/****************************************************************************** @File PVRTVector.cpp @Title PVRTVector @Version @Copyright Copyright (c) Imagination Technologies Limited. @Platform ANSI compatible @Description Vector and matrix mathematics library ******************************************************************************/ #include "PVRTVector.h" #include <math.h> /*!*************************************************************************** ** PVRTVec2 2 component vector ****************************************************************************/ /*!*************************************************************************** @Function PVRTVec2 @Input v3Vec a Vec3 @Description Constructor from a Vec3 *****************************************************************************/ PVRTVec2::PVRTVec2(const PVRTVec3& vec3) { x = vec3.x; y = vec3.y; } /*!*************************************************************************** ** PVRTVec3 3 component vector ****************************************************************************/ /*!*************************************************************************** @Function PVRTVec3 @Input v4Vec a PVRTVec4 @Description Constructor from a PVRTVec4 *****************************************************************************/ PVRTVec3::PVRTVec3(const PVRTVec4& vec4) { x = vec4.x; y = vec4.y; z = vec4.z; } /*!*************************************************************************** @Function * @Input rhs a PVRTMat3 @Returns result of multiplication @Description matrix multiplication operator PVRTVec3 and PVRTMat3 ****************************************************************************/ PVRTVec3 PVRTVec3::operator*(const PVRTMat3& rhs) const { PVRTVec3 out; out.x = VERTTYPEMUL(x,rhs.f[0])+VERTTYPEMUL(y,rhs.f[1])+VERTTYPEMUL(z,rhs.f[2]); out.y = VERTTYPEMUL(x,rhs.f[3])+VERTTYPEMUL(y,rhs.f[4])+VERTTYPEMUL(z,rhs.f[5]); out.z = VERTTYPEMUL(x,rhs.f[6])+VERTTYPEMUL(y,rhs.f[7])+VERTTYPEMUL(z,rhs.f[8]); return out; } /*!*************************************************************************** @Function *= @Input rhs a PVRTMat3 @Returns result of multiplication and assignment @Description matrix multiplication and assignment operator for PVRTVec3 and PVRTMat3 ****************************************************************************/ PVRTVec3& PVRTVec3::operator*=(const PVRTMat3& rhs) { VERTTYPE tx = VERTTYPEMUL(x,rhs.f[0])+VERTTYPEMUL(y,rhs.f[1])+VERTTYPEMUL(z,rhs.f[2]); VERTTYPE ty = VERTTYPEMUL(x,rhs.f[3])+VERTTYPEMUL(y,rhs.f[4])+VERTTYPEMUL(z,rhs.f[5]); z = VERTTYPEMUL(x,rhs.f[6])+VERTTYPEMUL(y,rhs.f[7])+VERTTYPEMUL(z,rhs.f[8]); x = tx; y = ty; return *this; } /*!*************************************************************************** ** PVRTVec4 4 component vector ****************************************************************************/ /*!*************************************************************************** @Function * @Input rhs a PVRTMat4 @Returns result of multiplication @Description matrix multiplication operator PVRTVec4 and PVRTMat4 ****************************************************************************/ PVRTVec4 PVRTVec4::operator*(const PVRTMat4& rhs) const { PVRTVec4 out; out.x = VERTTYPEMUL(x,rhs.f[0])+VERTTYPEMUL(y,rhs.f[1])+VERTTYPEMUL(z,rhs.f[2])+VERTTYPEMUL(w,rhs.f[3]); out.y = VERTTYPEMUL(x,rhs.f[4])+VERTTYPEMUL(y,rhs.f[5])+VERTTYPEMUL(z,rhs.f[6])+VERTTYPEMUL(w,rhs.f[7]); out.z = VERTTYPEMUL(x,rhs.f[8])+VERTTYPEMUL(y,rhs.f[9])+VERTTYPEMUL(z,rhs.f[10])+VERTTYPEMUL(w,rhs.f[11]); out.w = VERTTYPEMUL(x,rhs.f[12])+VERTTYPEMUL(y,rhs.f[13])+VERTTYPEMUL(z,rhs.f[14])+VERTTYPEMUL(w,rhs.f[15]); return out; } /*!*************************************************************************** @Function *= @Input rhs a PVRTMat4 @Returns result of multiplication and assignment @Description matrix multiplication and assignment operator for PVRTVec4 and PVRTMat4 ****************************************************************************/ PVRTVec4& PVRTVec4::operator*=(const PVRTMat4& rhs) { VERTTYPE tx = VERTTYPEMUL(x,rhs.f[0])+VERTTYPEMUL(y,rhs.f[1])+VERTTYPEMUL(z,rhs.f[2])+VERTTYPEMUL(w,rhs.f[3]); VERTTYPE ty = VERTTYPEMUL(x,rhs.f[4])+VERTTYPEMUL(y,rhs.f[5])+VERTTYPEMUL(z,rhs.f[6])+VERTTYPEMUL(w,rhs.f[7]); VERTTYPE tz = VERTTYPEMUL(x,rhs.f[8])+VERTTYPEMUL(y,rhs.f[9])+VERTTYPEMUL(z,rhs.f[10])+VERTTYPEMUL(w,rhs.f[11]); w = VERTTYPEMUL(x,rhs.f[12])+VERTTYPEMUL(y,rhs.f[13])+VERTTYPEMUL(z,rhs.f[14])+VERTTYPEMUL(w,rhs.f[15]); x = tx; y = ty; z = tz; return *this; } /*!*************************************************************************** ** PVRTMat3 3x3 matrix ****************************************************************************/ /*!*************************************************************************** @Function PVRTMat3 @Input mat a PVRTMat4 @Description constructor to form a PVRTMat3 from a PVRTMat4 ****************************************************************************/ PVRTMat3::PVRTMat3(const PVRTMat4& mat) { VERTTYPE *dest = (VERTTYPE*)f, *src = (VERTTYPE*)mat.f; for(int i=0;i<3;i++) { for(int j=0;j<3;j++) { (*dest++) = (*src++); } src++; } } /*!*************************************************************************** @Function RotationX @Input angle the angle of rotation @Returns rotation matrix @Description generates a 3x3 rotation matrix about the X axis ****************************************************************************/ PVRTMat3 PVRTMat3::RotationX(VERTTYPE angle) { PVRTMat4 out; PVRTMatrixRotationX(out,angle); return PVRTMat3(out); } /*!*************************************************************************** @Function RotationY @Input angle the angle of rotation @Returns rotation matrix @Description generates a 3x3 rotation matrix about the Y axis ****************************************************************************/ PVRTMat3 PVRTMat3::RotationY(VERTTYPE angle) { PVRTMat4 out; PVRTMatrixRotationY(out,angle); return PVRTMat3(out); } /*!*************************************************************************** @Function RotationZ @Input angle the angle of rotation @Returns rotation matrix @Description generates a 3x3 rotation matrix about the Z axis ****************************************************************************/ PVRTMat3 PVRTMat3::RotationZ(VERTTYPE angle) { PVRTMat4 out; PVRTMatrixRotationZ(out,angle); return PVRTMat3(out); } /*!*************************************************************************** ** PVRTMat4 4x4 matrix ****************************************************************************/ /*!*************************************************************************** @Function RotationX @Input angle the angle of rotation @Returns rotation matrix @Description generates a 4x4 rotation matrix about the X axis ****************************************************************************/ PVRTMat4 PVRTMat4::RotationX(VERTTYPE angle) { PVRTMat4 out; PVRTMatrixRotationX(out,angle); return out; } /*!*************************************************************************** @Function RotationY @Input angle the angle of rotation @Returns rotation matrix @Description generates a 4x4 rotation matrix about the Y axis ****************************************************************************/ PVRTMat4 PVRTMat4::RotationY(VERTTYPE angle) { PVRTMat4 out; PVRTMatrixRotationY(out,angle); return out; } /*!*************************************************************************** @Function RotationZ @Input angle the angle of rotation @Returns rotation matrix @Description generates a 4x4 rotation matrix about the Z axis ****************************************************************************/ PVRTMat4 PVRTMat4::RotationZ(VERTTYPE angle) { PVRTMat4 out; PVRTMatrixRotationZ(out,angle); return out; } /*!*************************************************************************** @Function * @Input rhs another PVRTMat4 @Returns result of multiplication @Description Matrix multiplication of two 4x4 matrices. *****************************************************************************/ PVRTMat4 PVRTMat4::operator*(const PVRTMat4& rhs) const { PVRTMat4 out; // col 1 out.f[0] = VERTTYPEMUL(f[0],rhs.f[0])+VERTTYPEMUL(f[4],rhs.f[1])+VERTTYPEMUL(f[8],rhs.f[2])+VERTTYPEMUL(f[12],rhs.f[3]); out.f[1] = VERTTYPEMUL(f[1],rhs.f[0])+VERTTYPEMUL(f[5],rhs.f[1])+VERTTYPEMUL(f[9],rhs.f[2])+VERTTYPEMUL(f[13],rhs.f[3]); out.f[2] = VERTTYPEMUL(f[2],rhs.f[0])+VERTTYPEMUL(f[6],rhs.f[1])+VERTTYPEMUL(f[10],rhs.f[2])+VERTTYPEMUL(f[14],rhs.f[3]); out.f[3] = VERTTYPEMUL(f[3],rhs.f[0])+VERTTYPEMUL(f[7],rhs.f[1])+VERTTYPEMUL(f[11],rhs.f[2])+VERTTYPEMUL(f[15],rhs.f[3]); // col 2 out.f[4] = VERTTYPEMUL(f[0],rhs.f[4])+VERTTYPEMUL(f[4],rhs.f[5])+VERTTYPEMUL(f[8],rhs.f[6])+VERTTYPEMUL(f[12],rhs.f[7]); out.f[5] = VERTTYPEMUL(f[1],rhs.f[4])+VERTTYPEMUL(f[5],rhs.f[5])+VERTTYPEMUL(f[9],rhs.f[6])+VERTTYPEMUL(f[13],rhs.f[7]); out.f[6] = VERTTYPEMUL(f[2],rhs.f[4])+VERTTYPEMUL(f[6],rhs.f[5])+VERTTYPEMUL(f[10],rhs.f[6])+VERTTYPEMUL(f[14],rhs.f[7]); out.f[7] = VERTTYPEMUL(f[3],rhs.f[4])+VERTTYPEMUL(f[7],rhs.f[5])+VERTTYPEMUL(f[11],rhs.f[6])+VERTTYPEMUL(f[15],rhs.f[7]); // col3 out.f[8] = VERTTYPEMUL(f[0],rhs.f[8])+VERTTYPEMUL(f[4],rhs.f[9])+VERTTYPEMUL(f[8],rhs.f[10])+VERTTYPEMUL(f[12],rhs.f[11]); out.f[9] = VERTTYPEMUL(f[1],rhs.f[8])+VERTTYPEMUL(f[5],rhs.f[9])+VERTTYPEMUL(f[9],rhs.f[10])+VERTTYPEMUL(f[13],rhs.f[11]); out.f[10] = VERTTYPEMUL(f[2],rhs.f[8])+VERTTYPEMUL(f[6],rhs.f[9])+VERTTYPEMUL(f[10],rhs.f[10])+VERTTYPEMUL(f[14],rhs.f[11]); out.f[11] = VERTTYPEMUL(f[3],rhs.f[8])+VERTTYPEMUL(f[7],rhs.f[9])+VERTTYPEMUL(f[11],rhs.f[10])+VERTTYPEMUL(f[15],rhs.f[11]); // col3 out.f[12] = VERTTYPEMUL(f[0],rhs.f[12])+VERTTYPEMUL(f[4],rhs.f[13])+VERTTYPEMUL(f[8],rhs.f[14])+VERTTYPEMUL(f[12],rhs.f[15]); out.f[13] = VERTTYPEMUL(f[1],rhs.f[12])+VERTTYPEMUL(f[5],rhs.f[13])+VERTTYPEMUL(f[9],rhs.f[14])+VERTTYPEMUL(f[13],rhs.f[15]); out.f[14] = VERTTYPEMUL(f[2],rhs.f[12])+VERTTYPEMUL(f[6],rhs.f[13])+VERTTYPEMUL(f[10],rhs.f[14])+VERTTYPEMUL(f[14],rhs.f[15]); out.f[15] = VERTTYPEMUL(f[3],rhs.f[12])+VERTTYPEMUL(f[7],rhs.f[13])+VERTTYPEMUL(f[11],rhs.f[14])+VERTTYPEMUL(f[15],rhs.f[15]); return out; } /*!*************************************************************************** @Function inverse @Returns inverse mat4 @Description Calculates multiplicative inverse of this matrix The matrix must be of the form : A 0 C 1 Where A is a 3x3 matrix and C is a 1x3 matrix. *****************************************************************************/ PVRTMat4 PVRTMat4::inverse() const { PVRTMat4 out; VERTTYPE det_1; VERTTYPE pos, neg, temp; /* Calculate the determinant of submatrix A and determine if the the matrix is singular as limited by the double precision floating-point data representation. */ pos = neg = f2vt(0.0); temp = VERTTYPEMUL(VERTTYPEMUL(f[ 0], f[ 5]), f[10]); if (temp >= 0) pos += temp; else neg += temp; temp = VERTTYPEMUL(VERTTYPEMUL(f[ 4], f[ 9]), f[ 2]); if (temp >= 0) pos += temp; else neg += temp; temp = VERTTYPEMUL(VERTTYPEMUL(f[ 8], f[ 1]), f[ 6]); if (temp >= 0) pos += temp; else neg += temp; temp = VERTTYPEMUL(VERTTYPEMUL(-f[ 8], f[ 5]), f[ 2]); if (temp >= 0) pos += temp; else neg += temp; temp = VERTTYPEMUL(VERTTYPEMUL(-f[ 4], f[ 1]), f[10]); if (temp >= 0) pos += temp; else neg += temp; temp = VERTTYPEMUL(VERTTYPEMUL(-f[ 0], f[ 9]), f[ 6]); if (temp >= 0) pos += temp; else neg += temp; det_1 = pos + neg; /* Is the submatrix A singular? */ if (det_1 == f2vt(0.0)) //|| (VERTTYPEABS(det_1 / (pos - neg)) < 1.0e-15) { /* Matrix M has no inverse */ _RPT0(_CRT_WARN, "Matrix has no inverse : singular matrix\n"); } else { /* Calculate inverse(A) = adj(A) / det(A) */ //det_1 = 1.0 / det_1; det_1 = VERTTYPEDIV(f2vt(1.0f), det_1); out.f[ 0] = VERTTYPEMUL(( VERTTYPEMUL(f[ 5], f[10]) - VERTTYPEMUL(f[ 9], f[ 6]) ), det_1); out.f[ 1] = - VERTTYPEMUL(( VERTTYPEMUL(f[ 1], f[10]) - VERTTYPEMUL(f[ 9], f[ 2]) ), det_1); out.f[ 2] = VERTTYPEMUL(( VERTTYPEMUL(f[ 1], f[ 6]) - VERTTYPEMUL(f[ 5], f[ 2]) ), det_1); out.f[ 4] = - VERTTYPEMUL(( VERTTYPEMUL(f[ 4], f[10]) - VERTTYPEMUL(f[ 8], f[ 6]) ), det_1); out.f[ 5] = VERTTYPEMUL(( VERTTYPEMUL(f[ 0], f[10]) - VERTTYPEMUL(f[ 8], f[ 2]) ), det_1); out.f[ 6] = - VERTTYPEMUL(( VERTTYPEMUL(f[ 0], f[ 6]) - VERTTYPEMUL(f[ 4], f[ 2]) ), det_1); out.f[ 8] = VERTTYPEMUL(( VERTTYPEMUL(f[ 4], f[ 9]) - VERTTYPEMUL(f[ 8], f[ 5]) ), det_1); out.f[ 9] = - VERTTYPEMUL(( VERTTYPEMUL(f[ 0], f[ 9]) - VERTTYPEMUL(f[ 8], f[ 1]) ), det_1); out.f[10] = VERTTYPEMUL(( VERTTYPEMUL(f[ 0], f[ 5]) - VERTTYPEMUL(f[ 4], f[ 1]) ), det_1); /* Calculate -C * inverse(A) */ out.f[12] = - ( VERTTYPEMUL(f[12], out.f[ 0]) + VERTTYPEMUL(f[13], out.f[ 4]) + VERTTYPEMUL(f[14], out.f[ 8]) ); out.f[13] = - ( VERTTYPEMUL(f[12], out.f[ 1]) + VERTTYPEMUL(f[13], out.f[ 5]) + VERTTYPEMUL(f[14], out.f[ 9]) ); out.f[14] = - ( VERTTYPEMUL(f[12], out.f[ 2]) + VERTTYPEMUL(f[13], out.f[ 6]) + VERTTYPEMUL(f[14], out.f[10]) ); /* Fill in last row */ out.f[ 3] = f2vt(0.0f); out.f[ 7] = f2vt(0.0f); out.f[11] = f2vt(0.0f); out.f[15] = f2vt(1.0f); } return out; } /*!*************************************************************************** @Function PVRTLinearEqSolve @Input pSrc 2D array of floats. 4 Eq linear problem is 5x4 matrix, constants in first column @Input nCnt Number of equations to solve @Output pRes Result @Description Solves 'nCnt' simultaneous equations of 'nCnt' variables. pRes should be an array large enough to contain the results: the values of the 'nCnt' variables. This fn recursively uses Gaussian Elimination. *****************************************************************************/ void PVRTLinearEqSolve(VERTTYPE * const pRes, VERTTYPE ** const pSrc, const int nCnt) { int i, j, k; VERTTYPE f; if (nCnt == 1) { _ASSERT(pSrc[0][1] != 0); pRes[0] = VERTTYPEDIV(pSrc[0][0], pSrc[0][1]); return; } // Loop backwards in an attempt avoid the need to swap rows i = nCnt; while(i) { --i; if(pSrc[i][nCnt] != f2vt(0.0f)) { // Row i can be used to zero the other rows; let's move it to the bottom if(i != (nCnt-1)) { for(j = 0; j <= nCnt; ++j) { // Swap the two values f = pSrc[nCnt-1][j]; pSrc[nCnt-1][j] = pSrc[i][j]; pSrc[i][j] = f; } } // Now zero the last columns of the top rows for(j = 0; j < (nCnt-1); ++j) { _ASSERT(pSrc[nCnt-1][nCnt] != f2vt(0.0f)); f = VERTTYPEDIV(pSrc[j][nCnt], pSrc[nCnt-1][nCnt]); // No need to actually calculate a zero for the final column for(k = 0; k < nCnt; ++k) { pSrc[j][k] -= VERTTYPEMUL(f, pSrc[nCnt-1][k]); } } break; } } // Solve the top-left sub matrix PVRTLinearEqSolve(pRes, pSrc, nCnt - 1); // Now calc the solution for the bottom row f = pSrc[nCnt-1][0]; for(k = 1; k < nCnt; ++k) { f -= VERTTYPEMUL(pSrc[nCnt-1][k], pRes[k-1]); } _ASSERT(pSrc[nCnt-1][nCnt] != f2vt(0)); f = VERTTYPEDIV(f, pSrc[nCnt-1][nCnt]); pRes[nCnt-1] = f; } /***************************************************************************** End of file (PVRTVector.cpp) *****************************************************************************/