// Copyright 2013 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/crankshaft/hydrogen-escape-analysis.h" namespace v8 { namespace internal { bool HEscapeAnalysisPhase::HasNoEscapingUses(HValue* value, int size) { for (HUseIterator it(value->uses()); !it.Done(); it.Advance()) { HValue* use = it.value(); if (use->HasEscapingOperandAt(it.index())) { if (FLAG_trace_escape_analysis) { PrintF("#%d (%s) escapes through #%d (%s) @%d\n", value->id(), value->Mnemonic(), use->id(), use->Mnemonic(), it.index()); } return false; } if (use->HasOutOfBoundsAccess(size)) { if (FLAG_trace_escape_analysis) { PrintF("#%d (%s) out of bounds at #%d (%s) @%d\n", value->id(), value->Mnemonic(), use->id(), use->Mnemonic(), it.index()); } return false; } int redefined_index = use->RedefinedOperandIndex(); if (redefined_index == it.index() && !HasNoEscapingUses(use, size)) { if (FLAG_trace_escape_analysis) { PrintF("#%d (%s) escapes redefinition #%d (%s) @%d\n", value->id(), value->Mnemonic(), use->id(), use->Mnemonic(), it.index()); } return false; } } return true; } void HEscapeAnalysisPhase::CollectCapturedValues() { int block_count = graph()->blocks()->length(); for (int i = 0; i < block_count; ++i) { HBasicBlock* block = graph()->blocks()->at(i); for (HInstructionIterator it(block); !it.Done(); it.Advance()) { HInstruction* instr = it.Current(); if (!instr->IsAllocate()) continue; HAllocate* allocate = HAllocate::cast(instr); if (!allocate->size()->IsInteger32Constant()) continue; int size_in_bytes = allocate->size()->GetInteger32Constant(); if (HasNoEscapingUses(instr, size_in_bytes)) { if (FLAG_trace_escape_analysis) { PrintF("#%d (%s) is being captured\n", instr->id(), instr->Mnemonic()); } captured_.Add(instr, zone()); } } } } HCapturedObject* HEscapeAnalysisPhase::NewState(HInstruction* previous) { Zone* zone = graph()->zone(); HCapturedObject* state = new(zone) HCapturedObject(number_of_values_, number_of_objects_, zone); state->InsertAfter(previous); return state; } // Create a new state for replacing HAllocate instructions. HCapturedObject* HEscapeAnalysisPhase::NewStateForAllocation( HInstruction* previous) { HConstant* undefined = graph()->GetConstantUndefined(); HCapturedObject* state = NewState(previous); for (int index = 0; index < number_of_values_; index++) { state->SetOperandAt(index, undefined); } return state; } // Create a new state full of phis for loop header entries. HCapturedObject* HEscapeAnalysisPhase::NewStateForLoopHeader( HInstruction* previous, HCapturedObject* old_state) { HBasicBlock* block = previous->block(); HCapturedObject* state = NewState(previous); for (int index = 0; index < number_of_values_; index++) { HValue* operand = old_state->OperandAt(index); HPhi* phi = NewPhiAndInsert(block, operand, index); state->SetOperandAt(index, phi); } return state; } // Create a new state by copying an existing one. HCapturedObject* HEscapeAnalysisPhase::NewStateCopy( HInstruction* previous, HCapturedObject* old_state) { HCapturedObject* state = NewState(previous); for (int index = 0; index < number_of_values_; index++) { HValue* operand = old_state->OperandAt(index); state->SetOperandAt(index, operand); } return state; } // Insert a newly created phi into the given block and fill all incoming // edges with the given value. HPhi* HEscapeAnalysisPhase::NewPhiAndInsert(HBasicBlock* block, HValue* incoming_value, int index) { Zone* zone = graph()->zone(); HPhi* phi = new(zone) HPhi(HPhi::kInvalidMergedIndex, zone); for (int i = 0; i < block->predecessors()->length(); i++) { phi->AddInput(incoming_value); } block->AddPhi(phi); return phi; } // Insert a newly created value check as a replacement for map checks. HValue* HEscapeAnalysisPhase::NewMapCheckAndInsert(HCapturedObject* state, HCheckMaps* mapcheck) { Zone* zone = graph()->zone(); HValue* value = state->map_value(); // TODO(mstarzinger): This will narrow a map check against a set of maps // down to the first element in the set. Revisit and fix this. HCheckValue* check = HCheckValue::New(graph()->isolate(), zone, NULL, value, mapcheck->maps()->at(0), false); check->InsertBefore(mapcheck); return check; } // Replace a field load with a given value, forcing Smi representation if // necessary. HValue* HEscapeAnalysisPhase::NewLoadReplacement( HLoadNamedField* load, HValue* load_value) { isolate()->counters()->crankshaft_escape_loads_replaced()->Increment(); HValue* replacement = load_value; Representation representation = load->representation(); if (representation.IsSmiOrInteger32() || representation.IsDouble()) { Zone* zone = graph()->zone(); HInstruction* new_instr = HForceRepresentation::New( graph()->isolate(), zone, NULL, load_value, representation); new_instr->InsertAfter(load); replacement = new_instr; } return replacement; } // Performs a forward data-flow analysis of all loads and stores on the // given captured allocation. This uses a reverse post-order iteration // over affected basic blocks. All non-escaping instructions are handled // and replaced during the analysis. void HEscapeAnalysisPhase::AnalyzeDataFlow(HInstruction* allocate) { HBasicBlock* allocate_block = allocate->block(); block_states_.AddBlock(NULL, graph()->blocks()->length(), zone()); // Iterate all blocks starting with the allocation block, since the // allocation cannot dominate blocks that come before. int start = allocate_block->block_id(); for (int i = start; i < graph()->blocks()->length(); i++) { HBasicBlock* block = graph()->blocks()->at(i); HCapturedObject* state = StateAt(block); // Skip blocks that are not dominated by the captured allocation. if (!allocate_block->Dominates(block) && allocate_block != block) continue; if (FLAG_trace_escape_analysis) { PrintF("Analyzing data-flow in B%d\n", block->block_id()); } // Go through all instructions of the current block. for (HInstructionIterator it(block); !it.Done(); it.Advance()) { HInstruction* instr = it.Current(); switch (instr->opcode()) { case HValue::kAllocate: { if (instr != allocate) continue; state = NewStateForAllocation(allocate); break; } case HValue::kLoadNamedField: { HLoadNamedField* load = HLoadNamedField::cast(instr); int index = load->access().offset() / kPointerSize; if (load->object() != allocate) continue; DCHECK(load->access().IsInobject()); HValue* replacement = NewLoadReplacement(load, state->OperandAt(index)); load->DeleteAndReplaceWith(replacement); if (FLAG_trace_escape_analysis) { PrintF("Replacing load #%d with #%d (%s)\n", load->id(), replacement->id(), replacement->Mnemonic()); } break; } case HValue::kStoreNamedField: { HStoreNamedField* store = HStoreNamedField::cast(instr); int index = store->access().offset() / kPointerSize; if (store->object() != allocate) continue; DCHECK(store->access().IsInobject()); state = NewStateCopy(store->previous(), state); state->SetOperandAt(index, store->value()); if (store->has_transition()) { state->SetOperandAt(0, store->transition()); } if (store->HasObservableSideEffects()) { state->ReuseSideEffectsFromStore(store); } store->DeleteAndReplaceWith(store->ActualValue()); if (FLAG_trace_escape_analysis) { PrintF("Replacing store #%d%s\n", instr->id(), store->has_transition() ? " (with transition)" : ""); } break; } case HValue::kArgumentsObject: case HValue::kCapturedObject: case HValue::kSimulate: { for (int i = 0; i < instr->OperandCount(); i++) { if (instr->OperandAt(i) != allocate) continue; instr->SetOperandAt(i, state); } break; } case HValue::kCheckHeapObject: { HCheckHeapObject* check = HCheckHeapObject::cast(instr); if (check->value() != allocate) continue; check->DeleteAndReplaceWith(check->ActualValue()); break; } case HValue::kCheckMaps: { HCheckMaps* mapcheck = HCheckMaps::cast(instr); if (mapcheck->value() != allocate) continue; NewMapCheckAndInsert(state, mapcheck); mapcheck->DeleteAndReplaceWith(mapcheck->ActualValue()); break; } default: // Nothing to see here, move along ... break; } } // Propagate the block state forward to all successor blocks. for (int i = 0; i < block->end()->SuccessorCount(); i++) { HBasicBlock* succ = block->end()->SuccessorAt(i); if (!allocate_block->Dominates(succ)) continue; if (succ->predecessors()->length() == 1) { // Case 1: This is the only predecessor, just reuse state. SetStateAt(succ, state); } else if (StateAt(succ) == NULL && succ->IsLoopHeader()) { // Case 2: This is a state that enters a loop header, be // pessimistic about loop headers, add phis for all values. SetStateAt(succ, NewStateForLoopHeader(succ->first(), state)); } else if (StateAt(succ) == NULL) { // Case 3: This is the first state propagated forward to the // successor, leave a copy of the current state. SetStateAt(succ, NewStateCopy(succ->first(), state)); } else { // Case 4: This is a state that needs merging with previously // propagated states, potentially introducing new phis lazily or // adding values to existing phis. HCapturedObject* succ_state = StateAt(succ); for (int index = 0; index < number_of_values_; index++) { HValue* operand = state->OperandAt(index); HValue* succ_operand = succ_state->OperandAt(index); if (succ_operand->IsPhi() && succ_operand->block() == succ) { // Phi already exists, add operand. HPhi* phi = HPhi::cast(succ_operand); phi->SetOperandAt(succ->PredecessorIndexOf(block), operand); } else if (succ_operand != operand) { // Phi does not exist, introduce one. HPhi* phi = NewPhiAndInsert(succ, succ_operand, index); phi->SetOperandAt(succ->PredecessorIndexOf(block), operand); succ_state->SetOperandAt(index, phi); } } } } } // All uses have been handled. DCHECK(allocate->HasNoUses()); allocate->DeleteAndReplaceWith(NULL); } void HEscapeAnalysisPhase::PerformScalarReplacement() { for (int i = 0; i < captured_.length(); i++) { HAllocate* allocate = HAllocate::cast(captured_.at(i)); // Compute number of scalar values and start with clean slate. int size_in_bytes = allocate->size()->GetInteger32Constant(); number_of_values_ = size_in_bytes / kPointerSize; number_of_objects_++; block_states_.Rewind(0); // Perform actual analysis step. AnalyzeDataFlow(allocate); cumulative_values_ += number_of_values_; DCHECK(allocate->HasNoUses()); DCHECK(!allocate->IsLinked()); } } void HEscapeAnalysisPhase::Run() { // TODO(mstarzinger): We disable escape analysis with OSR for now, because // spill slots might be uninitialized. Needs investigation. if (graph()->has_osr()) return; int max_fixpoint_iteration_count = FLAG_escape_analysis_iterations; for (int i = 0; i < max_fixpoint_iteration_count; i++) { CollectCapturedValues(); if (captured_.is_empty()) break; isolate()->counters()->crankshaft_escape_allocs_replaced()->Increment( captured_.length()); PerformScalarReplacement(); captured_.Rewind(0); } } } // namespace internal } // namespace v8