(scratch, ToRegister(index), Operand(1)); __ AddP(scratch, string, scratch); } return FieldMemOperand(scratch, SeqString::kHeaderSize); } void LCodeGen::DoSeqStringGetChar(LSeqStringGetChar* instr) { String::Encoding encoding = instr->hydrogen()->encoding(); Register string = ToRegister(instr->string()); Register result = ToRegister(instr->result()); if (FLAG_debug_code) { Register scratch = scratch0(); __ LoadP(scratch, FieldMemOperand(string, HeapObject::kMapOffset)); __ llc(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset)); __ AndP(scratch, scratch, Operand(kStringRepresentationMask | kStringEncodingMask)); static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag; static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag; __ CmpP(scratch, Operand(encoding == String::ONE_BYTE_ENCODING ? one_byte_seq_type : two_byte_seq_type)); __ Check(eq, kUnexpectedStringType); } MemOperand operand = BuildSeqStringOperand(string, instr->index(), encoding); if (encoding == String::ONE_BYTE_ENCODING) { __ llc(result, operand); } else { __ llh(result, operand); } } void LCodeGen::DoSeqStringSetChar(LSeqStringSetChar* instr) { String::Encoding encoding = instr->hydrogen()->encoding(); Register string = ToRegister(instr->string()); Register value = ToRegister(instr->value()); if (FLAG_debug_code) { Register index = ToRegister(instr->index()); static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag; static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag; int encoding_mask = instr->hydrogen()->encoding() == String::ONE_BYTE_ENCODING ? one_byte_seq_type : two_byte_seq_type; __ EmitSeqStringSetCharCheck(string, index, value, encoding_mask); } MemOperand operand = BuildSeqStringOperand(string, instr->index(), encoding); if (encoding == String::ONE_BYTE_ENCODING) { __ stc(value, operand); } else { __ sth(value, operand); } } void LCodeGen::DoAddI(LAddI* instr) { LOperand* left = instr->left(); LOperand* right = instr->right(); LOperand* result = instr->result(); bool isInteger = !(instr->hydrogen()->representation().IsSmi() || instr->hydrogen()->representation().IsExternal()); #if V8_TARGET_ARCH_S390X // The overflow detection needs to be tested on the lower 32-bits. // As a result, on 64-bit, we need to force 32-bit arithmetic operations // to set the CC overflow bit properly. The result is then sign-extended. bool checkOverflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow); #else bool checkOverflow = true; #endif if (right->IsConstantOperand()) { if (!isInteger || !checkOverflow) __ AddP(ToRegister(result), ToRegister(left), ToOperand(right)); else __ Add32(ToRegister(result), ToRegister(left), ToOperand(right)); } else if (right->IsRegister()) { if (!isInteger) __ AddP(ToRegister(result), ToRegister(left), ToRegister(right)); else if (!checkOverflow) __ AddP_ExtendSrc(ToRegister(result), ToRegister(left), ToRegister(right)); else __ Add32(ToRegister(result), ToRegister(left), ToRegister(right)); } else { if (!left->Equals(instr->result())) __ LoadRR(ToRegister(result), ToRegister(left)); MemOperand mem = ToMemOperand(right); if (!isInteger) { __ AddP(ToRegister(result), mem); } else { #if V8_TARGET_ARCH_S390X && !V8_TARGET_LITTLE_ENDIAN // We want to read the 32-bits directly from memory MemOperand Upper32Mem = MemOperand(mem.rb(), mem.rx(), mem.offset() + 4); #else MemOperand Upper32Mem = ToMemOperand(right); #endif if (checkOverflow) { __ Add32(ToRegister(result), Upper32Mem); } else { __ AddP_ExtendSrc(ToRegister(result), Upper32Mem); } } } #if V8_TARGET_ARCH_S390X if (isInteger && checkOverflow) __ lgfr(ToRegister(result), ToRegister(result)); #endif // Doptimize on overflow if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) { DeoptimizeIf(overflow, instr, DeoptimizeReason::kOverflow); } } void LCodeGen::DoMathMinMax(LMathMinMax* instr) { LOperand* left = instr->left(); LOperand* right = instr->right(); HMathMinMax::Operation operation = instr->hydrogen()->operation(); Condition cond = (operation == HMathMinMax::kMathMin) ? le : ge; if (instr->hydrogen()->representation().IsSmiOrInteger32()) { Register left_reg = ToRegister(left); Register right_reg = EmitLoadRegister(right, ip); Register result_reg = ToRegister(instr->result()); Label return_left, done; #if V8_TARGET_ARCH_S390X if (instr->hydrogen_value()->representation().IsSmi()) { #endif __ CmpP(left_reg, right_reg); #if V8_TARGET_ARCH_S390X } else { __ Cmp32(left_reg, right_reg); } #endif __ b(cond, &return_left, Label::kNear); __ Move(result_reg, right_reg); __ b(&done, Label::kNear); __ bind(&return_left); __ Move(result_reg, left_reg); __ bind(&done); } else { DCHECK(instr->hydrogen()->representation().IsDouble()); DoubleRegister left_reg = ToDoubleRegister(left); DoubleRegister right_reg = ToDoubleRegister(right); DoubleRegister result_reg = ToDoubleRegister(instr->result()); Label check_nan_left, check_zero, return_left, return_right, done; __ cdbr(left_reg, right_reg); __ bunordered(&check_nan_left, Label::kNear); __ beq(&check_zero); __ b(cond, &return_left, Label::kNear); __ b(&return_right, Label::kNear); __ bind(&check_zero); __ lzdr(kDoubleRegZero); __ cdbr(left_reg, kDoubleRegZero); __ bne(&return_left, Label::kNear); // left == right != 0. // At this point, both left and right are either 0 or -0. // N.B. The following works because +0 + -0 == +0 if (operation == HMathMinMax::kMathMin) { // For min we want logical-or of sign bit: -(-L + -R) __ lcdbr(left_reg, left_reg); __ ldr(result_reg, left_reg); if (left_reg.is(right_reg)) { __ adbr(result_reg, right_reg); } else { __ sdbr(result_reg, right_reg); } __ lcdbr(result_reg, result_reg); } else { // For max we want logical-and of sign bit: (L + R) __ ldr(result_reg, left_reg); __ adbr(result_reg, right_reg); } __ b(&done, Label::kNear); __ bind(&check_nan_left); __ cdbr(left_reg, left_reg); __ bunordered(&return_left, Label::kNear); // left == NaN. __ bind(&return_right); if (!right_reg.is(result_reg)) { __ ldr(result_reg, right_reg); } __ b(&done, Label::kNear); __ bind(&return_left); if (!left_reg.is(result_reg)) { __ ldr(result_reg, left_reg); } __ bind(&done); } } void LCodeGen::DoArithmeticD(LArithmeticD* instr) { DoubleRegister left = ToDoubleRegister(instr->left()); DoubleRegister right = ToDoubleRegister(instr->right()); DoubleRegister result = ToDoubleRegister(instr->result()); // All operations except MOD are computed in-place. DCHECK(instr->op() == Token::MOD || left.is(result)); switch (instr->op()) { case Token::ADD: __ adbr(result, right); break; case Token::SUB: __ sdbr(result, right); break; case Token::MUL: __ mdbr(result, right); break; case Token::DIV: __ ddbr(result, right); break; case Token::MOD: { __ PrepareCallCFunction(0, 2, scratch0()); __ MovToFloatParameters(left, right); __ CallCFunction(ExternalReference::mod_two_doubles_operation(isolate()), 0, 2); // Move the result in the double result register. __ MovFromFloatResult(result); break; } default: UNREACHABLE(); break; } } void LCodeGen::DoArithmeticT(LArithmeticT* instr) { DCHECK(ToRegister(instr->context()).is(cp)); DCHECK(ToRegister(instr->left()).is(r3)); DCHECK(ToRegister(instr->right()).is(r2)); DCHECK(ToRegister(instr->result()).is(r2)); Handle<Code> code = CodeFactory::BinaryOpIC(isolate(), instr->op()).code(); CallCode(code, RelocInfo::CODE_TARGET, instr); } template <class InstrType> void LCodeGen::EmitBranch(InstrType instr, Condition cond) { int left_block = instr->TrueDestination(chunk_); int right_block = instr->FalseDestination(chunk_); int next_block = GetNextEmittedBlock(); if (right_block == left_block || cond == al) { EmitGoto(left_block); } else if (left_block == next_block) { __ b(NegateCondition(cond), chunk_->GetAssemblyLabel(right_block)); } else if (right_block == next_block) { __ b(cond, chunk_->GetAssemblyLabel(left_block)); } else { __ b(cond, chunk_->GetAssemblyLabel(left_block)); __ b(chunk_->GetAssemblyLabel(right_block)); } } template <class InstrType> void LCodeGen::EmitTrueBranch(InstrType instr, Condition cond) { int true_block = instr->TrueDestination(chunk_); __ b(cond, chunk_->GetAssemblyLabel(true_block)); } template <class InstrType> void LCodeGen::EmitFalseBranch(InstrType instr, Condition cond) { int false_block = instr->FalseDestination(chunk_); __ b(cond, chunk_->GetAssemblyLabel(false_block)); } void LCodeGen::DoDebugBreak(LDebugBreak* instr) { __ stop("LBreak"); } void LCodeGen::DoBranch(LBranch* instr) { Representation r = instr->hydrogen()->value()->representation(); DoubleRegister dbl_scratch = double_scratch0(); if (r.IsInteger32()) { DCHECK(!info()->IsStub()); Register reg = ToRegister(instr->value()); __ Cmp32(reg, Operand::Zero()); EmitBranch(instr, ne); } else if (r.IsSmi()) { DCHECK(!info()->IsStub()); Register reg = ToRegister(instr->value()); __ CmpP(reg, Operand::Zero()); EmitBranch(instr, ne); } else if (r.IsDouble()) { DCHECK(!info()->IsStub()); DoubleRegister reg = ToDoubleRegister(instr->value()); __ lzdr(kDoubleRegZero); __ cdbr(reg, kDoubleRegZero); // Test the double value. Zero and NaN are false. Condition lt_gt = static_cast<Condition>(lt | gt); EmitBranch(instr, lt_gt); } else { DCHECK(r.IsTagged()); Register reg = ToRegister(instr->value()); HType type = instr->hydrogen()->value()->type(); if (type.IsBoolean()) { DCHECK(!info()->IsStub()); __ CompareRoot(reg, Heap::kTrueValueRootIndex); EmitBranch(instr, eq); } else if (type.IsSmi()) { DCHECK(!info()->IsStub()); __ CmpP(reg, Operand::Zero()); EmitBranch(instr, ne); } else if (type.IsJSArray()) { DCHECK(!info()->IsStub()); EmitBranch(instr, al); } else if (type.IsHeapNumber()) { DCHECK(!info()->IsStub()); __ LoadDouble(dbl_scratch, FieldMemOperand(reg, HeapNumber::kValueOffset)); // Test the double value. Zero and NaN are false. __ lzdr(kDoubleRegZero); __ cdbr(dbl_scratch, kDoubleRegZero); Condition lt_gt = static_cast<Condition>(lt | gt); EmitBranch(instr, lt_gt); } else if (type.IsString()) { DCHECK(!info()->IsStub()); __ LoadP(ip, FieldMemOperand(reg, String::kLengthOffset)); __ CmpP(ip, Operand::Zero()); EmitBranch(instr, ne); } else { ToBooleanHints expected = instr->hydrogen()->expected_input_types(); // Avoid deopts in the case where we've never executed this path before. if (expected == ToBooleanHint::kNone) expected = ToBooleanHint::kAny; if (expected & ToBooleanHint::kUndefined) { // undefined -> false. __ CompareRoot(reg, Heap::kUndefinedValueRootIndex); __ beq(instr->FalseLabel(chunk_)); } if (expected & ToBooleanHint::kBoolean) { // Boolean -> its value. __ CompareRoot(reg, Heap::kTrueValueRootIndex); __ beq(instr->TrueLabel(chunk_)); __ CompareRoot(reg, Heap::kFalseValueRootIndex); __ beq(instr->FalseLabel(chunk_)); } if (expected & ToBooleanHint::kNull) { // 'null' -> false. __ CompareRoot(reg, Heap::kNullValueRootIndex); __ beq(instr->FalseLabel(chunk_)); } if (expected & ToBooleanHint::kSmallInteger) { // Smis: 0 -> false, all other -> true. __ CmpP(reg, Operand::Zero()); __ beq(instr->FalseLabel(chunk_)); __ JumpIfSmi(reg, instr->TrueLabel(chunk_)); } else if (expected & ToBooleanHint::kNeedsMap) { // If we need a map later and have a Smi -> deopt. __ TestIfSmi(reg); DeoptimizeIf(eq, instr, DeoptimizeReason::kSmi, cr0); } const Register map = scratch0(); if (expected & ToBooleanHint::kNeedsMap) { __ LoadP(map, FieldMemOperand(reg, HeapObject::kMapOffset)); if (expected & ToBooleanHint::kCanBeUndetectable) { // Undetectable -> false. __ tm(FieldMemOperand(map, Map::kBitFieldOffset), Operand(1 << Map::kIsUndetectable)); __ bne(instr->FalseLabel(chunk_)); } } if (expected & ToBooleanHint::kReceiver) { // spec object -> true. __ CompareInstanceType(map, ip, FIRST_JS_RECEIVER_TYPE); __ bge(instr->TrueLabel(chunk_)); } if (expected & ToBooleanHint::kString) { // String value -> false iff empty. Label not_string; __ CompareInstanceType(map, ip, FIRST_NONSTRING_TYPE); __ bge(¬_string, Label::kNear); __ LoadP(ip, FieldMemOperand(reg, String::kLengthOffset)); __ CmpP(ip, Operand::Zero()); __ bne(instr->TrueLabel(chunk_)); __ b(instr->FalseLabel(chunk_)); __ bind(¬_string); } if (expected & ToBooleanHint::kSymbol) { // Symbol value -> true. __ CompareInstanceType(map, ip, SYMBOL_TYPE); __ beq(instr->TrueLabel(chunk_)); } if (expected & ToBooleanHint::kSimdValue) { // SIMD value -> true. Label not_simd; __ CompareInstanceType(map, ip, SIMD128_VALUE_TYPE); __ beq(instr->TrueLabel(chunk_)); } if (expected & ToBooleanHint::kHeapNumber) { // heap number -> false iff +0, -0, or NaN. Label not_heap_number; __ CompareRoot(map, Heap::kHeapNumberMapRootIndex); __ bne(¬_heap_number, Label::kNear); __ LoadDouble(dbl_scratch, FieldMemOperand(reg, HeapNumber::kValueOffset)); __ lzdr(kDoubleRegZero); __ cdbr(dbl_scratch, kDoubleRegZero); __ bunordered(instr->FalseLabel(chunk_)); // NaN -> false. __ beq(instr->FalseLabel(chunk_)); // +0, -0 -> false. __ b(instr->TrueLabel(chunk_)); __ bind(¬_heap_number); } if (expected != ToBooleanHint::kAny) { // We've seen something for the first time -> deopt. // This can only happen if we are not generic already. DeoptimizeIf(al, instr, DeoptimizeReason::kUnexpectedObject); } } } } void LCodeGen::EmitGoto(int block) { if (!IsNextEmittedBlock(block)) { __ b(chunk_->GetAssemblyLabel(LookupDestination(block))); } } void LCodeGen::DoGoto(LGoto* instr) { EmitGoto(instr->block_id()); } Condition LCodeGen::TokenToCondition(Token::Value op) { Condition cond = kNoCondition; switch (op) { case Token::EQ: case Token::EQ_STRICT: cond = eq; break; case Token::NE: case Token::NE_STRICT: cond = ne; break; case Token::LT: cond = lt; break; case Token::GT: cond = gt; break; case Token::LTE: cond = le; break; case Token::GTE: cond = ge; break; case Token::IN: case Token::INSTANCEOF: default: UNREACHABLE(); } return cond; } void LCodeGen::DoCompareNumericAndBranch(LCompareNumericAndBranch* instr) { LOperand* left = instr->left(); LOperand* right = instr->right(); bool is_unsigned = instr->hydrogen()->left()->CheckFlag(HInstruction::kUint32) || instr->hydrogen()->right()->CheckFlag(HInstruction::kUint32); Condition cond = TokenToCondition(instr->op()); if (left->IsConstantOperand() && right->IsConstantOperand()) { // We can statically evaluate the comparison. double left_val = ToDouble(LConstantOperand::cast(left)); double right_val = ToDouble(LConstantOperand::cast(right)); int next_block = Token::EvalComparison(instr->op(), left_val, right_val) ? instr->TrueDestination(chunk_) : instr->FalseDestination(chunk_); EmitGoto(next_block); } else { if (instr->is_double()) { // Compare left and right operands as doubles and load the // resulting flags into the normal status register. __ cdbr(ToDoubleRegister(left), ToDoubleRegister(right)); // If a NaN is involved, i.e. the result is unordered, // jump to false block label. __ bunordered(instr->FalseLabel(chunk_)); } else { if (right->IsConstantOperand()) { int32_t value = ToInteger32(LConstantOperand::cast(right)); if (instr->hydrogen_value()->representation().IsSmi()) { if (is_unsigned) { __ CmpLogicalSmiLiteral(ToRegister(left), Smi::FromInt(value), r0); } else { __ CmpSmiLiteral(ToRegister(left), Smi::FromInt(value), r0); } } else { if (is_unsigned) { __ CmpLogical32(ToRegister(left), ToOperand(right)); } else { __ Cmp32(ToRegister(left), ToOperand(right)); } } } else if (left->IsConstantOperand()) { int32_t value = ToInteger32(LConstantOperand::cast(left)); if (instr->hydrogen_value()->representation().IsSmi()) { if (is_unsigned) { __ CmpLogicalSmiLiteral(ToRegister(right), Smi::FromInt(value), r0); } else { __ CmpSmiLiteral(ToRegister(right), Smi::FromInt(value), r0); } } else { if (is_unsigned) { __ CmpLogical32(ToRegister(right), ToOperand(left)); } else { __ Cmp32(ToRegister(right), ToOperand(left)); } } // We commuted the operands, so commute the condition. cond = CommuteCondition(cond); } else if (instr->hydrogen_value()->representation().IsSmi()) { if (is_unsigned) { __ CmpLogicalP(ToRegister(left), ToRegister(right)); } else { __ CmpP(ToRegister(left), ToRegister(right)); } } else { if (is_unsigned) { __ CmpLogical32(ToRegister(left), ToRegister(right)); } else { __ Cmp32(ToRegister(left), ToRegister(right)); } } } EmitBranch(instr, cond); } } void LCodeGen::DoCmpObjectEqAndBranch(LCmpObjectEqAndBranch* instr) { Register left = ToRegister(instr->left()); Register right = ToRegister(instr->right()); __ CmpP(left, right); EmitBranch(instr, eq); } void LCodeGen::DoCmpHoleAndBranch(LCmpHoleAndBranch* instr) { if (instr->hydrogen()->representation().IsTagged()) { Register input_reg = ToRegister(instr->object()); __ CmpP(input_reg, Operand(factory()->the_hole_value())); EmitBranch(instr, eq); return; } DoubleRegister input_reg = ToDoubleRegister(instr->object()); __ cdbr(input_reg, input_reg); EmitFalseBranch(instr, ordered); Register scratch = scratch0(); // Convert to GPR and examine the upper 32 bits __ lgdr(scratch, input_reg); __ srlg(scratch, scratch, Operand(32)); __ Cmp32(scratch, Operand(kHoleNanUpper32)); EmitBranch(instr, eq); } Condition LCodeGen::EmitIsString(Register input, Register temp1, Label* is_not_string, SmiCheck check_needed = INLINE_SMI_CHECK) { if (check_needed == INLINE_SMI_CHECK) { __ JumpIfSmi(input, is_not_string); } __ CompareObjectType(input, temp1, temp1, FIRST_NONSTRING_TYPE); return lt; } void LCodeGen::DoIsStringAndBranch(LIsStringAndBranch* instr) { Register reg = ToRegister(instr->value()); Register temp1 = ToRegister(instr->temp()); SmiCheck check_needed = instr->hydrogen()->value()->type().IsHeapObject() ? OMIT_SMI_CHECK : INLINE_SMI_CHECK; Condition true_cond = EmitIsString(reg, temp1, instr->FalseLabel(chunk_), check_needed); EmitBranch(instr, true_cond); } void LCodeGen::DoIsSmiAndBranch(LIsSmiAndBranch* instr) { Register input_reg = EmitLoadRegister(instr->value(), ip); __ TestIfSmi(input_reg); EmitBranch(instr, eq); } void LCodeGen::DoIsUndetectableAndBranch(LIsUndetectableAndBranch* instr) { Register input = ToRegister(instr->value()); Register temp = ToRegister(instr->temp()); if (!instr->hydrogen()->value()->type().IsHeapObject()) { __ JumpIfSmi(input, instr->FalseLabel(chunk_)); } __ LoadP(temp, FieldMemOperand(input, HeapObject::kMapOffset)); __ tm(FieldMemOperand(temp, Map::kBitFieldOffset), Operand(1 << Map::kIsUndetectable)); EmitBranch(instr, ne); } static Condition ComputeCompareCondition(Token::Value op) { switch (op) { case Token::EQ_STRICT: case Token::EQ: return eq; case Token::LT: return lt; case Token::GT: return gt; case Token::LTE: return le; case Token::GTE: return ge; default: UNREACHABLE(); return kNoCondition; } } void LCodeGen::DoStringCompareAndBranch(LStringCompareAndBranch* instr) { DCHECK(ToRegister(instr->context()).is(cp)); DCHECK(ToRegister(instr->left()).is(r3)); DCHECK(ToRegister(instr->right()).is(r2)); Handle<Code> code = CodeFactory::StringCompare(isolate(), instr->op()).code(); CallCode(code, RelocInfo::CODE_TARGET, instr); __ CompareRoot(r2, Heap::kTrueValueRootIndex); EmitBranch(instr, eq); } static InstanceType TestType(HHasInstanceTypeAndBranch* instr) { InstanceType from = instr->from(); InstanceType to = instr->to(); if (from == FIRST_TYPE) return to; DCHECK(from == to || to == LAST_TYPE); return from; } static Condition BranchCondition(HHasInstanceTypeAndBranch* instr) { InstanceType from = instr->from(); InstanceType to = instr->to(); if (from == to) return eq; if (to == LAST_TYPE) return ge; if (from == FIRST_TYPE) return le; UNREACHABLE(); return eq; } void LCodeGen::DoHasInstanceTypeAndBranch(LHasInstanceTypeAndBranch* instr) { Register scratch = scratch0(); Register input = ToRegister(instr->value()); if (!instr->hydrogen()->value()->type().IsHeapObject()) { __ JumpIfSmi(input, instr->FalseLabel(chunk_)); } __ CompareObjectType(input, scratch, scratch, TestType(instr->hydrogen())); EmitBranch(instr, BranchCondition(instr->hydrogen())); } // Branches to a label or falls through with the answer in flags. Trashes // the temp registers, but not the input. void LCodeGen::EmitClassOfTest(Label* is_true, Label* is_false, Handle<String> class_name, Register input, Register temp, Register temp2) { DCHECK(!input.is(temp)); DCHECK(!input.is(temp2)); DCHECK(!temp.is(temp2)); __ JumpIfSmi(input, is_false); __ CompareObjectType(input, temp, temp2, FIRST_FUNCTION_TYPE); STATIC_ASSERT(LAST_FUNCTION_TYPE == LAST_TYPE); if (String::Equals(isolate()->factory()->Function_string(), class_name)) { __ bge(is_true); } else { __ bge(is_false); } // Check if the constructor in the map is a function. Register instance_type = ip; __ GetMapConstructor(temp, temp, temp2, instance_type); // Objects with a non-function constructor have class 'Object'. __ CmpP(instance_type, Operand(JS_FUNCTION_TYPE)); if (String::Equals(isolate()->factory()->Object_string(), class_name)) { __ bne(is_true); } else { __ bne(is_false); } // temp now contains the constructor function. Grab the // instance class name from there. __ LoadP(temp, FieldMemOperand(temp, JSFunction::kSharedFunctionInfoOffset)); __ LoadP(temp, FieldMemOperand(temp, SharedFunctionInfo::kInstanceClassNameOffset)); // The class name we are testing against is internalized since it's a literal. // The name in the constructor is internalized because of the way the context // is booted. This routine isn't expected to work for random API-created // classes and it doesn't have to because you can't access it with natives // syntax. Since both sides are internalized it is sufficient to use an // identity comparison. __ CmpP(temp, Operand(class_name)); // End with the answer in flags. } void LCodeGen::DoClassOfTestAndBranch(LClassOfTestAndBranch* instr) { Register input = ToRegister(instr->value()); Register temp = scratch0(); Register temp2 = ToRegister(instr->temp()); Handle<String> class_name = instr->hydrogen()->class_name(); EmitClassOfTest(instr->TrueLabel(chunk_), instr->FalseLabel(chunk_), class_name, input, temp, temp2); EmitBranch(instr, eq); } void LCodeGen::DoCmpMapAndBranch(LCmpMapAndBranch* instr) { Register reg = ToRegister(instr->value()); Register temp = ToRegister(instr->temp()); __ mov(temp, Operand(instr->map())); __ CmpP(temp, FieldMemOperand(reg, HeapObject::kMapOffset)); EmitBranch(instr, eq); } void LCodeGen::DoHasInPrototypeChainAndBranch( LHasInPrototypeChainAndBranch* instr) { Register const object = ToRegister(instr->object()); Register const object_map = scratch0(); Register const object_instance_type = ip; Register const object_prototype = object_map; Register const prototype = ToRegister(instr->prototype()); // The {object} must be a spec object. It's sufficient to know that {object} // is not a smi, since all other non-spec objects have {null} prototypes and // will be ruled out below. if (instr->hydrogen()->ObjectNeedsSmiCheck()) { __ TestIfSmi(object); EmitFalseBranch(instr, eq); } // Loop through the {object}s prototype chain looking for the {prototype}. __ LoadP(object_map, FieldMemOperand(object, HeapObject::kMapOffset)); Label loop; __ bind(&loop); // Deoptimize if the object needs to be access checked. __ LoadlB(object_instance_type, FieldMemOperand(object_map, Map::kBitFieldOffset)); __ TestBit(object_instance_type, Map::kIsAccessCheckNeeded, r0); DeoptimizeIf(ne, instr, DeoptimizeReason::kAccessCheck, cr0); // Deoptimize for proxies. __ CompareInstanceType(object_map, object_instance_type, JS_PROXY_TYPE); DeoptimizeIf(eq, instr, DeoptimizeReason::kProxy); __ LoadP(object_prototype, FieldMemOperand(object_map, Map::kPrototypeOffset)); __ CompareRoot(object_prototype, Heap::kNullValueRootIndex); EmitFalseBranch(instr, eq); __ CmpP(object_prototype, prototype); EmitTrueBranch(instr, eq); __ LoadP(object_map, FieldMemOperand(object_prototype, HeapObject::kMapOffset)); __ b(&loop); } void LCodeGen::DoCmpT(LCmpT* instr) { DCHECK(ToRegister(instr->context()).is(cp)); Token::Value op = instr->op(); Handle<Code> ic = CodeFactory::CompareIC(isolate(), op).code(); CallCode(ic, RelocInfo::CODE_TARGET, instr); // This instruction also signals no smi code inlined __ CmpP(r2, Operand::Zero()); Condition condition = ComputeCompareCondition(op); Label true_value, done; __ b(condition, &true_value, Label::kNear); __ LoadRoot(ToRegister(instr->result()), Heap::kFalseValueRootIndex); __ b(&done, Label::kNear); __ bind(&true_value); __ LoadRoot(ToRegister(instr->result()), Heap::kTrueValueRootIndex); __ bind(&done); } void LCodeGen::DoReturn(LReturn* instr) { if (FLAG_trace && info()->IsOptimizing()) { // Push the return value on the stack as the parameter. // Runtime::TraceExit returns its parameter in r2. We're leaving the code // managed by the register allocator and tearing down the frame, it's // safe to write to the context register. __ push(r2); __ LoadP(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); __ CallRuntime(Runtime::kTraceExit); } if (info()->saves_caller_doubles()) { RestoreCallerDoubles(); } if (instr->has_constant_parameter_count()) { int parameter_count = ToInteger32(instr->constant_parameter_count()); int32_t sp_delta = (parameter_count + 1) * kPointerSize; if (NeedsEagerFrame()) { masm_->LeaveFrame(StackFrame::JAVA_SCRIPT, sp_delta); } else if (sp_delta != 0) { // TODO(joransiu): Clean this up into Macro Assembler if (sp_delta >= 0 && sp_delta < 4096) __ la(sp, MemOperand(sp, sp_delta)); else __ lay(sp, MemOperand(sp, sp_delta)); } } else { DCHECK(info()->IsStub()); // Functions would need to drop one more value. Register reg = ToRegister(instr->parameter_count()); // The argument count parameter is a smi if (NeedsEagerFrame()) { masm_->LeaveFrame(StackFrame::JAVA_SCRIPT); } __ SmiToPtrArrayOffset(r0, reg); __ AddP(sp, sp, r0); } __ Ret(); } void LCodeGen::DoLoadContextSlot(LLoadContextSlot* instr) { Register context = ToRegister(instr->context()); Register result = ToRegister(instr->result()); __ LoadP(result, ContextMemOperand(context, instr->slot_index())); if (instr->hydrogen()->RequiresHoleCheck()) { __ CompareRoot(result, Heap::kTheHoleValueRootIndex); if (instr->hydrogen()->DeoptimizesOnHole()) { DeoptimizeIf(eq, instr, DeoptimizeReason::kHole); } else { Label skip; __ bne(&skip, Label::kNear); __ mov(result, Operand(factory()->undefined_value())); __ bind(&skip); } } } void LCodeGen::DoStoreContextSlot(LStoreContextSlot* instr) { Register context = ToRegister(instr->context()); Register value = ToRegister(instr->value()); Register scratch = scratch0(); MemOperand target = ContextMemOperand(context, instr->slot_index()); Label skip_assignment; if (instr->hydrogen()->RequiresHoleCheck()) { __ LoadP(scratch, target); __ CompareRoot(scratch, Heap::kTheHoleValueRootIndex); if (instr->hydrogen()->DeoptimizesOnHole()) { DeoptimizeIf(eq, instr, DeoptimizeReason::kHole); } else { __ bne(&skip_assignment); } } __ StoreP(value, target); if (instr->hydrogen()->NeedsWriteBarrier()) { SmiCheck check_needed = instr->hydrogen()->value()->type().IsHeapObject() ? OMIT_SMI_CHECK : INLINE_SMI_CHECK; __ RecordWriteContextSlot(context, target.offset(), value, scratch, GetLinkRegisterState(), kSaveFPRegs, EMIT_REMEMBERED_SET, check_needed); } __ bind(&skip_assignment); } void LCodeGen::DoLoadNamedField(LLoadNamedField* instr) { HObjectAccess access = instr->hydrogen()->access(); int offset = access.offset(); Register object = ToRegister(instr->object()); if (access.IsExternalMemory()) { Register result = ToRegister(instr->result()); MemOperand operand = MemOperand(object, offset); __ LoadRepresentation(result, operand, access.representation(), r0); return; } if (instr->hydrogen()->representation().IsDouble()) { DCHECK(access.IsInobject()); DoubleRegister result = ToDoubleRegister(instr->result()); __ LoadDouble(result, FieldMemOperand(object, offset)); return; } Register result = ToRegister(instr->result()); if (!access.IsInobject()) { __ LoadP(result, FieldMemOperand(object, JSObject::kPropertiesOffset)); object = result; } Representation representation = access.representation(); #if V8_TARGET_ARCH_S390X // 64-bit Smi optimization if (representation.IsSmi() && instr->hydrogen()->representation().IsInteger32()) { // Read int value directly from upper half of the smi. offset = SmiWordOffset(offset); representation = Representation::Integer32(); } #endif __ LoadRepresentation(result, FieldMemOperand(object, offset), representation, r0); } void LCodeGen::DoLoadFunctionPrototype(LLoadFunctionPrototype* instr) { Register scratch = scratch0(); Register function = ToRegister(instr->function()); Register result = ToRegister(instr->result()); // Get the prototype or initial map from the function. __ LoadP(result, FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset)); // Check that the function has a prototype or an initial map. __ CompareRoot(result, Heap::kTheHoleValueRootIndex); DeoptimizeIf(eq, instr, DeoptimizeReason::kHole); // If the function does not have an initial map, we're done. Label done; __ CompareObjectType(result, scratch, scratch, MAP_TYPE); __ bne(&done, Label::kNear); // Get the prototype from the initial map. __ LoadP(result, FieldMemOperand(result, Map::kPrototypeOffset)); // All done. __ bind(&done); } void LCodeGen::DoLoadRoot(LLoadRoot* instr) { Register result = ToRegister(instr->result()); __ LoadRoot(result, instr->index()); } void LCodeGen::DoAccessArgumentsAt(LAccessArgumentsAt* instr) { Register arguments = ToRegister(instr->arguments()); Register result = ToRegister(instr->result()); // There are two words between the frame pointer and the last argument. // Subtracting from length accounts for one of them add one more. if (instr->length()->IsConstantOperand()) { int const_length = ToInteger32(LConstantOperand::cast(instr->length())); if (instr->index()->IsConstantOperand()) { int const_index = ToInteger32(LConstantOperand::cast(instr->index())); int index = (const_length - const_index) + 1; __ LoadP(result, MemOperand(arguments, index * kPointerSize)); } else { Register index = ToRegister(instr->index()); __ SubP(result, index, Operand(const_length + 1)); __ LoadComplementRR(result, result); __ ShiftLeftP(result, result, Operand(kPointerSizeLog2)); __ LoadP(result, MemOperand(arguments, result)); } } else if (instr->index()->IsConstantOperand()) { Register length = ToRegister(instr->length()); int const_index = ToInteger32(LConstantOperand::cast(instr->index())); int loc = const_index - 1; if (loc != 0) { __ SubP(result, length, Operand(loc)); __ ShiftLeftP(result, result, Operand(kPointerSizeLog2)); __ LoadP(result, MemOperand(arguments, result)); } else { __ ShiftLeftP(result, length, Operand(kPointerSizeLog2)); __ LoadP(result, MemOperand(arguments, result)); } } else { Register length = ToRegister(instr->length()); Register index = ToRegister(instr->index()); __ SubP(result, length, index); __ AddP(result, result, Operand(1)); __ ShiftLeftP(result, result, Operand(kPointerSizeLog2)); __ LoadP(result, MemOperand(arguments, result)); } } void LCodeGen::DoLoadKeyedExternalArray(LLoadKeyed* instr) { Register external_pointer = ToRegister(instr->elements()); Register key = no_reg; ElementsKind elements_kind = instr->elements_kind(); bool key_is_constant = instr->key()->IsConstantOperand(); int constant_key = 0; if (key_is_constant) { constant_key = ToInteger32(LConstantOperand::cast(instr->key())); if (constant_key & 0xF0000000) { Abort(kArrayIndexConstantValueTooBig); } } else { key = ToRegister(instr->key()); } int element_size_shift = ElementsKindToShiftSize(elements_kind); bool key_is_smi = instr->hydrogen()->key()->representation().IsSmi(); bool keyMaybeNegative = instr->hydrogen()->IsDehoisted(); int base_offset = instr->base_offset(); bool use_scratch = false; if (elements_kind == FLOAT32_ELEMENTS || elements_kind == FLOAT64_ELEMENTS) { DoubleRegister result = ToDoubleRegister(instr->result()); if (key_is_constant) { base_offset += constant_key << element_size_shift; if (!is_int20(base_offset)) { __ mov(scratch0(), Operand(base_offset)); base_offset = 0; use_scratch = true; } } else { __ IndexToArrayOffset(scratch0(), key, element_size_shift, key_is_smi, keyMaybeNegative); use_scratch = true; } if (elements_kind == FLOAT32_ELEMENTS) { if (!use_scratch) { __ ldeb(result, MemOperand(external_pointer, base_offset)); } else { __ ldeb(result, MemOperand(scratch0(), external_pointer, base_offset)); } } else { // i.e. elements_kind == EXTERNAL_DOUBLE_ELEMENTS if (!use_scratch) { __ LoadDouble(result, MemOperand(external_pointer, base_offset)); } else { __ LoadDouble(result, MemOperand(scratch0(), external_pointer, base_offset)); } } } else { Register result = ToRegister(instr->result()); MemOperand mem_operand = PrepareKeyedOperand(key, external_pointer, key_is_constant, key_is_smi, constant_key, element_size_shift, base_offset, keyMaybeNegative); switch (elements_kind) { case INT8_ELEMENTS: __ LoadB(result, mem_operand); break; case UINT8_ELEMENTS: case UINT8_CLAMPED_ELEMENTS: __ LoadlB(result, mem_operand); break; case INT16_ELEMENTS: __ LoadHalfWordP(result, mem_operand); break; case UINT16_ELEMENTS: __ LoadLogicalHalfWordP(result, mem_operand); break; case INT32_ELEMENTS: __ LoadW(result, mem_operand, r0); break; case UINT32_ELEMENTS: __ LoadlW(result, mem_operand, r0); if (!instr->hydrogen()->CheckFlag(HInstruction::kUint32)) { __ CmpLogical32(result, Operand(0x80000000)); DeoptimizeIf(ge, instr, DeoptimizeReason::kNegativeValue); } break; case FLOAT32_ELEMENTS: case FLOAT64_ELEMENTS: case FAST_HOLEY_DOUBLE_ELEMENTS: case FAST_HOLEY_ELEMENTS: case FAST_HOLEY_SMI_ELEMENTS: case FAST_DOUBLE_ELEMENTS: case FAST_ELEMENTS: case FAST_SMI_ELEMENTS: case DICTIONARY_ELEMENTS: case FAST_SLOPPY_ARGUMENTS_ELEMENTS: case SLOW_SLOPPY_ARGUMENTS_ELEMENTS: case FAST_STRING_WRAPPER_ELEMENTS: case SLOW_STRING_WRAPPER_ELEMENTS: case NO_ELEMENTS: UNREACHABLE(); break; } } } void LCodeGen::DoLoadKeyedFixedDoubleArray(LLoadKeyed* instr) { Register elements = ToRegister(instr->elements()); bool key_is_constant = instr->key()->IsConstantOperand(); Register key = no_reg; DoubleRegister result = ToDoubleRegister(instr->result()); Register scratch = scratch0(); int element_size_shift = ElementsKindToShiftSize(FAST_DOUBLE_ELEMENTS); bool key_is_smi = instr->hydrogen()->key()->representation().IsSmi(); bool keyMaybeNegative = instr->hydrogen()->IsDehoisted(); int constant_key = 0; if (key_is_constant) { constant_key = ToInteger32(LConstantOperand::cast(instr->key())); if (constant_key & 0xF0000000) { Abort(kArrayIndexConstantValueTooBig); } } else { key = ToRegister(instr->key()); } bool use_scratch = false; intptr_t base_offset = instr->base_offset() + constant_key * kDoubleSize; if (!key_is_constant) { use_scratch = true; __ IndexToArrayOffset(scratch, key, element_size_shift, key_is_smi, keyMaybeNegative); } // Memory references support up to 20-bits signed displacement in RXY form // Include Register::kExponentOffset in check, so we are guaranteed not to // overflow displacement later. if (!is_int20(base_offset + Register::kExponentOffset)) { use_scratch = true; if (key_is_constant) { __ mov(scratch, Operand(base_offset)); } else { __ AddP(scratch, Operand(base_offset)); } base_offset = 0; } if (!use_scratch) { __ LoadDouble(result, MemOperand(elements, base_offset)); } else { __ LoadDouble(result, MemOperand(scratch, elements, base_offset)); } if (instr->hydrogen()->RequiresHoleCheck()) { if (!use_scratch) { __ LoadlW(r0, MemOperand(elements, base_offset + Register::kExponentOffset)); } else { __ LoadlW(r0, MemOperand(scratch, elements, base_offset + Register::kExponentOffset)); } __ Cmp32(r0, Operand(kHoleNanUpper32)); DeoptimizeIf(eq, instr, DeoptimizeReason::kHole); } } void LCodeGen::DoLoadKeyedFixedArray(LLoadKeyed* instr) { HLoadKeyed* hinstr = instr->hydrogen(); Register elements = ToRegister(instr->elements()); Register result = ToRegister(instr->result()); Register scratch = scratch0(); int offset = instr->base_offset(); if (instr->key()->IsConstantOperand()) { LConstantOperand* const_operand = LConstantOperand::cast(instr->key()); offset += ToInteger32(const_operand) * kPointerSize; } else { Register key = ToRegister(instr->key()); // Even though the HLoadKeyed instruction forces the input // representation for the key to be an integer, the input gets replaced // during bound check elimination with the index argument to the bounds // check, which can be tagged, so that case must be handled here, too. if (hinstr->key()->representation().IsSmi()) { __ SmiToPtrArrayOffset(scratch, key); } else { __ ShiftLeftP(scratch, key, Operand(kPointerSizeLog2)); } } bool requires_hole_check = hinstr->RequiresHoleCheck(); Representation representation = hinstr->representation(); #if V8_TARGET_ARCH_S390X // 64-bit Smi optimization if (representation.IsInteger32() && hinstr->elements_kind() == FAST_SMI_ELEMENTS) { DCHECK(!requires_hole_check); // Read int value directly from upper half of the smi. offset = SmiWordOffset(offset); } #endif if (instr->key()->IsConstantOperand()) { __ LoadRepresentation(result, MemOperand(elements, offset), representation, r1); } else { __ LoadRepresentation(result, MemOperand(scratch, elements, offset), representation, r1); } // Check for the hole value. if (requires_hole_check) { if (IsFastSmiElementsKind(hinstr->elements_kind())) { __ TestIfSmi(result); DeoptimizeIf(ne, instr, DeoptimizeReason::kNotASmi, cr0); } else { __ CompareRoot(result, Heap::kTheHoleValueRootIndex); DeoptimizeIf(eq, instr, DeoptimizeReason::kHole); } } else if (instr->hydrogen()->hole_mode() == CONVERT_HOLE_TO_UNDEFINED) { DCHECK(instr->hydrogen()->elements_kind() == FAST_HOLEY_ELEMENTS); Label done; __ LoadRoot(scratch, Heap::kTheHoleValueRootIndex); __ CmpP(result, scratch); __ bne(&done); if (info()->IsStub()) { // A stub can safely convert the hole to undefined only if the array // protector cell contains (Smi) Isolate::kProtectorValid. Otherwise // it needs to bail out. __ LoadRoot(result, Heap::kArrayProtectorRootIndex); __ LoadP(result, FieldMemOperand(result, Cell::kValueOffset)); __ CmpSmiLiteral(result, Smi::FromInt(Isolate::kProtectorValid), r0); DeoptimizeIf(ne, instr, DeoptimizeReason::kHole); } __ LoadRoot(result, Heap::kUndefinedValueRootIndex); __ bind(&done); } } void LCodeGen::DoLoadKeyed(LLoadKeyed* instr) { if (instr->is_fixed_typed_array()) { DoLoadKeyedExternalArray(instr); } else if (instr->hydrogen()->representation().IsDouble()) { DoLoadKeyedFixedDoubleArray(instr); } else { DoLoadKeyedFixedArray(instr); } } MemOperand LCodeGen::PrepareKeyedOperand(Register key, Register base, bool key_is_constant, bool key_is_smi, int constant_key, int element_size_shift, int base_offset, bool keyMaybeNegative) { Register scratch = scratch0(); if (key_is_constant) { int offset = (base_offset + (constant_key << element_size_shift)); if (!is_int20(offset)) { __ mov(scratch, Operand(offset)); return MemOperand(base, scratch); } else { return MemOperand(base, (constant_key << element_size_shift) + base_offset); } } bool needs_shift = (element_size_shift != (key_is_smi ? kSmiTagSize + kSmiShiftSize : 0)); if (needs_shift) { __ IndexToArrayOffset(scratch, key, element_size_shift, key_is_smi, keyMaybeNegative); } else { scratch = key; } if (!is_int20(base_offset)) { __ AddP(scratch, Operand(base_offset)); base_offset = 0; } return MemOperand(scratch, base, base_offset); } void LCodeGen::DoArgumentsElements(LArgumentsElements* instr) { Register scratch = scratch0(); Register result = ToRegister(instr->result()); if (instr->hydrogen()->from_inlined()) { __ lay(result, MemOperand(sp, -2 * kPointerSize)); } else if (instr->hydrogen()->arguments_adaptor()) { // Check if the calling frame is an arguments adaptor frame. Label done, adapted; __ LoadP(scratch, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); __ LoadP( result, MemOperand(scratch, CommonFrameConstants::kContextOrFrameTypeOffset)); __ LoadSmiLiteral(r0, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)); __ CmpP(result, r0); // Result is the frame pointer for the frame if not adapted and for the real // frame below the adaptor frame if adapted. __ beq(&adapted, Label::kNear); __ LoadRR(result, fp); __ b(&done, Label::kNear); __ bind(&adapted); __ LoadRR(result, scratch); __ bind(&done); } else { __ LoadRR(result, fp); } } void LCodeGen::DoArgumentsLength(LArgumentsLength* instr) { Register elem = ToRegister(instr->elements()); Register result = ToRegister(instr->result()); Label done; // If no arguments adaptor frame the number of arguments is fixed. __ CmpP(fp, elem); __ mov(result, Operand(scope()->num_parameters())); __ beq(&done, Label::kNear); // Arguments adaptor frame present. Get argument length from there. __ LoadP(result, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); __ LoadP(result, MemOperand(result, ArgumentsAdaptorFrameConstants::kLengthOffset)); __ SmiUntag(result); // Argument length is in result register. __ bind(&done); } void LCodeGen::DoWrapReceiver(LWrapReceiver* instr) { Register receiver = ToRegister(instr->receiver()); Register function = ToRegister(instr->function()); Register result = ToRegister(instr->result()); Register scratch = scratch0(); // If the receiver is null or undefined, we have to pass the global // object as a receiver to normal functions. Values have to be // passed unchanged to builtins and strict-mode functions. Label global_object, result_in_receiver; if (!instr->hydrogen()->known_function()) { // Do not transform the receiver to object for strict mode // functions or builtins. __ LoadP(scratch, FieldMemOperand(function, JSFunction::kSharedFunctionInfoOffset)); __ LoadlW(scratch, FieldMemOperand( scratch, SharedFunctionInfo::kCompilerHintsOffset)); __ AndP(r0, scratch, Operand((1 << SharedFunctionInfo::kStrictModeBit) | (1 << SharedFunctionInfo::kNativeBit))); __ bne(&result_in_receiver, Label::kNear); } // Normal function. Replace undefined or null with global receiver. __ CompareRoot(receiver, Heap::kNullValueRootIndex); __ beq(&global_object, Label::kNear); __ CompareRoot(receiver, Heap::kUndefinedValueRootIndex); __ beq(&global_object, Label::kNear); // Deoptimize if the receiver is not a JS object. __ TestIfSmi(receiver); DeoptimizeIf(eq, instr, DeoptimizeReason::kSmi, cr0); __ CompareObjectType(receiver, scratch, scratch, FIRST_JS_RECEIVER_TYPE); DeoptimizeIf(lt, instr, DeoptimizeReason::kNotAJavaScriptObject); __ b(&result_in_receiver, Label::kNear); __ bind(&global_object); __ LoadP(result, FieldMemOperand(function, JSFunction::kContextOffset)); __ LoadP(result, ContextMemOperand(result, Context::NATIVE_CONTEXT_INDEX)); __ LoadP(result, ContextMemOperand(result, Context::GLOBAL_PROXY_INDEX)); if (result.is(receiver)) { __ bind(&result_in_receiver); } else { Label result_ok; __ b(&result_ok, Label::kNear); __ bind(&result_in_receiver); __ LoadRR(result, receiver); __ bind(&result_ok); } } void LCodeGen::DoApplyArguments(LApplyArguments* instr) { Register receiver = ToRegister(instr->receiver()); Register function = ToRegister(instr->function()); Register length = ToRegister(instr->length()); Register elements = ToRegister(instr->elements()); Register scratch = scratch0(); DCHECK(receiver.is(r2)); // Used for parameter count. DCHECK(function.is(r3)); // Required by InvokeFunction. DCHECK(ToRegister(instr->result()).is(r2)); // Copy the arguments to this function possibly from the // adaptor frame below it. const uint32_t kArgumentsLimit = 1 * KB; __ CmpLogicalP(length, Operand(kArgumentsLimit)); DeoptimizeIf(gt, instr, DeoptimizeReason::kTooManyArguments); // Push the receiver and use the register to keep the original // number of arguments. __ push(receiver); __ LoadRR(receiver, length); // The arguments are at a one pointer size offset from elements. __ AddP(elements, Operand(1 * kPointerSize)); // Loop through the arguments pushing them onto the execution // stack. Label invoke, loop; // length is a small non-negative integer, due to the test above. __ CmpP(length, Operand::Zero()); __ beq(&invoke, Label::kNear); __ bind(&loop); __ ShiftLeftP(r1, length, Operand(kPointerSizeLog2)); __ LoadP(scratch, MemOperand(elements, r1)); __ push(scratch); __ BranchOnCount(length, &loop); __ bind(&invoke); InvokeFlag flag = CALL_FUNCTION; if (instr->hydrogen()->tail_call_mode() == TailCallMode::kAllow) { DCHECK(!info()->saves_caller_doubles()); // TODO(ishell): drop current frame before pushing arguments to the stack. flag = JUMP_FUNCTION; ParameterCount actual(r2); // It is safe to use r5, r6 and r7 as scratch registers here given that // 1) we are not going to return to caller function anyway, // 2) r5 (new.target) will be initialized below. PrepareForTailCall(actual, r5, r6, r7); } DCHECK(instr->HasPointerMap()); LPointerMap* pointers = instr->pointer_map(); SafepointGenerator safepoint_generator(this, pointers, Safepoint::kLazyDeopt); // The number of arguments is stored in receiver which is r2, as expected // by InvokeFunction. ParameterCount actual(receiver); __ InvokeFunction(function, no_reg, actual, flag, safepoint_generator); } void LCodeGen::DoPushArgument(LPushArgument* instr) { LOperand* argument = instr->value(); if (argument->IsDoubleRegister() || argument->IsDoubleStackSlot()) { Abort(kDoPushArgumentNotImplementedForDoubleType); } else { Register argument_reg = EmitLoadRegister(argument, ip); __ push(argument_reg); } } void LCodeGen::DoDrop(LDrop* instr) { __ Drop(instr->count()); } void LCodeGen::DoThisFunction(LThisFunction* instr) { Register result = ToRegister(instr->result()); __ LoadP(result, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); } void LCodeGen::DoContext(LContext* instr) { // If there is a non-return use, the context must be moved to a register. Register result = ToRegister(instr->result()); if (info()->IsOptimizing()) { __ LoadP(result, MemOperand(fp, StandardFrameConstants::kContextOffset)); } else { // If there is no frame, the context must be in cp. DCHECK(result.is(cp)); } } void LCodeGen::DoDeclareGlobals(LDeclareGlobals* instr) { DCHECK(ToRegister(instr->context()).is(cp)); __ Move(scratch0(), instr->hydrogen()->pairs()); __ push(scratch0()); __ LoadSmiLiteral(scratch0(), Smi::FromInt(instr->hydrogen()->flags())); __ push(scratch0()); __ Move(scratch0(), instr->hydrogen()->feedback_vector()); __ push(scratch0()); CallRuntime(Runtime::kDeclareGlobals, instr); } void LCodeGen::CallKnownFunction(Handle<JSFunction> function, int formal_parameter_count, int arity, bool is_tail_call, LInstruction* instr) { bool dont_adapt_arguments = formal_parameter_count == SharedFunctionInfo::kDontAdaptArgumentsSentinel; bool can_invoke_directly = dont_adapt_arguments || formal_parameter_count == arity; Register function_reg = r3; LPointerMap* pointers = instr->pointer_map(); if (can_invoke_directly) { // Change context. __ LoadP(cp, FieldMemOperand(function_reg, JSFunction::kContextOffset)); // Always initialize new target and number of actual arguments. __ LoadRoot(r5, Heap::kUndefinedValueRootIndex); __ mov(r2, Operand(arity)); bool is_self_call = function.is_identical_to(info()->closure()); // Invoke function. if (is_self_call) { Handle<Code> self(reinterpret_cast<Code**>(__ CodeObject().location())); if (is_tail_call) { __ Jump(self, RelocInfo::CODE_TARGET); } else { __ Call(self, RelocInfo::CODE_TARGET); } } else { __ LoadP(ip, FieldMemOperand(function_reg, JSFunction::kCodeEntryOffset)); if (is_tail_call) { __ JumpToJSEntry(ip); } else { __ CallJSEntry(ip); } } if (!is_tail_call) { // Set up deoptimization. RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT); } } else { SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt); ParameterCount actual(arity); ParameterCount expected(formal_parameter_count); InvokeFlag flag = is_tail_call ? JUMP_FUNCTION : CALL_FUNCTION; __ InvokeFunction(function_reg, expected, actual, flag, generator); } } void LCodeGen::DoDeferredMathAbsTaggedHeapNumber(LMathAbs* instr) { DCHECK(instr->context() != NULL); DCHECK(ToRegister(instr->context()).is(cp)); Register input = ToRegister(instr->value()); Register result = ToRegister(instr->result()); Register scratch = scratch0(); // Deoptimize if not a heap number. __ LoadP(scratch, FieldMemOperand(input, HeapObject::kMapOffset)); __ CompareRoot(scratch, Heap::kHeapNumberMapRootIndex); DeoptimizeIf(ne, instr, DeoptimizeReason::kNotAHeapNumber); Label done; Register exponent = scratch0(); scratch = no_reg; __ LoadlW(exponent, FieldMemOperand(input, HeapNumber::kExponentOffset)); // Check the sign of the argument. If the argument is positive, just // return it. __ Cmp32(exponent, Operand::Zero()); // Move the input to the result if necessary. __ Move(result, input); __ bge(&done); // Input is negative. Reverse its sign. // Preserve the value of all registers. { PushSafepointRegistersScope scope(this); // Registers were saved at the safepoint, so we can use // many scratch registers. Register tmp1 = input.is(r3) ? r2 : r3; Register tmp2 = input.is(r4) ? r2 : r4; Register tmp3 = input.is(r5) ? r2 : r5; Register tmp4 = input.is(r6) ? r2 : r6; // exponent: floating point exponent value. Label allocated, slow; __ LoadRoot(tmp4, Heap::kHeapNumberMapRootIndex); __ AllocateHeapNumber(tmp1, tmp2, tmp3, tmp4, &slow); __ b(&allocated); // Slow case: Call the runtime system to do the number allocation. __ bind(&slow); CallRuntimeFromDeferred(Runtime::kAllocateHeapNumber, 0, instr, instr->context()); // Set the pointer to the new heap number in tmp. if (!tmp1.is(r2)) __ LoadRR(tmp1, r2); // Restore input_reg after call to runtime. __ LoadFromSafepointRegisterSlot(input, input); __ LoadlW(exponent, FieldMemOperand(input, HeapNumber::kExponentOffset)); __ bind(&allocated); // exponent: floating point exponent value. // tmp1: allocated heap number. // Clear the sign bit. __ nilf(exponent, Operand(~HeapNumber::kSignMask)); __ StoreW(exponent, FieldMemOperand(tmp1, HeapNumber::kExponentOffset)); __ LoadlW(tmp2, FieldMemOperand(input, HeapNumber::kMantissaOffset)); __ StoreW(tmp2, FieldMemOperand(tmp1, HeapNumber::kMantissaOffset)); __ StoreToSafepointRegisterSlot(tmp1, result); } __ bind(&done); } void LCodeGen::EmitMathAbs(LMathAbs* instr) { Register input = ToRegister(instr->value()); Register result = ToRegister(instr->result()); Label done; __ CmpP(input, Operand::Zero()); __ Move(result, input); __ bge(&done, Label::kNear); __ LoadComplementRR(result, result); // Deoptimize on overflow. DeoptimizeIf(overflow, instr, DeoptimizeReason::kOverflow, cr0); __ bind(&done); } #if V8_TARGET_ARCH_S390X void LCodeGen::EmitInteger32MathAbs(LMathAbs* instr) { Register input = ToRegister(instr->value()); Register result = ToRegister(instr->result()); Label done; __ Cmp32(input, Operand::Zero()); __ Move(result, input); __ bge(&done, Label::kNear); // Deoptimize on overflow. __ Cmp32(input, Operand(0x80000000)); DeoptimizeIf(eq, instr, DeoptimizeReason::kOverflow); __ LoadComplementRR(result, result); __ bind(&done); } #endif void LCodeGen::DoMathAbs(LMathAbs* instr) { // Class for deferred case. class DeferredMathAbsTaggedHeapNumber final : public LDeferredCode { public: DeferredMathAbsTaggedHeapNumber(LCodeGen* codegen, LMathAbs* instr) : LDeferredCode(codegen), instr_(instr) {} void Generate() override { codegen()->DoDeferredMathAbsTaggedHeapNumber(instr_); } LInstruction* instr() override { return instr_; } private: LMathAbs* instr_; }; Representation r = instr->hydrogen()->value()->representation(); if (r.IsDouble()) { DoubleRegister input = ToDoubleRegister(instr->value()); DoubleRegister result = ToDoubleRegister(instr->result()); __ lpdbr(result, input); #if V8_TARGET_ARCH_S390X } else if (r.IsInteger32()) { EmitInteger32MathAbs(instr); } else if (r.IsSmi()) { #else } else if (r.IsSmiOrInteger32()) { #endif EmitMathAbs(instr); } else { // Representation is tagged. DeferredMathAbsTaggedHeapNumber* deferred = new (zone()) DeferredMathAbsTaggedHeapNumber(this, instr); Register input = ToRegister(instr->value()); // Smi check. __ JumpIfNotSmi(input, deferred->entry()); // If smi, handle it directly. EmitMathAbs(instr); __ bind(deferred->exit()); } } void LCodeGen::DoMathFloor(LMathFloor* instr) { DoubleRegister input = ToDoubleRegister(instr->value()); Register result = ToRegister(instr->result()); Register input_high = scratch0(); Register scratch = ip; Label done, exact; __ TryInt32Floor(result, input, input_high, scratch, double_scratch0(), &done, &exact); DeoptimizeIf(al, instr, DeoptimizeReason::kLostPrecisionOrNaN); __ bind(&exact); if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { // Test for -0. __ CmpP(result, Operand::Zero()); __ bne(&done, Label::kNear); __ Cmp32(input_high, Operand::Zero()); DeoptimizeIf(lt, instr, DeoptimizeReason::kMinusZero); } __ bind(&done); } void LCodeGen::DoMathRound(LMathRound* instr) { DoubleRegister input = ToDoubleRegister(instr->value()); Register result = ToRegister(instr->result()); DoubleRegister double_scratch1 = ToDoubleRegister(instr->temp()); DoubleRegister input_plus_dot_five = double_scratch1; Register scratch1 = scratch0(); Register scratch2 = ip; DoubleRegister dot_five = double_scratch0(); Label convert, done; __ LoadDoubleLiteral(dot_five, 0.5, r0); __ lpdbr(double_scratch1, input); __ cdbr(double_scratch1, dot_five); DeoptimizeIf(unordered, instr, DeoptimizeReason::kLostPrecisionOrNaN); // If input is in [-0.5, -0], the result is -0. // If input is in [+0, +0.5[, the result is +0. // If the input is +0.5, the result is 1. __ bgt(&convert, Label::kNear); // Out of [-0.5, +0.5]. if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { // [-0.5, -0] (negative) yields minus zero. __ TestDoubleSign(input, scratch1); DeoptimizeIf(lt, instr, DeoptimizeReason::kMinusZero); } Label return_zero; __ cdbr(input, dot_five); __ bne(&return_zero, Label::kNear); __ LoadImmP(result, Operand(1)); // +0.5. __ b(&done, Label::kNear); // Remaining cases: [+0, +0.5[ or [-0.5, +0.5[, depending on // flag kBailoutOnMinusZero. __ bind(&return_zero); __ LoadImmP(result, Operand::Zero()); __ b(&done, Label::kNear); __ bind(&convert); __ ldr(input_plus_dot_five, input); __ adbr(input_plus_dot_five, dot_five); // Reuse dot_five (double_scratch0) as we no longer need this value. __ TryInt32Floor(result, input_plus_dot_five, scratch1, scratch2, double_scratch0(), &done, &done); DeoptimizeIf(al, instr, DeoptimizeReason::kLostPrecisionOrNaN); __ bind(&done); } void LCodeGen::DoMathFround(LMathFround* instr) { DoubleRegister input_reg = ToDoubleRegister(instr->value()); DoubleRegister output_reg = ToDoubleRegister(instr->result()); // Round double to float __ ledbr(output_reg, input_reg); // Extend from float to double __ ldebr(output_reg, output_reg); } void LCodeGen::DoMathSqrt(LMathSqrt* instr) { DoubleRegister input = ToDoubleRegister(instr->value()); DoubleRegister result = ToDoubleRegister(instr->result()); __ sqdbr(result, input); } void LCodeGen::DoMathPowHalf(LMathPowHalf* instr) { DoubleRegister input = ToDoubleRegister(instr->value()); DoubleRegister result = ToDoubleRegister(instr->result()); DoubleRegister temp = double_scratch0(); // Note that according to ECMA-262 15.8.2.13: // Math.pow(-Infinity, 0.5) == Infinity // Math.sqrt(-Infinity) == NaN Label skip, done; __ LoadDoubleLiteral(temp, -V8_INFINITY, scratch0()); __ cdbr(input, temp); __ bne(&skip, Label::kNear); __ lcdbr(result, temp); __ b(&done, Label::kNear); // Add +0 to convert -0 to +0. __ bind(&skip); __ ldr(result, input); __ lzdr(kDoubleRegZero); __ adbr(result, kDoubleRegZero); __ sqdbr(result, result); __ bind(&done); } void LCodeGen::DoPower(LPower* instr) { Representation exponent_type = instr->hydrogen()->right()->representation(); // Having marked this as a call, we can use any registers. // Just make sure that the input/output registers are the expected ones. Register tagged_exponent = MathPowTaggedDescriptor::exponent(); DCHECK(!instr->right()->IsDoubleRegister() || ToDoubleRegister(instr->right()).is(d2)); DCHECK(!instr->right()->IsRegister() || ToRegister(instr->right()).is(tagged_exponent)); DCHECK(ToDoubleRegister(instr->left()).is(d1)); DCHECK(ToDoubleRegister(instr->result()).is(d3)); if (exponent_type.IsSmi()) { MathPowStub stub(isolate(), MathPowStub::TAGGED); __ CallStub(&stub); } else if (exponent_type.IsTagged()) { Label no_deopt; __ JumpIfSmi(tagged_exponent, &no_deopt); __ LoadP(r9, FieldMemOperand(tagged_exponent, HeapObject::kMapOffset)); __ CompareRoot(r9, Heap::kHeapNumberMapRootIndex); DeoptimizeIf(ne, instr, DeoptimizeReason::kNotAHeapNumber); __ bind(&no_deopt); MathPowStub stub(isolate(), MathPowStub::TAGGED); __ CallStub(&stub); } else if (exponent_type.IsInteger32()) { MathPowStub stub(isolate(), MathPowStub::INTEGER); __ CallStub(&stub); } else { DCHECK(exponent_type.IsDouble()); MathPowStub stub(isolate(), MathPowStub::DOUBLE); __ CallStub(&stub); } } void LCodeGen::DoMathCos(LMathCos* instr) { __ PrepareCallCFunction(0, 1, scratch0()); __ MovToFloatParameter(ToDoubleRegister(instr->value())); __ CallCFunction(ExternalReference::ieee754_cos_function(isolate()), 0, 1); __ MovFromFloatResult(ToDoubleRegister(instr->result())); } void LCodeGen::DoMathSin(LMathSin* instr) { __ PrepareCallCFunction(0, 1, scratch0()); __ MovToFloatParameter(ToDoubleRegister(instr->value())); __ CallCFunction(ExternalReference::ieee754_sin_function(isolate()), 0, 1); __ MovFromFloatResult(ToDoubleRegister(instr->result())); } void LCodeGen::DoMathExp(LMathExp* instr) { __ PrepareCallCFunction(0, 1, scratch0()); __ MovToFloatParameter(ToDoubleRegister(instr->value())); __ CallCFunction(ExternalReference::ieee754_exp_function(isolate()), 0, 1); __ MovFromFloatResult(ToDoubleRegister(instr->result())); } void LCodeGen::DoMathLog(LMathLog* instr) { __ PrepareCallCFunction(0, 1, scratch0()); __ MovToFloatParameter(ToDoubleRegister(instr->value())); __ CallCFunction(ExternalReference::ieee754_log_function(isolate()), 0, 1); __ MovFromFloatResult(ToDoubleRegister(instr->result())); } void LCodeGen::DoMathClz32(LMathClz32* instr) { Register input = ToRegister(instr->value()); Register result = ToRegister(instr->result()); Label done; __ llgfr(result, input); __ flogr(r0, result); __ LoadRR(result, r0); __ CmpP(r0, Operand::Zero()); __ beq(&done, Label::kNear); __ SubP(result, Operand(32)); __ bind(&done); } void LCodeGen::PrepareForTailCall(const ParameterCount& actual, Register scratch1, Register scratch2, Register scratch3) { #if DEBUG if (actual.is_reg()) { DCHECK(!AreAliased(actual.reg(), scratch1, scratch2, scratch3)); } else { DCHECK(!AreAliased(scratch1, scratch2, scratch3)); } #endif if (FLAG_code_comments) { if (actual.is_reg()) { Comment(";;; PrepareForTailCall, actual: %s {", RegisterConfiguration::Crankshaft()->GetGeneralRegisterName( actual.reg().code())); } else { Comment(";;; PrepareForTailCall, actual: %d {", actual.immediate()); } } // Check if next frame is an arguments adaptor frame. Register caller_args_count_reg = scratch1; Label no_arguments_adaptor, formal_parameter_count_loaded; __ LoadP(scratch2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); __ LoadP(scratch3, MemOperand(scratch2, StandardFrameConstants::kContextOffset)); __ CmpSmiLiteral(scratch3, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR), r0); __ bne(&no_arguments_adaptor); // Drop current frame and load arguments count from arguments adaptor frame. __ LoadRR(fp, scratch2); __ LoadP(caller_args_count_reg, MemOperand(fp, ArgumentsAdaptorFrameConstants::kLengthOffset)); __ SmiUntag(caller_args_count_reg); __ b(&formal_parameter_count_loaded); __ bind(&no_arguments_adaptor); // Load caller's formal parameter count __ mov(caller_args_count_reg, Operand(info()->literal()->parameter_count())); __ bind(&formal_parameter_count_loaded); __ PrepareForTailCall(actual, caller_args_count_reg, scratch2, scratch3); Comment(";;; }"); } void LCodeGen::DoInvokeFunction(LInvokeFunction* instr) { HInvokeFunction* hinstr = instr->hydrogen(); DCHECK(ToRegister(instr->context()).is(cp)); DCHECK(ToRegister(instr->function()).is(r3)); DCHECK(instr->HasPointerMap()); bool is_tail_call = hinstr->tail_call_mode() == TailCallMode::kAllow; if (is_tail_call) { DCHECK(!info()->saves_caller_doubles()); ParameterCount actual(instr->arity()); // It is safe to use r5, r6 and r7 as scratch registers here given that // 1) we are not going to return to caller function anyway, // 2) r5 (new.target) will be initialized below. PrepareForTailCall(actual, r5, r6, r7); } Handle<JSFunction> known_function = hinstr->known_function(); if (known_function.is_null()) { LPointerMap* pointers = instr->pointer_map(); SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt); ParameterCount actual(instr->arity()); InvokeFlag flag = is_tail_call ? JUMP_FUNCTION : CALL_FUNCTION; __ InvokeFunction(r3, no_reg, actual, flag, generator); } else { CallKnownFunction(known_function, hinstr->formal_parameter_count(), instr->arity(), is_tail_call, instr); } } void LCodeGen::DoCallWithDescriptor(LCallWithDescriptor* instr) { DCHECK(ToRegister(instr->result()).is(r2)); if (instr->hydrogen()->IsTailCall()) { if (NeedsEagerFrame()) __ LeaveFrame(StackFrame::INTERNAL); if (instr->target()->IsConstantOperand()) { LConstantOperand* target = LConstantOperand::cast(instr->target()); Handle<Code> code = Handle<Code>::cast(ToHandle(target)); __ Jump(code, RelocInfo::CODE_TARGET); } else { DCHECK(instr->target()->IsRegister()); Register target = ToRegister(instr->target()); __ AddP(ip, target, Operand(Code::kHeaderSize - kHeapObjectTag)); __ JumpToJSEntry(ip); } } else { LPointerMap* pointers = instr->pointer_map(); SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt); if (instr->target()->IsConstantOperand()) { LConstantOperand* target = LConstantOperand::cast(instr->target()); Handle<Code> code = Handle<Code>::cast(ToHandle(target)); generator.BeforeCall(__ CallSize(code, RelocInfo::CODE_TARGET)); __ Call(code, RelocInfo::CODE_TARGET); } else { DCHECK(instr->target()->IsRegister()); Register target = ToRegister(instr->target()); generator.BeforeCall(__ CallSize(target)); __ AddP(ip, target, Operand(Code::kHeaderSize - kHeapObjectTag)); __ CallJSEntry(ip); } generator.AfterCall(); } } void LCodeGen::DoCallNewArray(LCallNewArray* instr) { DCHECK(ToRegister(instr->context()).is(cp)); DCHECK(ToRegister(instr->constructor()).is(r3)); DCHECK(ToRegister(instr->result()).is(r2)); __ mov(r2, Operand(instr->arity())); __ Move(r4, instr->hydrogen()->site()); ElementsKind kind = instr->hydrogen()->elements_kind(); AllocationSiteOverrideMode override_mode = (AllocationSite::GetMode(kind) == TRACK_ALLOCATION_SITE) ? DISABLE_ALLOCATION_SITES : DONT_OVERRIDE; if (instr->arity() == 0) { ArrayNoArgumentConstructorStub stub(isolate(), kind, override_mode); CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); } else if (instr->arity() == 1) { Label done; if (IsFastPackedElementsKind(kind)) { Label packed_case; // We might need a change here // look at the first argument __ LoadP(r7, MemOperand(sp, 0)); __ CmpP(r7, Operand::Zero()); __ beq(&packed_case, Label::kNear); ElementsKind holey_kind = GetHoleyElementsKind(kind); ArraySingleArgumentConstructorStub stub(isolate(), holey_kind, override_mode); CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); __ b(&done, Label::kNear); __ bind(&packed_case); } ArraySingleArgumentConstructorStub stub(isolate(), kind, override_mode); CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); __ bind(&done); } else { ArrayNArgumentsConstructorStub stub(isolate()); CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); } } void LCodeGen::DoCallRuntime(LCallRuntime* instr) { CallRuntime(instr->function(), instr->arity(), instr); } void LCodeGen::DoStoreCodeEntry(LStoreCodeEntry* instr) { Register function = ToRegister(instr->function()); Register code_object = ToRegister(instr->code_object()); __ lay(code_object, MemOperand(code_object, Code::kHeaderSize - kHeapObjectTag)); __ StoreP(code_object, FieldMemOperand(function, JSFunction::kCodeEntryOffset), r0); } void LCodeGen::DoInnerAllocatedObject(LInnerAllocatedObject* instr) { Register result = ToRegister(instr->result()); Register base = ToRegister(instr->base_object()); if (instr->offset()->IsConstantOperand()) { LConstantOperand* offset = LConstantOperand::cast(instr->offset()); __ lay(result, MemOperand(base, ToInteger32(offset))); } else { Register offset = ToRegister(instr->offset()); __ lay(result, MemOperand(base, offset)); } } void LCodeGen::DoStoreNamedField(LStoreNamedField* instr) { HStoreNamedField* hinstr = instr->hydrogen(); Representation representation = instr->representation(); Register object = ToRegister(instr->object()); Register scratch = scratch0(); HObjectAccess access = hinstr->access(); int offset = access.offset(); if (access.IsExternalMemory()) { Register value = ToRegister(instr->value()); MemOperand operand = MemOperand(object, offset); __ StoreRepresentation(value, operand, representation, r0); return; } __ AssertNotSmi(object); #if V8_TARGET_ARCH_S390X DCHECK(!representation.IsSmi() || !instr->value()->IsConstantOperand() || IsInteger32(LConstantOperand::cast(instr->value()))); #else DCHECK(!representation.IsSmi() || !instr->value()->IsConstantOperand() || IsSmi(LConstantOperand::cast(instr->value()))); #endif if (!FLAG_unbox_double_fields && representation.IsDouble()) { DCHECK(access.IsInobject()); DCHECK(!hinstr->has_transition()); DCHECK(!hinstr->NeedsWriteBarrier()); DoubleRegister value = ToDoubleRegister(instr->value()); DCHECK(offset >= 0); __ StoreDouble(value, FieldMemOperand(object, offset)); return; } if (hinstr->has_transition()) { Handle<Map> transition = hinstr->transition_map(); AddDeprecationDependency(transition); __ mov(scratch, Operand(transition)); __ StoreP(scratch, FieldMemOperand(object, HeapObject::kMapOffset), r0); if (hinstr->NeedsWriteBarrierForMap()) { Register temp = ToRegister(instr->temp()); // Update the write barrier for the map field. __ RecordWriteForMap(object, scratch, temp, GetLinkRegisterState(), kSaveFPRegs); } } // Do the store. Register record_dest = object; Register record_value = no_reg; Register record_scratch = scratch; #if V8_TARGET_ARCH_S390X if (FLAG_unbox_double_fields && representation.IsDouble()) { DCHECK(access.IsInobject()); DoubleRegister value = ToDoubleRegister(instr->value()); __ StoreDouble(value, FieldMemOperand(object, offset)); if (hinstr->NeedsWriteBarrier()) { record_value = ToRegister(instr->value()); } } else { if (representation.IsSmi() && hinstr->value()->representation().IsInteger32()) { DCHECK(hinstr->store_mode() == STORE_TO_INITIALIZED_ENTRY); // 64-bit Smi optimization // Store int value directly to upper half of the smi. offset = SmiWordOffset(offset); representation = Representation::Integer32(); } #endif if (access.IsInobject()) { Register value = ToRegister(instr->value()); MemOperand operand = FieldMemOperand(object, offset); __ StoreRepresentation(value, operand, representation, r0); record_value = value; } else { Register value = ToRegister(instr->value()); __ LoadP(scratch, FieldMemOperand(object, JSObject::kPropertiesOffset)); MemOperand operand = FieldMemOperand(scratch, offset); __ StoreRepresentation(value, operand, representation, r0); record_dest = scratch; record_value = value; record_scratch = object; } #if V8_TARGET_ARCH_S390X } #endif if (hinstr->NeedsWriteBarrier()) { __ RecordWriteField(record_dest, offset, record_value, record_scratch, GetLinkRegisterState(), kSaveFPRegs, EMIT_REMEMBERED_SET, hinstr->SmiCheckForWriteBarrier(), hinstr->PointersToHereCheckForValue()); } } void LCodeGen::DoBoundsCheck(LBoundsCheck* instr) { Representation representation = instr->hydrogen()->length()->representation(); DCHECK(representation.Equals(instr->hydrogen()->index()->representation())); DCHECK(representation.IsSmiOrInteger32()); Register temp = scratch0(); Condition cc = instr->hydrogen()->allow_equality() ? lt : le; if (instr->length()->IsConstantOperand()) { int32_t length = ToInteger32(LConstantOperand::cast(instr->length())); Register index = ToRegister(instr->index()); if (representation.IsSmi()) { __ CmpLogicalSmiLiteral(index, Smi::FromInt(length), temp); } else { __ CmpLogical32(index, Operand(length)); } cc = CommuteCondition(cc); } else if (instr->index()->IsConstantOperand()) { int32_t index = ToInteger32(LConstantOperand::cast(instr->index())); Register length = ToRegister(instr->length()); if (representation.IsSmi()) { __ CmpLogicalSmiLiteral(length, Smi::FromInt(index), temp); } else { __ CmpLogical32(length, Operand(index)); } } else { Register index = ToRegister(instr->index()); Register length = ToRegister(instr->length()); if (representation.IsSmi()) { __ CmpLogicalP(length, index); } else { __ CmpLogical32(length, index); } } if (FLAG_debug_code && instr->hydrogen()->skip_check()) { Label done; __ b(NegateCondition(cc), &done, Label::kNear); __ stop("eliminated bounds check failed"); __ bind(&done); } else { DeoptimizeIf(cc, instr, DeoptimizeReason::kOutOfBounds); } } void LCodeGen::DoStoreKeyedExternalArray(LStoreKeyed* instr) { Register external_pointer = ToRegister(instr->elements()); Register key = no_reg; ElementsKind elements_kind = instr->elements_kind(); bool key_is_constant = instr->key()->IsConstantOperand(); int constant_key = 0; if (key_is_constant) { constant_key = ToInteger32(LConstantOperand::cast(instr->key())); if (constant_key & 0xF0000000) { Abort(kArrayIndexConstantValueTooBig); } } else { key = ToRegister(instr->key()); } int element_size_shift = ElementsKindToShiftSize(elements_kind); bool key_is_smi = instr->hydrogen()->key()->representation().IsSmi(); bool keyMaybeNegative = instr->hydrogen()->IsDehoisted(); int base_offset = instr->base_offset(); if (elements_kind == FLOAT32_ELEMENTS || elements_kind == FLOAT64_ELEMENTS) { Register address = scratch0(); DoubleRegister value(ToDoubleRegister(instr->value())); if (key_is_constant) { if (constant_key != 0) { base_offset += constant_key << element_size_shift; if (!is_int20(base_offset)) { __ mov(address, Operand(base_offset)); __ AddP(address, external_pointer); } else { __ AddP(address, external_pointer, Operand(base_offset)); } base_offset = 0; } else { address = external_pointer; } } else { __ IndexToArrayOffset(address, key, element_size_shift, key_is_smi, keyMaybeNegative); __ AddP(address, external_pointer); } if (elements_kind == FLOAT32_ELEMENTS) { __ ledbr(double_scratch0(), value); __ StoreFloat32(double_scratch0(), MemOperand(address, base_offset)); } else { // Storing doubles, not floats. __ StoreDouble(value, MemOperand(address, base_offset)); } } else { Register value(ToRegister(instr->value())); MemOperand mem_operand = PrepareKeyedOperand(key, external_pointer, key_is_constant, key_is_smi, constant_key, element_size_shift, base_offset, keyMaybeNegative); switch (elements_kind) { case UINT8_ELEMENTS: case UINT8_CLAMPED_ELEMENTS: case INT8_ELEMENTS: if (key_is_constant) { __ StoreByte(value, mem_operand, r0); } else { __ StoreByte(value, mem_operand); } break; case INT16_ELEMENTS: case UINT16_ELEMENTS: if (key_is_constant) { __ StoreHalfWord(value, mem_operand, r0); } else { __ StoreHalfWord(value, mem_operand); } break; case INT32_ELEMENTS: case UINT32_ELEMENTS: if (key_is_constant) { __ StoreW(value, mem_operand, r0); } else { __ StoreW(value, mem_operand); } break; case FLOAT32_ELEMENTS: case FLOAT64_ELEMENTS: case FAST_DOUBLE_ELEMENTS: case FAST_ELEMENTS: case FAST_SMI_ELEMENTS: case FAST_HOLEY_DOUBLE_ELEMENTS: case FAST_HOLEY_ELEMENTS: case FAST_HOLEY_SMI_ELEMENTS: case DICTIONARY_ELEMENTS: case FAST_SLOPPY_ARGUMENTS_ELEMENTS: case SLOW_SLOPPY_ARGUMENTS_ELEMENTS: case FAST_STRING_WRAPPER_ELEMENTS: case SLOW_STRING_WRAPPER_ELEMENTS: case NO_ELEMENTS: UNREACHABLE(); break; } } } void LCodeGen::DoStoreKeyedFixedDoubleArray(LStoreKeyed* instr) { DoubleRegister value = ToDoubleRegister(instr->value()); Register elements = ToRegister(instr->elements()); Register key = no_reg; Register scratch = scratch0(); DoubleRegister double_scratch = double_scratch0(); bool key_is_constant = instr->key()->IsConstantOperand(); int constant_key = 0; // Calculate the effective address of the slot in the array to store the // double value. if (key_is_constant) { constant_key = ToInteger32(LConstantOperand::cast(instr->key())); if (constant_key & 0xF0000000) { Abort(kArrayIndexConstantValueTooBig); } } else { key = ToRegister(instr->key()); } int element_size_shift = ElementsKindToShiftSize(FAST_DOUBLE_ELEMENTS); bool key_is_smi = instr->hydrogen()->key()->representation().IsSmi(); bool keyMaybeNegative = instr->hydrogen()->IsDehoisted(); int base_offset = instr->base_offset() + constant_key * kDoubleSize; bool use_scratch = false; intptr_t address_offset = base_offset; if (key_is_constant) { // Memory references support up to 20-bits signed displacement in RXY form if (!is_int20((address_offset))) { __ mov(scratch, Operand(address_offset)); address_offset = 0; use_scratch = true; } } else { use_scratch = true; __ IndexToArrayOffset(scratch, key, element_size_shift, key_is_smi, keyMaybeNegative); // Memory references support up to 20-bits signed displacement in RXY form if (!is_int20((address_offset))) { __ AddP(scratch, Operand(address_offset)); address_offset = 0; } } if (instr->NeedsCanonicalization()) { // Turn potential sNaN value into qNaN. __ CanonicalizeNaN(double_scratch, value); DCHECK(address_offset >= 0); if (use_scratch) __ StoreDouble(double_scratch, MemOperand(scratch, elements, address_offset)); else __ StoreDouble(double_scratch, MemOperand(elements, address_offset)); } else { if (use_scratch) __ StoreDouble(value, MemOperand(scratch, elements, address_offset)); else __ StoreDouble(value, MemOperand(elements, address_offset)); } } void LCodeGen::DoStoreKeyedFixedArray(LStoreKeyed* instr) { HStoreKeyed* hinstr = instr->hydrogen(); Register value = ToRegister(instr->value()); Register elements = ToRegister(instr->elements()); Register key = instr->key()->IsRegister() ? ToRegister(instr->key()) : no_reg; Register scratch = scratch0(); int offset = instr->base_offset(); // Do the store. if (instr->key()->IsConstantOperand()) { DCHECK(!hinstr->NeedsWriteBarrier()); LConstantOperand* const_operand = LConstantOperand::cast(instr->key()); offset += ToInteger32(const_operand) * kPointerSize; } else { // Even though the HLoadKeyed instruction forces the input // representation for the key to be an integer, the input gets replaced // during bound check elimination with the index argument to the bounds // check, which can be tagged, so that case must be handled here, too. if (hinstr->key()->representation().IsSmi()) { __ SmiToPtrArrayOffset(scratch, key); } else { if (instr->hydrogen()->IsDehoisted() || !CpuFeatures::IsSupported(GENERAL_INSTR_EXT)) { #if V8_TARGET_ARCH_S390X // If array access is dehoisted, the key, being an int32, can contain // a negative value, as needs to be sign-extended to 64-bit for // memory access. __ lgfr(key, key); #endif __ ShiftLeftP(scratch, key, Operand(kPointerSizeLog2)); } else { // Small optimization to reduce pathlength. After Bounds Check, // the key is guaranteed to be non-negative. Leverage RISBG, // which also performs zero-extension. __ risbg(scratch, key, Operand(32 - kPointerSizeLog2), Operand(63 - kPointerSizeLog2), Operand(kPointerSizeLog2), true); } } } Representation representation = hinstr->value()->representation(); #if V8_TARGET_ARCH_S390X // 64-bit Smi optimization if (representation.IsInteger32()) { DCHECK(hinstr->store_mode() == STORE_TO_INITIALIZED_ENTRY); DCHECK(hinstr->elements_kind() == FAST_SMI_ELEMENTS); // Store int value directly to upper half of the smi. offset = SmiWordOffset(offset); } #endif if (instr->key()->IsConstantOperand()) { __ StoreRepresentation(value, MemOperand(elements, offset), representation, scratch); } else { __ StoreRepresentation(value, MemOperand(scratch, elements, offset), representation, r0); } if (hinstr->NeedsWriteBarrier()) { SmiCheck check_needed = hinstr->value()->type().IsHeapObject() ? OMIT_SMI_CHECK : INLINE_SMI_CHECK; // Compute address of modified element and store it into key register. if (instr->key()->IsConstantOperand()) { __ lay(key, MemOperand(elements, offset)); } else { __ lay(key, MemOperand(scratch, elements, offset)); } __ RecordWrite(elements, key, value, GetLinkRegisterState(), kSaveFPRegs, EMIT_REMEMBERED_SET, check_needed, hinstr->PointersToHereCheckForValue()); } } void LCodeGen::DoStoreKeyed(LStoreKeyed* instr) { // By cases: external, fast double if (instr->is_fixed_typed_array()) { DoStoreKeyedExternalArray(instr); } else if (instr->hydrogen()->value()->representation().IsDouble()) { DoStoreKeyedFixedDoubleArray(instr); } else { DoStoreKeyedFixedArray(instr); } } void LCodeGen::DoMaybeGrowElements(LMaybeGrowElements* instr) { class DeferredMaybeGrowElements final : public LDeferredCode { public: DeferredMaybeGrowElements(LCodeGen* codegen, LMaybeGrowElements* instr) : LDeferredCode(codegen), instr_(instr) {} void Generate() override { codegen()->DoDeferredMaybeGrowElements(instr_); } LInstruction* instr() override { return instr_; } private: LMaybeGrowElements* instr_; }; Register result = r2; DeferredMaybeGrowElements* deferred = new (zone()) DeferredMaybeGrowElements(this, instr); LOperand* key = instr->key(); LOperand* current_capacity = instr->current_capacity(); DCHECK(instr->hydrogen()->key()->representation().IsInteger32()); DCHECK(instr->hydrogen()->current_capacity()->representation().IsInteger32()); DCHECK(key->IsConstantOperand() || key->IsRegister()); DCHECK(current_capacity->IsConstantOperand() || current_capacity->IsRegister()); if (key->IsConstantOperand() && current_capacity->IsConstantOperand()) { int32_t constant_key = ToInteger32(LConstantOperand::cast(key)); int32_t constant_capacity = ToInteger32(LConstantOperand::cast(current_capacity)); if (constant_key >= constant_capacity) { // Deferred case. __ b(deferred->entry()); } } else if (key->IsConstantOperand()) { int32_t constant_key = ToInteger32(LConstantOperand::cast(key)); __ Cmp32(ToRegister(current_capacity), Operand(constant_key)); __ ble(deferred->entry()); } else if (current_capacity->IsConstantOperand()) { int32_t constant_capacity = ToInteger32(LConstantOperand::cast(current_capacity)); __ Cmp32(ToRegister(key), Operand(constant_capacity)); __ bge(deferred->entry()); } else { __ Cmp32(ToRegister(key), ToRegister(current_capacity)); __ bge(deferred->entry()); } if (instr->elements()->IsRegister()) { __ Move(result, ToRegister(instr->elements())); } else { __ LoadP(result, ToMemOperand(instr->elements())); } __ bind(deferred->exit()); } void LCodeGen::DoDeferredMaybeGrowElements(LMaybeGrowElements* instr) { // TODO(3095996): Get rid of this. For now, we need to make the // result register contain a valid pointer because it is already // contained in the register pointer map. Register result = r2; __ LoadImmP(result, Operand::Zero()); // We have to call a stub. { PushSafepointRegistersScope scope(this); if (instr->object()->IsRegister()) { __ Move(result, ToRegister(instr->object())); } else { __ LoadP(result, ToMemOperand(instr->object())); } LOperand* key = instr->key(); if (key->IsConstantOperand()) { LConstantOperand* constant_key = LConstantOperand::cast(key); int32_t int_key = ToInteger32(constant_key); if (Smi::IsValid(int_key)) { __ LoadSmiLiteral(r5, Smi::FromInt(int_key)); } else { // We should never get here at runtime because there is a smi check on // the key before this point. __ stop("expected smi"); } } else { __ SmiTag(r5, ToRegister(key)); } GrowArrayElementsStub stub(isolate(), instr->hydrogen()->kind()); __ CallStub(&stub); RecordSafepointWithLazyDeopt( instr, RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS); __ StoreToSafepointRegisterSlot(result, result); } // Deopt on smi, which means the elements array changed to dictionary mode. __ TestIfSmi(result); DeoptimizeIf(eq, instr, DeoptimizeReason::kSmi, cr0); } void LCodeGen::DoTransitionElementsKind(LTransitionElementsKind* instr) { Register object_reg = ToRegister(instr->object()); Register scratch = scratch0(); Handle<Map> from_map = instr->original_map(); Handle<Map> to_map = instr->transitioned_map(); ElementsKind from_kind = instr->from_kind(); ElementsKind to_kind = instr->to_kind(); Label not_applicable; __ LoadP(scratch, FieldMemOperand(object_reg, HeapObject::kMapOffset)); __ CmpP(scratch, Operand(from_map)); __ bne(¬_applicable); if (IsSimpleMapChangeTransition(from_kind, to_kind)) { Register new_map_reg = ToRegister(instr->new_map_temp()); __ mov(new_map_reg, Operand(to_map)); __ StoreP(new_map_reg, FieldMemOperand(object_reg, HeapObject::kMapOffset)); // Write barrier. __ RecordWriteForMap(object_reg, new_map_reg, scratch, GetLinkRegisterState(), kDontSaveFPRegs); } else { DCHECK(ToRegister(instr->context()).is(cp)); DCHECK(object_reg.is(r2)); PushSafepointRegistersScope scope(this); __ Move(r3, to_map); TransitionElementsKindStub stub(isolate(), from_kind, to_kind); __ CallStub(&stub); RecordSafepointWithRegisters(instr->pointer_map(), 0, Safepoint::kLazyDeopt); } __ bind(¬_applicable); } void LCodeGen::DoTrapAllocationMemento(LTrapAllocationMemento* instr) { Register object = ToRegister(instr->object()); Register temp1 = ToRegister(instr->temp1()); Register temp2 = ToRegister(instr->temp2()); Label no_memento_found; __ TestJSArrayForAllocationMemento(object, temp1, temp2, &no_memento_found); DeoptimizeIf(eq, instr, DeoptimizeReason::kMementoFound); __ bind(&no_memento_found); } void LCodeGen::DoStringAdd(LStringAdd* instr) { DCHECK(ToRegister(instr->context()).is(cp)); DCHECK(ToRegister(instr->left()).is(r3)); DCHECK(ToRegister(instr->right()).is(r2)); StringAddStub stub(isolate(), instr->hydrogen()->flags(), instr->hydrogen()->pretenure_flag()); CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr); } void LCodeGen::DoStringCharCodeAt(LStringCharCodeAt* instr) { class DeferredStringCharCodeAt final : public LDeferredCode { public: DeferredStringCharCodeAt(LCodeGen* codegen, LStringCharCodeAt* instr) : LDeferredCode(codegen), instr_(instr) {} void Generate() override { codegen()->DoDeferredStringCharCodeAt(instr_); } LInstruction* instr() override { return instr_; } private: LStringCharCodeAt* instr_; }; DeferredStringCharCodeAt* deferred = new (zone()) DeferredStringCharCodeAt(this, instr); StringCharLoadGenerator::Generate( masm(), ToRegister(instr->string()), ToRegister(instr->index()), ToRegister(instr->result()), deferred->entry()); __ bind(deferred->exit()); } void LCodeGen::DoDeferredStringCharCodeAt(LStringCharCodeAt* instr) { Register string = ToRegister(instr->string()); Register result = ToRegister(instr->result()); Register scratch = scratch0(); // TODO(3095996): Get rid of this. For now, we need to make the // result register contain a valid pointer because it is already // contained in the register pointer map. __ LoadImmP(result, Operand::Zero()); PushSafepointRegistersScope scope(this); __ push(string); // Push the index as a smi. This is safe because of the checks in // DoStringCharCodeAt above. if (instr->index()->IsConstantOperand()) { int const_index = ToInteger32(LConstantOperand::cast(instr->index())); __ LoadSmiLiteral(scratch, Smi::FromInt(const_index)); __ push(scratch); } else { Register index = ToRegister(instr->index()); __ SmiTag(index); __ push(index); } CallRuntimeFromDeferred(Runtime::kStringCharCodeAtRT, 2, instr, instr->context()); __ AssertSmi(r2); __ SmiUntag(r2); __ StoreToSafepointRegisterSlot(r2, result); } void LCodeGen::DoStringCharFromCode(LStringCharFromCode* instr) { class DeferredStringCharFromCode final : public LDeferredCode { public: DeferredStringCharFromCode(LCodeGen* codegen, LStringCharFromCode* instr) : LDeferredCode(codegen), instr_(instr) {} void Generate() override { codegen()->DoDeferredStringCharFromCode(instr_); } LInstruction* instr() override { return instr_; } private: LStringCharFromCode* instr_; }; DeferredStringCharFromCode* deferred = new (zone()) DeferredStringCharFromCode(this, instr); DCHECK(instr->hydrogen()->value()->representation().IsInteger32()); Register char_code = ToRegister(instr->char_code()); Register result = ToRegister(instr->result()); DCHECK(!char_code.is(result)); __ CmpLogicalP(char_code, Operand(String::kMaxOneByteCharCode)); __ bgt(deferred->entry()); __ LoadRoot(result, Heap::kSingleCharacterStringCacheRootIndex); __ ShiftLeftP(r0, char_code, Operand(kPointerSizeLog2)); __ AddP(result, r0); __ LoadP(result, FieldMemOperand(result, FixedArray::kHeaderSize)); __ CompareRoot(result, Heap::kUndefinedValueRootIndex); __ beq(deferred->entry()); __ bind(deferred->exit()); } void LCodeGen::DoDeferredStringCharFromCode(LStringCharFromCode* instr) { Register char_code = ToRegister(instr->char_code()); Register result = ToRegister(instr->result()); // TODO(3095996): Get rid of this. For now, we need to make the // result register contain a valid pointer because it is already // contained in the register pointer map. __ LoadImmP(result, Operand::Zero()); PushSafepointRegistersScope scope(this); __ SmiTag(char_code); __ push(char_code); CallRuntimeFromDeferred(Runtime::kStringCharFromCode, 1, instr, instr->context()); __ StoreToSafepointRegisterSlot(r2, result); } void LCodeGen::DoInteger32ToDouble(LInteger32ToDouble* instr) { LOperand* input = instr->value(); DCHECK(input->IsRegister() || input->IsStackSlot()); LOperand* output = instr->result(); DCHECK(output->IsDoubleRegister()); if (input->IsStackSlot()) { Register scratch = scratch0(); __ LoadP(scratch, ToMemOperand(input)); __ ConvertIntToDouble(scratch, ToDoubleRegister(output)); } else { __ ConvertIntToDouble(ToRegister(input), ToDoubleRegister(output)); } } void LCodeGen::DoUint32ToDouble(LUint32ToDouble* instr) { LOperand* input = instr->value(); LOperand* output = instr->result(); __ ConvertUnsignedIntToDouble(ToRegister(input), ToDoubleRegister(output)); } void LCodeGen::DoNumberTagI(LNumberTagI* instr) { class DeferredNumberTagI final : public LDeferredCode { public: DeferredNumberTagI(LCodeGen* codegen, LNumberTagI* instr) : LDeferredCode(codegen), instr_(instr) {} void Generate() override { codegen()->DoDeferredNumberTagIU(instr_, instr_->value(), instr_->temp1(), instr_->temp2(), SIGNED_INT32); } LInstruction* instr() override { return instr_; } private: LNumberTagI* instr_; }; Register src = ToRegister(instr->value()); Register dst = ToRegister(instr->result()); DeferredNumberTagI* deferred = new (zone()) DeferredNumberTagI(this, instr); #if V8_TARGET_ARCH_S390X __ SmiTag(dst, src); #else // Add src to itself to defect SMI overflow. __ Add32(dst, src, src); __ b(overflow, deferred->entry()); #endif __ bind(deferred->exit()); } void LCodeGen::DoNumberTagU(LNumberTagU* instr) { class DeferredNumberTagU final : public LDeferredCode { public: DeferredNumberTagU(LCodeGen* codegen, LNumberTagU* instr) : LDeferredCode(codegen), instr_(instr) {} void Generate() override { codegen()->DoDeferredNumberTagIU(instr_, instr_->value(), instr_->temp1(), instr_->temp2(), UNSIGNED_INT32); } LInstruction* instr() override { return instr_; } private: LNumberTagU* instr_; }; Register input = ToRegister(instr->value()); Register result = ToRegister(instr->result()); DeferredNumberTagU* deferred = new (zone()) DeferredNumberTagU(this, instr); __ CmpLogicalP(input, Operand(Smi::kMaxValue)); __ bgt(deferred->entry()); __ SmiTag(result, input); __ bind(deferred->exit()); } void LCodeGen::DoDeferredNumberTagIU(LInstruction* instr, LOperand* value, LOperand* temp1, LOperand* temp2, IntegerSignedness signedness) { Label done, slow; Register src = ToRegister(value); Register dst = ToRegister(instr->result()); Register tmp1 = scratch0(); Register tmp2 = ToRegister(temp1); Register tmp3 = ToRegister(temp2); DoubleRegister dbl_scratch = double_scratch0(); if (signedness == SIGNED_INT32) { // There was overflow, so bits 30 and 31 of the original integer // disagree. Try to allocate a heap number in new space and store // the value in there. If that fails, call the runtime system. if (dst.is(src)) { __ SmiUntag(src, dst); __ xilf(src, Operand(HeapNumber::kSignMask)); } __ ConvertIntToDouble(src, dbl_scratch); } else { __ ConvertUnsignedIntToDouble(src, dbl_scratch); } if (FLAG_inline_new) { __ LoadRoot(tmp3, Heap::kHeapNumberMapRootIndex); __ AllocateHeapNumber(dst, tmp1, tmp2, tmp3, &slow); __ b(&done); } // Slow case: Call the runtime system to do the number allocation. __ bind(&slow); { // TODO(3095996): Put a valid pointer value in the stack slot where the // result register is stored, as this register is in the pointer map, but // contains an integer value. __ LoadImmP(dst, Operand::Zero()); // Preserve the value of all registers. PushSafepointRegistersScope scope(this); // Reset the context register. if (!dst.is(cp)) { __ LoadImmP(cp, Operand::Zero()); } __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber); RecordSafepointWithRegisters(instr->pointer_map(), 0, Safepoint::kNoLazyDeopt); __ StoreToSafepointRegisterSlot(r2, dst); } // Done. Put the value in dbl_scratch into the value of the allocated heap // number. __ bind(&done); __ StoreDouble(dbl_scratch, FieldMemOperand(dst, HeapNumber::kValueOffset)); } void LCodeGen::DoNumberTagD(LNumberTagD* instr) { class DeferredNumberTagD final : public LDeferredCode { public: DeferredNumberTagD(LCodeGen* codegen, LNumberTagD* instr) : LDeferredCode(codegen), instr_(instr) {} void Generate() override { codegen()->DoDeferredNumberTagD(instr_); } LInstruction* instr() override { return instr_; } private: LNumberTagD* instr_; }; DoubleRegister input_reg = ToDoubleRegister(instr->value()); Register scratch = scratch0(); Register reg = ToRegister(instr->result()); Register temp1 = ToRegister(instr->temp()); Register temp2 = ToRegister(instr->temp2()); DeferredNumberTagD* deferred = new (zone()) DeferredNumberTagD(this, instr); if (FLAG_inline_new) { __ LoadRoot(scratch, Heap::kHeapNumberMapRootIndex); __ AllocateHeapNumber(reg, temp1, temp2, scratch, deferred->entry()); } else { __ b(deferred->entry()); } __ bind(deferred->exit()); __ StoreDouble(input_reg, FieldMemOperand(reg, HeapNumber::kValueOffset)); } void LCodeGen::DoDeferredNumberTagD(LNumberTagD* instr) { // TODO(3095996): Get rid of this. For now, we need to make the // result register contain a valid pointer because it is already // contained in the register pointer map. Register reg = ToRegister(instr->result()); __ LoadImmP(reg, Operand::Zero()); PushSafepointRegistersScope scope(this); // Reset the context register. if (!reg.is(cp)) { __ LoadImmP(cp, Operand::Zero()); } __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber); RecordSafepointWithRegisters(instr->pointer_map(), 0, Safepoint::kNoLazyDeopt); __ StoreToSafepointRegisterSlot(r2, reg); } void LCodeGen::DoSmiTag(LSmiTag* instr) { HChange* hchange = instr->hydrogen(); Register input = ToRegister(instr->value()); Register output = ToRegister(instr->result()); if (hchange->CheckFlag(HValue::kCanOverflow) && hchange->value()->CheckFlag(HValue::kUint32)) { __ TestUnsignedSmiCandidate(input, r0); DeoptimizeIf(ne, instr, DeoptimizeReason::kOverflow, cr0); } #if !V8_TARGET_ARCH_S390X if (hchange->CheckFlag(HValue::kCanOverflow) && !hchange->value()->CheckFlag(HValue::kUint32)) { __ SmiTagCheckOverflow(output, input, r0); DeoptimizeIf(lt, instr, DeoptimizeReason::kOverflow, cr0); } else { #endif __ SmiTag(output, input); #if !V8_TARGET_ARCH_S390X } #endif } void LCodeGen::DoSmiUntag(LSmiUntag* instr) { Register input = ToRegister(instr->value()); Register result = ToRegister(instr->result()); if (instr->needs_check()) { __ tmll(input, Operand(kHeapObjectTag)); DeoptimizeIf(ne, instr, DeoptimizeReason::kNotASmi, cr0); __ SmiUntag(result, input); } else { __ SmiUntag(result, input); } } void LCodeGen::EmitNumberUntagD(LNumberUntagD* instr, Register input_reg, DoubleRegister result_reg, NumberUntagDMode mode) { bool can_convert_undefined_to_nan = instr->truncating(); bool deoptimize_on_minus_zero = instr->hydrogen()->deoptimize_on_minus_zero(); Register scratch = scratch0(); DCHECK(!result_reg.is(double_scratch0())); Label convert, load_smi, done; if (mode == NUMBER_CANDIDATE_IS_ANY_TAGGED) { // Smi check. __ UntagAndJumpIfSmi(scratch, input_reg, &load_smi); // Heap number map check. __ LoadP(scratch, FieldMemOperand(input_reg, HeapObject::kMapOffset)); __ CmpP(scratch, RootMemOperand(Heap::kHeapNumberMapRootIndex)); if (can_convert_undefined_to_nan) { __ bne(&convert, Label::kNear); } else { DeoptimizeIf(ne, instr, DeoptimizeReason::kNotAHeapNumber); } // load heap number __ LoadDouble(result_reg, FieldMemOperand(input_reg, HeapNumber::kValueOffset)); if (deoptimize_on_minus_zero) { __ TestDoubleIsMinusZero(result_reg, scratch, ip); DeoptimizeIf(eq, instr, DeoptimizeReason::kMinusZero); } __ b(&done, Label::kNear); if (can_convert_undefined_to_nan) { __ bind(&convert); // Convert undefined (and hole) to NaN. __ CompareRoot(input_reg, Heap::kUndefinedValueRootIndex); DeoptimizeIf(ne, instr, DeoptimizeReason::kNotAHeapNumberUndefined); __ LoadRoot(scratch, Heap::kNanValueRootIndex); __ LoadDouble(result_reg, FieldMemOperand(scratch, HeapNumber::kValueOffset)); __ b(&done, Label::kNear); } } else { __ SmiUntag(scratch, input_reg); DCHECK(mode == NUMBER_CANDIDATE_IS_SMI); } // Smi to double register conversion __ bind(&load_smi); // scratch: untagged value of input_reg __ ConvertIntToDouble(scratch, result_reg); __ bind(&done); } void LCodeGen::DoDeferredTaggedToI(LTaggedToI* instr) { Register input_reg = ToRegister(instr->value()); Register scratch1 = scratch0(); Register scratch2 = ToRegister(instr->temp()); DoubleRegister double_scratch = double_scratch0(); DoubleRegister double_scratch2 = ToDoubleRegister(instr->temp2()); DCHECK(!scratch1.is(input_reg) && !scratch1.is(scratch2)); DCHECK(!scratch2.is(input_reg) && !scratch2.is(scratch1)); Label done; // Heap number map check. __ LoadP(scratch1, FieldMemOperand(input_reg, HeapObject::kMapOffset)); __ CompareRoot(scratch1, Heap::kHeapNumberMapRootIndex); if (instr->truncating()) { Label truncate; __ beq(&truncate); __ CompareInstanceType(scratch1, scratch1, ODDBALL_TYPE); DeoptimizeIf(ne, instr, DeoptimizeReason::kNotANumberOrOddball); __ bind(&truncate); __ LoadRR(scratch2, input_reg); __ TruncateHeapNumberToI(input_reg, scratch2); } else { // Deoptimize if we don't have a heap number. DeoptimizeIf(ne, instr, DeoptimizeReason::kNotAHeapNumber); __ LoadDouble(double_scratch2, FieldMemOperand(input_reg, HeapNumber::kValueOffset)); if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { // preserve heap number pointer in scratch2 for minus zero check below __ LoadRR(scratch2, input_reg); } __ TryDoubleToInt32Exact(input_reg, double_scratch2, scratch1, double_scratch); DeoptimizeIf(ne, instr, DeoptimizeReason::kLostPrecisionOrNaN); if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { __ CmpP(input_reg, Operand::Zero()); __ bne(&done, Label::kNear); __ TestHeapNumberSign(scratch2, scratch1); DeoptimizeIf(lt, instr, DeoptimizeReason::kMinusZero); } } __ bind(&done); } void LCodeGen::DoTaggedToI(LTaggedToI* instr) { class DeferredTaggedToI final : public LDeferredCode { public: DeferredTaggedToI(LCodeGen* codegen, LTaggedToI* instr) : LDeferredCode(codegen), instr_(instr) {} void Generate() override { codegen()->DoDeferredTaggedToI(instr_); } LInstruction* instr() override { return instr_; } private: LTaggedToI* instr_; }; LOperand* input = instr->value(); DCHECK(input->IsRegister()); DCHECK(input->Equals(instr->result())); Register input_reg = ToRegister(input); if (instr->hydrogen()->value()->representation().IsSmi()) { __ SmiUntag(input_reg); } else { DeferredTaggedToI* deferred = new (zone()) DeferredTaggedToI(this, instr); // Branch to deferred code if the input is a HeapObject. __ JumpIfNotSmi(input_reg, deferred->entry()); __ SmiUntag(input_reg); __ bind(deferred->exit()); } } void LCodeGen::DoNumberUntagD(LNumberUntagD* instr) { LOperand* input = instr->value(); DCHECK(input->IsRegister()); LOperand* result = instr->result(); DCHECK(result->IsDoubleRegister()); Register input_reg = ToRegister(input); DoubleRegister result_reg = ToDoubleRegister(result); HValue* value = instr->hydrogen()->value(); NumberUntagDMode mode = value->representation().IsSmi() ? NUMBER_CANDIDATE_IS_SMI : NUMBER_CANDIDATE_IS_ANY_TAGGED; EmitNumberUntagD(instr, input_reg, result_reg, mode); } void LCodeGen::DoDoubleToI(LDoubleToI* instr) { Register result_reg = ToRegister(instr->result()); Register scratch1 = scratch0(); DoubleRegister double_input = ToDoubleRegister(instr->value()); DoubleRegister double_scratch = double_scratch0(); if (instr->truncating()) { __ TruncateDoubleToI(result_reg, double_input); } else { __ TryDoubleToInt32Exact(result_reg, double_input, scratch1, double_scratch); // Deoptimize if the input wasn't a int32 (inside a double). DeoptimizeIf(ne, instr, DeoptimizeReason::kLostPrecisionOrNaN); if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { Label done; __ CmpP(result_reg, Operand::Zero()); __ bne(&done, Label::kNear); __ TestDoubleSign(double_input, scratch1); DeoptimizeIf(lt, instr, DeoptimizeReason::kMinusZero); __ bind(&done); } } } void LCodeGen::DoDoubleToSmi(LDoubleToSmi* instr) { Register result_reg = ToRegister(instr->result()); Register scratch1 = scratch0(); DoubleRegister double_input = ToDoubleRegister(instr->value()); DoubleRegister double_scratch = double_scratch0(); if (instr->truncating()) { __ TruncateDoubleToI(result_reg, double_input); } else { __ TryDoubleToInt32Exact(result_reg, double_input, scratch1, double_scratch); // Deoptimize if the input wasn't a int32 (inside a double). DeoptimizeIf(ne, instr, DeoptimizeReason::kLostPrecisionOrNaN); if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) { Label done; __ CmpP(result_reg, Operand::Zero()); __ bne(&done, Label::kNear); __ TestDoubleSign(double_input, scratch1); DeoptimizeIf(lt, instr, DeoptimizeReason::kMinusZero); __ bind(&done); } } #if V8_TARGET_ARCH_S390X __ SmiTag(result_reg); #else __ SmiTagCheckOverflow(result_reg, r0); DeoptimizeIf(lt, instr, DeoptimizeReason::kOverflow, cr0); #endif } void LCodeGen::DoCheckSmi(LCheckSmi* instr) { LOperand* input = instr->value(); __ TestIfSmi(ToRegister(input)); DeoptimizeIf(ne, instr, DeoptimizeReason::kNotASmi, cr0); } void LCodeGen::DoCheckNonSmi(LCheckNonSmi* instr) { if (!instr->hydrogen()->value()->type().IsHeapObject()) { LOperand* input = instr->value(); __ TestIfSmi(ToRegister(input)); DeoptimizeIf(eq, instr, DeoptimizeReason::kSmi, cr0); } } void LCodeGen::DoCheckArrayBufferNotNeutered( LCheckArrayBufferNotNeutered* instr) { Register view = ToRegister(instr->view()); Register scratch = scratch0(); __ LoadP(scratch, FieldMemOperand(view, JSArrayBufferView::kBufferOffset)); __ LoadlW(scratch, FieldMemOperand(scratch, JSArrayBuffer::kBitFieldOffset)); __ And(r0, scratch, Operand(1 << JSArrayBuffer::WasNeutered::kShift)); DeoptimizeIf(ne, instr, DeoptimizeReason::kOutOfBounds, cr0); } void LCodeGen::DoCheckInstanceType(LCheckInstanceType* instr) { Register input = ToRegister(instr->value()); Register scratch = scratch0(); __ LoadP(scratch, FieldMemOperand(input, HeapObject::kMapOffset)); if (instr->hydrogen()->is_interval_check()) { InstanceType first; InstanceType last; instr->hydrogen()->GetCheckInterval(&first, &last); __ CmpLogicalByte(FieldMemOperand(scratch, Map::kInstanceTypeOffset), Operand(first)); // If there is only one type in the interval check for equality. if (first == last) { DeoptimizeIf(ne, instr, DeoptimizeReason::kWrongInstanceType); } else { DeoptimizeIf(lt, instr, DeoptimizeReason::kWrongInstanceType); // Omit check for the last type. if (last != LAST_TYPE) { __ CmpLogicalByte(FieldMemOperand(scratch, Map::kInstanceTypeOffset), Operand(last)); DeoptimizeIf(gt, instr, DeoptimizeReason::kWrongInstanceType); } } } else { uint8_t mask; uint8_t tag; instr->hydrogen()->GetCheckMaskAndTag(&mask, &tag); __ LoadlB(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset)); if (base::bits::IsPowerOfTwo32(mask)) { DCHECK(tag == 0 || base::bits::IsPowerOfTwo32(tag)); __ AndP(scratch, Operand(mask)); DeoptimizeIf(tag == 0 ? ne : eq, instr, DeoptimizeReason::kWrongInstanceType); } else { __ AndP(scratch, Operand(mask)); __ CmpP(scratch, Operand(tag)); DeoptimizeIf(ne, instr, DeoptimizeReason::kWrongInstanceType); } } } void LCodeGen::DoCheckValue(LCheckValue* instr) { Register reg = ToRegister(instr->value()); Handle<HeapObject> object = instr->hydrogen()->object().handle(); AllowDeferredHandleDereference smi_check; if (isolate()->heap()->InNewSpace(*object)) { Register reg = ToRegister(instr->value()); Handle<Cell> cell = isolate()->factory()->NewCell(object); __ mov(ip, Operand(cell)); __ CmpP(reg, FieldMemOperand(ip, Cell::kValueOffset)); } else { __ CmpP(reg, Operand(object)); } DeoptimizeIf(ne, instr, DeoptimizeReason::kValueMismatch); } void LCodeGen::DoDeferredInstanceMigration(LCheckMaps* instr, Register object) { Register temp = ToRegister(instr->temp()); { PushSafepointRegistersScope scope(this); __ push(object); __ LoadImmP(cp, Operand::Zero()); __ CallRuntimeSaveDoubles(Runtime::kTryMigrateInstance); RecordSafepointWithRegisters(instr->pointer_map(), 1, Safepoint::kNoLazyDeopt); __ StoreToSafepointRegisterSlot(r2, temp); } __ TestIfSmi(temp); DeoptimizeIf(eq, instr, DeoptimizeReason::kInstanceMigrationFailed, cr0); } void LCodeGen::DoCheckMaps(LCheckMaps* instr) { class DeferredCheckMaps final : public LDeferredCode { public: DeferredCheckMaps(LCodeGen* codegen, LCheckMaps* instr, Register object) : LDeferredCode(codegen), instr_(instr), object_(object) { SetExit(check_maps()); } void Generate() override { codegen()->DoDeferredInstanceMigration(instr_, object_); } Label* check_maps() { return &check_maps_; } LInstruction* instr() override { return instr_; } private: LCheckMaps* instr_; Label check_maps_; Register object_; }; if (instr->hydrogen()->IsStabilityCheck()) { const UniqueSet<Map>* maps = instr->hydrogen()->maps(); for (int i = 0; i < maps->size(); ++i) { AddStabilityDependency(maps->at(i).handle()); } return; } LOperand* input = instr->value(); DCHECK(input->IsRegister()); Register reg = ToRegister(input); DeferredCheckMaps* deferred = NULL; if (instr->hydrogen()->HasMigrationTarget()) { deferred = new (zone()) DeferredCheckMaps(this, instr, reg); __ bind(deferred->check_maps()); } const UniqueSet<Map>* maps = instr->hydrogen()->maps(); Label success; for (int i = 0; i < maps->size() - 1; i++) { Handle<Map> map = maps->at(i).handle(); __ CompareMap(reg, map, &success); __ beq(&success); } Handle<Map> map = maps->at(maps->size() - 1).handle(); __ CompareMap(reg, map, &success); if (instr->hydrogen()->HasMigrationTarget()) { __ bne(deferred->entry()); } else { DeoptimizeIf(ne, instr, DeoptimizeReason::kWrongMap); } __ bind(&success); } void LCodeGen::DoClampDToUint8(LClampDToUint8* instr) { DoubleRegister value_reg = ToDoubleRegister(instr->unclamped()); Register result_reg = ToRegister(instr->result()); __ ClampDoubleToUint8(result_reg, value_reg, double_scratch0()); } void LCodeGen::DoClampIToUint8(LClampIToUint8* instr) { Register unclamped_reg = ToRegister(instr->unclamped()); Register result_reg = ToRegister(instr->result()); __ ClampUint8(result_reg, unclamped_reg); } void LCodeGen::DoClampTToUint8(LClampTToUint8* instr) { Register scratch = scratch0(); Register input_reg = ToRegister(instr->unclamped()); Register result_reg = ToRegister(instr->result()); DoubleRegister temp_reg = ToDoubleRegister(instr->temp()); Label is_smi, done, heap_number; // Both smi and heap number cases are handled. __ UntagAndJumpIfSmi(result_reg, input_reg, &is_smi); // Check for heap number __ LoadP(scratch, FieldMemOperand(input_reg, HeapObject::kMapOffset)); __ CmpP(scratch, Operand(factory()->heap_number_map())); __ beq(&heap_number, Label::kNear); // Check for undefined. Undefined is converted to zero for clamping // conversions. __ CmpP(input_reg, Operand(factory()->undefined_value())); DeoptimizeIf(ne, instr, DeoptimizeReason::kNotAHeapNumberUndefined); __ LoadImmP(result_reg, Operand::Zero()); __ b(&done, Label::kNear); // Heap number __ bind(&heap_number); __ LoadDouble(temp_reg, FieldMemOperand(input_reg, HeapNumber::kValueOffset)); __ ClampDoubleToUint8(result_reg, temp_reg, double_scratch0()); __ b(&done, Label::kNear); // smi __ bind(&is_smi); __ ClampUint8(result_reg, result_reg); __ bind(&done); } void LCodeGen::DoAllocate(LAllocate* instr) { class DeferredAllocate final : public LDeferredCode { public: DeferredAllocate(LCodeGen* codegen, LAllocate* instr) : LDeferredCode(codegen), instr_(instr) {} void Generate() override { codegen()->DoDeferredAllocate(instr_); } LInstruction* instr() override { return instr_; } private: LAllocate* instr_; }; DeferredAllocate* deferred = new (zone()) DeferredAllocate(this, instr); Register result = ToRegister(instr->result()); Register scratch = ToRegister(instr->temp1()); Register scratch2 = ToRegister(instr->temp2()); // Allocate memory for the object. AllocationFlags flags = NO_ALLOCATION_FLAGS; if (instr->hydrogen()->MustAllocateDoubleAligned()) { flags = static_cast<AllocationFlags>(flags | DOUBLE_ALIGNMENT); } if (instr->hydrogen()->IsOldSpaceAllocation()) { DCHECK(!instr->hydrogen()->IsNewSpaceAllocation()); flags = static_cast<AllocationFlags>(flags | PRETENURE); } if (instr->hydrogen()->IsAllocationFoldingDominator()) { flags = static_cast<AllocationFlags>(flags | ALLOCATION_FOLDING_DOMINATOR); } DCHECK(!instr->hydrogen()->IsAllocationFolded()); if (instr->size()->IsConstantOperand()) { int32_t size = ToInteger32(LConstantOperand::cast(instr->size())); CHECK(size <= kMaxRegularHeapObjectSize); __ Allocate(size, result, scratch, scratch2, deferred->entry(), flags); } else { Register size = ToRegister(instr->size()); __ Allocate(size, result, scratch, scratch2, deferred->entry(), flags); } __ bind(deferred->exit()); if (instr->hydrogen()->MustPrefillWithFiller()) { if (instr->size()->IsConstantOperand()) { int32_t size = ToInteger32(LConstantOperand::cast(instr->size())); __ LoadIntLiteral(scratch, size); } else { scratch = ToRegister(instr->size()); } __ lay(scratch, MemOperand(scratch, -kPointerSize)); Label loop; __ mov(scratch2, Operand(isolate()->factory()->one_pointer_filler_map())); __ bind(&loop); __ StoreP(scratch2, MemOperand(scratch, result, -kHeapObjectTag)); #if V8_TARGET_ARCH_S390X __ lay(scratch, MemOperand(scratch, -kPointerSize)); #else // TODO(joransiu): Improve the following sequence. // Need to use AHI instead of LAY as top nibble is not set with LAY, causing // incorrect result with the signed compare __ AddP(scratch, Operand(-kPointerSize)); #endif __ CmpP(scratch, Operand::Zero()); __ bge(&loop); } } void LCodeGen::DoDeferredAllocate(LAllocate* instr) { Register result = ToRegister(instr->result()); // TODO(3095996): Get rid of this. For now, we need to make the // result register contain a valid pointer because it is already // contained in the register pointer map. __ LoadSmiLiteral(result, Smi::kZero); PushSafepointRegistersScope scope(this); if (instr->size()->IsRegister()) { Register size = ToRegister(instr->size()); DCHECK(!size.is(result)); __ SmiTag(size); __ push(size); } else { int32_t size = ToInteger32(LConstantOperand::cast(instr->size())); #if !V8_TARGET_ARCH_S390X if (size >= 0 && size <= Smi::kMaxValue) { #endif __ Push(Smi::FromInt(size)); #if !V8_TARGET_ARCH_S390X } else { // We should never get here at runtime => abort __ stop("invalid allocation size"); return; } #endif } int flags = AllocateDoubleAlignFlag::encode( instr->hydrogen()->MustAllocateDoubleAligned()); if (instr->hydrogen()->IsOldSpaceAllocation()) { DCHECK(!instr->hydrogen()->IsNewSpaceAllocation()); flags = AllocateTargetSpace::update(flags, OLD_SPACE); } else { flags = AllocateTargetSpace::update(flags, NEW_SPACE); } __ Push(Smi::FromInt(flags)); CallRuntimeFromDeferred(Runtime::kAllocateInTargetSpace, 2, instr, instr->context()); __ StoreToSafepointRegisterSlot(r2, result); if (instr->hydrogen()->IsAllocationFoldingDominator()) { AllocationFlags allocation_flags = NO_ALLOCATION_FLAGS; if (instr->hydrogen()->IsOldSpaceAllocation()) { DCHECK(!instr->hydrogen()->IsNewSpaceAllocation()); allocation_flags = static_cast<AllocationFlags>(flags | PRETENURE); } // If the allocation folding dominator allocate triggered a GC, allocation // happend in the runtime. We have to reset the top pointer to virtually // undo the allocation. ExternalReference allocation_top = AllocationUtils::GetAllocationTopReference(isolate(), allocation_flags); Register top_address = scratch0(); __ SubP(r2, r2, Operand(kHeapObjectTag)); __ mov(top_address, Operand(allocation_top)); __ StoreP(r2, MemOperand(top_address)); __ AddP(r2, r2, Operand(kHeapObjectTag)); } } void LCodeGen::DoFastAllocate(LFastAllocate* instr) { DCHECK(instr->hydrogen()->IsAllocationFolded()); DCHECK(!instr->hydrogen()->IsAllocationFoldingDominator()); Register result = ToRegister(instr->result()); Register scratch1 = ToRegister(instr->temp1()); Register scratch2 = ToRegister(instr->temp2()); AllocationFlags flags = ALLOCATION_FOLDED; if (instr->hydrogen()->MustAllocateDoubleAligned()) { flags = static_cast<AllocationFlags>(flags | DOUBLE_ALIGNMENT); } if (instr->hydrogen()->IsOldSpaceAllocation()) { DCHECK(!instr->hydrogen()->IsNewSpaceAllocation()); flags = static_cast<AllocationFlags>(flags | PRETENURE); } if (instr->size()->IsConstantOperand()) { int32_t size = ToInteger32(LConstantOperand::cast(instr->size())); CHECK(size <= kMaxRegularHeapObjectSize); __ FastAllocate(size, result, scratch1, scratch2, flags); } else { Register size = ToRegister(instr->size()); __ FastAllocate(size, result, scratch1, scratch2, flags); } } void LCodeGen::DoTypeof(LTypeof* instr) { DCHECK(ToRegister(instr->value()).is(r5)); DCHECK(ToRegister(instr->result()).is(r2)); Label end, do_call; Register value_register = ToRegister(instr->value()); __ JumpIfNotSmi(value_register, &do_call); __ mov(r2, Operand(isolate()->factory()->number_string())); __ b(&end); __ bind(&do_call); Callable callable = CodeFactory::Typeof(isolate()); CallCode(callable.code(), RelocInfo::CODE_TARGET, instr); __ bind(&end); } void LCodeGen::DoTypeofIsAndBranch(LTypeofIsAndBranch* instr) { Register input = ToRegister(instr->value()); Condition final_branch_condition = EmitTypeofIs(instr->TrueLabel(chunk_), instr->FalseLabel(chunk_), input, instr->type_literal()); if (final_branch_condition != kNoCondition) { EmitBranch(instr, final_branch_condition); } } Condition LCodeGen::EmitTypeofIs(Label* true_label, Label* false_label, Register input, Handle<String> type_name) { Condition final_branch_condition = kNoCondition; Register scratch = scratch0(); Factory* factory = isolate()->factory(); if (String::Equals(type_name, factory->number_string())) { __ JumpIfSmi(input, true_label); __ LoadP(scratch, FieldMemOperand(input, HeapObject::kMapOffset)); __ CompareRoot(scratch, Heap::kHeapNumberMapRootIndex); final_branch_condition = eq; } else if (String::Equals(type_name, factory->string_string())) { __ JumpIfSmi(input, false_label); __ CompareObjectType(input, scratch, no_reg, FIRST_NONSTRING_TYPE); final_branch_condition = lt; } else if (String::Equals(type_name, factory->symbol_string())) { __ JumpIfSmi(input, false_label); __ CompareObjectType(input, scratch, no_reg, SYMBOL_TYPE); final_branch_condition = eq; } else if (String::Equals(type_name, factory->boolean_string())) { __ CompareRoot(input, Heap::kTrueValueRootIndex); __ beq(true_label); __ CompareRoot(input, Heap::kFalseValueRootIndex); final_branch_condition = eq; } else if (String::Equals(type_name, factory->undefined_string())) { __ CompareRoot(input, Heap::kNullValueRootIndex); __ beq(false_label); __ JumpIfSmi(input, false_label); // Check for undetectable objects => true. __ LoadP(scratch, FieldMemOperand(input, HeapObject::kMapOffset)); __ LoadlB(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset)); __ ExtractBit(r0, scratch, Map::kIsUndetectable); __ CmpP(r0, Operand::Zero()); final_branch_condition = ne; } else if (String::Equals(type_name, factory->function_string())) { __ JumpIfSmi(input, false_label); __ LoadP(scratch, FieldMemOperand(input, HeapObject::kMapOffset)); __ LoadlB(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset)); __ AndP(scratch, scratch, Operand((1 << Map::kIsCallable) | (1 << Map::kIsUndetectable))); __ CmpP(scratch, Operand(1 << Map::kIsCallable)); final_branch_condition = eq; } else if (String::Equals(type_name, factory->object_string())) { __ JumpIfSmi(input, false_label); __ CompareRoot(input, Heap::kNullValueRootIndex); __ beq(true_label); STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE); __ CompareObjectType(input, scratch, ip, FIRST_JS_RECEIVER_TYPE); __ blt(false_label); // Check for callable or undetectable objects => false. __ LoadlB(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset)); __ AndP(r0, scratch, Operand((1 << Map::kIsCallable) | (1 << Map::kIsUndetectable))); __ CmpP(r0, Operand::Zero()); final_branch_condition = eq; // clang-format off #define SIMD128_TYPE(TYPE, Type, type, lane_count, lane_type) \ } else if (String::Equals(type_name, factory->type##_string())) { \ __ JumpIfSmi(input, false_label); \ __ LoadP(scratch, FieldMemOperand(input, HeapObject::kMapOffset)); \ __ CompareRoot(scratch, Heap::k##Type##MapRootIndex); \ final_branch_condition = eq; SIMD128_TYPES(SIMD128_TYPE) #undef SIMD128_TYPE // clang-format on } else { __ b(false_label); } return final_branch_condition; } void LCodeGen::EnsureSpaceForLazyDeopt(int space_needed) { if (info()->ShouldEnsureSpaceForLazyDeopt()) { // Ensure that we have enough space after the previous lazy-bailout // instruction for patching the code here. int current_pc = masm()->pc_offset(); if (current_pc < last_lazy_deopt_pc_ + space_needed) { int padding_size = last_lazy_deopt_pc_ + space_needed - current_pc; DCHECK_EQ(0, padding_size % 2); while (padding_size > 0) { __ nop(); padding_size -= 2; } } } last_lazy_deopt_pc_ = masm()->pc_offset(); } void LCodeGen::DoLazyBailout(LLazyBailout* instr) { last_lazy_deopt_pc_ = masm()->pc_offset(); DCHECK(instr->HasEnvironment()); LEnvironment* env = instr->environment(); RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt); safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index()); } void LCodeGen::DoDeoptimize(LDeoptimize* instr) { Deoptimizer::BailoutType type = instr->hydrogen()->type(); // TODO(danno): Stubs expect all deopts to be lazy for historical reasons (the // needed return address), even though the implementation of LAZY and EAGER is // now identical. When LAZY is eventually completely folded into EAGER, remove // the special case below. if (info()->IsStub() && type == Deoptimizer::EAGER) { type = Deoptimizer::LAZY; } DeoptimizeIf(al, instr, instr->hydrogen()->reason(), type); } void LCodeGen::DoDummy(LDummy* instr) { // Nothing to see here, move on! } void LCodeGen::DoDummyUse(LDummyUse* instr) { // Nothing to see here, move on! } void LCodeGen::DoDeferredStackCheck(LStackCheck* instr) { PushSafepointRegistersScope scope(this); LoadContextFromDeferred(instr->context()); __ CallRuntimeSaveDoubles(Runtime::kStackGuard); RecordSafepointWithLazyDeopt( instr, RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS); DCHECK(instr->HasEnvironment()); LEnvironment* env = instr->environment(); safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index()); } void LCodeGen::DoStackCheck(LStackCheck* instr) { class DeferredStackCheck final : public LDeferredCode { public: DeferredStackCheck(LCodeGen* codegen, LStackCheck* instr) : LDeferredCode(codegen), instr_(instr) {} void Generate() override { codegen()->DoDeferredStackCheck(instr_); } LInstruction* instr() override { return instr_; } private: LStackCheck* instr_; }; DCHECK(instr->HasEnvironment()); LEnvironment* env = instr->environment(); // There is no LLazyBailout instruction for stack-checks. We have to // prepare for lazy deoptimization explicitly here. if (instr->hydrogen()->is_function_entry()) { // Perform stack overflow check. Label done; __ CmpLogicalP(sp, RootMemOperand(Heap::kStackLimitRootIndex)); __ bge(&done, Label::kNear); DCHECK(instr->context()->IsRegister()); DCHECK(ToRegister(instr->context()).is(cp)); CallCode(isolate()->builtins()->StackCheck(), RelocInfo::CODE_TARGET, instr); __ bind(&done); } else { DCHECK(instr->hydrogen()->is_backwards_branch()); // Perform stack overflow check if this goto needs it before jumping. DeferredStackCheck* deferred_stack_check = new (zone()) DeferredStackCheck(this, instr); __ CmpLogicalP(sp, RootMemOperand(Heap::kStackLimitRootIndex)); __ blt(deferred_stack_check->entry()); EnsureSpaceForLazyDeopt(Deoptimizer::patch_size()); __ bind(instr->done_label()); deferred_stack_check->SetExit(instr->done_label()); RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt); // Don't record a deoptimization index for the safepoint here. // This will be done explicitly when emitting call and the safepoint in // the deferred code. } } void LCodeGen::DoOsrEntry(LOsrEntry* instr) { // This is a pseudo-instruction that ensures that the environment here is // properly registered for deoptimization and records the assembler's PC // offset. LEnvironment* environment = instr->environment(); // If the environment were already registered, we would have no way of // backpatching it with the spill slot operands. DCHECK(!environment->HasBeenRegistered()); RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt); GenerateOsrPrologue(); } void LCodeGen::DoForInPrepareMap(LForInPrepareMap* instr) { Label use_cache, call_runtime; __ CheckEnumCache(&call_runtime); __ LoadP(r2, FieldMemOperand(r2, HeapObject::kMapOffset)); __ b(&use_cache); // Get the set of properties to enumerate. __ bind(&call_runtime); __ push(r2); CallRuntime(Runtime::kForInEnumerate, instr); __ bind(&use_cache); } void LCodeGen::DoForInCacheArray(LForInCacheArray* instr) { Register map = ToRegister(instr->map()); Register result = ToRegister(instr->result()); Label load_cache, done; __ EnumLength(result, map); __ CmpSmiLiteral(result, Smi::kZero, r0); __ bne(&load_cache, Label::kNear); __ mov(result, Operand(isolate()->factory()->empty_fixed_array())); __ b(&done, Label::kNear); __ bind(&load_cache); __ LoadInstanceDescriptors(map, result); __ LoadP(result, FieldMemOperand(result, DescriptorArray::kEnumCacheOffset)); __ LoadP(result, FieldMemOperand(result, FixedArray::SizeFor(instr->idx()))); __ CmpP(result, Operand::Zero()); DeoptimizeIf(eq, instr, DeoptimizeReason::kNoCache); __ bind(&done); } void LCodeGen::DoCheckMapValue(LCheckMapValue* instr) { Register object = ToRegister(instr->value()); Register map = ToRegister(instr->map()); __ LoadP(scratch0(), FieldMemOperand(object, HeapObject::kMapOffset)); __ CmpP(map, scratch0()); DeoptimizeIf(ne, instr, DeoptimizeReason::kWrongMap); } void LCodeGen::DoDeferredLoadMutableDouble(LLoadFieldByIndex* instr, Register result, Register object, Register index) { PushSafepointRegistersScope scope(this); __ Push(object, index); __ LoadImmP(cp, Operand::Zero()); __ CallRuntimeSaveDoubles(Runtime::kLoadMutableDouble); RecordSafepointWithRegisters(instr->pointer_map(), 2, Safepoint::kNoLazyDeopt); __ StoreToSafepointRegisterSlot(r2, result); } void LCodeGen::DoLoadFieldByIndex(LLoadFieldByIndex* instr) { class DeferredLoadMutableDouble final : public LDeferredCode { public: DeferredLoadMutableDouble(LCodeGen* codegen, LLoadFieldByIndex* instr, Register result, Register object, Register index) : LDeferredCode(codegen), instr_(instr), result_(result), object_(object), index_(index) {} void Generate() override { codegen()->DoDeferredLoadMutableDouble(instr_, result_, object_, index_); } LInstruction* instr() override { return instr_; } private: LLoadFieldByIndex* instr_; Register result_; Register object_; Register index_; }; Register object = ToRegister(instr->object()); Register index = ToRegister(instr->index()); Register result = ToRegister(instr->result()); Register scratch = scratch0(); DeferredLoadMutableDouble* deferred; deferred = new (zone()) DeferredLoadMutableDouble(this, instr, result, object, index); Label out_of_object, done; __ TestBitMask(index, reinterpret_cast<uintptr_t>(Smi::FromInt(1)), r0); __ bne(deferred->entry()); __ ShiftRightArithP(index, index, Operand(1)); __ CmpP(index, Operand::Zero()); __ blt(&out_of_object, Label::kNear); __ SmiToPtrArrayOffset(r0, index); __ AddP(scratch, object, r0); __ LoadP(result, FieldMemOperand(scratch, JSObject::kHeaderSize)); __ b(&done, Label::kNear); __ bind(&out_of_object); __ LoadP(result, FieldMemOperand(object, JSObject::kPropertiesOffset)); // Index is equal to negated out of object property index plus 1. __ SmiToPtrArrayOffset(r0, index); __ SubP(scratch, result, r0); __ LoadP(result, FieldMemOperand(scratch, FixedArray::kHeaderSize - kPointerSize)); __ bind(deferred->exit()); __ bind(&done); } #undef __ } // namespace internal } // namespace v8