/** * @file * Ethernet Interface Skeleton * */ /* * Copyright (c) 2001-2004 Swedish Institute of Computer Science. * All rights reserved. * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT * SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY * OF SUCH DAMAGE. * * This file is part of the lwIP TCP/IP stack. * * Author: Adam Dunkels <adam@sics.se> * Author: H. Peter Anvin <hpa@@zytor.com> * Author: Eric Biederman <ebiederm@xmission.com> * */ /* * This file is a skeleton for developing Ethernet network interface * drivers for lwIP. Add code to the low_level functions and do a * search-and-replace for the word "ethernetif" to replace it with * something that better describes your network interface. */ /* other headers include deprintf.h too early */ #define UNDIIF_ID_FULL_DEBUG (UNDIIF_ID_DEBUG | UNDIIF_DEBUG) #if UNDIIF_ID_FULL_DEBUG # ifndef DEBUG # define DEBUG 1 # endif # ifndef DEBUG_PORT # define DEBUG_PORT 0x3f8 # endif #endif /* UNDIIF_ID_FULL_DEBUG */ #include <core.h> #include "lwip/opt.h" #define LWIP_UNDIIF_DBG(debug) \ ( ((debug) & LWIP_DBG_ON) && \ ((debug) & LWIP_DBG_TYPES_ON) && \ (((debug) & LWIP_DBG_MASK_LEVEL) >= LWIP_DBG_MIN_LEVEL) ) #include "lwip/def.h" #include "lwip/mem.h" #include "lwip/pbuf.h" #include "lwip/sys.h" #include <lwip/stats.h> #include <lwip/snmp.h> #include "netif/etharp.h" #include "netif/ppp_oe.h" #include "lwip/netifapi.h" #include "lwip/tcpip.h" #include "../../../fs/pxe/pxe.h" #include <inttypes.h> #include <string.h> #include <syslinux/pxe_api.h> #include <dprintf.h> /* debug extras */ #include "ipv4/lwip/icmp.h" #include "lwip/tcp_impl.h" #include "lwip/udp.h" #if LWIP_AUTOIP #error "AUTOIP not supported" #endif #if ETH_PAD_SIZE #error "ETH_PAD_SIZE not supported" #endif #if NETIF_MAX_HWADDR_LEN != MAC_MAX #error "hwaddr_len mismatch" #endif /** the time an ARP entry stays valid after its last update, * for ARP_TMR_INTERVAL = 5000, this is * (240 * 5) seconds = 20 minutes. */ #define UNDIARP_MAXAGE 240 /** the time an ARP entry stays pending after first request, * for ARP_TMR_INTERVAL = 5000, this is * (2 * 5) seconds = 10 seconds. * * @internal Keep this number at least 2, otherwise it might * run out instantly if the timeout occurs directly after a request. */ #define UNDIARP_MAXPENDING 2 typedef u8_t hwaddr_t[NETIF_MAX_HWADDR_LEN]; #ifdef PACK_STRUCT_USE_INCLUDES # include "arch/bpstruct.h" #endif PACK_STRUCT_BEGIN /** the ARP message */ struct arp_hdr { PACK_STRUCT_FIELD(u16_t hwtype); PACK_STRUCT_FIELD(u16_t proto); PACK_STRUCT_FIELD(u8_t hwlen); PACK_STRUCT_FIELD(u8_t protolen); PACK_STRUCT_FIELD(u16_t opcode); } PACK_STRUCT_STRUCT; PACK_STRUCT_END #ifdef PACK_STRUCT_USE_INCLUDES # include "arch/epstruct.h" #endif static inline int arp_hdr_len(struct netif *netif) { return sizeof(struct arp_hdr) + (netif->hwaddr_len + sizeof(uint32_t))*2; } enum undiarp_state { UNDIARP_STATE_EMPTY = 0, UNDIARP_STATE_PENDING, UNDIARP_STATE_STABLE }; struct undiarp_entry { #if ARP_QUEUEING /** * Pointer to queue of pending outgoing packets on this ARP entry. */ struct etharp_q_entry *q; #endif struct ip_addr ipaddr; u8_t hwaddr[NETIF_MAX_HWADDR_LEN]; enum undiarp_state state; u8_t ctime; struct netif *netif; }; #define PKTBUF_SIZE 2048 /* Define those to better describe your network interface. */ #define IFNAME0 'u' #define IFNAME1 'n' static struct netif undi_netif; static struct undiarp_entry arp_table[ARP_TABLE_SIZE]; #if !LWIP_NETIF_HWADDRHINT static u8_t undiarp_cached_entry; #endif /** * Try hard to create a new entry - we want the IP address to appear in * the cache (even if this means removing an active entry or so). */ #define UNDIARP_TRY_HARD 1 #define UNDIARP_FIND_ONLY 2 #define UNIDIF_ID_STRLEN 300 static inline bool undi_is_ethernet(struct netif *netif) { (void)netif; return MAC_type == ETHER_TYPE; } #if 0 static void print_pbuf(struct pbuf *p) { struct pbuf *q; int off; for( off = 0, q = p; q != NULL; q = q->next) { unsigned char *byte, *end; byte = q->payload; end = byte + q->len; for (; byte < end; byte++, off++ ) { if ((off & 0xf) == 0) { printf("%04x: ", off); } printf("%02x ", *byte); if ((off & 0xf) == 0xf) { printf("\n"); } } } printf("\n"); } #endif #if 0 static void print_arp_pbuf(struct netif *netif, struct pbuf *p) { struct arp_hdr *hdr; u8_t *hdr_ptr; int i; hdr = p->payload; hdr_ptr = (unsigned char *)(hdr + 1); /* Fixed fields */ printf("arp: %04x %04x %04x %04x ", hdr->hwtype, hdr->proto, hdr->_hwlen_protolen); /* Source hardware address */ for(i = 0; i < netif->hwaddr_len; i++, hdr_ptr++) { printf("%02x%c", *hdr_ptr,(i +1) == netif->hwaddr_len?' ':':'); } /* Source ip address */ printf("%d.%d.%d.%d ", hdr_ptr[0], hdr_ptr[1], hdr_ptr[2], hdr_ptr[3]); hdr_ptr += 4; /* Destination hardware address */ for(i = 0; i < netif->hwaddr_len; i++, hdr_ptr++) { printf("%02x%c", *hdr_ptr, (i +1) == netif->hwaddr_len?' ':':'); } /* Destination ip address */ printf("%d.%d.%d.%d ", hdr_ptr[0], hdr_ptr[1], hdr_ptr[2], hdr_ptr[3]); hdr_ptr += 4; } #endif #if LWIP_UNDIIF_DBG(UNDIIF_ID_FULL_DEBUG) int snprintf_eth_hdr(char *str, size_t size, char head[], struct eth_hdr *ethhdr, char dir, char status, char tail[]) { u8_t *d = ethhdr->dest.addr; u8_t *s = ethhdr->src.addr; return snprintf(str, size, "%s: d:%02x:%02x:%02x:%02x:%02x:%02x" " s:%02x:%02x:%02x:%02x:%02x:%02x" " t:%4hx %c%c%s\n", head, d[0], d[1], d[2], d[3], d[4], d[5], s[0], s[1], s[2], s[3], s[4], s[5], (unsigned)htons(ethhdr->type), dir, status, tail); } int snprintf_arp_hdr(char *str, size_t size, char head[], struct eth_hdr *ethhdr, char dir, char status, char tail[]) { struct etharp_hdr *arphdr; u8_t *d, *s; struct ip_addr *sip, *dip; if (ntohs(ethhdr->type) == ETHTYPE_ARP) { arphdr = (struct etharp_hdr *)((void *)ethhdr + 14); d = arphdr->dhwaddr.addr; s = arphdr->shwaddr.addr; sip = (struct ip_addr *) &(arphdr->sipaddr); dip = (struct ip_addr *) &(arphdr->dipaddr); return snprintf(str, size, "%s: s:%02x:%02x:%02x:%02x:%02x:%02x" " %3d.%3d.%3d.%3d" " %02x:%02x:%02x:%02x:%02x:%02x" " %3d.%3d.%3d.%3d" " %c%c%s\n", head, s[0], s[1], s[2], s[3], s[4], s[5], ip4_addr1(sip), ip4_addr2(sip), ip4_addr3(sip), ip4_addr4(sip), d[0], d[1], d[2], d[3], d[4], d[5], ip4_addr1(dip), ip4_addr2(dip), ip4_addr3(dip), ip4_addr4(dip), dir, status, tail); } else { return 0; } } int snprintf_ip_hdr(char *str, size_t size, char head[], struct eth_hdr *ethhdr, char dir, char status, char tail[]) { struct ip_hdr *iphdr; if (ntohs(ethhdr->type) == ETHTYPE_IP) { iphdr = (struct ip_hdr *)((void *)ethhdr + 14); return snprintf(str, size, "%s: s:%3d.%3d.%3d.%3d %3d.%3d.%3d.%3d l:%5d" " i:%04x p:%04x c:%04x hl:%3d" " %c%c%s\n", head, ip4_addr1(&iphdr->src), ip4_addr2(&iphdr->src), ip4_addr3(&iphdr->src), ip4_addr4(&iphdr->src), ip4_addr1(&iphdr->dest), ip4_addr2(&iphdr->dest), ip4_addr3(&iphdr->dest), ip4_addr4(&iphdr->dest), ntohs(IPH_LEN(iphdr)), ntohs(IPH_ID(iphdr)), IPH_PROTO(iphdr), ntohs(IPH_CHKSUM(iphdr)), (IPH_HL(iphdr) << 2), dir, status, tail); } else { return 0; } } int snprintf_icmp_hdr(char *str, size_t size, char head[], struct eth_hdr *ethhdr, char dir, char status, char tail[]) { struct ip_hdr *iphdr; struct icmp_echo_hdr *icmphdr; if (ntohs(ethhdr->type) == ETHTYPE_IP) { iphdr = (struct ip_hdr *)((void *)ethhdr + 14); if (IPH_PROTO(iphdr) == IP_PROTO_ICMP) { icmphdr = (struct icmp_echo_hdr *)((void *)iphdr + (IPH_HL(iphdr) << 2)); return snprintf(str, size, "%s: t:%02x c:%02x k:%04x" " i:%04x s:%04x " " %c%c%s\n", head, icmphdr->type, icmphdr->code, ntohs(icmphdr->chksum), ntohs(icmphdr->id), ntohs(icmphdr->seqno), dir, status, tail); } else { return 0; } } else { return 0; } } int snprintf_tcp_hdr(char *str, size_t size, char head[], struct eth_hdr *ethhdr, char dir, char status, char tail[]) { struct ip_hdr *iphdr; struct tcp_hdr *tcphdr; if (ntohs(ethhdr->type) == ETHTYPE_IP) { iphdr = (struct ip_hdr *)((void *)ethhdr + 14); if (IPH_PROTO(iphdr) == IP_PROTO_TCP) { tcphdr = (struct tcp_hdr *)((void *)iphdr + (IPH_HL(iphdr) << 2)); u16_t lenfl = ntohs(tcphdr->_hdrlen_rsvd_flags); return snprintf(str, size, "%s: s:%5d %5d q:%08x a:%08x lf:%04x k:%04x" " %c%c%s\n", head, ntohs(tcphdr->src), ntohs(tcphdr->dest), ntohl(tcphdr->seqno), ntohl(tcphdr->ackno), lenfl, ntohs(tcphdr->chksum), dir, status, tail); } else { return 0; } } else { return 0; } } int snprintf_udp_hdr(char *str, size_t size, char head[], struct eth_hdr *ethhdr, char dir, char status, char tail[]) { struct ip_hdr *iphdr; struct udp_hdr *udphdr; if (ntohs(ethhdr->type) == ETHTYPE_IP) { iphdr = (struct ip_hdr *)((void *)ethhdr + 14); if (IPH_PROTO(iphdr) == IP_PROTO_UDP) { udphdr = (struct udp_hdr *)((void *)iphdr + (IPH_HL(iphdr) << 2)); return snprintf(str, size, "%s: s:%5d %5d l:%d c:%04x" " %c%c%s\n", head, ntohs(udphdr->src), ntohs(udphdr->dest), ntohs(udphdr->len), ntohs(udphdr->chksum), dir, status, tail); } else { return 0; } } else { return 0; } } #endif /* UNDIIF_ID_FULL_DEBUG */ /** * In this function, the hardware should be initialized. * Called from undiif_init(). * * @param netif the already initialized lwip network interface structure * for this undiif */ static void low_level_init(struct netif *netif) { static __lowmem t_PXENV_UNDI_OPEN undi_open; int i; /* MAC_type and MAC_len should always match what is returned by * PXENV_UNDI_GET_INFORMATION. At the moment the both seem to be * reliable but if they disagree that is a sign of a nasty bug * somewhere so abort. */ /* If we are in conflict abort */ if (MAC_type != pxe_undi_info.HwType) { printf("HwType conflicit: %u != %u\n", MAC_type, pxe_undi_info.HwType); kaboom(); } if (MAC_len != pxe_undi_info.HwAddrLen) { printf("HwAddrLen conflict: %u != %u\n", MAC_len, pxe_undi_info.HwAddrLen); kaboom(); } /* set MAC hardware address length */ netif->hwaddr_len = MAC_len; /* set MAC hardware address */ memcpy(netif->hwaddr, MAC, MAC_len); /* maximum transfer unit */ netif->mtu = pxe_undi_info.MaxTranUnit; dprintf("UNDI: hw address"); for (i = 0; i < netif->hwaddr_len; i++) dprintf("%c%02x", i ? ':' : ' ', (uint8_t)netif->hwaddr[i]); dprintf("\n"); /* device capabilities */ netif->flags = NETIF_FLAG_BROADCAST | NETIF_FLAG_LINK_UP; /* don't set NETIF_FLAG_ETHARP if this device is not an ethernet one */ if (undi_is_ethernet(netif)) netif->flags |= NETIF_FLAG_ETHARP; /* Install the interrupt vector */ pxe_start_isr(); /* Open the UNDI stack - you'd think the BC would have done this... */ undi_open.PktFilter = 0x0003; /* FLTR_DIRECTED | FLTR_BRDCST */ pxe_call(PXENV_UNDI_OPEN, &undi_open); } /** * This function should do the actual transmission of the packet. The packet is * contained in the pbuf that is passed to the function. This pbuf * might be chained. * * @param netif the lwip network interface structure for this undiif * @param p the MAC packet to send (e.g. IP packet including MAC addresses and type) * @return ERR_OK if the packet could be sent * an err_t value if the packet couldn't be sent * * @note Returning ERR_MEM here if a DMA queue of your MAC is full can lead to * strange results. You might consider waiting for space in the DMA queue * to become availale since the stack doesn't retry to send a packet * dropped because of memory failure (except for the TCP timers). */ extern volatile uint32_t pxe_irq_count; extern volatile uint8_t pxe_need_poll; static err_t undi_transmit(struct netif *netif, struct pbuf *pbuf, hwaddr_t *dest, uint16_t undi_protocol) { struct pxe_xmit { t_PXENV_UNDI_TRANSMIT xmit; t_PXENV_UNDI_TBD tbd; }; static __lowmem struct pxe_xmit pxe; static __lowmem hwaddr_t low_dest; static __lowmem char pkt_buf[PKTBUF_SIZE]; uint32_t now; static uint32_t first_xmit; #if LWIP_UNDIIF_DBG(UNDIIF_ID_FULL_DEBUG) char *str = malloc(UNIDIF_ID_STRLEN); int strpos = 0; struct eth_hdr *ethhdr = pbuf->payload; strpos += snprintf(str + strpos, UNIDIF_ID_STRLEN - strpos, "undi xmit thd '%s'\n", current()->name); strpos += snprintf_eth_hdr(str + strpos, UNIDIF_ID_STRLEN - strpos, "undi", ethhdr, 'x', '0', ""); strpos += snprintf_arp_hdr(str + strpos, UNIDIF_ID_STRLEN - strpos, " arp", ethhdr, 'x', '0', ""); strpos += snprintf_ip_hdr(str + strpos, UNIDIF_ID_STRLEN - strpos, " ip", ethhdr, 'x', '0', ""); strpos += snprintf_icmp_hdr(str + strpos, UNIDIF_ID_STRLEN - strpos, " icmp", ethhdr, 'x', '0', ""); strpos += snprintf_tcp_hdr(str + strpos, UNIDIF_ID_STRLEN - strpos, " tcp", ethhdr, 'x', '0', ""); strpos += snprintf_udp_hdr(str + strpos, UNIDIF_ID_STRLEN - strpos, " udp", ethhdr, 'x', '0', ""); LWIP_DEBUGF(UNDIIF_ID_FULL_DEBUG, ("%s", str)); free(str); #endif /* UNDIIF_ID_FULL_DEBUG */ /* Drop jumbo frames */ if ((pbuf->tot_len > sizeof(pkt_buf)) || (pbuf->tot_len > netif->mtu)) return ERR_ARG; if (__unlikely(!pxe_irq_count)) { now = ms_timer(); if (!first_xmit) { first_xmit = now; } else if (now - first_xmit > 3000) { /* 3 seconds after first transmit, and no interrupts */ LWIP_PLATFORM_DIAG(("undiif: forcing polling\n")); asm volatile("orb $1,%0" : "+m" (pxe_need_poll)); asm volatile("incl %0" : "+m" (pxe_irq_count)); } } pbuf_copy_partial( pbuf, pkt_buf, pbuf->tot_len, 0); if (dest) memcpy(low_dest, dest, netif->hwaddr_len); do { memset(&pxe, 0, sizeof pxe); pxe.xmit.Protocol = undi_protocol; pxe.xmit.XmitFlag = dest? XMT_DESTADDR : XMT_BROADCAST; pxe.xmit.DestAddr = FAR_PTR(&low_dest); pxe.xmit.TBD = FAR_PTR(&pxe.tbd); pxe.tbd.ImmedLength = pbuf->tot_len; pxe.tbd.Xmit = FAR_PTR(pkt_buf); pxe_call(PXENV_UNDI_TRANSMIT, &pxe.xmit); } while (pxe.xmit.Status == PXENV_STATUS_OUT_OF_RESOURCES); LINK_STATS_INC(link.xmit); return ERR_OK; } static err_t undi_send_unknown(struct netif *netif, struct pbuf *pbuf) { return undi_transmit(netif, pbuf, NULL, P_UNKNOWN); } static err_t undi_send_ip(struct netif *netif, struct pbuf *pbuf, hwaddr_t *dst) { return undi_transmit(netif, pbuf, dst, P_IP); } static err_t undi_send_arp(struct netif *netif, struct pbuf *pbuf, hwaddr_t *dst) { return undi_transmit(netif, pbuf, dst, P_ARP); } /** * Send an ARP request packet asking for ipaddr. * * @param netif the lwip network interface on which to send the request * @param ipaddr the IP address for which to ask * @return ERR_OK if the request has been sent * ERR_MEM if the ARP packet couldn't be allocated * any other err_t on failure */ static err_t undiarp_request(struct netif *netif, struct ip_addr *ipaddr) { struct pbuf *p; err_t result = ERR_OK; struct arp_hdr *hdr; u8_t *hdr_ptr; LWIP_DEBUGF(UNDIIF_ARP_DEBUG | UNDIIF_DEBUG | LWIP_DBG_TRACE, ("undiarp_request: sending ARP request.\n")); /* allocate a pbuf for the outgoing ARP request packet */ p = pbuf_alloc(PBUF_RAW, arp_hdr_len(netif), PBUF_RAM); /* could allocate a pbuf for an ARP request? */ if (p == NULL) { LWIP_DEBUGF(UNDIIF_ARP_DEBUG | UNDIIF_DEBUG | LWIP_DBG_TRACE | LWIP_DBG_LEVEL_SERIOUS, ("undiarp_raw: could not allocate pbuf for ARP request.\n")); ETHARP_STATS_INC(etharp.memerr); return ERR_MEM; } LWIP_ASSERT("check that first pbuf can hold arp_hdr_len bytesr", (p->len >= arp_hdr_len(netif))); hdr = p->payload; LWIP_DEBUGF(UNDIIF_ARP_DEBUG | UNDIIF_DEBUG | LWIP_DBG_TRACE, ("undiarp_request: sending raw ARP packet.\n")); hdr->opcode = htons(ARP_REQUEST); hdr->hwtype = htons(MAC_type); hdr->proto = htons(ETHTYPE_IP); hdr->hwlen = netif->hwaddr_len; hdr->protolen = sizeof(struct ip_addr); hdr_ptr = (unsigned char *)(hdr + 1); memcpy(hdr_ptr, netif->hwaddr, netif->hwaddr_len); hdr_ptr += netif->hwaddr_len; memcpy(hdr_ptr, &netif->ip_addr, 4); hdr_ptr += 4; memset(hdr_ptr, 0, netif->hwaddr_len); hdr_ptr += netif->hwaddr_len; memcpy(hdr_ptr, ipaddr, 4); /* send ARP query */ result = undi_send_arp(netif, p, NULL); ETHARP_STATS_INC(etharp.xmit); /* free ARP query packet */ pbuf_free(p); p = NULL; /* could not allocate pbuf for ARP request */ return result; } #if ARP_QUEUEING /** * Free a complete queue of etharp entries * * @param q a qeueue of etharp_q_entry's to free */ static void free_undiarp_q(struct etharp_q_entry *q) { struct etharp_q_entry *r; LWIP_ASSERT("q != NULL", q != NULL); LWIP_ASSERT("q->p != NULL", q->p != NULL); while (q) { r = q; q = q->next; LWIP_ASSERT("r->p != NULL", (r->p != NULL)); pbuf_free(r->p); memp_free(MEMP_ARP_QUEUE, r); } } #endif /** * Clears expired entries in the ARP table. * * This function should be called every ETHARP_TMR_INTERVAL microseconds (5 seconds), * in order to expire entries in the ARP table. */ void undiarp_tmr(void) { u8_t i; LWIP_DEBUGF(UNDIIF_ARP_DEBUG | UNDIIF_DEBUG, ("undiarp_timer\n")); /* remove expired entries from the ARP table */ for (i = 0; i < ARP_TABLE_SIZE; ++i) { arp_table[i].ctime++; if (((arp_table[i].state == UNDIARP_STATE_STABLE) && (arp_table[i].ctime >= UNDIARP_MAXAGE)) || ((arp_table[i].state == UNDIARP_STATE_PENDING) && (arp_table[i].ctime >= UNDIARP_MAXPENDING))) { /* pending or stable entry has become old! */ LWIP_DEBUGF(UNDIIF_ARP_DEBUG | UNDIIF_DEBUG , ("undiarp_timer: expired %s entry %"U16_F".\n", arp_table[i].state == UNDIARP_STATE_STABLE ? "stable" : "pending", (u16_t)i)); /* clean up entries that have just been expired */ /* remove from SNMP ARP index tree */ snmp_delete_arpidx_tree(arp_table[i].netif, &arp_table[i].ipaddr); #if ARP_QUEUEING /* and empty packet queue */ if (arp_table[i].q != NULL) { /* remove all queued packets */ LWIP_DEBUGF(UNDIIF_ARP_DEBUG | UNDIIF_DEBUG , ("undiarp_timer: freeing entry %"U16_F", packet queue %p.\n", (u16_t)i, (void *)(arp_table[i].q))); free_undiarp_q(arp_table[i].q); arp_table[i].q = NULL; } #endif /* recycle entry for re-use */ arp_table[i].state = UNDIARP_STATE_EMPTY; } #if ARP_QUEUEING /* still pending entry? (not expired) */ if (arp_table[i].state == UNDIARP_STATE_PENDING) { /* resend an ARP query here? */ } #endif } } /** * Search the ARP table for a matching or new entry. * * If an IP address is given, return a pending or stable ARP entry that matches * the address. If no match is found, create a new entry with this address set, * but in state ETHARP_EMPTY. The caller must check and possibly change the * state of the returned entry. * * If ipaddr is NULL, return a initialized new entry in state ETHARP_EMPTY. * * In all cases, attempt to create new entries from an empty entry. If no * empty entries are available and UNDIARP_TRY_HARD flag is set, recycle * old entries. Heuristic choose the least important entry for recycling. * * @param ipaddr IP address to find in ARP cache, or to add if not found. * @param flags * - UNDIARP_TRY_HARD: Try hard to create a entry by allowing recycling of * active (stable or pending) entries. * * @return The ARP entry index that matched or is created, ERR_MEM if no * entry is found or could be recycled. */ static s8_t #if LWIP_NETIF_HWADDRHINT find_entry(struct ip_addr *ipaddr, u8_t flags, struct netif *netif) #else /* LWIP_NETIF_HWADDRHINT */ find_entry(struct ip_addr *ipaddr, u8_t flags) #endif /* LWIP_NETIF_HWADDRHINT */ { s8_t old_pending = ARP_TABLE_SIZE, old_stable = ARP_TABLE_SIZE; s8_t empty = ARP_TABLE_SIZE; u8_t i = 0, age_pending = 0, age_stable = 0; #if ARP_QUEUEING /* oldest entry with packets on queue */ s8_t old_queue = ARP_TABLE_SIZE; /* its age */ u8_t age_queue = 0; #endif /* First, test if the last call to this function asked for the * same address. If so, we're really fast! */ if (ipaddr) { /* ipaddr to search for was given */ #if LWIP_NETIF_HWADDRHINT if ((netif != NULL) && (netif->addr_hint != NULL)) { /* per-pcb cached entry was given */ u8_t per_pcb_cache = *(netif->addr_hint); if ((per_pcb_cache < ARP_TABLE_SIZE) && arp_table[per_pcb_cache].state == UNDIARP_STATE_STABLE) { /* the per-pcb-cached entry is stable */ if (ip_addr_cmp(ipaddr, &arp_table[per_pcb_cache].ipaddr)) { /* per-pcb cached entry was the right one! */ ETHARP_STATS_INC(etharp.cachehit); return per_pcb_cache; } } } #else /* #if LWIP_NETIF_HWADDRHINT */ if (arp_table[undiarp_cached_entry].state == UNDIARP_STATE_STABLE) { /* the cached entry is stable */ if (ip_addr_cmp(ipaddr, &arp_table[undiarp_cached_entry].ipaddr)) { /* cached entry was the right one! */ ETHARP_STATS_INC(etharp.cachehit); return undiarp_cached_entry; } } #endif /* #if LWIP_NETIF_HWADDRHINT */ } /** * a) do a search through the cache, remember candidates * b) select candidate entry * c) create new entry */ /* a) in a single search sweep, do all of this * 1) remember the first empty entry (if any) * 2) remember the oldest stable entry (if any) * 3) remember the oldest pending entry without queued packets (if any) * 4) remember the oldest pending entry with queued packets (if any) * 5) search for a matching IP entry, either pending or stable * until 5 matches, or all entries are searched for. */ for (i = 0; i < ARP_TABLE_SIZE; ++i) { /* no empty entry found yet and now we do find one? */ if ((empty == ARP_TABLE_SIZE) && (arp_table[i].state == UNDIARP_STATE_EMPTY)) { LWIP_DEBUGF(UNDIIF_ARP_DEBUG | UNDIIF_DEBUG , ("find_entry: found empty entry %"U16_F"\n", (u16_t)i)); /* remember first empty entry */ empty = i; } /* pending entry? */ else if (arp_table[i].state == UNDIARP_STATE_PENDING) { /* if given, does IP address match IP address in ARP entry? */ if (ipaddr && ip_addr_cmp(ipaddr, &arp_table[i].ipaddr)) { LWIP_DEBUGF(UNDIIF_ARP_DEBUG | UNDIIF_DEBUG | LWIP_DBG_TRACE, ("find_entry: found matching pending entry %"U16_F"\n", (u16_t)i)); /* found exact IP address match, simply bail out */ #if LWIP_NETIF_HWADDRHINT NETIF_SET_HINT(netif, i); #else /* #if LWIP_NETIF_HWADDRHINT */ undiarp_cached_entry = i; #endif /* #if LWIP_NETIF_HWADDRHINT */ return i; #if ARP_QUEUEING /* pending with queued packets? */ } else if (arp_table[i].q != NULL) { if (arp_table[i].ctime >= age_queue) { old_queue = i; age_queue = arp_table[i].ctime; } #endif /* pending without queued packets? */ } else { if (arp_table[i].ctime >= age_pending) { old_pending = i; age_pending = arp_table[i].ctime; } } } /* stable entry? */ else if (arp_table[i].state == UNDIARP_STATE_STABLE) { /* if given, does IP address match IP address in ARP entry? */ if (ipaddr && ip_addr_cmp(ipaddr, &arp_table[i].ipaddr)) { LWIP_DEBUGF(UNDIIF_ARP_DEBUG | UNDIIF_DEBUG | LWIP_DBG_TRACE, ("find_entry: found matching stable entry %"U16_F"\n", (u16_t)i)); /* found exact IP address match, simply bail out */ #if LWIP_NETIF_HWADDRHINT NETIF_SET_HINT(netif, i); #else /* #if LWIP_NETIF_HWADDRHINT */ undiarp_cached_entry = i; #endif /* #if LWIP_NETIF_HWADDRHINT */ return i; /* remember entry with oldest stable entry in oldest, its age in maxtime */ } else if (arp_table[i].ctime >= age_stable) { old_stable = i; age_stable = arp_table[i].ctime; } } } /* { we have no match } => try to create a new entry */ /* no empty entry found and not allowed to recycle? */ if (((empty == ARP_TABLE_SIZE) && ((flags & UNDIARP_TRY_HARD) == 0)) /* or don't create new entry, only search? */ || ((flags & UNDIARP_FIND_ONLY) != 0)) { LWIP_DEBUGF(UNDIIF_ARP_DEBUG | UNDIIF_DEBUG | LWIP_DBG_TRACE, ("find_entry: no empty entry found and not allowed to recycle\n")); return (s8_t)ERR_MEM; } /* b) choose the least destructive entry to recycle: * 1) empty entry * 2) oldest stable entry * 3) oldest pending entry without queued packets * 4) oldest pending entry with queued packets * * { UNDIARP_TRY_HARD is set at this point } */ /* 1) empty entry available? */ if (empty < ARP_TABLE_SIZE) { i = empty; LWIP_DEBUGF(UNDIIF_ARP_DEBUG | UNDIIF_DEBUG | LWIP_DBG_TRACE, ("find_entry: selecting empty entry %"U16_F"\n", (u16_t)i)); } /* 2) found recyclable stable entry? */ else if (old_stable < ARP_TABLE_SIZE) { /* recycle oldest stable*/ i = old_stable; LWIP_DEBUGF(UNDIIF_ARP_DEBUG | UNDIIF_DEBUG | LWIP_DBG_TRACE, ("find_entry: selecting oldest stable entry %"U16_F"\n", (u16_t)i)); #if ARP_QUEUEING /* no queued packets should exist on stable entries */ LWIP_ASSERT("arp_table[i].q == NULL", arp_table[i].q == NULL); #endif /* 3) found recyclable pending entry without queued packets? */ } else if (old_pending < ARP_TABLE_SIZE) { /* recycle oldest pending */ i = old_pending; LWIP_DEBUGF(UNDIIF_ARP_DEBUG | UNDIIF_DEBUG | LWIP_DBG_TRACE, ("find_entry: selecting oldest pending entry %"U16_F" (without queue)\n", (u16_t)i)); #if ARP_QUEUEING /* 4) found recyclable pending entry with queued packets? */ } else if (old_queue < ARP_TABLE_SIZE) { /* recycle oldest pending */ i = old_queue; LWIP_DEBUGF(UNDIIF_ARP_DEBUG | UNDIIF_DEBUG | LWIP_DBG_TRACE, ("find_entry: selecting oldest pending entry %"U16_F", freeing packet queue %p\n", (u16_t)i, (void *)(arp_table[i].q))); free_undiarp_q(arp_table[i].q); arp_table[i].q = NULL; #endif /* no empty or recyclable entries found */ } else { return (s8_t)ERR_MEM; } /* { empty or recyclable entry found } */ LWIP_ASSERT("i < ARP_TABLE_SIZE", i < ARP_TABLE_SIZE); if (arp_table[i].state != UNDIARP_STATE_EMPTY) { snmp_delete_arpidx_tree(arp_table[i].netif, &arp_table[i].ipaddr); } /* recycle entry (no-op for an already empty entry) */ arp_table[i].state = UNDIARP_STATE_EMPTY; /* IP address given? */ if (ipaddr != NULL) { /* set IP address */ ip_addr_set(&arp_table[i].ipaddr, ipaddr); } arp_table[i].ctime = 0; #if LWIP_NETIF_HWADDRHINT NETIF_SET_HINT(netif, i); #else /* #if LWIP_NETIF_HWADDRHINT */ undiarp_cached_entry = i; #endif /* #if LWIP_NETIF_HWADDRHINT */ return (err_t)i; } /** * Send an ARP request for the given IP address and/or queue a packet. * * If the IP address was not yet in the cache, a pending ARP cache entry * is added and an ARP request is sent for the given address. The packet * is queued on this entry. * * If the IP address was already pending in the cache, a new ARP request * is sent for the given address. The packet is queued on this entry. * * If the IP address was already stable in the cache, and a packet is * given, it is directly sent and no ARP request is sent out. * * If the IP address was already stable in the cache, and no packet is * given, an ARP request is sent out. * * @param netif The lwIP network interface on which ipaddr * must be queried for. * @param ipaddr The IP address to be resolved. * @param q If non-NULL, a pbuf that must be delivered to the IP address. * q is not freed by this function. * * @note q must only be ONE packet, not a packet queue! * * @return * - ERR_BUF Could not make room for Ethernet header. * - ERR_MEM Hardware address unknown, and no more ARP entries available * to query for address or queue the packet. * - ERR_MEM Could not queue packet due to memory shortage. * - ERR_RTE No route to destination (no gateway to external networks). * - ERR_ARG Non-unicast address given, those will not appear in ARP cache. * */ static err_t undiarp_query(struct netif *netif, struct ip_addr *ipaddr, struct pbuf *q) { err_t result = ERR_MEM; s8_t i; /* ARP entry index */ /* non-unicast address? */ if (ip_addr_isbroadcast(ipaddr, netif) || ip_addr_ismulticast(ipaddr) || ip_addr_isany(ipaddr)) { LWIP_DEBUGF(UNDIIF_ARP_DEBUG | UNDIIF_DEBUG | LWIP_DBG_TRACE, ("undiarp_query: will not add non-unicast IP address to ARP cache\n")); return ERR_ARG; } /* find entry in ARP cache, ask to create entry if queueing packet */ #if LWIP_NETIF_HWADDRHINT i = find_entry(ipaddr, UNDIARP_TRY_HARD, netif); #else /* LWIP_NETIF_HWADDRHINT */ i = find_entry(ipaddr, UNDIARP_TRY_HARD); #endif /* LWIP_NETIF_HWADDRHINT */ /* could not find or create entry? */ if (i < 0) { LWIP_DEBUGF(UNDIIF_ARP_DEBUG | UNDIIF_DEBUG | LWIP_DBG_TRACE, ("undiarp_query: could not create ARP entry\n")); if (q) { LWIP_DEBUGF(UNDIIF_ARP_DEBUG | UNDIIF_DEBUG | LWIP_DBG_TRACE, ("undiarp_query: packet dropped\n")); ETHARP_STATS_INC(etharp.memerr); } return (err_t)i; } /* mark a fresh entry as pending (we just sent a request) */ if (arp_table[i].state == UNDIARP_STATE_EMPTY) { arp_table[i].state = UNDIARP_STATE_PENDING; } /* { i is either a STABLE or (new or existing) PENDING entry } */ LWIP_ASSERT("arp_table[i].state == PENDING or STABLE", ((arp_table[i].state == UNDIARP_STATE_PENDING) || (arp_table[i].state == UNDIARP_STATE_STABLE))); /* do we have a pending entry? or an implicit query request? */ if ((arp_table[i].state == UNDIARP_STATE_PENDING) || (q == NULL)) { /* try to resolve it; send out ARP request */ result = undiarp_request(netif, ipaddr); if (result != ERR_OK) { /* ARP request couldn't be sent */ /* We don't re-send arp request in undiarp_tmr, but we still queue packets, since this failure could be temporary, and the next packet calling etharp_query again could lead to sending the queued packets. */ } } /* packet given? */ if (q != NULL) { /* stable entry? */ if (arp_table[i].state == UNDIARP_STATE_STABLE) { /* we have a valid IP->hardware address mapping */ /* send the packet */ result = undi_send_ip(netif, q, &(arp_table[i].hwaddr)); /* pending entry? (either just created or already pending */ } else if (arp_table[i].state == UNDIARP_STATE_PENDING) { #if ARP_QUEUEING /* queue the given q packet */ struct pbuf *p; int copy_needed = 0; /* IF q includes a PBUF_REF, PBUF_POOL or PBUF_RAM, we have no choice but * to copy the whole queue into a new PBUF_RAM (see bug #11400) * PBUF_ROMs can be left as they are, since ROM must not get changed. */ p = q; while (p) { LWIP_ASSERT("no packet queues allowed!", (p->len != p->tot_len) || (p->next == 0)); if(p->type != PBUF_ROM) { copy_needed = 1; break; } p = p->next; } if(copy_needed) { /* copy the whole packet into new pbufs */ p = pbuf_alloc(PBUF_RAW, p->tot_len, PBUF_RAM); if(p != NULL) { if (pbuf_copy(p, q) != ERR_OK) { pbuf_free(p); p = NULL; } } } else { /* referencing the old pbuf is enough */ p = q; pbuf_ref(p); } /* packet could be taken over? */ if (p != NULL) { /* queue packet ... */ struct etharp_q_entry *new_entry; /* allocate a new arp queue entry */ new_entry = memp_malloc(MEMP_ARP_QUEUE); if (new_entry != NULL) { new_entry->next = 0; new_entry->p = p; if(arp_table[i].q != NULL) { /* queue was already existent, append the new entry to the end */ struct etharp_q_entry *r; r = arp_table[i].q; while (r->next != NULL) { r = r->next; } r->next = new_entry; } else { /* queue did not exist, first item in queue */ arp_table[i].q = new_entry; } LWIP_DEBUGF(UNDIIF_ARP_DEBUG | UNDIIF_DEBUG | LWIP_DBG_TRACE, ("undiarp_query: queued packet %p on ARP entry %"S16_F"\n", (void *)q, (s16_t)i)); result = ERR_OK; } else { /* the pool MEMP_ARP_QUEUE is empty */ pbuf_free(p); LWIP_DEBUGF(UNDIIF_ARP_DEBUG | UNDIIF_DEBUG | LWIP_DBG_TRACE, ("undiarp_query: could not queue a copy of PBUF_REF packet %p (out of memory)\n", (void *)q)); /* { result == ERR_MEM } through initialization */ } } else { ETHARP_STATS_INC(etharp.memerr); LWIP_DEBUGF(UNDIIF_ARP_DEBUG | UNDIIF_DEBUG | LWIP_DBG_TRACE, ("undiarp_query: could not queue a copy of PBUF_REF packet %p (out of memory)\n", (void *)q)); /* { result == ERR_MEM } through initialization */ } #else /* ARP_QUEUEING == 0 */ /* q && state == PENDING && ARP_QUEUEING == 0 => result = ERR_MEM */ /* { result == ERR_MEM } through initialization */ LWIP_DEBUGF(UNDIIF_ARP_DEBUG | UNDIIF_DEBUG | LWIP_DBG_TRACE, ("undiarp_query: Ethernet destination address unknown, queueing disabled, packet %p dropped\n", (void *)q)); #endif } } return result; } /** * Resolve and fill-in address header for outgoing IP packet. * * For IP multicast and broadcast, corresponding Ethernet addresses * are selected and the packet is transmitted on the link. * * For unicast addresses, the packet is submitted to etharp_query(). In * case the IP address is outside the local network, the IP address of * the gateway is used. * * @param netif The lwIP network interface which the IP packet will be sent on. * @param q The pbuf(s) containing the IP packet to be sent. * @param ipaddr The IP address of the packet destination. * * @return * - ERR_RTE No route to destination (no gateway to external networks), * or the return type of either etharp_query() or etharp_send_ip(). */ static err_t undiarp_output(struct netif *netif, struct pbuf *q, struct ip_addr *ipaddr) { static __lowmem t_PXENV_UNDI_GET_MCAST_ADDR get_mcast; hwaddr_t *dest; if (undi_is_ethernet(netif)) return etharp_output(netif, q, ipaddr); /* Assume unresolved hardware address */ dest = NULL; /* Determine on destination hardware address. Broadcasts and multicasts * are special, other IP addresses are looked up in the ARP table. */ if (ip_addr_isbroadcast(ipaddr, netif)) { dest = NULL; } else if (ip_addr_ismulticast(ipaddr)) { memset(&get_mcast, 0, sizeof get_mcast); memcpy(&get_mcast.InetAddr, ipaddr, sizeof(get_mcast.InetAddr)); pxe_call(PXENV_UNDI_GET_MCAST_ADDR, &get_mcast); dest = (hwaddr_t *)&get_mcast.MediaAddr; } else { /* outside local network? */ if (!ip_addr_netcmp(ipaddr, &netif->ip_addr, &netif->netmask)) { /* interface has default gateway? */ if (netif->gw.addr != 0) { /* send to hardware address of default gateway IP address */ ipaddr = &(netif->gw); /* no default gateway available */ } else { /* no route to destination error (default gateway missing) */ return ERR_RTE; } } /* queue on destination Ethernet address belonging to ipaddr */ return undiarp_query(netif, ipaddr, q); } /* continuation for multicast/broadcast destinations */ /* obtain source Ethernet address of the given interface */ /* send packet directly on the link */ return undi_send_ip(netif, q, dest); } static void get_packet_fragment(t_PXENV_UNDI_ISR *isr) { do { isr->FuncFlag = PXENV_UNDI_ISR_IN_GET_NEXT; pxe_call(PXENV_UNDI_ISR, &isr); } while (isr->FuncFlag != PXENV_UNDI_ISR_OUT_RECEIVE); } /** * Should allocate a pbuf and transfer the bytes of the incoming * packet from the interface into the pbuf. * * @param netif the lwip network interface structure for this undiif * @return a pbuf filled with the received packet (including MAC header) * NULL on memory error */ static struct pbuf * low_level_input(t_PXENV_UNDI_ISR *isr) { struct pbuf *p, *q; const char *r; int len; /* Obtain the size of the packet and put it into the "len" variable. */ len = isr->FrameLength; //printf("undiif_input, len = %d\n", len); /* We allocate a pbuf chain of pbufs from the pool. */ p = pbuf_alloc(PBUF_RAW, len, PBUF_POOL); if (p != NULL) { /* * We iterate over the pbuf chain until we have read the entire * packet into the pbuf. */ r = GET_PTR(isr->Frame); for (q = p; q != NULL; q = q->next) { /* * Read enough bytes to fill this pbuf in the chain. The * available data in the pbuf is given by the q->len * variable. */ char *s = q->payload; int ql = q->len; while (ql) { int qb = isr->BufferLength < ql ? isr->BufferLength : ql; if (!qb) { /* * Only received a partial frame, must get the next one... */ get_packet_fragment(isr); r = GET_PTR(isr->Frame); } else { memcpy(s, r, qb); s += qb; r += qb; ql -= qb; } } } LINK_STATS_INC(link.recv); } else { /* * Dropped packet: we really should make sure we drain any partial * frame here... */ while ((len -= isr->BufferLength) > 0) get_packet_fragment(isr); LINK_STATS_INC(link.memerr); LINK_STATS_INC(link.drop); } return p; } /** * Update (or insert) a IP/MAC address pair in the ARP cache. * * If a pending entry is resolved, any queued packets will be sent * at this point. * * @param ipaddr IP address of the inserted ARP entry. * @param ethaddr Ethernet address of the inserted ARP entry. * @param flags Defines behaviour: * - ETHARP_TRY_HARD Allows ARP to insert this as a new item. If not specified, * only existing ARP entries will be updated. * * @return * - ERR_OK Succesfully updated ARP cache. * - ERR_MEM If we could not add a new ARP entry when ETHARP_TRY_HARD was set. * - ERR_ARG Non-unicast address given, those will not appear in ARP cache. * * @see pbuf_free() */ static err_t update_arp_entry(struct netif *netif, struct ip_addr *ipaddr, hwaddr_t *lladdr, u8_t flags) { s8_t i; LWIP_DEBUGF(UNDIIF_ARP_DEBUG | UNDIIF_DEBUG | LWIP_DBG_TRACE, ("undiif:update_arp_entry()\n")); LWIP_DEBUGF(UNDIIF_ARP_DEBUG | UNDIIF_DEBUG | LWIP_DBG_TRACE, ("undiif:update_arp_entry: %"U16_F".%"U16_F".%"U16_F".%"U16_F" - %02"X16_F":%02"X16_F":%02"X16_F":%02"X16_F":%02"X16_F":%02"X16_F"\n", ip4_addr1(ipaddr), ip4_addr2(ipaddr), ip4_addr3(ipaddr), ip4_addr4(ipaddr), (*lladdr)[0], (*lladdr)[1], (*lladdr)[2], (*lladdr)[3], (*lladdr)[4], (*lladdr)[5])); /* non-unicast address? */ if (ip_addr_isany(ipaddr) || ip_addr_isbroadcast(ipaddr, netif) || ip_addr_ismulticast(ipaddr)) { LWIP_DEBUGF(UNDIIF_ARP_DEBUG | UNDIIF_DEBUG | LWIP_DBG_TRACE, ("undiif:update_arp_entry: will not add non-unicast IP address to ARP cache\n")); return ERR_ARG; } /* find or create ARP entry */ #if LWIP_NETIF_HWADDRHINT i = find_entry(ipaddr, flags, netif); #else /* LWIP_NETIF_HWADDRHINT */ i = find_entry(ipaddr, flags); #endif /* LWIP_NETIF_HWADDRHINT */ /* bail out if no entry could be found */ if (i < 0) return (err_t)i; /* mark it stable */ arp_table[i].state = UNDIARP_STATE_STABLE; /* record network interface */ arp_table[i].netif = netif; /* insert in SNMP ARP index tree */ snmp_insert_arpidx_tree(netif, &arp_table[i].ipaddr); LWIP_DEBUGF(UNDIIF_ARP_DEBUG | UNDIIF_DEBUG | LWIP_DBG_TRACE, ("undiif:update_arp_entry: updating stable entry %"S16_F"\n", (s16_t)i)); /* update address */ memcpy(arp_table[i].hwaddr, lladdr, netif->hwaddr_len); /* reset time stamp */ arp_table[i].ctime = 0; #if ARP_QUEUEING /* this is where we will send out queued packets! */ while (arp_table[i].q != NULL) { struct pbuf *p; /* remember remainder of queue */ struct etharp_q_entry *q = arp_table[i].q; /* pop first item off the queue */ arp_table[i].q = q->next; /* get the packet pointer */ p = q->p; /* now queue entry can be freed */ memp_free(MEMP_ARP_QUEUE, q); /* send the queued IP packet */ undi_send_ip(netif, p, lladdr); /* free the queued IP packet */ pbuf_free(p); } #endif return ERR_OK; } /** * Responds to ARP requests to us. Upon ARP replies to us, add entry to cache * send out queued IP packets. Updates cache with snooped address pairs. * * Should be called for incoming ARP packets. The pbuf in the argument * is freed by this function. * * @param netif The lwIP network interface on which the ARP packet pbuf arrived. * @param ethaddr Ethernet address of netif. * @param p The ARP packet that arrived on netif. Is freed by this function. * * @return NULL * * @see pbuf_free() */ static void undiarp_input(struct netif *netif, struct pbuf *p) { struct arp_hdr *hdr; /* these are aligned properly, whereas the ARP header fields might not be */ struct ip_addr sipaddr, dipaddr; hwaddr_t hwaddr_remote; u8_t *hdr_ptr; u8_t for_us; LWIP_ERROR("netif != NULL", (netif != NULL), return;); /* drop short ARP packets: we have to check for p->len instead of p->tot_len here since a struct arp_hdr is pointed to p->payload, so it musn't be chained! */ if (p->len < arp_hdr_len(netif)) { LWIP_DEBUGF(UNDIIF_ARP_DEBUG | UNDIIF_DEBUG | LWIP_DBG_TRACE | LWIP_DBG_LEVEL_WARNING, ("undiarp_input: packet dropped, too short (%"S16_F"/%"S16_F")\n", p->tot_len, (s16_t)SIZEOF_ETHARP_PACKET)); printf("short arp packet\n"); ETHARP_STATS_INC(etharp.lenerr); ETHARP_STATS_INC(etharp.drop); pbuf_free(p); return; } hdr = p->payload; /* RFC 826 "Packet Reception": */ if ((hdr->hwtype != htons(MAC_type)) || (hdr->hwlen != netif->hwaddr_len) || (hdr->protolen != sizeof(struct ip_addr)) || (hdr->proto != htons(ETHTYPE_IP))) { LWIP_DEBUGF(UNDIIF_ARP_DEBUG | UNDIIF_DEBUG | LWIP_DBG_TRACE | LWIP_DBG_LEVEL_WARNING, ("undiarp_input: packet dropped, wrong hw type, hwlen, proto, or protolen (%"U16_F"/%"U16_F"/%"U16_F"/%"U16_F"/%"U16_F")\n", hdr->hwtype, hdr->hwlen, hdr->proto, hdr->protolen)); ETHARP_STATS_INC(etharp.proterr); ETHARP_STATS_INC(etharp.drop); printf("malformed arp packet\n"); pbuf_free(p); return; } ETHARP_STATS_INC(etharp.recv); /* Copy struct ip_addr2 to aligned ip_addr, to support compilers without * structure packing (not using structure copy which breaks strict-aliasing rules). */ hdr_ptr = (unsigned char *)(hdr + 1); memcpy(hwaddr_remote, hdr_ptr, netif->hwaddr_len); hdr_ptr += netif->hwaddr_len; memcpy(&sipaddr, hdr_ptr, sizeof(sipaddr)); hdr_ptr += sizeof(sipaddr); hdr_ptr += netif->hwaddr_len; memcpy(&dipaddr, hdr_ptr, sizeof(dipaddr)); /* this interface is not configured? */ if (netif->ip_addr.addr == 0) { for_us = 0; } else { /* ARP packet directed to us? */ for_us = ip_addr_cmp(&dipaddr, &(netif->ip_addr)); } /* ARP message directed to us? */ if (for_us) { /* add IP address in ARP cache; assume requester wants to talk to us. * can result in directly sending the queued packets for this host. */ update_arp_entry(netif, &sipaddr, &hwaddr_remote, UNDIARP_TRY_HARD); /* ARP message not directed to us? */ } else { /* update the source IP address in the cache, if present */ update_arp_entry(netif, &sipaddr, &hwaddr_remote, 0); } /* now act on the message itself */ switch (htons(hdr->opcode)) { /* ARP request? */ case ARP_REQUEST: /* ARP request. If it asked for our address, we send out a * reply. In any case, we time-stamp any existing ARP entry, * and possiby send out an IP packet that was queued on it. */ LWIP_DEBUGF (UNDIIF_ARP_DEBUG | UNDIIF_DEBUG | LWIP_DBG_TRACE, ("undiarp_input: incoming ARP request\n")); /* ARP request for our address? */ if (for_us) { LWIP_DEBUGF(UNDIIF_ARP_DEBUG | UNDIIF_DEBUG | LWIP_DBG_TRACE, ("undiarp_input: replying to ARP request for our IP address\n")); /* Re-use pbuf to send ARP reply. Since we are re-using an existing pbuf, we can't call etharp_raw since that would allocate a new pbuf. */ hdr->opcode = htons(ARP_REPLY); hdr_ptr = (unsigned char *)(hdr + 1); memcpy(hdr_ptr, &netif->hwaddr, netif->hwaddr_len); hdr_ptr += netif->hwaddr_len; memcpy(hdr_ptr, &dipaddr, sizeof(dipaddr)); hdr_ptr += sizeof(dipaddr); memcpy(hdr_ptr, &hwaddr_remote, netif->hwaddr_len); hdr_ptr += netif->hwaddr_len; memcpy(hdr_ptr, &sipaddr, sizeof(sipaddr)); /* return ARP reply */ undi_send_arp(netif, p, &hwaddr_remote); /* we are not configured? */ } else if (netif->ip_addr.addr == 0) { /* { for_us == 0 and netif->ip_addr.addr == 0 } */ LWIP_DEBUGF(UNDIIF_ARP_DEBUG | UNDIIF_DEBUG | LWIP_DBG_TRACE, ("undiarp_input: we are unconfigured, ARP request ignored.\n")); /* request was not directed to us */ } else { /* { for_us == 0 and netif->ip_addr.addr != 0 } */ LWIP_DEBUGF(UNDIIF_ARP_DEBUG | UNDIIF_DEBUG | LWIP_DBG_TRACE, ("undiarp_input: ARP request was not for us.\n")); } break; case ARP_REPLY: /* ARP reply. We already updated the ARP cache earlier. */ LWIP_DEBUGF(UNDIIF_ARP_DEBUG | UNDIIF_DEBUG | LWIP_DBG_TRACE, ("undiarp_input: incoming ARP reply\n")); #if (LWIP_DHCP && DHCP_DOES_ARP_CHECK) /* DHCP wants to know about ARP replies from any host with an * IP address also offered to us by the DHCP server. We do not * want to take a duplicate IP address on a single network. * @todo How should we handle redundant (fail-over) interfaces? */ dhcp_arp_reply(netif, &sipaddr); #endif break; default: LWIP_DEBUGF(UNDIIF_ARP_DEBUG | UNDIIF_DEBUG | LWIP_DBG_TRACE, ("undiarp_input: ARP unknown opcode type %"S16_F"\n", htons(hdr->opcode))); ETHARP_STATS_INC(etharp.err); break; } /* free ARP packet */ pbuf_free(p); } /** * This function should be called when a packet is ready to be read * from the interface. It uses the function low_level_input() that * should handle the actual reception of bytes from the network * interface. Then the type of the received packet is determined and * the appropriate input function is called. * * @param netif the lwip network interface structure for this undiif */ void undiif_input(t_PXENV_UNDI_ISR *isr) { struct pbuf *p; u8_t undi_prot; u16_t llhdr_len; /* From the first isr capture the essential information */ undi_prot = isr->ProtType; llhdr_len = isr->FrameHeaderLength; /* move received packet into a new pbuf */ p = low_level_input(isr); /* no packet could be read, silently ignore this */ if (p == NULL) return; if (undi_is_ethernet(&undi_netif)) { /* points to packet payload, which starts with an Ethernet header */ struct eth_hdr *ethhdr = p->payload; #if LWIP_UNDIIF_DBG(UNDIIF_ID_FULL_DEBUG) char *str = malloc(UNIDIF_ID_STRLEN); int strpos = 0; strpos += snprintf(str + strpos, UNIDIF_ID_STRLEN - strpos, "undi recv thd '%s'\n", current()->name); strpos += snprintf_eth_hdr(str + strpos, UNIDIF_ID_STRLEN - strpos, "undi", ethhdr, 'r', '0', ""); strpos += snprintf_arp_hdr(str + strpos, UNIDIF_ID_STRLEN - strpos, " arp", ethhdr, 'r', '0', ""); strpos += snprintf_ip_hdr(str + strpos, UNIDIF_ID_STRLEN - strpos, " ip", ethhdr, 'r', '0', ""); strpos += snprintf_icmp_hdr(str + strpos, UNIDIF_ID_STRLEN - strpos, " icmp", ethhdr, 'r', '0', ""); strpos += snprintf_tcp_hdr(str + strpos, UNIDIF_ID_STRLEN - strpos, " tcp", ethhdr, 'r', '0', ""); strpos += snprintf_udp_hdr(str + strpos, UNIDIF_ID_STRLEN - strpos, " udp", ethhdr, 'r', '0', ""); LWIP_DEBUGF(UNDIIF_ID_FULL_DEBUG, ("%s", str)); free(str); #endif /* UNDIIF_ID_FULL_DEBUG */ switch (htons(ethhdr->type)) { /* IP or ARP packet? */ case ETHTYPE_IP: case ETHTYPE_ARP: #if PPPOE_SUPPORT /* PPPoE packet? */ case ETHTYPE_PPPOEDISC: case ETHTYPE_PPPOE: #endif /* PPPOE_SUPPORT */ /* full packet send to tcpip_thread to process */ if (tcpip_input(p, &undi_netif)!=ERR_OK) { LWIP_DEBUGF(UNDIIF_NET_DEBUG | UNDIIF_DEBUG, ("undiif_input: IP input error\n")); pbuf_free(p); p = NULL; } break; default: pbuf_free(p); p = NULL; break; } } else { if (pbuf_header(p, -(s16_t)llhdr_len)) { LWIP_ASSERT("Can't move link level header in packet", 0); pbuf_free(p); p = NULL; } else { switch(undi_prot) { case P_IP: /* pass to IP layer */ tcpip_input(p, &undi_netif); break; case P_ARP: /* pass p to ARP module */ undiarp_input(&undi_netif, p); break; default: ETHARP_STATS_INC(etharp.proterr); ETHARP_STATS_INC(etharp.drop); pbuf_free(p); p = NULL; break; } } } } /** * Should be called at the beginning of the program to set up the * network interface. It calls the function low_level_init() to do the * actual setup of the hardware. * * This function should be passed as a parameter to netif_add(). * * @param netif the lwip network interface structure for this undiif * @return ERR_OK if the loopif is initialized * ERR_MEM if private data couldn't be allocated * any other err_t on error */ static err_t undiif_init(struct netif *netif) { LWIP_ASSERT("netif != NULL", (netif != NULL)); #if LWIP_NETIF_HOSTNAME /* Initialize interface hostname */ netif->hostname = "undi"; #endif /* LWIP_NETIF_HOSTNAME */ /* * Initialize the snmp variables and counters inside the struct netif. * The last argument should be replaced with your link speed, in units * of bits per second. */ NETIF_INIT_SNMP(netif, snmp_ifType_ethernet_csmacd, LINK_SPEED_OF_YOUR_NETIF_IN_BPS); netif->state = NULL; /* Private pointer if we need it */ netif->name[0] = IFNAME0; netif->name[1] = IFNAME1; netif->output = undiarp_output; netif->linkoutput = undi_send_unknown; /* initialize the hardware */ low_level_init(netif); return ERR_OK; } int undiif_start(uint32_t ip, uint32_t netmask, uint32_t gw) { err_t err; // This should be done *after* the threading system and receive thread // have both been started. dprintf("undi_netif: ip %d.%d.%d.%d netmask %d.%d.%d.%d gw %d.%d.%d.%d\n", ((uint8_t *)&ip)[0], ((uint8_t *)&ip)[1], ((uint8_t *)&ip)[2], ((uint8_t *)&ip)[3], ((uint8_t *)&netmask)[0], ((uint8_t *)&netmask)[1], ((uint8_t *)&netmask)[2], ((uint8_t *)&netmask)[3], ((uint8_t *)&gw)[0], ((uint8_t *)&gw)[1], ((uint8_t *)&gw)[2], ((uint8_t *)&gw)[3]); err = netifapi_netif_add(&undi_netif, (struct ip_addr *)&ip, (struct ip_addr *)&netmask, (struct ip_addr *)&gw, NULL, undiif_init, tcpip_input); if (err) return err; netif_set_up(&undi_netif); netif_set_default(&undi_netif); /* Make this interface the default route */ return ERR_OK; }