/* * Copyright 2014 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "GrConvexPolyEffect.h" #include "SkPathPriv.h" #include "effects/GrConstColorProcessor.h" #include "glsl/GrGLSLFragmentProcessor.h" #include "glsl/GrGLSLFragmentShaderBuilder.h" #include "glsl/GrGLSLProgramDataManager.h" #include "glsl/GrGLSLUniformHandler.h" #include "../private/GrGLSL.h" ////////////////////////////////////////////////////////////////////////////// class AARectEffect : public GrFragmentProcessor { public: const SkRect& getRect() const { return fRect; } static sk_sp<GrFragmentProcessor> Make(GrPrimitiveEdgeType edgeType, const SkRect& rect) { return sk_sp<GrFragmentProcessor>(new AARectEffect(edgeType, rect)); } GrPrimitiveEdgeType getEdgeType() const { return fEdgeType; } const char* name() const override { return "AARect"; } void onGetGLSLProcessorKey(const GrShaderCaps&, GrProcessorKeyBuilder*) const override; private: AARectEffect(GrPrimitiveEdgeType edgeType, const SkRect& rect) : INHERITED(kCompatibleWithCoverageAsAlpha_OptimizationFlag) , fRect(rect) , fEdgeType(edgeType) { this->initClassID<AARectEffect>(); } GrGLSLFragmentProcessor* onCreateGLSLInstance() const override; bool onIsEqual(const GrFragmentProcessor& other) const override { const AARectEffect& aare = other.cast<AARectEffect>(); return fRect == aare.fRect; } SkRect fRect; GrPrimitiveEdgeType fEdgeType; typedef GrFragmentProcessor INHERITED; GR_DECLARE_FRAGMENT_PROCESSOR_TEST; }; GR_DEFINE_FRAGMENT_PROCESSOR_TEST(AARectEffect); #if GR_TEST_UTILS sk_sp<GrFragmentProcessor> AARectEffect::TestCreate(GrProcessorTestData* d) { SkRect rect = SkRect::MakeLTRB(d->fRandom->nextSScalar1(), d->fRandom->nextSScalar1(), d->fRandom->nextSScalar1(), d->fRandom->nextSScalar1()); sk_sp<GrFragmentProcessor> fp; do { GrPrimitiveEdgeType edgeType = static_cast<GrPrimitiveEdgeType>( d->fRandom->nextULessThan(kGrProcessorEdgeTypeCnt)); fp = AARectEffect::Make(edgeType, rect); } while (nullptr == fp); return fp; } #endif ////////////////////////////////////////////////////////////////////////////// class GLAARectEffect : public GrGLSLFragmentProcessor { public: GLAARectEffect() { fPrevRect.fLeft = SK_ScalarNaN; } void emitCode(EmitArgs&) override; static inline void GenKey(const GrProcessor&, const GrShaderCaps&, GrProcessorKeyBuilder*); protected: void onSetData(const GrGLSLProgramDataManager&, const GrProcessor&) override; private: GrGLSLProgramDataManager::UniformHandle fRectUniform; SkRect fPrevRect; typedef GrGLSLFragmentProcessor INHERITED; }; void GLAARectEffect::emitCode(EmitArgs& args) { const AARectEffect& aare = args.fFp.cast<AARectEffect>(); const char *rectName; // The rect uniform's xyzw refer to (left + 0.5, top + 0.5, right - 0.5, bottom - 0.5), // respectively. fRectUniform = args.fUniformHandler->addUniform(kFragment_GrShaderFlag, kVec4f_GrSLType, kDefault_GrSLPrecision, "rect", &rectName); GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder; if (GrProcessorEdgeTypeIsAA(aare.getEdgeType())) { // The amount of coverage removed in x and y by the edges is computed as a pair of negative // numbers, xSub and ySub. fragBuilder->codeAppend("\t\tfloat xSub, ySub;\n"); fragBuilder->codeAppendf("\t\txSub = min(sk_FragCoord.x - %s.x, 0.0);\n", rectName); fragBuilder->codeAppendf("\t\txSub += min(%s.z - sk_FragCoord.x, 0.0);\n", rectName); fragBuilder->codeAppendf("\t\tySub = min(sk_FragCoord.y - %s.y, 0.0);\n", rectName); fragBuilder->codeAppendf("\t\tySub += min(%s.w - sk_FragCoord.y, 0.0);\n", rectName); // Now compute coverage in x and y and multiply them to get the fraction of the pixel // covered. fragBuilder->codeAppendf("\t\tfloat alpha = (1.0 + max(xSub, -1.0)) * (1.0 + max(ySub, -1.0));\n"); } else { fragBuilder->codeAppendf("\t\tfloat alpha = 1.0;\n"); fragBuilder->codeAppendf("\t\talpha *= (sk_FragCoord.x - %s.x) > -0.5 ? 1.0 : 0.0;\n", rectName); fragBuilder->codeAppendf("\t\talpha *= (%s.z - sk_FragCoord.x) > -0.5 ? 1.0 : 0.0;\n", rectName); fragBuilder->codeAppendf("\t\talpha *= (sk_FragCoord.y - %s.y) > -0.5 ? 1.0 : 0.0;\n", rectName); fragBuilder->codeAppendf("\t\talpha *= (%s.w - sk_FragCoord.y) > -0.5 ? 1.0 : 0.0;\n", rectName); } if (GrProcessorEdgeTypeIsInverseFill(aare.getEdgeType())) { fragBuilder->codeAppend("\t\talpha = 1.0 - alpha;\n"); } fragBuilder->codeAppendf("\t\t%s = %s;\n", args.fOutputColor, (GrGLSLExpr4(args.fInputColor) * GrGLSLExpr1("alpha")).c_str()); } void GLAARectEffect::onSetData(const GrGLSLProgramDataManager& pdman, const GrProcessor& processor) { const AARectEffect& aare = processor.cast<AARectEffect>(); const SkRect& rect = aare.getRect(); if (rect != fPrevRect) { pdman.set4f(fRectUniform, rect.fLeft + 0.5f, rect.fTop + 0.5f, rect.fRight - 0.5f, rect.fBottom - 0.5f); fPrevRect = rect; } } void GLAARectEffect::GenKey(const GrProcessor& processor, const GrShaderCaps&, GrProcessorKeyBuilder* b) { const AARectEffect& aare = processor.cast<AARectEffect>(); b->add32(aare.getEdgeType()); } void AARectEffect::onGetGLSLProcessorKey(const GrShaderCaps& caps, GrProcessorKeyBuilder* b) const { GLAARectEffect::GenKey(*this, caps, b); } GrGLSLFragmentProcessor* AARectEffect::onCreateGLSLInstance() const { return new GLAARectEffect; } ////////////////////////////////////////////////////////////////////////////// class GrGLConvexPolyEffect : public GrGLSLFragmentProcessor { public: GrGLConvexPolyEffect() { for (size_t i = 0; i < SK_ARRAY_COUNT(fPrevEdges); ++i) { fPrevEdges[i] = SK_ScalarNaN; } } void emitCode(EmitArgs&) override; static inline void GenKey(const GrProcessor&, const GrShaderCaps&, GrProcessorKeyBuilder*); protected: void onSetData(const GrGLSLProgramDataManager&, const GrProcessor&) override; private: GrGLSLProgramDataManager::UniformHandle fEdgeUniform; SkScalar fPrevEdges[3 * GrConvexPolyEffect::kMaxEdges]; typedef GrGLSLFragmentProcessor INHERITED; }; void GrGLConvexPolyEffect::emitCode(EmitArgs& args) { const GrConvexPolyEffect& cpe = args.fFp.cast<GrConvexPolyEffect>(); const char *edgeArrayName; fEdgeUniform = args.fUniformHandler->addUniformArray(kFragment_GrShaderFlag, kVec3f_GrSLType, kDefault_GrSLPrecision, "edges", cpe.getEdgeCount(), &edgeArrayName); GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder; fragBuilder->codeAppend("\t\tfloat alpha = 1.0;\n"); fragBuilder->codeAppend("\t\tfloat edge;\n"); for (int i = 0; i < cpe.getEdgeCount(); ++i) { fragBuilder->codeAppendf("\t\tedge = dot(%s[%d], vec3(sk_FragCoord.x, sk_FragCoord.y, " "1));\n", edgeArrayName, i); if (GrProcessorEdgeTypeIsAA(cpe.getEdgeType())) { fragBuilder->codeAppend("\t\tedge = clamp(edge, 0.0, 1.0);\n"); } else { fragBuilder->codeAppend("\t\tedge = edge >= 0.5 ? 1.0 : 0.0;\n"); } fragBuilder->codeAppend("\t\talpha *= edge;\n"); } if (GrProcessorEdgeTypeIsInverseFill(cpe.getEdgeType())) { fragBuilder->codeAppend("\talpha = 1.0 - alpha;\n"); } fragBuilder->codeAppendf("\t%s = %s;\n", args.fOutputColor, (GrGLSLExpr4(args.fInputColor) * GrGLSLExpr1("alpha")).c_str()); } void GrGLConvexPolyEffect::onSetData(const GrGLSLProgramDataManager& pdman, const GrProcessor& effect) { const GrConvexPolyEffect& cpe = effect.cast<GrConvexPolyEffect>(); size_t byteSize = 3 * cpe.getEdgeCount() * sizeof(SkScalar); if (0 != memcmp(fPrevEdges, cpe.getEdges(), byteSize)) { pdman.set3fv(fEdgeUniform, cpe.getEdgeCount(), cpe.getEdges()); memcpy(fPrevEdges, cpe.getEdges(), byteSize); } } void GrGLConvexPolyEffect::GenKey(const GrProcessor& processor, const GrShaderCaps&, GrProcessorKeyBuilder* b) { const GrConvexPolyEffect& cpe = processor.cast<GrConvexPolyEffect>(); GR_STATIC_ASSERT(kGrProcessorEdgeTypeCnt <= 8); uint32_t key = (cpe.getEdgeCount() << 3) | cpe.getEdgeType(); b->add32(key); } ////////////////////////////////////////////////////////////////////////////// sk_sp<GrFragmentProcessor> GrConvexPolyEffect::Make(GrPrimitiveEdgeType type, const SkPath& path) { if (kHairlineAA_GrProcessorEdgeType == type) { return nullptr; } if (path.getSegmentMasks() != SkPath::kLine_SegmentMask || !path.isConvex()) { return nullptr; } SkPathPriv::FirstDirection dir; // The only way this should fail is if the clip is effectively a infinitely thin line. In that // case nothing is inside the clip. It'd be nice to detect this at a higher level and either // skip the draw or omit the clip element. if (!SkPathPriv::CheapComputeFirstDirection(path, &dir)) { if (GrProcessorEdgeTypeIsInverseFill(type)) { return GrConstColorProcessor::Make(GrColor4f::OpaqueWhite(), GrConstColorProcessor::kModulateRGBA_InputMode); } // This could use kIgnore instead of kModulateRGBA but it would trigger a debug print // about a coverage processor not being compatible with the alpha-as-coverage optimization. // We don't really care about this unlikely case so we just use kModulateRGBA to suppress // the print. return GrConstColorProcessor::Make(GrColor4f::TransparentBlack(), GrConstColorProcessor::kModulateRGBA_InputMode); } SkScalar edges[3 * kMaxEdges]; SkPoint pts[4]; SkPath::Verb verb; SkPath::Iter iter(path, true); // SkPath considers itself convex so long as there is a convex contour within it, // regardless of any degenerate contours such as a string of moveTos before it. // Iterate here to consume any degenerate contours and only process the points // on the actual convex contour. int n = 0; while ((verb = iter.next(pts, true, true)) != SkPath::kDone_Verb) { switch (verb) { case SkPath::kMove_Verb: SkASSERT(n == 0); case SkPath::kClose_Verb: break; case SkPath::kLine_Verb: { if (n >= kMaxEdges) { return nullptr; } SkVector v = pts[1] - pts[0]; v.normalize(); if (SkPathPriv::kCCW_FirstDirection == dir) { edges[3 * n] = v.fY; edges[3 * n + 1] = -v.fX; } else { edges[3 * n] = -v.fY; edges[3 * n + 1] = v.fX; } edges[3 * n + 2] = -(edges[3 * n] * pts[1].fX + edges[3 * n + 1] * pts[1].fY); ++n; break; } default: return nullptr; } } if (path.isInverseFillType()) { type = GrInvertProcessorEdgeType(type); } return Make(type, n, edges); } sk_sp<GrFragmentProcessor> GrConvexPolyEffect::Make(GrPrimitiveEdgeType edgeType, const SkRect& rect) { if (kHairlineAA_GrProcessorEdgeType == edgeType){ return nullptr; } return AARectEffect::Make(edgeType, rect); } GrConvexPolyEffect::~GrConvexPolyEffect() {} void GrConvexPolyEffect::onGetGLSLProcessorKey(const GrShaderCaps& caps, GrProcessorKeyBuilder* b) const { GrGLConvexPolyEffect::GenKey(*this, caps, b); } GrGLSLFragmentProcessor* GrConvexPolyEffect::onCreateGLSLInstance() const { return new GrGLConvexPolyEffect; } GrConvexPolyEffect::GrConvexPolyEffect(GrPrimitiveEdgeType edgeType, int n, const SkScalar edges[]) : INHERITED(kCompatibleWithCoverageAsAlpha_OptimizationFlag) , fEdgeType(edgeType) , fEdgeCount(n) { this->initClassID<GrConvexPolyEffect>(); // Factory function should have already ensured this. SkASSERT(n <= kMaxEdges); memcpy(fEdges, edges, 3 * n * sizeof(SkScalar)); // Outset the edges by 0.5 so that a pixel with center on an edge is 50% covered in the AA case // and 100% covered in the non-AA case. for (int i = 0; i < n; ++i) { fEdges[3 * i + 2] += SK_ScalarHalf; } } bool GrConvexPolyEffect::onIsEqual(const GrFragmentProcessor& other) const { const GrConvexPolyEffect& cpe = other.cast<GrConvexPolyEffect>(); // ignore the fact that 0 == -0 and just use memcmp. return (cpe.fEdgeType == fEdgeType && cpe.fEdgeCount == fEdgeCount && 0 == memcmp(cpe.fEdges, fEdges, 3 * fEdgeCount * sizeof(SkScalar))); } ////////////////////////////////////////////////////////////////////////////// GR_DEFINE_FRAGMENT_PROCESSOR_TEST(GrConvexPolyEffect); #if GR_TEST_UTILS sk_sp<GrFragmentProcessor> GrConvexPolyEffect::TestCreate(GrProcessorTestData* d) { int count = d->fRandom->nextULessThan(kMaxEdges) + 1; SkScalar edges[kMaxEdges * 3]; for (int i = 0; i < 3 * count; ++i) { edges[i] = d->fRandom->nextSScalar1(); } sk_sp<GrFragmentProcessor> fp; do { GrPrimitiveEdgeType edgeType = static_cast<GrPrimitiveEdgeType>( d->fRandom->nextULessThan(kGrProcessorEdgeTypeCnt)); fp = GrConvexPolyEffect::Make(edgeType, count, edges); } while (nullptr == fp); return fp; } #endif