/* * Copyright 2014 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "GrGLSLFragmentShaderBuilder.h" #include "GrRenderTarget.h" #include "GrRenderTargetPriv.h" #include "GrShaderCaps.h" #include "gl/GrGLGpu.h" #include "glsl/GrGLSLProgramBuilder.h" #include "glsl/GrGLSLUniformHandler.h" #include "glsl/GrGLSLVarying.h" #include "../private/GrGLSL.h" const char* GrGLSLFragmentShaderBuilder::kDstColorName = "_dstColor"; static const char* sample_offset_array_name(GrGLSLFPFragmentBuilder::Coordinates coords) { static const char* kArrayNames[] = { "deviceSpaceSampleOffsets", "windowSpaceSampleOffsets" }; return kArrayNames[coords]; GR_STATIC_ASSERT(0 == GrGLSLFPFragmentBuilder::kSkiaDevice_Coordinates); GR_STATIC_ASSERT(1 == GrGLSLFPFragmentBuilder::kGLSLWindow_Coordinates); GR_STATIC_ASSERT(SK_ARRAY_COUNT(kArrayNames) == GrGLSLFPFragmentBuilder::kLast_Coordinates + 1); } static const char* specific_layout_qualifier_name(GrBlendEquation equation) { SkASSERT(GrBlendEquationIsAdvanced(equation)); static const char* kLayoutQualifierNames[] = { "blend_support_screen", "blend_support_overlay", "blend_support_darken", "blend_support_lighten", "blend_support_colordodge", "blend_support_colorburn", "blend_support_hardlight", "blend_support_softlight", "blend_support_difference", "blend_support_exclusion", "blend_support_multiply", "blend_support_hsl_hue", "blend_support_hsl_saturation", "blend_support_hsl_color", "blend_support_hsl_luminosity" }; return kLayoutQualifierNames[equation - kFirstAdvancedGrBlendEquation]; GR_STATIC_ASSERT(0 == kScreen_GrBlendEquation - kFirstAdvancedGrBlendEquation); GR_STATIC_ASSERT(1 == kOverlay_GrBlendEquation - kFirstAdvancedGrBlendEquation); GR_STATIC_ASSERT(2 == kDarken_GrBlendEquation - kFirstAdvancedGrBlendEquation); GR_STATIC_ASSERT(3 == kLighten_GrBlendEquation - kFirstAdvancedGrBlendEquation); GR_STATIC_ASSERT(4 == kColorDodge_GrBlendEquation - kFirstAdvancedGrBlendEquation); GR_STATIC_ASSERT(5 == kColorBurn_GrBlendEquation - kFirstAdvancedGrBlendEquation); GR_STATIC_ASSERT(6 == kHardLight_GrBlendEquation - kFirstAdvancedGrBlendEquation); GR_STATIC_ASSERT(7 == kSoftLight_GrBlendEquation - kFirstAdvancedGrBlendEquation); GR_STATIC_ASSERT(8 == kDifference_GrBlendEquation - kFirstAdvancedGrBlendEquation); GR_STATIC_ASSERT(9 == kExclusion_GrBlendEquation - kFirstAdvancedGrBlendEquation); GR_STATIC_ASSERT(10 == kMultiply_GrBlendEquation - kFirstAdvancedGrBlendEquation); GR_STATIC_ASSERT(11 == kHSLHue_GrBlendEquation - kFirstAdvancedGrBlendEquation); GR_STATIC_ASSERT(12 == kHSLSaturation_GrBlendEquation - kFirstAdvancedGrBlendEquation); GR_STATIC_ASSERT(13 == kHSLColor_GrBlendEquation - kFirstAdvancedGrBlendEquation); GR_STATIC_ASSERT(14 == kHSLLuminosity_GrBlendEquation - kFirstAdvancedGrBlendEquation); GR_STATIC_ASSERT(SK_ARRAY_COUNT(kLayoutQualifierNames) == kGrBlendEquationCnt - kFirstAdvancedGrBlendEquation); } uint8_t GrGLSLFragmentShaderBuilder::KeyForSurfaceOrigin(GrSurfaceOrigin origin) { SkASSERT(kTopLeft_GrSurfaceOrigin == origin || kBottomLeft_GrSurfaceOrigin == origin); return origin; GR_STATIC_ASSERT(1 == kTopLeft_GrSurfaceOrigin); GR_STATIC_ASSERT(2 == kBottomLeft_GrSurfaceOrigin); } GrGLSLFragmentShaderBuilder::GrGLSLFragmentShaderBuilder(GrGLSLProgramBuilder* program) : GrGLSLFragmentBuilder(program) , fSetupFragPosition(false) , fHasCustomColorOutput(false) , fCustomColorOutputIndex(-1) , fHasSecondaryOutput(false) , fUsedSampleOffsetArrays(0) , fHasInitializedSampleMask(false) { fSubstageIndices.push_back(0); #ifdef SK_DEBUG fUsedProcessorFeatures = GrProcessor::kNone_RequiredFeatures; fHasReadDstColor = false; #endif } bool GrGLSLFragmentShaderBuilder::enableFeature(GLSLFeature feature) { const GrShaderCaps& shaderCaps = *fProgramBuilder->shaderCaps(); switch (feature) { case kMultisampleInterpolation_GLSLFeature: if (!shaderCaps.multisampleInterpolationSupport()) { return false; } if (const char* extension = shaderCaps.multisampleInterpolationExtensionString()) { this->addFeature(1 << kMultisampleInterpolation_GLSLFeature, extension); } return true; default: SkFAIL("Unexpected GLSLFeature requested."); return false; } } SkString GrGLSLFragmentShaderBuilder::ensureCoords2D(const GrShaderVar& coords) { if (kVec3f_GrSLType != coords.getType()) { SkASSERT(kVec2f_GrSLType == coords.getType()); return coords.getName(); } SkString coords2D; coords2D.printf("%s_ensure2D", coords.c_str()); this->codeAppendf("\tvec2 %s = %s.xy / %s.z;", coords2D.c_str(), coords.c_str(), coords.c_str()); return coords2D; } const char* GrGLSLFragmentShaderBuilder::distanceVectorName() const { return "fsDistanceVector"; } void GrGLSLFragmentShaderBuilder::appendOffsetToSample(const char* sampleIdx, Coordinates coords) { SkASSERT(fProgramBuilder->header().fSamplePatternKey); SkDEBUGCODE(fUsedProcessorFeatures |= GrProcessor::kSampleLocations_RequiredFeature); if (kTopLeft_GrSurfaceOrigin == this->getSurfaceOrigin()) { // With a top left origin, device and window space are equal, so we only use device coords. coords = kSkiaDevice_Coordinates; } this->codeAppendf("%s[%s]", sample_offset_array_name(coords), sampleIdx); fUsedSampleOffsetArrays |= (1 << coords); } void GrGLSLFragmentShaderBuilder::maskSampleCoverage(const char* mask, bool invert) { const GrShaderCaps& shaderCaps = *fProgramBuilder->shaderCaps(); if (!shaderCaps.sampleVariablesSupport()) { SkDEBUGFAIL("Attempted to mask sample coverage without support."); return; } if (const char* extension = shaderCaps.sampleVariablesExtensionString()) { this->addFeature(1 << kSampleVariables_GLSLPrivateFeature, extension); } if (!fHasInitializedSampleMask) { this->codePrependf("gl_SampleMask[0] = -1;"); fHasInitializedSampleMask = true; } if (invert) { this->codeAppendf("gl_SampleMask[0] &= ~(%s);", mask); } else { this->codeAppendf("gl_SampleMask[0] &= %s;", mask); } } void GrGLSLFragmentShaderBuilder::overrideSampleCoverage(const char* mask) { const GrShaderCaps& shaderCaps = *fProgramBuilder->shaderCaps(); if (!shaderCaps.sampleMaskOverrideCoverageSupport()) { SkDEBUGFAIL("Attempted to override sample coverage without support."); return; } SkASSERT(shaderCaps.sampleVariablesSupport()); if (const char* extension = shaderCaps.sampleVariablesExtensionString()) { this->addFeature(1 << kSampleVariables_GLSLPrivateFeature, extension); } if (this->addFeature(1 << kSampleMaskOverrideCoverage_GLSLPrivateFeature, "GL_NV_sample_mask_override_coverage")) { // Redeclare gl_SampleMask with layout(override_coverage) if we haven't already. fOutputs.push_back().set(kInt_GrSLType, "gl_SampleMask", 1, GrShaderVar::kOut_TypeModifier, kHigh_GrSLPrecision, "override_coverage"); } this->codeAppendf("gl_SampleMask[0] = %s;", mask); fHasInitializedSampleMask = true; } const char* GrGLSLFragmentShaderBuilder::dstColor() { SkDEBUGCODE(fHasReadDstColor = true;) const char* override = fProgramBuilder->primitiveProcessor().getDestColorOverride(); if (override != nullptr) { return override; } const GrShaderCaps* shaderCaps = fProgramBuilder->shaderCaps(); if (shaderCaps->fbFetchSupport()) { this->addFeature(1 << kFramebufferFetch_GLSLPrivateFeature, shaderCaps->fbFetchExtensionString()); // Some versions of this extension string require declaring custom color output on ES 3.0+ const char* fbFetchColorName = shaderCaps->fbFetchColorName(); if (shaderCaps->fbFetchNeedsCustomOutput()) { this->enableCustomOutput(); fOutputs[fCustomColorOutputIndex].setTypeModifier(GrShaderVar::kInOut_TypeModifier); fbFetchColorName = DeclaredColorOutputName(); // Set the dstColor to an intermediate variable so we don't override it with the output this->codeAppendf("vec4 %s = %s;", kDstColorName, fbFetchColorName); } else { return fbFetchColorName; } } return kDstColorName; } void GrGLSLFragmentShaderBuilder::enableAdvancedBlendEquationIfNeeded(GrBlendEquation equation) { SkASSERT(GrBlendEquationIsAdvanced(equation)); const GrShaderCaps& caps = *fProgramBuilder->shaderCaps(); if (!caps.mustEnableAdvBlendEqs()) { return; } this->addFeature(1 << kBlendEquationAdvanced_GLSLPrivateFeature, "GL_KHR_blend_equation_advanced"); if (caps.mustEnableSpecificAdvBlendEqs()) { this->addLayoutQualifier(specific_layout_qualifier_name(equation), kOut_InterfaceQualifier); } else { this->addLayoutQualifier("blend_support_all_equations", kOut_InterfaceQualifier); } } void GrGLSLFragmentShaderBuilder::enableCustomOutput() { if (!fHasCustomColorOutput) { fHasCustomColorOutput = true; fCustomColorOutputIndex = fOutputs.count(); fOutputs.push_back().set(kVec4f_GrSLType, DeclaredColorOutputName(), GrShaderVar::kOut_TypeModifier); fProgramBuilder->finalizeFragmentOutputColor(fOutputs.back()); } } void GrGLSLFragmentShaderBuilder::enableSecondaryOutput() { SkASSERT(!fHasSecondaryOutput); fHasSecondaryOutput = true; const GrShaderCaps& caps = *fProgramBuilder->shaderCaps(); if (const char* extension = caps.secondaryOutputExtensionString()) { this->addFeature(1 << kBlendFuncExtended_GLSLPrivateFeature, extension); } // If the primary output is declared, we must declare also the secondary output // and vice versa, since it is not allowed to use a built-in gl_FragColor and a custom // output. The condition also co-incides with the condition in whici GLES SL 2.0 // requires the built-in gl_SecondaryFragColorEXT, where as 3.0 requires a custom output. if (caps.mustDeclareFragmentShaderOutput()) { fOutputs.push_back().set(kVec4f_GrSLType, DeclaredSecondaryColorOutputName(), GrShaderVar::kOut_TypeModifier); fProgramBuilder->finalizeFragmentSecondaryColor(fOutputs.back()); } } const char* GrGLSLFragmentShaderBuilder::getPrimaryColorOutputName() const { return fHasCustomColorOutput ? DeclaredColorOutputName() : "sk_FragColor"; } void GrGLSLFragmentBuilder::declAppendf(const char* fmt, ...) { va_list argp; va_start(argp, fmt); inputs().appendVAList(fmt, argp); va_end(argp); } const char* GrGLSLFragmentShaderBuilder::getSecondaryColorOutputName() const { const GrShaderCaps& caps = *fProgramBuilder->shaderCaps(); return caps.mustDeclareFragmentShaderOutput() ? DeclaredSecondaryColorOutputName() : "gl_SecondaryFragColorEXT"; } GrSurfaceOrigin GrGLSLFragmentShaderBuilder::getSurfaceOrigin() const { SkASSERT(fProgramBuilder->header().fSurfaceOriginKey); return static_cast<GrSurfaceOrigin>(fProgramBuilder->header().fSurfaceOriginKey); GR_STATIC_ASSERT(1 == kTopLeft_GrSurfaceOrigin); GR_STATIC_ASSERT(2 == kBottomLeft_GrSurfaceOrigin); } void GrGLSLFragmentShaderBuilder::onFinalize() { fProgramBuilder->varyingHandler()->getFragDecls(&this->inputs(), &this->outputs()); GrGLSLAppendDefaultFloatPrecisionDeclaration(kDefault_GrSLPrecision, *fProgramBuilder->shaderCaps(), &this->precisionQualifier()); if (fUsedSampleOffsetArrays & (1 << kSkiaDevice_Coordinates)) { this->defineSampleOffsetArray(sample_offset_array_name(kSkiaDevice_Coordinates), SkMatrix::MakeTrans(-0.5f, -0.5f)); } if (fUsedSampleOffsetArrays & (1 << kGLSLWindow_Coordinates)) { // With a top left origin, device and window space are equal, so we only use device coords. SkASSERT(kBottomLeft_GrSurfaceOrigin == this->getSurfaceOrigin()); SkMatrix m; m.setScale(1, -1); m.preTranslate(-0.5f, -0.5f); this->defineSampleOffsetArray(sample_offset_array_name(kGLSLWindow_Coordinates), m); } } void GrGLSLFragmentShaderBuilder::defineSampleOffsetArray(const char* name, const SkMatrix& m) { SkASSERT(fProgramBuilder->caps()->sampleLocationsSupport()); const GrPipeline& pipeline = fProgramBuilder->pipeline(); const GrRenderTargetPriv& rtp = pipeline.getRenderTarget()->renderTargetPriv(); const GrGpu::MultisampleSpecs& specs = rtp.getMultisampleSpecs(pipeline); SkSTArray<16, SkPoint, true> offsets; offsets.push_back_n(specs.fEffectiveSampleCnt); m.mapPoints(offsets.begin(), specs.fSampleLocations, specs.fEffectiveSampleCnt); this->definitions().appendf("const highp vec2 %s[] = vec2[](", name); for (int i = 0; i < specs.fEffectiveSampleCnt; ++i) { this->definitions().appendf("vec2(%f, %f)", offsets[i].x(), offsets[i].y()); this->definitions().append(i + 1 != specs.fEffectiveSampleCnt ? ", " : ");\n"); } } void GrGLSLFragmentShaderBuilder::onBeforeChildProcEmitCode() { SkASSERT(fSubstageIndices.count() >= 1); fSubstageIndices.push_back(0); // second-to-last value in the fSubstageIndices stack is the index of the child proc // at that level which is currently emitting code. fMangleString.appendf("_c%d", fSubstageIndices[fSubstageIndices.count() - 2]); } void GrGLSLFragmentShaderBuilder::onAfterChildProcEmitCode() { SkASSERT(fSubstageIndices.count() >= 2); fSubstageIndices.pop_back(); fSubstageIndices.back()++; int removeAt = fMangleString.findLastOf('_'); fMangleString.remove(removeAt, fMangleString.size() - removeAt); }