/* * Copyright(C) 2006 Cameron Rich * * This library is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation; either version 2.1 of the License, or * (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this library; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ /** * SHA1 implementation - as defined in FIPS PUB 180-1 published April 17, 1995. * This code was originally taken from RFC3174 */ #include <string.h> #include "crypto.h" /* * Define the SHA1 circular left shift macro */ #define SHA1CircularShift(bits,word) \ (((word) << (bits)) | ((word) >> (32-(bits)))) /* ----- static functions ----- */ static void SHA1PadMessage(SHA1_CTX *ctx); static void SHA1ProcessMessageBlock(SHA1_CTX *ctx); /** * Initialize the SHA1 context */ void SHA1Init(SHA1_CTX *ctx) { ctx->Length_Low = 0; ctx->Length_High = 0; ctx->Message_Block_Index = 0; ctx->Intermediate_Hash[0] = 0x67452301; ctx->Intermediate_Hash[1] = 0xEFCDAB89; ctx->Intermediate_Hash[2] = 0x98BADCFE; ctx->Intermediate_Hash[3] = 0x10325476; ctx->Intermediate_Hash[4] = 0xC3D2E1F0; } /** * Accepts an array of octets as the next portion of the message. */ void SHA1Update(SHA1_CTX *ctx, const uint8_t *msg, int len) { while (len--) { ctx->Message_Block[ctx->Message_Block_Index++] = (*msg & 0xFF); ctx->Length_Low += 8; if (ctx->Length_Low == 0) { ctx->Length_High++; } if (ctx->Message_Block_Index == 64) { SHA1ProcessMessageBlock(ctx); } msg++; } } /** * Return the 160-bit message digest into the user's array */ void SHA1Final(SHA1_CTX *ctx, uint8_t *digest) { int i; SHA1PadMessage(ctx); memset(ctx->Message_Block, 0, 64); ctx->Length_Low = 0; /* and clear length */ ctx->Length_High = 0; for (i = 0; i < SHA1_SIZE; i++) { digest[i] = ctx->Intermediate_Hash[i>>2] >> 8 * ( 3 - ( i & 0x03 ) ); } } /** * Process the next 512 bits of the message stored in the array. */ static void SHA1ProcessMessageBlock(SHA1_CTX *ctx) { const uint32_t K[] = { /* Constants defined in SHA-1 */ 0x5A827999, 0x6ED9EBA1, 0x8F1BBCDC, 0xCA62C1D6 }; int t; /* Loop counter */ uint32_t temp; /* Temporary word value */ uint32_t W[80]; /* Word sequence */ uint32_t A, B, C, D, E; /* Word buffers */ /* * Initialize the first 16 words in the array W */ for (t = 0; t < 16; t++) { W[t] = ctx->Message_Block[t * 4] << 24; W[t] |= ctx->Message_Block[t * 4 + 1] << 16; W[t] |= ctx->Message_Block[t * 4 + 2] << 8; W[t] |= ctx->Message_Block[t * 4 + 3]; } for (t = 16; t < 80; t++) { W[t] = SHA1CircularShift(1,W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16]); } A = ctx->Intermediate_Hash[0]; B = ctx->Intermediate_Hash[1]; C = ctx->Intermediate_Hash[2]; D = ctx->Intermediate_Hash[3]; E = ctx->Intermediate_Hash[4]; for (t = 0; t < 20; t++) { temp = SHA1CircularShift(5,A) + ((B & C) | ((~B) & D)) + E + W[t] + K[0]; E = D; D = C; C = SHA1CircularShift(30,B); B = A; A = temp; } for (t = 20; t < 40; t++) { temp = SHA1CircularShift(5,A) + (B ^ C ^ D) + E + W[t] + K[1]; E = D; D = C; C = SHA1CircularShift(30,B); B = A; A = temp; } for (t = 40; t < 60; t++) { temp = SHA1CircularShift(5,A) + ((B & C) | (B & D) | (C & D)) + E + W[t] + K[2]; E = D; D = C; C = SHA1CircularShift(30,B); B = A; A = temp; } for (t = 60; t < 80; t++) { temp = SHA1CircularShift(5,A) + (B ^ C ^ D) + E + W[t] + K[3]; E = D; D = C; C = SHA1CircularShift(30,B); B = A; A = temp; } ctx->Intermediate_Hash[0] += A; ctx->Intermediate_Hash[1] += B; ctx->Intermediate_Hash[2] += C; ctx->Intermediate_Hash[3] += D; ctx->Intermediate_Hash[4] += E; ctx->Message_Block_Index = 0; } /* * According to the standard, the message must be padded to an even * 512 bits. The first padding bit must be a '1'. The last 64 * bits represent the length of the original message. All bits in * between should be 0. This function will pad the message * according to those rules by filling the Message_Block array * accordingly. It will also call the ProcessMessageBlock function * provided appropriately. When it returns, it can be assumed that * the message digest has been computed. * * @param ctx [in, out] The SHA1 context */ static void SHA1PadMessage(SHA1_CTX *ctx) { /* * Check to see if the current message block is too small to hold * the initial padding bits and length. If so, we will pad the * block, process it, and then continue padding into a second * block. */ if (ctx->Message_Block_Index > 55) { ctx->Message_Block[ctx->Message_Block_Index++] = 0x80; while(ctx->Message_Block_Index < 64) { ctx->Message_Block[ctx->Message_Block_Index++] = 0; } SHA1ProcessMessageBlock(ctx); while (ctx->Message_Block_Index < 56) { ctx->Message_Block[ctx->Message_Block_Index++] = 0; } } else { ctx->Message_Block[ctx->Message_Block_Index++] = 0x80; while(ctx->Message_Block_Index < 56) { ctx->Message_Block[ctx->Message_Block_Index++] = 0; } } /* * Store the message length as the last 8 octets */ ctx->Message_Block[56] = ctx->Length_High >> 24; ctx->Message_Block[57] = ctx->Length_High >> 16; ctx->Message_Block[58] = ctx->Length_High >> 8; ctx->Message_Block[59] = ctx->Length_High; ctx->Message_Block[60] = ctx->Length_Low >> 24; ctx->Message_Block[61] = ctx->Length_Low >> 16; ctx->Message_Block[62] = ctx->Length_Low >> 8; ctx->Message_Block[63] = ctx->Length_Low; SHA1ProcessMessageBlock(ctx); }