// Copyright 2016 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/builtins/builtins.h" #include "src/builtins/builtins-utils.h" #include "src/code-factory.h" namespace v8 { namespace internal { Handle<Code> Builtins::NonPrimitiveToPrimitive(ToPrimitiveHint hint) { switch (hint) { case ToPrimitiveHint::kDefault: return NonPrimitiveToPrimitive_Default(); case ToPrimitiveHint::kNumber: return NonPrimitiveToPrimitive_Number(); case ToPrimitiveHint::kString: return NonPrimitiveToPrimitive_String(); } UNREACHABLE(); return Handle<Code>::null(); } namespace { // ES6 section 7.1.1 ToPrimitive ( input [ , PreferredType ] ) void Generate_NonPrimitiveToPrimitive(CodeStubAssembler* assembler, ToPrimitiveHint hint) { typedef CodeStubAssembler::Label Label; typedef compiler::Node Node; typedef TypeConversionDescriptor Descriptor; Node* input = assembler->Parameter(Descriptor::kArgument); Node* context = assembler->Parameter(Descriptor::kContext); // Lookup the @@toPrimitive property on the {input}. Callable callable = CodeFactory::GetProperty(assembler->isolate()); Node* to_primitive_symbol = assembler->HeapConstant(assembler->factory()->to_primitive_symbol()); Node* exotic_to_prim = assembler->CallStub(callable, context, input, to_primitive_symbol); // Check if {exotic_to_prim} is neither null nor undefined. Label ordinary_to_primitive(assembler); assembler->GotoIf( assembler->WordEqual(exotic_to_prim, assembler->NullConstant()), &ordinary_to_primitive); assembler->GotoIf( assembler->WordEqual(exotic_to_prim, assembler->UndefinedConstant()), &ordinary_to_primitive); { // Invoke the {exotic_to_prim} method on the {input} with a string // representation of the {hint}. Callable callable = CodeFactory::Call(assembler->isolate()); Node* hint_string = assembler->HeapConstant( assembler->factory()->ToPrimitiveHintString(hint)); Node* result = assembler->CallJS(callable, context, exotic_to_prim, input, hint_string); // Verify that the {result} is actually a primitive. Label if_resultisprimitive(assembler), if_resultisnotprimitive(assembler, Label::kDeferred); assembler->GotoIf(assembler->TaggedIsSmi(result), &if_resultisprimitive); Node* result_instance_type = assembler->LoadInstanceType(result); STATIC_ASSERT(FIRST_PRIMITIVE_TYPE == FIRST_TYPE); assembler->Branch(assembler->Int32LessThanOrEqual( result_instance_type, assembler->Int32Constant(LAST_PRIMITIVE_TYPE)), &if_resultisprimitive, &if_resultisnotprimitive); assembler->Bind(&if_resultisprimitive); { // Just return the {result}. assembler->Return(result); } assembler->Bind(&if_resultisnotprimitive); { // Somehow the @@toPrimitive method on {input} didn't yield a primitive. assembler->TailCallRuntime(Runtime::kThrowCannotConvertToPrimitive, context); } } // Convert using the OrdinaryToPrimitive algorithm instead. assembler->Bind(&ordinary_to_primitive); { Callable callable = CodeFactory::OrdinaryToPrimitive( assembler->isolate(), (hint == ToPrimitiveHint::kString) ? OrdinaryToPrimitiveHint::kString : OrdinaryToPrimitiveHint::kNumber); assembler->TailCallStub(callable, context, input); } } } // anonymous namespace void Builtins::Generate_NonPrimitiveToPrimitive_Default( CodeStubAssembler* assembler) { Generate_NonPrimitiveToPrimitive(assembler, ToPrimitiveHint::kDefault); } void Builtins::Generate_NonPrimitiveToPrimitive_Number( CodeStubAssembler* assembler) { Generate_NonPrimitiveToPrimitive(assembler, ToPrimitiveHint::kNumber); } void Builtins::Generate_NonPrimitiveToPrimitive_String( CodeStubAssembler* assembler) { Generate_NonPrimitiveToPrimitive(assembler, ToPrimitiveHint::kString); } void Builtins::Generate_StringToNumber(CodeStubAssembler* assembler) { typedef compiler::Node Node; typedef TypeConversionDescriptor Descriptor; Node* input = assembler->Parameter(Descriptor::kArgument); Node* context = assembler->Parameter(Descriptor::kContext); assembler->Return(assembler->StringToNumber(context, input)); } void Builtins::Generate_ToName(CodeStubAssembler* assembler) { typedef compiler::Node Node; typedef TypeConversionDescriptor Descriptor; Node* input = assembler->Parameter(Descriptor::kArgument); Node* context = assembler->Parameter(Descriptor::kContext); assembler->Return(assembler->ToName(context, input)); } // static void Builtins::Generate_NonNumberToNumber(CodeStubAssembler* assembler) { typedef compiler::Node Node; typedef TypeConversionDescriptor Descriptor; Node* input = assembler->Parameter(Descriptor::kArgument); Node* context = assembler->Parameter(Descriptor::kContext); assembler->Return(assembler->NonNumberToNumber(context, input)); } // ES6 section 7.1.3 ToNumber ( argument ) void Builtins::Generate_ToNumber(CodeStubAssembler* assembler) { typedef compiler::Node Node; typedef TypeConversionDescriptor Descriptor; Node* input = assembler->Parameter(Descriptor::kArgument); Node* context = assembler->Parameter(Descriptor::kContext); assembler->Return(assembler->ToNumber(context, input)); } void Builtins::Generate_ToString(CodeStubAssembler* assembler) { typedef CodeStubAssembler::Label Label; typedef compiler::Node Node; typedef TypeConversionDescriptor Descriptor; Node* input = assembler->Parameter(Descriptor::kArgument); Node* context = assembler->Parameter(Descriptor::kContext); Label is_number(assembler); Label runtime(assembler); assembler->GotoIf(assembler->TaggedIsSmi(input), &is_number); Node* input_map = assembler->LoadMap(input); Node* input_instance_type = assembler->LoadMapInstanceType(input_map); Label not_string(assembler); assembler->GotoUnless(assembler->IsStringInstanceType(input_instance_type), ¬_string); assembler->Return(input); Label not_heap_number(assembler); assembler->Bind(¬_string); { assembler->GotoUnless( assembler->WordEqual(input_map, assembler->HeapNumberMapConstant()), ¬_heap_number); assembler->Goto(&is_number); } assembler->Bind(&is_number); { assembler->Return(assembler->NumberToString(context, input)); } assembler->Bind(¬_heap_number); { assembler->GotoIf( assembler->Word32NotEqual(input_instance_type, assembler->Int32Constant(ODDBALL_TYPE)), &runtime); assembler->Return( assembler->LoadObjectField(input, Oddball::kToStringOffset)); } assembler->Bind(&runtime); { assembler->Return( assembler->CallRuntime(Runtime::kToString, context, input)); } } Handle<Code> Builtins::OrdinaryToPrimitive(OrdinaryToPrimitiveHint hint) { switch (hint) { case OrdinaryToPrimitiveHint::kNumber: return OrdinaryToPrimitive_Number(); case OrdinaryToPrimitiveHint::kString: return OrdinaryToPrimitive_String(); } UNREACHABLE(); return Handle<Code>::null(); } namespace { // 7.1.1.1 OrdinaryToPrimitive ( O, hint ) void Generate_OrdinaryToPrimitive(CodeStubAssembler* assembler, OrdinaryToPrimitiveHint hint) { typedef CodeStubAssembler::Label Label; typedef compiler::Node Node; typedef CodeStubAssembler::Variable Variable; typedef TypeConversionDescriptor Descriptor; Node* input = assembler->Parameter(Descriptor::kArgument); Node* context = assembler->Parameter(Descriptor::kContext); Variable var_result(assembler, MachineRepresentation::kTagged); Label return_result(assembler, &var_result); Handle<String> method_names[2]; switch (hint) { case OrdinaryToPrimitiveHint::kNumber: method_names[0] = assembler->factory()->valueOf_string(); method_names[1] = assembler->factory()->toString_string(); break; case OrdinaryToPrimitiveHint::kString: method_names[0] = assembler->factory()->toString_string(); method_names[1] = assembler->factory()->valueOf_string(); break; } for (Handle<String> name : method_names) { // Lookup the {name} on the {input}. Callable callable = CodeFactory::GetProperty(assembler->isolate()); Node* name_string = assembler->HeapConstant(name); Node* method = assembler->CallStub(callable, context, input, name_string); // Check if the {method} is callable. Label if_methodiscallable(assembler), if_methodisnotcallable(assembler, Label::kDeferred); assembler->GotoIf(assembler->TaggedIsSmi(method), &if_methodisnotcallable); Node* method_map = assembler->LoadMap(method); assembler->Branch(assembler->IsCallableMap(method_map), &if_methodiscallable, &if_methodisnotcallable); assembler->Bind(&if_methodiscallable); { // Call the {method} on the {input}. Callable callable = CodeFactory::Call(assembler->isolate()); Node* result = assembler->CallJS(callable, context, method, input); var_result.Bind(result); // Return the {result} if it is a primitive. assembler->GotoIf(assembler->TaggedIsSmi(result), &return_result); Node* result_instance_type = assembler->LoadInstanceType(result); STATIC_ASSERT(FIRST_PRIMITIVE_TYPE == FIRST_TYPE); assembler->GotoIf(assembler->Int32LessThanOrEqual( result_instance_type, assembler->Int32Constant(LAST_PRIMITIVE_TYPE)), &return_result); } // Just continue with the next {name} if the {method} is not callable. assembler->Goto(&if_methodisnotcallable); assembler->Bind(&if_methodisnotcallable); } assembler->TailCallRuntime(Runtime::kThrowCannotConvertToPrimitive, context); assembler->Bind(&return_result); assembler->Return(var_result.value()); } } // anonymous namespace void Builtins::Generate_OrdinaryToPrimitive_Number( CodeStubAssembler* assembler) { Generate_OrdinaryToPrimitive(assembler, OrdinaryToPrimitiveHint::kNumber); } void Builtins::Generate_OrdinaryToPrimitive_String( CodeStubAssembler* assembler) { Generate_OrdinaryToPrimitive(assembler, OrdinaryToPrimitiveHint::kString); } // ES6 section 7.1.2 ToBoolean ( argument ) void Builtins::Generate_ToBoolean(CodeStubAssembler* assembler) { typedef compiler::Node Node; typedef CodeStubAssembler::Label Label; typedef TypeConversionDescriptor Descriptor; Node* value = assembler->Parameter(Descriptor::kArgument); Label return_true(assembler), return_false(assembler); assembler->BranchIfToBooleanIsTrue(value, &return_true, &return_false); assembler->Bind(&return_true); assembler->Return(assembler->BooleanConstant(true)); assembler->Bind(&return_false); assembler->Return(assembler->BooleanConstant(false)); } void Builtins::Generate_ToLength(CodeStubAssembler* assembler) { typedef CodeStubAssembler::Label Label; typedef compiler::Node Node; typedef CodeStubAssembler::Variable Variable; Node* context = assembler->Parameter(1); // We might need to loop once for ToNumber conversion. Variable var_len(assembler, MachineRepresentation::kTagged); Label loop(assembler, &var_len); var_len.Bind(assembler->Parameter(0)); assembler->Goto(&loop); assembler->Bind(&loop); { // Shared entry points. Label return_len(assembler), return_two53minus1(assembler, Label::kDeferred), return_zero(assembler, Label::kDeferred); // Load the current {len} value. Node* len = var_len.value(); // Check if {len} is a positive Smi. assembler->GotoIf(assembler->WordIsPositiveSmi(len), &return_len); // Check if {len} is a (negative) Smi. assembler->GotoIf(assembler->TaggedIsSmi(len), &return_zero); // Check if {len} is a HeapNumber. Label if_lenisheapnumber(assembler), if_lenisnotheapnumber(assembler, Label::kDeferred); assembler->Branch(assembler->IsHeapNumberMap(assembler->LoadMap(len)), &if_lenisheapnumber, &if_lenisnotheapnumber); assembler->Bind(&if_lenisheapnumber); { // Load the floating-point value of {len}. Node* len_value = assembler->LoadHeapNumberValue(len); // Check if {len} is not greater than zero. assembler->GotoUnless(assembler->Float64GreaterThan( len_value, assembler->Float64Constant(0.0)), &return_zero); // Check if {len} is greater than or equal to 2^53-1. assembler->GotoIf( assembler->Float64GreaterThanOrEqual( len_value, assembler->Float64Constant(kMaxSafeInteger)), &return_two53minus1); // Round the {len} towards -Infinity. Node* value = assembler->Float64Floor(len_value); Node* result = assembler->ChangeFloat64ToTagged(value); assembler->Return(result); } assembler->Bind(&if_lenisnotheapnumber); { // Need to convert {len} to a Number first. Callable callable = CodeFactory::NonNumberToNumber(assembler->isolate()); var_len.Bind(assembler->CallStub(callable, context, len)); assembler->Goto(&loop); } assembler->Bind(&return_len); assembler->Return(var_len.value()); assembler->Bind(&return_two53minus1); assembler->Return(assembler->NumberConstant(kMaxSafeInteger)); assembler->Bind(&return_zero); assembler->Return(assembler->SmiConstant(Smi::kZero)); } } void Builtins::Generate_ToInteger(CodeStubAssembler* assembler) { typedef TypeConversionDescriptor Descriptor; compiler::Node* input = assembler->Parameter(Descriptor::kArgument); compiler::Node* context = assembler->Parameter(Descriptor::kContext); assembler->Return(assembler->ToInteger(context, input)); } // ES6 section 7.1.13 ToObject (argument) void Builtins::Generate_ToObject(CodeStubAssembler* assembler) { typedef compiler::Node Node; typedef CodeStubAssembler::Label Label; typedef CodeStubAssembler::Variable Variable; typedef TypeConversionDescriptor Descriptor; Label if_number(assembler, Label::kDeferred), if_notsmi(assembler), if_jsreceiver(assembler), if_noconstructor(assembler, Label::kDeferred), if_wrapjsvalue(assembler); Node* object = assembler->Parameter(Descriptor::kArgument); Node* context = assembler->Parameter(Descriptor::kContext); Variable constructor_function_index_var(assembler, MachineType::PointerRepresentation()); assembler->Branch(assembler->TaggedIsSmi(object), &if_number, &if_notsmi); assembler->Bind(&if_notsmi); Node* map = assembler->LoadMap(object); assembler->GotoIf(assembler->IsHeapNumberMap(map), &if_number); Node* instance_type = assembler->LoadMapInstanceType(map); assembler->GotoIf(assembler->IsJSReceiverInstanceType(instance_type), &if_jsreceiver); Node* constructor_function_index = assembler->LoadMapConstructorFunctionIndex(map); assembler->GotoIf(assembler->WordEqual(constructor_function_index, assembler->IntPtrConstant( Map::kNoConstructorFunctionIndex)), &if_noconstructor); constructor_function_index_var.Bind(constructor_function_index); assembler->Goto(&if_wrapjsvalue); assembler->Bind(&if_number); constructor_function_index_var.Bind( assembler->IntPtrConstant(Context::NUMBER_FUNCTION_INDEX)); assembler->Goto(&if_wrapjsvalue); assembler->Bind(&if_wrapjsvalue); Node* native_context = assembler->LoadNativeContext(context); Node* constructor = assembler->LoadFixedArrayElement( native_context, constructor_function_index_var.value(), 0, CodeStubAssembler::INTPTR_PARAMETERS); Node* initial_map = assembler->LoadObjectField( constructor, JSFunction::kPrototypeOrInitialMapOffset); Node* js_value = assembler->Allocate(JSValue::kSize); assembler->StoreMapNoWriteBarrier(js_value, initial_map); assembler->StoreObjectFieldRoot(js_value, JSValue::kPropertiesOffset, Heap::kEmptyFixedArrayRootIndex); assembler->StoreObjectFieldRoot(js_value, JSObject::kElementsOffset, Heap::kEmptyFixedArrayRootIndex); assembler->StoreObjectField(js_value, JSValue::kValueOffset, object); assembler->Return(js_value); assembler->Bind(&if_noconstructor); assembler->TailCallRuntime( Runtime::kThrowUndefinedOrNullToObject, context, assembler->HeapConstant(assembler->factory()->NewStringFromAsciiChecked( "ToObject", TENURED))); assembler->Bind(&if_jsreceiver); assembler->Return(object); } // ES6 section 12.5.5 typeof operator void Builtins::Generate_Typeof(CodeStubAssembler* assembler) { typedef compiler::Node Node; typedef TypeofDescriptor Descriptor; Node* object = assembler->Parameter(Descriptor::kObject); Node* context = assembler->Parameter(Descriptor::kContext); assembler->Return(assembler->Typeof(object, context)); } } // namespace internal } // namespace v8