/* * Copyright 2013 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkBitmap.h" #include "SkBlurImageFilter.h" #include "SkCanvas.h" #include "SkColorFilterImageFilter.h" #include "SkColorMatrixFilter.h" #include "SkComposeImageFilter.h" #include "SkDisplacementMapEffect.h" #include "SkDropShadowImageFilter.h" #include "SkFlattenableSerialization.h" #include "SkGradientShader.h" #include "SkImage.h" #include "SkImageSource.h" #include "SkLightingImageFilter.h" #include "SkMatrixConvolutionImageFilter.h" #include "SkMergeImageFilter.h" #include "SkMorphologyImageFilter.h" #include "SkOffsetImageFilter.h" #include "SkPaintImageFilter.h" #include "SkPerlinNoiseShader.h" #include "SkPicture.h" #include "SkPictureImageFilter.h" #include "SkPictureRecorder.h" #include "SkPoint3.h" #include "SkReadBuffer.h" #include "SkRect.h" #include "SkSpecialImage.h" #include "SkSpecialSurface.h" #include "SkSurface.h" #include "SkTableColorFilter.h" #include "SkTileImageFilter.h" #include "SkXfermodeImageFilter.h" #include "Test.h" #if SK_SUPPORT_GPU #include "GrContext.h" #endif static const int kBitmapSize = 4; namespace { class MatrixTestImageFilter : public SkImageFilter { public: static sk_sp<SkImageFilter> Make(skiatest::Reporter* reporter, const SkMatrix& expectedMatrix) { return sk_sp<SkImageFilter>(new MatrixTestImageFilter(reporter, expectedMatrix)); } SK_TO_STRING_OVERRIDE() SK_DECLARE_PUBLIC_FLATTENABLE_DESERIALIZATION_PROCS(MatrixTestImageFilter) protected: sk_sp<SkSpecialImage> onFilterImage(SkSpecialImage* source, const Context& ctx, SkIPoint* offset) const override { REPORTER_ASSERT(fReporter, ctx.ctm() == fExpectedMatrix); offset->fX = offset->fY = 0; return sk_ref_sp<SkSpecialImage>(source); } void flatten(SkWriteBuffer& buffer) const override { SkDEBUGFAIL("Should never get here"); } private: MatrixTestImageFilter(skiatest::Reporter* reporter, const SkMatrix& expectedMatrix) : INHERITED(nullptr, 0, nullptr) , fReporter(reporter) , fExpectedMatrix(expectedMatrix) { } skiatest::Reporter* fReporter; SkMatrix fExpectedMatrix; typedef SkImageFilter INHERITED; }; class FailImageFilter : public SkImageFilter { public: FailImageFilter() : SkImageFilter(nullptr, 0, nullptr) { } sk_sp<SkSpecialImage> onFilterImage(SkSpecialImage* source, const Context& ctx, SkIPoint* offset) const override { return nullptr; } SK_TO_STRING_OVERRIDE() SK_DECLARE_PUBLIC_FLATTENABLE_DESERIALIZATION_PROCS(FailImageFilter) private: typedef SkImageFilter INHERITED; }; sk_sp<SkFlattenable> FailImageFilter::CreateProc(SkReadBuffer& buffer) { SK_IMAGEFILTER_UNFLATTEN_COMMON(common, 0); return sk_sp<SkFlattenable>(new FailImageFilter()); } #ifndef SK_IGNORE_TO_STRING void FailImageFilter::toString(SkString* str) const { str->appendf("FailImageFilter: ("); str->append(")"); } #endif void draw_gradient_circle(SkCanvas* canvas, int width, int height) { SkScalar x = SkIntToScalar(width / 2); SkScalar y = SkIntToScalar(height / 2); SkScalar radius = SkMinScalar(x, y) * 0.8f; canvas->clear(0x00000000); SkColor colors[2]; colors[0] = SK_ColorWHITE; colors[1] = SK_ColorBLACK; sk_sp<SkShader> shader( SkGradientShader::MakeRadial(SkPoint::Make(x, y), radius, colors, nullptr, 2, SkShader::kClamp_TileMode) ); SkPaint paint; paint.setShader(shader); canvas->drawCircle(x, y, radius, paint); } SkBitmap make_gradient_circle(int width, int height) { SkBitmap bitmap; bitmap.allocN32Pixels(width, height); SkCanvas canvas(bitmap); draw_gradient_circle(&canvas, width, height); return bitmap; } class FilterList { public: FilterList(sk_sp<SkImageFilter> input, const SkImageFilter::CropRect* cropRect = nullptr) { SkPoint3 location = SkPoint3::Make(0, 0, SK_Scalar1); const SkScalar five = SkIntToScalar(5); { sk_sp<SkColorFilter> cf(SkColorFilter::MakeModeFilter(SK_ColorRED, SkBlendMode::kSrcIn)); this->addFilter("color filter", SkColorFilterImageFilter::Make(std::move(cf), input, cropRect)); } { sk_sp<SkImage> gradientImage(SkImage::MakeFromBitmap(make_gradient_circle(64, 64))); sk_sp<SkImageFilter> gradientSource(SkImageSource::Make(std::move(gradientImage))); this->addFilter("displacement map", SkDisplacementMapEffect::Make(SkDisplacementMapEffect::kR_ChannelSelectorType, SkDisplacementMapEffect::kB_ChannelSelectorType, 20.0f, std::move(gradientSource), input, cropRect)); } this->addFilter("blur", SkBlurImageFilter::Make(SK_Scalar1, SK_Scalar1, input, cropRect)); this->addFilter("drop shadow", SkDropShadowImageFilter::Make( SK_Scalar1, SK_Scalar1, SK_Scalar1, SK_Scalar1, SK_ColorGREEN, SkDropShadowImageFilter::kDrawShadowAndForeground_ShadowMode, input, cropRect)); this->addFilter("diffuse lighting", SkLightingImageFilter::MakePointLitDiffuse(location, SK_ColorGREEN, 0, 0, input, cropRect)); this->addFilter("specular lighting", SkLightingImageFilter::MakePointLitSpecular(location, SK_ColorGREEN, 0, 0, 0, input, cropRect)); { SkScalar kernel[9] = { SkIntToScalar(1), SkIntToScalar(1), SkIntToScalar(1), SkIntToScalar(1), SkIntToScalar(-7), SkIntToScalar(1), SkIntToScalar(1), SkIntToScalar(1), SkIntToScalar(1), }; const SkISize kernelSize = SkISize::Make(3, 3); const SkScalar gain = SK_Scalar1, bias = 0; this->addFilter("matrix convolution", SkMatrixConvolutionImageFilter::Make( kernelSize, kernel, gain, bias, SkIPoint::Make(1, 1), SkMatrixConvolutionImageFilter::kRepeat_TileMode, false, input, cropRect)); } this->addFilter("merge", SkMergeImageFilter::Make(input, input, SkBlendMode::kSrcOver, cropRect)); { SkPaint greenColorShaderPaint; greenColorShaderPaint.setShader(SkShader::MakeColorShader(SK_ColorGREEN)); SkImageFilter::CropRect leftSideCropRect(SkRect::MakeXYWH(0, 0, 32, 64)); sk_sp<SkImageFilter> paintFilterLeft(SkPaintImageFilter::Make(greenColorShaderPaint, &leftSideCropRect)); SkImageFilter::CropRect rightSideCropRect(SkRect::MakeXYWH(32, 0, 32, 64)); sk_sp<SkImageFilter> paintFilterRight(SkPaintImageFilter::Make(greenColorShaderPaint, &rightSideCropRect)); this->addFilter("merge with disjoint inputs", SkMergeImageFilter::Make( std::move(paintFilterLeft), std::move(paintFilterRight), SkBlendMode::kSrcOver, cropRect)); } this->addFilter("offset", SkOffsetImageFilter::Make(SK_Scalar1, SK_Scalar1, input, cropRect)); this->addFilter("dilate", SkDilateImageFilter::Make(3, 2, input, cropRect)); this->addFilter("erode", SkErodeImageFilter::Make(2, 3, input, cropRect)); this->addFilter("tile", SkTileImageFilter::Make( SkRect::MakeXYWH(0, 0, 50, 50), cropRect ? cropRect->rect() : SkRect::MakeXYWH(0, 0, 100, 100), input)); if (!cropRect) { SkMatrix matrix; matrix.setTranslate(SK_Scalar1, SK_Scalar1); matrix.postRotate(SkIntToScalar(45), SK_Scalar1, SK_Scalar1); this->addFilter("matrix", SkImageFilter::MakeMatrixFilter(matrix, kLow_SkFilterQuality, input)); } { sk_sp<SkImageFilter> blur(SkBlurImageFilter::Make(five, five, input)); this->addFilter("blur and offset", SkOffsetImageFilter::Make(five, five, std::move(blur), cropRect)); } { SkRTreeFactory factory; SkPictureRecorder recorder; SkCanvas* recordingCanvas = recorder.beginRecording(64, 64, &factory, 0); SkPaint greenPaint; greenPaint.setColor(SK_ColorGREEN); recordingCanvas->drawRect(SkRect::Make(SkIRect::MakeXYWH(10, 10, 30, 20)), greenPaint); sk_sp<SkPicture> picture(recorder.finishRecordingAsPicture()); sk_sp<SkImageFilter> pictureFilter(SkPictureImageFilter::Make(std::move(picture))); this->addFilter("picture and blur", SkBlurImageFilter::Make(five, five, std::move(pictureFilter), cropRect)); } { SkPaint paint; paint.setShader(SkPerlinNoiseShader::MakeTurbulence(SK_Scalar1, SK_Scalar1, 1, 0)); sk_sp<SkImageFilter> paintFilter(SkPaintImageFilter::Make(paint)); this->addFilter("paint and blur", SkBlurImageFilter::Make(five, five, std::move(paintFilter), cropRect)); } this->addFilter("xfermode", SkXfermodeImageFilter::Make(SkBlendMode::kSrc, input, input, cropRect)); } int count() const { return fFilters.count(); } SkImageFilter* getFilter(int index) const { return fFilters[index].fFilter.get(); } const char* getName(int index) const { return fFilters[index].fName; } private: struct Filter { Filter() : fName(nullptr) {} Filter(const char* name, sk_sp<SkImageFilter> filter) : fName(name) , fFilter(std::move(filter)) { } const char* fName; sk_sp<SkImageFilter> fFilter; }; void addFilter(const char* name, sk_sp<SkImageFilter> filter) { fFilters.push_back(Filter(name, std::move(filter))); } SkTArray<Filter> fFilters; }; } sk_sp<SkFlattenable> MatrixTestImageFilter::CreateProc(SkReadBuffer& buffer) { SkDEBUGFAIL("Should never get here"); return nullptr; } #ifndef SK_IGNORE_TO_STRING void MatrixTestImageFilter::toString(SkString* str) const { str->appendf("MatrixTestImageFilter: ("); str->append(")"); } #endif static sk_sp<SkImage> make_small_image() { auto surface(SkSurface::MakeRasterN32Premul(kBitmapSize, kBitmapSize)); SkCanvas* canvas = surface->getCanvas(); canvas->clear(0x00000000); SkPaint darkPaint; darkPaint.setColor(0xFF804020); SkPaint lightPaint; lightPaint.setColor(0xFF244484); const int i = kBitmapSize / 4; for (int y = 0; y < kBitmapSize; y += i) { for (int x = 0; x < kBitmapSize; x += i) { canvas->save(); canvas->translate(SkIntToScalar(x), SkIntToScalar(y)); canvas->drawRect(SkRect::MakeXYWH(0, 0, SkIntToScalar(i), SkIntToScalar(i)), darkPaint); canvas->drawRect(SkRect::MakeXYWH(SkIntToScalar(i), 0, SkIntToScalar(i), SkIntToScalar(i)), lightPaint); canvas->drawRect(SkRect::MakeXYWH(0, SkIntToScalar(i), SkIntToScalar(i), SkIntToScalar(i)), lightPaint); canvas->drawRect(SkRect::MakeXYWH(SkIntToScalar(i), SkIntToScalar(i), SkIntToScalar(i), SkIntToScalar(i)), darkPaint); canvas->restore(); } } return surface->makeImageSnapshot(); } static sk_sp<SkImageFilter> make_scale(float amount, sk_sp<SkImageFilter> input) { SkScalar s = amount; SkScalar matrix[20] = { s, 0, 0, 0, 0, 0, s, 0, 0, 0, 0, 0, s, 0, 0, 0, 0, 0, s, 0 }; sk_sp<SkColorFilter> filter(SkColorFilter::MakeMatrixFilterRowMajor255(matrix)); return SkColorFilterImageFilter::Make(std::move(filter), std::move(input)); } static sk_sp<SkImageFilter> make_grayscale(sk_sp<SkImageFilter> input, const SkImageFilter::CropRect* cropRect) { SkScalar matrix[20]; memset(matrix, 0, 20 * sizeof(SkScalar)); matrix[0] = matrix[5] = matrix[10] = 0.2126f; matrix[1] = matrix[6] = matrix[11] = 0.7152f; matrix[2] = matrix[7] = matrix[12] = 0.0722f; matrix[18] = 1.0f; sk_sp<SkColorFilter> filter(SkColorFilter::MakeMatrixFilterRowMajor255(matrix)); return SkColorFilterImageFilter::Make(std::move(filter), std::move(input), cropRect); } static sk_sp<SkImageFilter> make_blue(sk_sp<SkImageFilter> input, const SkImageFilter::CropRect* cropRect) { sk_sp<SkColorFilter> filter(SkColorFilter::MakeModeFilter(SK_ColorBLUE, SkBlendMode::kSrcIn)); return SkColorFilterImageFilter::Make(std::move(filter), std::move(input), cropRect); } static sk_sp<SkSpecialSurface> create_empty_special_surface(GrContext* context, int widthHeight) { #if SK_SUPPORT_GPU if (context) { return SkSpecialSurface::MakeRenderTarget(context, widthHeight, widthHeight, kRGBA_8888_GrPixelConfig, nullptr); } else #endif { const SkImageInfo info = SkImageInfo::MakeN32(widthHeight, widthHeight, kOpaque_SkAlphaType); return SkSpecialSurface::MakeRaster(info); } } static sk_sp<SkSurface> create_surface(GrContext* context, int width, int height) { const SkImageInfo info = SkImageInfo::MakeN32(width, height, kOpaque_SkAlphaType); #if SK_SUPPORT_GPU if (context) { return SkSurface::MakeRenderTarget(context, SkBudgeted::kNo, info); } else #endif { return SkSurface::MakeRaster(info); } } static sk_sp<SkSpecialImage> create_empty_special_image(GrContext* context, int widthHeight) { sk_sp<SkSpecialSurface> surf(create_empty_special_surface(context, widthHeight)); SkASSERT(surf); SkCanvas* canvas = surf->getCanvas(); SkASSERT(canvas); canvas->clear(0x0); return surf->makeImageSnapshot(); } DEF_TEST(ImageFilter, reporter) { { // Check that two non-clipping color-matrice-filters concatenate into a single filter. sk_sp<SkImageFilter> halfBrightness(make_scale(0.5f, nullptr)); sk_sp<SkImageFilter> quarterBrightness(make_scale(0.5f, std::move(halfBrightness))); REPORTER_ASSERT(reporter, nullptr == quarterBrightness->getInput(0)); SkColorFilter* cf; REPORTER_ASSERT(reporter, quarterBrightness->asColorFilter(&cf)); REPORTER_ASSERT(reporter, cf->asColorMatrix(nullptr)); cf->unref(); } { // Check that a clipping color-matrice-filter followed by a color-matrice-filters // concatenates into a single filter, but not a matrixfilter (due to clamping). sk_sp<SkImageFilter> doubleBrightness(make_scale(2.0f, nullptr)); sk_sp<SkImageFilter> halfBrightness(make_scale(0.5f, std::move(doubleBrightness))); REPORTER_ASSERT(reporter, nullptr == halfBrightness->getInput(0)); SkColorFilter* cf; REPORTER_ASSERT(reporter, halfBrightness->asColorFilter(&cf)); REPORTER_ASSERT(reporter, !cf->asColorMatrix(nullptr)); cf->unref(); } { // Check that a color filter image filter without a crop rect can be // expressed as a color filter. sk_sp<SkImageFilter> gray(make_grayscale(nullptr, nullptr)); REPORTER_ASSERT(reporter, true == gray->asColorFilter(nullptr)); } { // Check that a colorfilterimage filter without a crop rect but with an input // that is another colorfilterimage can be expressed as a colorfilter (composed). sk_sp<SkImageFilter> mode(make_blue(nullptr, nullptr)); sk_sp<SkImageFilter> gray(make_grayscale(std::move(mode), nullptr)); REPORTER_ASSERT(reporter, true == gray->asColorFilter(nullptr)); } { // Test that if we exceed the limit of what ComposeColorFilter can combine, we still // can build the DAG and won't assert if we call asColorFilter. sk_sp<SkImageFilter> filter(make_blue(nullptr, nullptr)); const int kWayTooManyForComposeColorFilter = 100; for (int i = 0; i < kWayTooManyForComposeColorFilter; ++i) { filter = make_blue(filter, nullptr); // the first few of these will succeed, but after we hit the internal limit, // it will then return false. (void)filter->asColorFilter(nullptr); } } { // Check that a color filter image filter with a crop rect cannot // be expressed as a color filter. SkImageFilter::CropRect cropRect(SkRect::MakeXYWH(0, 0, 100, 100)); sk_sp<SkImageFilter> grayWithCrop(make_grayscale(nullptr, &cropRect)); REPORTER_ASSERT(reporter, false == grayWithCrop->asColorFilter(nullptr)); } { // Check that two non-commutative matrices are concatenated in // the correct order. SkScalar blueToRedMatrix[20] = { 0 }; blueToRedMatrix[2] = blueToRedMatrix[18] = SK_Scalar1; SkScalar redToGreenMatrix[20] = { 0 }; redToGreenMatrix[5] = redToGreenMatrix[18] = SK_Scalar1; sk_sp<SkColorFilter> blueToRed(SkColorFilter::MakeMatrixFilterRowMajor255(blueToRedMatrix)); sk_sp<SkImageFilter> filter1(SkColorFilterImageFilter::Make(std::move(blueToRed), nullptr)); sk_sp<SkColorFilter> redToGreen(SkColorFilter::MakeMatrixFilterRowMajor255(redToGreenMatrix)); sk_sp<SkImageFilter> filter2(SkColorFilterImageFilter::Make(std::move(redToGreen), std::move(filter1))); SkBitmap result; result.allocN32Pixels(kBitmapSize, kBitmapSize); SkPaint paint; paint.setColor(SK_ColorBLUE); paint.setImageFilter(std::move(filter2)); SkCanvas canvas(result); canvas.clear(0x0); SkRect rect = SkRect::Make(SkIRect::MakeWH(kBitmapSize, kBitmapSize)); canvas.drawRect(rect, paint); uint32_t pixel = *result.getAddr32(0, 0); // The result here should be green, since we have effectively shifted blue to green. REPORTER_ASSERT(reporter, pixel == SK_ColorGREEN); } { // Tests pass by not asserting sk_sp<SkImage> image(make_small_image()); SkBitmap result; result.allocN32Pixels(kBitmapSize, kBitmapSize); { // This tests for : // 1 ) location at (0,0,1) SkPoint3 location = SkPoint3::Make(0, 0, SK_Scalar1); // 2 ) location and target at same value SkPoint3 target = SkPoint3::Make(location.fX, location.fY, location.fZ); // 3 ) large negative specular exponent value SkScalar specularExponent = -1000; sk_sp<SkImageFilter> bmSrc(SkImageSource::Make(std::move(image))); SkPaint paint; paint.setImageFilter(SkLightingImageFilter::MakeSpotLitSpecular( location, target, specularExponent, 180, 0xFFFFFFFF, SK_Scalar1, SK_Scalar1, SK_Scalar1, std::move(bmSrc))); SkCanvas canvas(result); SkRect r = SkRect::MakeWH(SkIntToScalar(kBitmapSize), SkIntToScalar(kBitmapSize)); canvas.drawRect(r, paint); } } } static void test_crop_rects(skiatest::Reporter* reporter, GrContext* context) { // Check that all filters offset to their absolute crop rect, // unaffected by the input crop rect. // Tests pass by not asserting. sk_sp<SkSpecialImage> srcImg(create_empty_special_image(context, 100)); SkASSERT(srcImg); SkImageFilter::CropRect inputCropRect(SkRect::MakeXYWH(8, 13, 80, 80)); SkImageFilter::CropRect cropRect(SkRect::MakeXYWH(20, 30, 60, 60)); sk_sp<SkImageFilter> input(make_grayscale(nullptr, &inputCropRect)); FilterList filters(input, &cropRect); for (int i = 0; i < filters.count(); ++i) { SkImageFilter* filter = filters.getFilter(i); SkIPoint offset; SkImageFilter::OutputProperties noColorSpace(nullptr); SkImageFilter::Context ctx(SkMatrix::I(), SkIRect::MakeWH(100, 100), nullptr, noColorSpace); sk_sp<SkSpecialImage> resultImg(filter->filterImage(srcImg.get(), ctx, &offset)); REPORTER_ASSERT_MESSAGE(reporter, resultImg, filters.getName(i)); REPORTER_ASSERT_MESSAGE(reporter, offset.fX == 20 && offset.fY == 30, filters.getName(i)); } } static void test_negative_blur_sigma(skiatest::Reporter* reporter, GrContext* context) { // Check that SkBlurImageFilter will accept a negative sigma, either in // the given arguments or after CTM application. const int width = 32, height = 32; const SkScalar five = SkIntToScalar(5); sk_sp<SkImageFilter> positiveFilter(SkBlurImageFilter::Make(five, five, nullptr)); sk_sp<SkImageFilter> negativeFilter(SkBlurImageFilter::Make(-five, five, nullptr)); SkBitmap gradient = make_gradient_circle(width, height); sk_sp<SkSpecialImage> imgSrc(SkSpecialImage::MakeFromRaster(SkIRect::MakeWH(width, height), gradient)); SkIPoint offset; SkImageFilter::OutputProperties noColorSpace(nullptr); SkImageFilter::Context ctx(SkMatrix::I(), SkIRect::MakeWH(32, 32), nullptr, noColorSpace); sk_sp<SkSpecialImage> positiveResult1(positiveFilter->filterImage(imgSrc.get(), ctx, &offset)); REPORTER_ASSERT(reporter, positiveResult1); sk_sp<SkSpecialImage> negativeResult1(negativeFilter->filterImage(imgSrc.get(), ctx, &offset)); REPORTER_ASSERT(reporter, negativeResult1); SkMatrix negativeScale; negativeScale.setScale(-SK_Scalar1, SK_Scalar1); SkImageFilter::Context negativeCTX(negativeScale, SkIRect::MakeWH(32, 32), nullptr, noColorSpace); sk_sp<SkSpecialImage> negativeResult2(positiveFilter->filterImage(imgSrc.get(), negativeCTX, &offset)); REPORTER_ASSERT(reporter, negativeResult2); sk_sp<SkSpecialImage> positiveResult2(negativeFilter->filterImage(imgSrc.get(), negativeCTX, &offset)); REPORTER_ASSERT(reporter, positiveResult2); SkBitmap positiveResultBM1, positiveResultBM2; SkBitmap negativeResultBM1, negativeResultBM2; REPORTER_ASSERT(reporter, positiveResult1->getROPixels(&positiveResultBM1)); REPORTER_ASSERT(reporter, positiveResult2->getROPixels(&positiveResultBM2)); REPORTER_ASSERT(reporter, negativeResult1->getROPixels(&negativeResultBM1)); REPORTER_ASSERT(reporter, negativeResult2->getROPixels(&negativeResultBM2)); SkAutoLockPixels lockP1(positiveResultBM1); SkAutoLockPixels lockP2(positiveResultBM2); SkAutoLockPixels lockN1(negativeResultBM1); SkAutoLockPixels lockN2(negativeResultBM2); for (int y = 0; y < height; y++) { int diffs = memcmp(positiveResultBM1.getAddr32(0, y), negativeResultBM1.getAddr32(0, y), positiveResultBM1.rowBytes()); REPORTER_ASSERT(reporter, !diffs); if (diffs) { break; } diffs = memcmp(positiveResultBM1.getAddr32(0, y), negativeResultBM2.getAddr32(0, y), positiveResultBM1.rowBytes()); REPORTER_ASSERT(reporter, !diffs); if (diffs) { break; } diffs = memcmp(positiveResultBM1.getAddr32(0, y), positiveResultBM2.getAddr32(0, y), positiveResultBM1.rowBytes()); REPORTER_ASSERT(reporter, !diffs); if (diffs) { break; } } } DEF_TEST(ImageFilterNegativeBlurSigma, reporter) { test_negative_blur_sigma(reporter, nullptr); } #if SK_SUPPORT_GPU DEF_GPUTEST_FOR_RENDERING_CONTEXTS(ImageFilterNegativeBlurSigma_Gpu, reporter, ctxInfo) { test_negative_blur_sigma(reporter, ctxInfo.grContext()); } #endif static void test_zero_blur_sigma(skiatest::Reporter* reporter, GrContext* context) { // Check that SkBlurImageFilter with a zero sigma and a non-zero srcOffset works correctly. SkImageFilter::CropRect cropRect(SkRect::Make(SkIRect::MakeXYWH(5, 0, 5, 10))); sk_sp<SkImageFilter> input(SkOffsetImageFilter::Make(0, 0, nullptr, &cropRect)); sk_sp<SkImageFilter> filter(SkBlurImageFilter::Make(0, 0, std::move(input), &cropRect)); sk_sp<SkSpecialSurface> surf(create_empty_special_surface(context, 10)); surf->getCanvas()->clear(SK_ColorGREEN); sk_sp<SkSpecialImage> image(surf->makeImageSnapshot()); SkIPoint offset; SkImageFilter::OutputProperties noColorSpace(nullptr); SkImageFilter::Context ctx(SkMatrix::I(), SkIRect::MakeWH(32, 32), nullptr, noColorSpace); sk_sp<SkSpecialImage> result(filter->filterImage(image.get(), ctx, &offset)); REPORTER_ASSERT(reporter, offset.fX == 5 && offset.fY == 0); REPORTER_ASSERT(reporter, result); REPORTER_ASSERT(reporter, result->width() == 5 && result->height() == 10); SkBitmap resultBM; REPORTER_ASSERT(reporter, result->getROPixels(&resultBM)); SkAutoLockPixels lock(resultBM); for (int y = 0; y < resultBM.height(); y++) { for (int x = 0; x < resultBM.width(); x++) { bool diff = *resultBM.getAddr32(x, y) != SK_ColorGREEN; REPORTER_ASSERT(reporter, !diff); if (diff) { break; } } } } DEF_TEST(ImageFilterZeroBlurSigma, reporter) { test_zero_blur_sigma(reporter, nullptr); } #if SK_SUPPORT_GPU DEF_GPUTEST_FOR_RENDERING_CONTEXTS(ImageFilterZeroBlurSigma_Gpu, reporter, ctxInfo) { test_zero_blur_sigma(reporter, ctxInfo.grContext()); } #endif // Tests that, even when an upstream filter has returned null (due to failure or clipping), a // downstream filter that affects transparent black still does so even with a nullptr input. static void test_fail_affects_transparent_black(skiatest::Reporter* reporter, GrContext* context) { sk_sp<FailImageFilter> failFilter(new FailImageFilter()); sk_sp<SkSpecialImage> source(create_empty_special_image(context, 5)); SkImageFilter::OutputProperties noColorSpace(nullptr); SkImageFilter::Context ctx(SkMatrix::I(), SkIRect::MakeXYWH(0, 0, 1, 1), nullptr, noColorSpace); sk_sp<SkColorFilter> green(SkColorFilter::MakeModeFilter(SK_ColorGREEN, SkBlendMode::kSrc)); SkASSERT(green->affectsTransparentBlack()); sk_sp<SkImageFilter> greenFilter(SkColorFilterImageFilter::Make(std::move(green), std::move(failFilter))); SkIPoint offset; sk_sp<SkSpecialImage> result(greenFilter->filterImage(source.get(), ctx, &offset)); REPORTER_ASSERT(reporter, nullptr != result.get()); if (result.get()) { SkBitmap resultBM; REPORTER_ASSERT(reporter, result->getROPixels(&resultBM)); SkAutoLockPixels lock(resultBM); REPORTER_ASSERT(reporter, *resultBM.getAddr32(0, 0) == SK_ColorGREEN); } } DEF_TEST(ImageFilterFailAffectsTransparentBlack, reporter) { test_fail_affects_transparent_black(reporter, nullptr); } #if SK_SUPPORT_GPU DEF_GPUTEST_FOR_RENDERING_CONTEXTS(ImageFilterFailAffectsTransparentBlack_Gpu, reporter, ctxInfo) { test_fail_affects_transparent_black(reporter, ctxInfo.grContext()); } #endif DEF_TEST(ImageFilterDrawTiled, reporter) { // Check that all filters when drawn tiled (with subsequent clip rects) exactly // match the same filters drawn with a single full-canvas bitmap draw. // Tests pass by not asserting. FilterList filters(nullptr); SkBitmap untiledResult, tiledResult; const int width = 64, height = 64; untiledResult.allocN32Pixels(width, height); tiledResult.allocN32Pixels(width, height); SkCanvas tiledCanvas(tiledResult); SkCanvas untiledCanvas(untiledResult); int tileSize = 8; for (int scale = 1; scale <= 2; ++scale) { for (int i = 0; i < filters.count(); ++i) { tiledCanvas.clear(0); untiledCanvas.clear(0); SkPaint paint; paint.setImageFilter(sk_ref_sp(filters.getFilter(i))); paint.setTextSize(SkIntToScalar(height)); paint.setColor(SK_ColorWHITE); SkString str; const char* text = "ABC"; SkScalar ypos = SkIntToScalar(height); untiledCanvas.save(); untiledCanvas.scale(SkIntToScalar(scale), SkIntToScalar(scale)); untiledCanvas.drawText(text, strlen(text), 0, ypos, paint); untiledCanvas.restore(); for (int y = 0; y < height; y += tileSize) { for (int x = 0; x < width; x += tileSize) { tiledCanvas.save(); tiledCanvas.clipRect(SkRect::Make(SkIRect::MakeXYWH(x, y, tileSize, tileSize))); tiledCanvas.scale(SkIntToScalar(scale), SkIntToScalar(scale)); tiledCanvas.drawText(text, strlen(text), 0, ypos, paint); tiledCanvas.restore(); } } untiledCanvas.flush(); tiledCanvas.flush(); for (int y = 0; y < height; y++) { int diffs = memcmp(untiledResult.getAddr32(0, y), tiledResult.getAddr32(0, y), untiledResult.rowBytes()); REPORTER_ASSERT_MESSAGE(reporter, !diffs, filters.getName(i)); if (diffs) { break; } } } } } static void draw_saveLayer_picture(int width, int height, int tileSize, SkBBHFactory* factory, SkBitmap* result) { SkMatrix matrix; matrix.setTranslate(SkIntToScalar(50), 0); sk_sp<SkColorFilter> cf(SkColorFilter::MakeModeFilter(SK_ColorWHITE, SkBlendMode::kSrc)); sk_sp<SkImageFilter> cfif(SkColorFilterImageFilter::Make(std::move(cf), nullptr)); sk_sp<SkImageFilter> imageFilter(SkImageFilter::MakeMatrixFilter(matrix, kNone_SkFilterQuality, std::move(cfif))); SkPaint paint; paint.setImageFilter(std::move(imageFilter)); SkPictureRecorder recorder; SkRect bounds = SkRect::Make(SkIRect::MakeXYWH(0, 0, 50, 50)); SkCanvas* recordingCanvas = recorder.beginRecording(SkIntToScalar(width), SkIntToScalar(height), factory, 0); recordingCanvas->translate(-55, 0); recordingCanvas->saveLayer(&bounds, &paint); recordingCanvas->restore(); sk_sp<SkPicture> picture1(recorder.finishRecordingAsPicture()); result->allocN32Pixels(width, height); SkCanvas canvas(*result); canvas.clear(0); canvas.clipRect(SkRect::Make(SkIRect::MakeWH(tileSize, tileSize))); canvas.drawPicture(picture1.get()); } DEF_TEST(ImageFilterDrawMatrixBBH, reporter) { // Check that matrix filter when drawn tiled with BBH exactly // matches the same thing drawn without BBH. // Tests pass by not asserting. const int width = 200, height = 200; const int tileSize = 100; SkBitmap result1, result2; SkRTreeFactory factory; draw_saveLayer_picture(width, height, tileSize, &factory, &result1); draw_saveLayer_picture(width, height, tileSize, nullptr, &result2); for (int y = 0; y < height; y++) { int diffs = memcmp(result1.getAddr32(0, y), result2.getAddr32(0, y), result1.rowBytes()); REPORTER_ASSERT(reporter, !diffs); if (diffs) { break; } } } static sk_sp<SkImageFilter> make_blur(sk_sp<SkImageFilter> input) { return SkBlurImageFilter::Make(SK_Scalar1, SK_Scalar1, std::move(input)); } static sk_sp<SkImageFilter> make_drop_shadow(sk_sp<SkImageFilter> input) { return SkDropShadowImageFilter::Make( SkIntToScalar(100), SkIntToScalar(100), SkIntToScalar(10), SkIntToScalar(10), SK_ColorBLUE, SkDropShadowImageFilter::kDrawShadowAndForeground_ShadowMode, std::move(input)); } DEF_TEST(ImageFilterBlurThenShadowBounds, reporter) { sk_sp<SkImageFilter> filter1(make_blur(nullptr)); sk_sp<SkImageFilter> filter2(make_drop_shadow(std::move(filter1))); SkIRect bounds = SkIRect::MakeXYWH(0, 0, 100, 100); SkIRect expectedBounds = SkIRect::MakeXYWH(-133, -133, 236, 236); bounds = filter2->filterBounds(bounds, SkMatrix::I()); REPORTER_ASSERT(reporter, bounds == expectedBounds); } DEF_TEST(ImageFilterShadowThenBlurBounds, reporter) { sk_sp<SkImageFilter> filter1(make_drop_shadow(nullptr)); sk_sp<SkImageFilter> filter2(make_blur(std::move(filter1))); SkIRect bounds = SkIRect::MakeXYWH(0, 0, 100, 100); SkIRect expectedBounds = SkIRect::MakeXYWH(-133, -133, 236, 236); bounds = filter2->filterBounds(bounds, SkMatrix::I()); REPORTER_ASSERT(reporter, bounds == expectedBounds); } DEF_TEST(ImageFilterDilateThenBlurBounds, reporter) { sk_sp<SkImageFilter> filter1(SkDilateImageFilter::Make(2, 2, nullptr)); sk_sp<SkImageFilter> filter2(make_drop_shadow(std::move(filter1))); SkIRect bounds = SkIRect::MakeXYWH(0, 0, 100, 100); SkIRect expectedBounds = SkIRect::MakeXYWH(-132, -132, 234, 234); bounds = filter2->filterBounds(bounds, SkMatrix::I()); REPORTER_ASSERT(reporter, bounds == expectedBounds); } DEF_TEST(ImageFilterScaledBlurRadius, reporter) { // Each blur should spread 3*sigma, so 3 for the blur and 30 for the shadow // (before the CTM). Bounds should be computed correctly in the presence of // a (possibly negative) scale. sk_sp<SkImageFilter> blur(make_blur(nullptr)); sk_sp<SkImageFilter> dropShadow(make_drop_shadow(nullptr)); { // Uniform scale by 2. SkMatrix scaleMatrix; scaleMatrix.setScale(2, 2); SkIRect bounds = SkIRect::MakeLTRB(0, 0, 200, 200); SkIRect expectedBlurBounds = SkIRect::MakeLTRB(-6, -6, 206, 206); SkIRect blurBounds = blur->filterBounds( bounds, scaleMatrix, SkImageFilter::kForward_MapDirection); REPORTER_ASSERT(reporter, blurBounds == expectedBlurBounds); SkIRect reverseBlurBounds = blur->filterBounds( bounds, scaleMatrix, SkImageFilter::kReverse_MapDirection); REPORTER_ASSERT(reporter, reverseBlurBounds == expectedBlurBounds); SkIRect expectedShadowBounds = SkIRect::MakeLTRB(0, 0, 460, 460); SkIRect shadowBounds = dropShadow->filterBounds( bounds, scaleMatrix, SkImageFilter::kForward_MapDirection); REPORTER_ASSERT(reporter, shadowBounds == expectedShadowBounds); SkIRect expectedReverseShadowBounds = SkIRect::MakeLTRB(-260, -260, 200, 200); SkIRect reverseShadowBounds = dropShadow->filterBounds( bounds, scaleMatrix, SkImageFilter::kReverse_MapDirection); REPORTER_ASSERT(reporter, reverseShadowBounds == expectedReverseShadowBounds); } { // Vertical flip. SkMatrix scaleMatrix; scaleMatrix.setScale(1, -1); SkIRect bounds = SkIRect::MakeLTRB(0, -100, 100, 0); SkIRect expectedBlurBounds = SkIRect::MakeLTRB(-3, -103, 103, 3); SkIRect blurBounds = blur->filterBounds( bounds, scaleMatrix, SkImageFilter::kForward_MapDirection); REPORTER_ASSERT(reporter, blurBounds == expectedBlurBounds); SkIRect reverseBlurBounds = blur->filterBounds( bounds, scaleMatrix, SkImageFilter::kReverse_MapDirection); REPORTER_ASSERT(reporter, reverseBlurBounds == expectedBlurBounds); SkIRect expectedShadowBounds = SkIRect::MakeLTRB(0, -230, 230, 0); SkIRect shadowBounds = dropShadow->filterBounds( bounds, scaleMatrix, SkImageFilter::kForward_MapDirection); REPORTER_ASSERT(reporter, shadowBounds == expectedShadowBounds); SkIRect expectedReverseShadowBounds = SkIRect::MakeLTRB(-130, -100, 100, 130); SkIRect reverseShadowBounds = dropShadow->filterBounds( bounds, scaleMatrix, SkImageFilter::kReverse_MapDirection); REPORTER_ASSERT(reporter, reverseShadowBounds == expectedReverseShadowBounds); } } DEF_TEST(ImageFilterComposedBlurFastBounds, reporter) { sk_sp<SkImageFilter> filter1(make_blur(nullptr)); sk_sp<SkImageFilter> filter2(make_blur(nullptr)); sk_sp<SkImageFilter> composedFilter(SkComposeImageFilter::Make(std::move(filter1), std::move(filter2))); SkRect boundsSrc = SkRect::MakeWH(SkIntToScalar(100), SkIntToScalar(100)); SkRect expectedBounds = SkRect::MakeXYWH( SkIntToScalar(-6), SkIntToScalar(-6), SkIntToScalar(112), SkIntToScalar(112)); SkRect boundsDst = composedFilter->computeFastBounds(boundsSrc); REPORTER_ASSERT(reporter, boundsDst == expectedBounds); } DEF_TEST(ImageFilterUnionBounds, reporter) { sk_sp<SkImageFilter> offset(SkOffsetImageFilter::Make(50, 0, nullptr)); // Regardless of which order they appear in, the image filter bounds should // be combined correctly. { sk_sp<SkImageFilter> composite(SkXfermodeImageFilter::Make(SkBlendMode::kSrcOver, offset)); SkRect bounds = SkRect::MakeWH(100, 100); // Intentionally aliasing here, as that's what the real callers do. bounds = composite->computeFastBounds(bounds); REPORTER_ASSERT(reporter, bounds == SkRect::MakeWH(150, 100)); } { sk_sp<SkImageFilter> composite(SkXfermodeImageFilter::Make(SkBlendMode::kSrcOver, nullptr, offset, nullptr)); SkRect bounds = SkRect::MakeWH(100, 100); // Intentionally aliasing here, as that's what the real callers do. bounds = composite->computeFastBounds(bounds); REPORTER_ASSERT(reporter, bounds == SkRect::MakeWH(150, 100)); } } static void test_imagefilter_merge_result_size(skiatest::Reporter* reporter, GrContext* context) { SkBitmap greenBM; greenBM.allocN32Pixels(20, 20); greenBM.eraseColor(SK_ColorGREEN); sk_sp<SkImage> greenImage(SkImage::MakeFromBitmap(greenBM)); sk_sp<SkImageFilter> source(SkImageSource::Make(std::move(greenImage))); sk_sp<SkImageFilter> merge(SkMergeImageFilter::Make(source, source, SkBlendMode::kSrcOver)); sk_sp<SkSpecialImage> srcImg(create_empty_special_image(context, 1)); SkImageFilter::OutputProperties noColorSpace(nullptr); SkImageFilter::Context ctx(SkMatrix::I(), SkIRect::MakeXYWH(0, 0, 100, 100), nullptr, noColorSpace); SkIPoint offset; sk_sp<SkSpecialImage> resultImg(merge->filterImage(srcImg.get(), ctx, &offset)); REPORTER_ASSERT(reporter, resultImg); REPORTER_ASSERT(reporter, resultImg->width() == 20 && resultImg->height() == 20); } DEF_TEST(ImageFilterMergeResultSize, reporter) { test_imagefilter_merge_result_size(reporter, nullptr); } #if SK_SUPPORT_GPU DEF_GPUTEST_FOR_RENDERING_CONTEXTS(ImageFilterMergeResultSize_Gpu, reporter, ctxInfo) { test_imagefilter_merge_result_size(reporter, ctxInfo.grContext()); } #endif static void draw_blurred_rect(SkCanvas* canvas) { SkPaint filterPaint; filterPaint.setColor(SK_ColorWHITE); filterPaint.setImageFilter(SkBlurImageFilter::Make(SkIntToScalar(8), 0, nullptr)); canvas->saveLayer(nullptr, &filterPaint); SkPaint whitePaint; whitePaint.setColor(SK_ColorWHITE); canvas->drawRect(SkRect::Make(SkIRect::MakeWH(4, 4)), whitePaint); canvas->restore(); } static void draw_picture_clipped(SkCanvas* canvas, const SkRect& clipRect, const SkPicture* picture) { canvas->save(); canvas->clipRect(clipRect); canvas->drawPicture(picture); canvas->restore(); } DEF_TEST(ImageFilterDrawTiledBlurRTree, reporter) { // Check that the blur filter when recorded with RTree acceleration, // and drawn tiled (with subsequent clip rects) exactly // matches the same filter drawn with without RTree acceleration. // This tests that the "bleed" from the blur into the otherwise-blank // tiles is correctly rendered. // Tests pass by not asserting. int width = 16, height = 8; SkBitmap result1, result2; result1.allocN32Pixels(width, height); result2.allocN32Pixels(width, height); SkCanvas canvas1(result1); SkCanvas canvas2(result2); int tileSize = 8; canvas1.clear(0); canvas2.clear(0); SkRTreeFactory factory; SkPictureRecorder recorder1, recorder2; // The only difference between these two pictures is that one has RTree aceleration. SkCanvas* recordingCanvas1 = recorder1.beginRecording(SkIntToScalar(width), SkIntToScalar(height), nullptr, 0); SkCanvas* recordingCanvas2 = recorder2.beginRecording(SkIntToScalar(width), SkIntToScalar(height), &factory, 0); draw_blurred_rect(recordingCanvas1); draw_blurred_rect(recordingCanvas2); sk_sp<SkPicture> picture1(recorder1.finishRecordingAsPicture()); sk_sp<SkPicture> picture2(recorder2.finishRecordingAsPicture()); for (int y = 0; y < height; y += tileSize) { for (int x = 0; x < width; x += tileSize) { SkRect tileRect = SkRect::Make(SkIRect::MakeXYWH(x, y, tileSize, tileSize)); draw_picture_clipped(&canvas1, tileRect, picture1.get()); draw_picture_clipped(&canvas2, tileRect, picture2.get()); } } for (int y = 0; y < height; y++) { int diffs = memcmp(result1.getAddr32(0, y), result2.getAddr32(0, y), result1.rowBytes()); REPORTER_ASSERT(reporter, !diffs); if (diffs) { break; } } } DEF_TEST(ImageFilterMatrixConvolution, reporter) { // Check that a 1x3 filter does not cause a spurious assert. SkScalar kernel[3] = { SkIntToScalar( 1), SkIntToScalar( 1), SkIntToScalar( 1), }; SkISize kernelSize = SkISize::Make(1, 3); SkScalar gain = SK_Scalar1, bias = 0; SkIPoint kernelOffset = SkIPoint::Make(0, 0); sk_sp<SkImageFilter> filter(SkMatrixConvolutionImageFilter::Make( kernelSize, kernel, gain, bias, kernelOffset, SkMatrixConvolutionImageFilter::kRepeat_TileMode, false, nullptr)); SkBitmap result; int width = 16, height = 16; result.allocN32Pixels(width, height); SkCanvas canvas(result); canvas.clear(0); SkPaint paint; paint.setImageFilter(std::move(filter)); SkRect rect = SkRect::Make(SkIRect::MakeWH(width, height)); canvas.drawRect(rect, paint); } DEF_TEST(ImageFilterMatrixConvolutionBorder, reporter) { // Check that a filter with borders outside the target bounds // does not crash. SkScalar kernel[3] = { 0, 0, 0, }; SkISize kernelSize = SkISize::Make(3, 1); SkScalar gain = SK_Scalar1, bias = 0; SkIPoint kernelOffset = SkIPoint::Make(2, 0); sk_sp<SkImageFilter> filter(SkMatrixConvolutionImageFilter::Make( kernelSize, kernel, gain, bias, kernelOffset, SkMatrixConvolutionImageFilter::kClamp_TileMode, true, nullptr)); SkBitmap result; int width = 10, height = 10; result.allocN32Pixels(width, height); SkCanvas canvas(result); canvas.clear(0); SkPaint filterPaint; filterPaint.setImageFilter(std::move(filter)); SkRect bounds = SkRect::MakeWH(1, 10); SkRect rect = SkRect::Make(SkIRect::MakeWH(width, height)); SkPaint rectPaint; canvas.saveLayer(&bounds, &filterPaint); canvas.drawRect(rect, rectPaint); canvas.restore(); } static void test_big_kernel(skiatest::Reporter* reporter, GrContext* context) { // Check that a kernel that is too big for the GPU still works SkScalar identityKernel[49] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; SkISize kernelSize = SkISize::Make(7, 7); SkScalar gain = SK_Scalar1, bias = 0; SkIPoint kernelOffset = SkIPoint::Make(0, 0); sk_sp<SkImageFilter> filter(SkMatrixConvolutionImageFilter::Make( kernelSize, identityKernel, gain, bias, kernelOffset, SkMatrixConvolutionImageFilter::kClamp_TileMode, true, nullptr)); sk_sp<SkSpecialImage> srcImg(create_empty_special_image(context, 100)); SkASSERT(srcImg); SkIPoint offset; SkImageFilter::OutputProperties noColorSpace(nullptr); SkImageFilter::Context ctx(SkMatrix::I(), SkIRect::MakeWH(100, 100), nullptr, noColorSpace); sk_sp<SkSpecialImage> resultImg(filter->filterImage(srcImg.get(), ctx, &offset)); REPORTER_ASSERT(reporter, resultImg); REPORTER_ASSERT(reporter, SkToBool(context) == resultImg->isTextureBacked()); REPORTER_ASSERT(reporter, resultImg->width() == 100 && resultImg->height() == 100); REPORTER_ASSERT(reporter, offset.fX == 0 && offset.fY == 0); } DEF_TEST(ImageFilterMatrixConvolutionBigKernel, reporter) { test_big_kernel(reporter, nullptr); } #if SK_SUPPORT_GPU DEF_GPUTEST_FOR_RENDERING_CONTEXTS(ImageFilterMatrixConvolutionBigKernel_Gpu, reporter, ctxInfo) { test_big_kernel(reporter, ctxInfo.grContext()); } #endif DEF_TEST(ImageFilterCropRect, reporter) { test_crop_rects(reporter, nullptr); } #if SK_SUPPORT_GPU DEF_GPUTEST_FOR_RENDERING_CONTEXTS(ImageFilterCropRect_Gpu, reporter, ctxInfo) { test_crop_rects(reporter, ctxInfo.grContext()); } #endif DEF_TEST(ImageFilterMatrix, reporter) { SkBitmap temp; temp.allocN32Pixels(100, 100); SkCanvas canvas(temp); canvas.scale(SkIntToScalar(2), SkIntToScalar(2)); SkMatrix expectedMatrix = canvas.getTotalMatrix(); SkRTreeFactory factory; SkPictureRecorder recorder; SkCanvas* recordingCanvas = recorder.beginRecording(100, 100, &factory, 0); SkPaint paint; paint.setImageFilter(MatrixTestImageFilter::Make(reporter, expectedMatrix)); recordingCanvas->saveLayer(nullptr, &paint); SkPaint solidPaint; solidPaint.setColor(0xFFFFFFFF); recordingCanvas->save(); recordingCanvas->scale(SkIntToScalar(10), SkIntToScalar(10)); recordingCanvas->drawRect(SkRect::Make(SkIRect::MakeWH(100, 100)), solidPaint); recordingCanvas->restore(); // scale recordingCanvas->restore(); // saveLayer canvas.drawPicture(recorder.finishRecordingAsPicture()); } DEF_TEST(ImageFilterCrossProcessPictureImageFilter, reporter) { SkRTreeFactory factory; SkPictureRecorder recorder; SkCanvas* recordingCanvas = recorder.beginRecording(1, 1, &factory, 0); // Create an SkPicture which simply draws a green 1x1 rectangle. SkPaint greenPaint; greenPaint.setColor(SK_ColorGREEN); recordingCanvas->drawRect(SkRect::Make(SkIRect::MakeWH(1, 1)), greenPaint); sk_sp<SkPicture> picture(recorder.finishRecordingAsPicture()); // Wrap that SkPicture in an SkPictureImageFilter. sk_sp<SkImageFilter> imageFilter(SkPictureImageFilter::Make(picture)); // Check that SkPictureImageFilter successfully serializes its contained // SkPicture when not in cross-process mode. SkPaint paint; paint.setImageFilter(imageFilter); SkPictureRecorder outerRecorder; SkCanvas* outerCanvas = outerRecorder.beginRecording(1, 1, &factory, 0); SkPaint redPaintWithFilter; redPaintWithFilter.setColor(SK_ColorRED); redPaintWithFilter.setImageFilter(imageFilter); outerCanvas->drawRect(SkRect::Make(SkIRect::MakeWH(1, 1)), redPaintWithFilter); sk_sp<SkPicture> outerPicture(outerRecorder.finishRecordingAsPicture()); SkBitmap bitmap; bitmap.allocN32Pixels(1, 1); SkCanvas canvas(bitmap); // The result here should be green, since the filter replaces the primitive's red interior. canvas.clear(0x0); canvas.drawPicture(outerPicture); uint32_t pixel = *bitmap.getAddr32(0, 0); REPORTER_ASSERT(reporter, pixel == SK_ColorGREEN); // Check that, for now, SkPictureImageFilter does not serialize or // deserialize its contained picture when the filter is serialized // cross-process. Do this by "laundering" it through SkValidatingReadBuffer. sk_sp<SkData> data(SkValidatingSerializeFlattenable(imageFilter.get())); sk_sp<SkImageFilter> unflattenedFilter = SkValidatingDeserializeImageFilter(data->data(), data->size()); redPaintWithFilter.setImageFilter(unflattenedFilter); SkPictureRecorder crossProcessRecorder; SkCanvas* crossProcessCanvas = crossProcessRecorder.beginRecording(1, 1, &factory, 0); crossProcessCanvas->drawRect(SkRect::Make(SkIRect::MakeWH(1, 1)), redPaintWithFilter); sk_sp<SkPicture> crossProcessPicture(crossProcessRecorder.finishRecordingAsPicture()); canvas.clear(0x0); canvas.drawPicture(crossProcessPicture); pixel = *bitmap.getAddr32(0, 0); // If the security precautions are enabled, the result here should not be green, since the // filter draws nothing. REPORTER_ASSERT(reporter, SkPicture::PictureIOSecurityPrecautionsEnabled() ? pixel != SK_ColorGREEN : pixel == SK_ColorGREEN); } static void test_clipped_picture_imagefilter(skiatest::Reporter* reporter, GrContext* context) { sk_sp<SkPicture> picture; { SkRTreeFactory factory; SkPictureRecorder recorder; SkCanvas* recordingCanvas = recorder.beginRecording(1, 1, &factory, 0); // Create an SkPicture which simply draws a green 1x1 rectangle. SkPaint greenPaint; greenPaint.setColor(SK_ColorGREEN); recordingCanvas->drawRect(SkRect::Make(SkIRect::MakeWH(1, 1)), greenPaint); picture = recorder.finishRecordingAsPicture(); } sk_sp<SkSpecialImage> srcImg(create_empty_special_image(context, 2)); sk_sp<SkImageFilter> imageFilter(SkPictureImageFilter::Make(picture)); SkIPoint offset; SkImageFilter::OutputProperties noColorSpace(nullptr); SkImageFilter::Context ctx(SkMatrix::I(), SkIRect::MakeXYWH(1, 1, 1, 1), nullptr, noColorSpace); sk_sp<SkSpecialImage> resultImage(imageFilter->filterImage(srcImg.get(), ctx, &offset)); REPORTER_ASSERT(reporter, !resultImage); } DEF_TEST(ImageFilterClippedPictureImageFilter, reporter) { test_clipped_picture_imagefilter(reporter, nullptr); } #if SK_SUPPORT_GPU DEF_GPUTEST_FOR_RENDERING_CONTEXTS(ImageFilterClippedPictureImageFilter_Gpu, reporter, ctxInfo) { test_clipped_picture_imagefilter(reporter, ctxInfo.grContext()); } #endif DEF_TEST(ImageFilterEmptySaveLayer, reporter) { // Even when there's an empty saveLayer()/restore(), ensure that an image // filter or color filter which affects transparent black still draws. SkBitmap bitmap; bitmap.allocN32Pixels(10, 10); SkCanvas canvas(bitmap); SkRTreeFactory factory; SkPictureRecorder recorder; sk_sp<SkColorFilter> green(SkColorFilter::MakeModeFilter(SK_ColorGREEN, SkBlendMode::kSrc)); sk_sp<SkImageFilter> imageFilter(SkColorFilterImageFilter::Make(green, nullptr)); SkPaint imageFilterPaint; imageFilterPaint.setImageFilter(std::move(imageFilter)); SkPaint colorFilterPaint; colorFilterPaint.setColorFilter(green); SkRect bounds = SkRect::MakeWH(10, 10); SkCanvas* recordingCanvas = recorder.beginRecording(10, 10, &factory, 0); recordingCanvas->saveLayer(&bounds, &imageFilterPaint); recordingCanvas->restore(); sk_sp<SkPicture> picture(recorder.finishRecordingAsPicture()); canvas.clear(0); canvas.drawPicture(picture); uint32_t pixel = *bitmap.getAddr32(0, 0); REPORTER_ASSERT(reporter, pixel == SK_ColorGREEN); recordingCanvas = recorder.beginRecording(10, 10, &factory, 0); recordingCanvas->saveLayer(nullptr, &imageFilterPaint); recordingCanvas->restore(); sk_sp<SkPicture> picture2(recorder.finishRecordingAsPicture()); canvas.clear(0); canvas.drawPicture(picture2); pixel = *bitmap.getAddr32(0, 0); REPORTER_ASSERT(reporter, pixel == SK_ColorGREEN); recordingCanvas = recorder.beginRecording(10, 10, &factory, 0); recordingCanvas->saveLayer(&bounds, &colorFilterPaint); recordingCanvas->restore(); sk_sp<SkPicture> picture3(recorder.finishRecordingAsPicture()); canvas.clear(0); canvas.drawPicture(picture3); pixel = *bitmap.getAddr32(0, 0); REPORTER_ASSERT(reporter, pixel == SK_ColorGREEN); } static void test_huge_blur(SkCanvas* canvas, skiatest::Reporter* reporter) { SkBitmap bitmap; bitmap.allocN32Pixels(100, 100); bitmap.eraseARGB(0, 0, 0, 0); // Check that a blur with an insane radius does not crash or assert. SkPaint paint; paint.setImageFilter(SkBlurImageFilter::Make(SkIntToScalar(1<<30), SkIntToScalar(1<<30), nullptr)); canvas->drawBitmap(bitmap, 0, 0, &paint); } DEF_TEST(HugeBlurImageFilter, reporter) { SkBitmap temp; temp.allocN32Pixels(100, 100); SkCanvas canvas(temp); test_huge_blur(&canvas, reporter); } DEF_TEST(ImageFilterMatrixConvolutionSanityTest, reporter) { SkScalar kernel[1] = { 0 }; SkScalar gain = SK_Scalar1, bias = 0; SkIPoint kernelOffset = SkIPoint::Make(1, 1); // Check that an enormous (non-allocatable) kernel gives a nullptr filter. sk_sp<SkImageFilter> conv(SkMatrixConvolutionImageFilter::Make( SkISize::Make(1<<30, 1<<30), kernel, gain, bias, kernelOffset, SkMatrixConvolutionImageFilter::kRepeat_TileMode, false, nullptr)); REPORTER_ASSERT(reporter, nullptr == conv.get()); // Check that a nullptr kernel gives a nullptr filter. conv = SkMatrixConvolutionImageFilter::Make( SkISize::Make(1, 1), nullptr, gain, bias, kernelOffset, SkMatrixConvolutionImageFilter::kRepeat_TileMode, false, nullptr); REPORTER_ASSERT(reporter, nullptr == conv.get()); // Check that a kernel width < 1 gives a nullptr filter. conv = SkMatrixConvolutionImageFilter::Make( SkISize::Make(0, 1), kernel, gain, bias, kernelOffset, SkMatrixConvolutionImageFilter::kRepeat_TileMode, false, nullptr); REPORTER_ASSERT(reporter, nullptr == conv.get()); // Check that kernel height < 1 gives a nullptr filter. conv = SkMatrixConvolutionImageFilter::Make( SkISize::Make(1, -1), kernel, gain, bias, kernelOffset, SkMatrixConvolutionImageFilter::kRepeat_TileMode, false, nullptr); REPORTER_ASSERT(reporter, nullptr == conv.get()); } static void test_xfermode_cropped_input(SkCanvas* canvas, skiatest::Reporter* reporter) { canvas->clear(0); SkBitmap bitmap; bitmap.allocN32Pixels(1, 1); bitmap.eraseARGB(255, 255, 255, 255); sk_sp<SkColorFilter> green(SkColorFilter::MakeModeFilter(SK_ColorGREEN, SkBlendMode::kSrcIn)); sk_sp<SkImageFilter> greenFilter(SkColorFilterImageFilter::Make(green, nullptr)); SkImageFilter::CropRect cropRect(SkRect::MakeEmpty()); sk_sp<SkImageFilter> croppedOut(SkColorFilterImageFilter::Make(green, nullptr, &cropRect)); // Check that an xfermode image filter whose input has been cropped out still draws the other // input. Also check that drawing with both inputs cropped out doesn't cause a GPU warning. SkBlendMode mode = SkBlendMode::kSrcOver; sk_sp<SkImageFilter> xfermodeNoFg(SkXfermodeImageFilter::Make(mode, greenFilter, croppedOut, nullptr)); sk_sp<SkImageFilter> xfermodeNoBg(SkXfermodeImageFilter::Make(mode, croppedOut, greenFilter, nullptr)); sk_sp<SkImageFilter> xfermodeNoFgNoBg(SkXfermodeImageFilter::Make(mode, croppedOut, croppedOut, nullptr)); SkPaint paint; paint.setImageFilter(std::move(xfermodeNoFg)); canvas->drawBitmap(bitmap, 0, 0, &paint); // drawSprite uint32_t pixel; SkImageInfo info = SkImageInfo::Make(1, 1, kBGRA_8888_SkColorType, kUnpremul_SkAlphaType); canvas->readPixels(info, &pixel, 4, 0, 0); REPORTER_ASSERT(reporter, pixel == SK_ColorGREEN); paint.setImageFilter(std::move(xfermodeNoBg)); canvas->drawBitmap(bitmap, 0, 0, &paint); // drawSprite canvas->readPixels(info, &pixel, 4, 0, 0); REPORTER_ASSERT(reporter, pixel == SK_ColorGREEN); paint.setImageFilter(std::move(xfermodeNoFgNoBg)); canvas->drawBitmap(bitmap, 0, 0, &paint); // drawSprite canvas->readPixels(info, &pixel, 4, 0, 0); REPORTER_ASSERT(reporter, pixel == SK_ColorGREEN); } DEF_TEST(ImageFilterNestedSaveLayer, reporter) { SkBitmap temp; temp.allocN32Pixels(50, 50); SkCanvas canvas(temp); canvas.clear(0x0); SkBitmap bitmap; bitmap.allocN32Pixels(10, 10); bitmap.eraseColor(SK_ColorGREEN); SkMatrix matrix; matrix.setScale(SkIntToScalar(2), SkIntToScalar(2)); matrix.postTranslate(SkIntToScalar(-20), SkIntToScalar(-20)); sk_sp<SkImageFilter> matrixFilter( SkImageFilter::MakeMatrixFilter(matrix, kLow_SkFilterQuality, nullptr)); // Test that saveLayer() with a filter nested inside another saveLayer() applies the // correct offset to the filter matrix. SkRect bounds1 = SkRect::MakeXYWH(10, 10, 30, 30); canvas.saveLayer(&bounds1, nullptr); SkPaint filterPaint; filterPaint.setImageFilter(std::move(matrixFilter)); SkRect bounds2 = SkRect::MakeXYWH(20, 20, 10, 10); canvas.saveLayer(&bounds2, &filterPaint); SkPaint greenPaint; greenPaint.setColor(SK_ColorGREEN); canvas.drawRect(bounds2, greenPaint); canvas.restore(); canvas.restore(); SkPaint strokePaint; strokePaint.setStyle(SkPaint::kStroke_Style); strokePaint.setColor(SK_ColorRED); SkImageInfo info = SkImageInfo::Make(1, 1, kBGRA_8888_SkColorType, kUnpremul_SkAlphaType); uint32_t pixel; canvas.readPixels(info, &pixel, 4, 25, 25); REPORTER_ASSERT(reporter, pixel == SK_ColorGREEN); // Test that drawSprite() with a filter nested inside a saveLayer() applies the // correct offset to the filter matrix. canvas.clear(0x0); canvas.readPixels(info, &pixel, 4, 25, 25); canvas.saveLayer(&bounds1, nullptr); canvas.drawBitmap(bitmap, 20, 20, &filterPaint); // drawSprite canvas.restore(); canvas.readPixels(info, &pixel, 4, 25, 25); REPORTER_ASSERT(reporter, pixel == SK_ColorGREEN); } DEF_TEST(XfermodeImageFilterCroppedInput, reporter) { SkBitmap temp; temp.allocN32Pixels(100, 100); SkCanvas canvas(temp); test_xfermode_cropped_input(&canvas, reporter); } static void test_composed_imagefilter_offset(skiatest::Reporter* reporter, GrContext* context) { sk_sp<SkSpecialImage> srcImg(create_empty_special_image(context, 100)); SkImageFilter::CropRect cropRect(SkRect::MakeXYWH(1, 0, 20, 20)); sk_sp<SkImageFilter> offsetFilter(SkOffsetImageFilter::Make(0, 0, nullptr, &cropRect)); sk_sp<SkImageFilter> blurFilter(SkBlurImageFilter::Make(SK_Scalar1, SK_Scalar1, nullptr, &cropRect)); sk_sp<SkImageFilter> composedFilter(SkComposeImageFilter::Make(std::move(blurFilter), std::move(offsetFilter))); SkIPoint offset; SkImageFilter::OutputProperties noColorSpace(nullptr); SkImageFilter::Context ctx(SkMatrix::I(), SkIRect::MakeWH(100, 100), nullptr, noColorSpace); sk_sp<SkSpecialImage> resultImg(composedFilter->filterImage(srcImg.get(), ctx, &offset)); REPORTER_ASSERT(reporter, resultImg); REPORTER_ASSERT(reporter, offset.fX == 1 && offset.fY == 0); } DEF_TEST(ComposedImageFilterOffset, reporter) { test_composed_imagefilter_offset(reporter, nullptr); } #if SK_SUPPORT_GPU DEF_GPUTEST_FOR_RENDERING_CONTEXTS(ComposedImageFilterOffset_Gpu, reporter, ctxInfo) { test_composed_imagefilter_offset(reporter, ctxInfo.grContext()); } #endif static void test_composed_imagefilter_bounds(skiatest::Reporter* reporter, GrContext* context) { // The bounds passed to the inner filter must be filtered by the outer // filter, so that the inner filter produces the pixels that the outer // filter requires as input. This matters if the outer filter moves pixels. // Here, accounting for the outer offset is necessary so that the green // pixels of the picture are not clipped. SkPictureRecorder recorder; SkCanvas* recordingCanvas = recorder.beginRecording(SkRect::MakeWH(200, 100)); recordingCanvas->clipRect(SkRect::MakeXYWH(100, 0, 100, 100)); recordingCanvas->clear(SK_ColorGREEN); sk_sp<SkPicture> picture(recorder.finishRecordingAsPicture()); sk_sp<SkImageFilter> pictureFilter(SkPictureImageFilter::Make(picture)); SkImageFilter::CropRect cropRect(SkRect::MakeWH(100, 100)); sk_sp<SkImageFilter> offsetFilter(SkOffsetImageFilter::Make(-100, 0, nullptr, &cropRect)); sk_sp<SkImageFilter> composedFilter(SkComposeImageFilter::Make(std::move(offsetFilter), std::move(pictureFilter))); sk_sp<SkSpecialImage> sourceImage(create_empty_special_image(context, 100)); SkImageFilter::OutputProperties noColorSpace(nullptr); SkImageFilter::Context ctx(SkMatrix::I(), SkIRect::MakeWH(100, 100), nullptr, noColorSpace); SkIPoint offset; sk_sp<SkSpecialImage> result(composedFilter->filterImage(sourceImage.get(), ctx, &offset)); REPORTER_ASSERT(reporter, offset.isZero()); REPORTER_ASSERT(reporter, result); REPORTER_ASSERT(reporter, result->subset().size() == SkISize::Make(100, 100)); SkBitmap resultBM; REPORTER_ASSERT(reporter, result->getROPixels(&resultBM)); SkAutoLockPixels lock(resultBM); REPORTER_ASSERT(reporter, resultBM.getColor(50, 50) == SK_ColorGREEN); } DEF_TEST(ComposedImageFilterBounds, reporter) { test_composed_imagefilter_bounds(reporter, nullptr); } #if SK_SUPPORT_GPU DEF_GPUTEST_FOR_RENDERING_CONTEXTS(ComposedImageFilterBounds_Gpu, reporter, ctxInfo) { test_composed_imagefilter_bounds(reporter, ctxInfo.grContext()); } #endif static void test_partial_crop_rect(skiatest::Reporter* reporter, GrContext* context) { sk_sp<SkSpecialImage> srcImg(create_empty_special_image(context, 100)); SkImageFilter::CropRect cropRect(SkRect::MakeXYWH(100, 0, 20, 30), SkImageFilter::CropRect::kHasWidth_CropEdge | SkImageFilter::CropRect::kHasHeight_CropEdge); sk_sp<SkImageFilter> filter(make_grayscale(nullptr, &cropRect)); SkIPoint offset; SkImageFilter::OutputProperties noColorSpace(nullptr); SkImageFilter::Context ctx(SkMatrix::I(), SkIRect::MakeWH(100, 100), nullptr, noColorSpace); sk_sp<SkSpecialImage> resultImg(filter->filterImage(srcImg.get(), ctx, &offset)); REPORTER_ASSERT(reporter, resultImg); REPORTER_ASSERT(reporter, offset.fX == 0); REPORTER_ASSERT(reporter, offset.fY == 0); REPORTER_ASSERT(reporter, resultImg->width() == 20); REPORTER_ASSERT(reporter, resultImg->height() == 30); } DEF_TEST(ImageFilterPartialCropRect, reporter) { test_partial_crop_rect(reporter, nullptr); } #if SK_SUPPORT_GPU DEF_GPUTEST_FOR_RENDERING_CONTEXTS(ImageFilterPartialCropRect_Gpu, reporter, ctxInfo) { test_partial_crop_rect(reporter, ctxInfo.grContext()); } #endif DEF_TEST(ImageFilterCanComputeFastBounds, reporter) { { SkPoint3 location = SkPoint3::Make(0, 0, SK_Scalar1); sk_sp<SkImageFilter> lighting(SkLightingImageFilter::MakePointLitDiffuse(location, SK_ColorGREEN, 0, 0, nullptr)); REPORTER_ASSERT(reporter, !lighting->canComputeFastBounds()); } { sk_sp<SkImageFilter> gray(make_grayscale(nullptr, nullptr)); REPORTER_ASSERT(reporter, gray->canComputeFastBounds()); { SkColorFilter* grayCF; REPORTER_ASSERT(reporter, gray->asAColorFilter(&grayCF)); REPORTER_ASSERT(reporter, !grayCF->affectsTransparentBlack()); grayCF->unref(); } REPORTER_ASSERT(reporter, gray->canComputeFastBounds()); sk_sp<SkImageFilter> grayBlur(SkBlurImageFilter::Make(SK_Scalar1, SK_Scalar1, std::move(gray))); REPORTER_ASSERT(reporter, grayBlur->canComputeFastBounds()); } { SkScalar greenMatrix[20] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 }; sk_sp<SkColorFilter> greenCF(SkColorFilter::MakeMatrixFilterRowMajor255(greenMatrix)); sk_sp<SkImageFilter> green(SkColorFilterImageFilter::Make(greenCF, nullptr)); REPORTER_ASSERT(reporter, greenCF->affectsTransparentBlack()); REPORTER_ASSERT(reporter, !green->canComputeFastBounds()); sk_sp<SkImageFilter> greenBlur(SkBlurImageFilter::Make(SK_Scalar1, SK_Scalar1, std::move(green))); REPORTER_ASSERT(reporter, !greenBlur->canComputeFastBounds()); } uint8_t allOne[256], identity[256]; for (int i = 0; i < 256; ++i) { identity[i] = i; allOne[i] = 255; } sk_sp<SkColorFilter> identityCF(SkTableColorFilter::MakeARGB(identity, identity, identity, allOne)); sk_sp<SkImageFilter> identityFilter(SkColorFilterImageFilter::Make(identityCF, nullptr)); REPORTER_ASSERT(reporter, !identityCF->affectsTransparentBlack()); REPORTER_ASSERT(reporter, identityFilter->canComputeFastBounds()); sk_sp<SkColorFilter> forceOpaqueCF(SkTableColorFilter::MakeARGB(allOne, identity, identity, identity)); sk_sp<SkImageFilter> forceOpaque(SkColorFilterImageFilter::Make(forceOpaqueCF, nullptr)); REPORTER_ASSERT(reporter, forceOpaqueCF->affectsTransparentBlack()); REPORTER_ASSERT(reporter, !forceOpaque->canComputeFastBounds()); } // Verify that SkImageSource survives serialization DEF_TEST(ImageFilterImageSourceSerialization, reporter) { auto surface(SkSurface::MakeRasterN32Premul(10, 10)); surface->getCanvas()->clear(SK_ColorGREEN); sk_sp<SkImage> image(surface->makeImageSnapshot()); sk_sp<SkImageFilter> filter(SkImageSource::Make(std::move(image))); sk_sp<SkData> data(SkValidatingSerializeFlattenable(filter.get())); sk_sp<SkImageFilter> unflattenedFilter = SkValidatingDeserializeImageFilter(data->data(), data->size()); REPORTER_ASSERT(reporter, unflattenedFilter); SkBitmap bm; bm.allocN32Pixels(10, 10); bm.eraseColor(SK_ColorBLUE); SkPaint paint; paint.setColor(SK_ColorRED); paint.setImageFilter(unflattenedFilter); SkCanvas canvas(bm); canvas.drawRect(SkRect::MakeWH(10, 10), paint); REPORTER_ASSERT(reporter, *bm.getAddr32(0, 0) == SkPreMultiplyColor(SK_ColorGREEN)); } static void test_large_blur_input(skiatest::Reporter* reporter, SkCanvas* canvas) { SkBitmap largeBmp; int largeW = 5000; int largeH = 5000; #if SK_SUPPORT_GPU // If we're GPU-backed make the bitmap too large to be converted into a texture. if (GrContext* ctx = canvas->getGrContext()) { largeW = ctx->caps()->maxTextureSize() + 1; } #endif largeBmp.allocN32Pixels(largeW, largeH); largeBmp.eraseColor(0); if (!largeBmp.getPixels()) { ERRORF(reporter, "Failed to allocate large bmp."); return; } sk_sp<SkImage> largeImage(SkImage::MakeFromBitmap(largeBmp)); if (!largeImage) { ERRORF(reporter, "Failed to create large image."); return; } sk_sp<SkImageFilter> largeSource(SkImageSource::Make(std::move(largeImage))); if (!largeSource) { ERRORF(reporter, "Failed to create large SkImageSource."); return; } sk_sp<SkImageFilter> blur(SkBlurImageFilter::Make(10.f, 10.f, std::move(largeSource))); if (!blur) { ERRORF(reporter, "Failed to create SkBlurImageFilter."); return; } SkPaint paint; paint.setImageFilter(std::move(blur)); // This should not crash (http://crbug.com/570479). canvas->drawRect(SkRect::MakeIWH(largeW, largeH), paint); } DEF_TEST(ImageFilterBlurLargeImage, reporter) { auto surface(SkSurface::MakeRaster(SkImageInfo::MakeN32Premul(100, 100))); test_large_blur_input(reporter, surface->getCanvas()); } static void test_make_with_filter(skiatest::Reporter* reporter, GrContext* context) { sk_sp<SkSurface> surface(create_surface(context, 192, 128)); surface->getCanvas()->clear(SK_ColorRED); SkPaint bluePaint; bluePaint.setColor(SK_ColorBLUE); SkIRect subset = SkIRect::MakeXYWH(25, 20, 50, 50); surface->getCanvas()->drawRect(SkRect::Make(subset), bluePaint); sk_sp<SkImage> sourceImage = surface->makeImageSnapshot(); sk_sp<SkImageFilter> filter = make_grayscale(nullptr, nullptr); SkIRect clipBounds = SkIRect::MakeXYWH(30, 35, 100, 100); SkIRect outSubset; SkIPoint offset; sk_sp<SkImage> result; result = sourceImage->makeWithFilter(nullptr, subset, clipBounds, &outSubset, &offset); REPORTER_ASSERT(reporter, !result); result = sourceImage->makeWithFilter(filter.get(), subset, clipBounds, nullptr, &offset); REPORTER_ASSERT(reporter, !result); result = sourceImage->makeWithFilter(filter.get(), subset, clipBounds, &outSubset, nullptr); REPORTER_ASSERT(reporter, !result); SkIRect bigSubset = SkIRect::MakeXYWH(-10000, -10000, 20000, 20000); result = sourceImage->makeWithFilter(filter.get(), bigSubset, clipBounds, &outSubset, &offset); REPORTER_ASSERT(reporter, !result); SkIRect empty = SkIRect::MakeEmpty(); result = sourceImage->makeWithFilter(filter.get(), empty, clipBounds, &outSubset, &offset); REPORTER_ASSERT(reporter, !result); result = sourceImage->makeWithFilter(filter.get(), subset, empty, &outSubset, &offset); REPORTER_ASSERT(reporter, !result); SkIRect leftField = SkIRect::MakeXYWH(-1000, 0, 100, 100); result = sourceImage->makeWithFilter(filter.get(), subset, leftField, &outSubset, &offset); REPORTER_ASSERT(reporter, !result); result = sourceImage->makeWithFilter(filter.get(), subset, clipBounds, &outSubset, &offset); REPORTER_ASSERT(reporter, result); REPORTER_ASSERT(reporter, result->bounds().contains(outSubset)); SkIRect destRect = SkIRect::MakeXYWH(offset.x(), offset.y(), outSubset.width(), outSubset.height()); REPORTER_ASSERT(reporter, clipBounds.contains(destRect)); // In GPU-mode, this case creates a special image with a backing size that differs from // the content size { clipBounds.setXYWH(0, 0, 170, 100); subset.setXYWH(0, 0, 160, 90); filter = SkXfermodeImageFilter::Make(SkBlendMode::kSrc, nullptr); result = sourceImage->makeWithFilter(filter.get(), subset, clipBounds, &outSubset, &offset); REPORTER_ASSERT(reporter, result); } } DEF_TEST(ImageFilterMakeWithFilter, reporter) { test_make_with_filter(reporter, nullptr); } #if SK_SUPPORT_GPU DEF_GPUTEST_FOR_RENDERING_CONTEXTS(ImageFilterMakeWithFilter_Gpu, reporter, ctxInfo) { test_make_with_filter(reporter, ctxInfo.grContext()); } #endif #if SK_SUPPORT_GPU DEF_GPUTEST_FOR_RENDERING_CONTEXTS(ImageFilterHugeBlur_Gpu, reporter, ctxInfo) { sk_sp<SkSurface> surf(SkSurface::MakeRenderTarget(ctxInfo.grContext(), SkBudgeted::kNo, SkImageInfo::MakeN32Premul(100, 100))); SkCanvas* canvas = surf->getCanvas(); test_huge_blur(canvas, reporter); } DEF_GPUTEST_FOR_RENDERING_CONTEXTS(XfermodeImageFilterCroppedInput_Gpu, reporter, ctxInfo) { sk_sp<SkSurface> surf(SkSurface::MakeRenderTarget(ctxInfo.grContext(), SkBudgeted::kNo, SkImageInfo::MakeN32Premul(1, 1))); SkCanvas* canvas = surf->getCanvas(); test_xfermode_cropped_input(canvas, reporter); } DEF_GPUTEST_FOR_ALL_CONTEXTS(ImageFilterBlurLargeImage_Gpu, reporter, ctxInfo) { auto surface(SkSurface::MakeRenderTarget(ctxInfo.grContext(), SkBudgeted::kYes, SkImageInfo::MakeN32Premul(100, 100))); test_large_blur_input(reporter, surface->getCanvas()); } #endif /* * Test that colorfilterimagefilter does not require its CTM to be decomposed when it has more * than just scale/translate, but that other filters do. */ DEF_TEST(ImageFilterComplexCTM, reporter) { // just need a colorfilter to exercise the corresponding imagefilter sk_sp<SkColorFilter> cf = SkColorFilter::MakeModeFilter(SK_ColorRED, SkBlendMode::kSrcATop); sk_sp<SkImageFilter> cfif = SkColorFilterImageFilter::Make(cf, nullptr); // can handle sk_sp<SkImageFilter> blif = SkBlurImageFilter::Make(3, 3, nullptr); // cannot handle struct { sk_sp<SkImageFilter> fFilter; bool fExpectCanHandle; } recs[] = { { cfif, true }, { SkColorFilterImageFilter::Make(cf, cfif), true }, { SkMergeImageFilter::Make(cfif, cfif, SkBlendMode::kSrcOver), true }, { SkComposeImageFilter::Make(cfif, cfif), true }, { blif, false }, { SkBlurImageFilter::Make(3, 3, cfif), false }, { SkColorFilterImageFilter::Make(cf, blif), false }, { SkMergeImageFilter::Make(cfif, blif, SkBlendMode::kSrcOver), false }, { SkComposeImageFilter::Make(blif, cfif), false }, }; for (const auto& rec : recs) { const bool canHandle = rec.fFilter->canHandleComplexCTM(); REPORTER_ASSERT(reporter, canHandle == rec.fExpectCanHandle); } }