/* * Copyright 2014 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "GrDefaultGeoProcFactory.h" #include "SkRefCnt.h" #include "glsl/GrGLSLFragmentShaderBuilder.h" #include "glsl/GrGLSLGeometryProcessor.h" #include "glsl/GrGLSLVertexShaderBuilder.h" #include "glsl/GrGLSLVarying.h" #include "glsl/GrGLSLUniformHandler.h" #include "glsl/GrGLSLUtil.h" /* * The default Geometry Processor simply takes position and multiplies it by the uniform view * matrix. It also leaves coverage untouched. Behind the scenes, we may add per vertex color or * local coords. */ enum GPFlag { kColorAttribute_GPFlag = 0x1, kColorAttributeIsSkColor_GPFlag = 0x2, kLocalCoordAttribute_GPFlag = 0x4, kCoverageAttribute_GPFlag = 0x8, }; class DefaultGeoProc : public GrGeometryProcessor { public: static sk_sp<GrGeometryProcessor> Make(uint32_t gpTypeFlags, GrColor color, const SkMatrix& viewMatrix, const SkMatrix& localMatrix, bool localCoordsWillBeRead, uint8_t coverage) { return sk_sp<GrGeometryProcessor>(new DefaultGeoProc( gpTypeFlags, color, viewMatrix, localMatrix, coverage, localCoordsWillBeRead)); } const char* name() const override { return "DefaultGeometryProcessor"; } const Attribute* inPosition() const { return fInPosition; } const Attribute* inColor() const { return fInColor; } const Attribute* inLocalCoords() const { return fInLocalCoords; } const Attribute* inCoverage() const { return fInCoverage; } GrColor color() const { return fColor; } bool hasVertexColor() const { return SkToBool(fInColor); } const SkMatrix& viewMatrix() const { return fViewMatrix; } const SkMatrix& localMatrix() const { return fLocalMatrix; } bool localCoordsWillBeRead() const { return fLocalCoordsWillBeRead; } uint8_t coverage() const { return fCoverage; } bool hasVertexCoverage() const { return SkToBool(fInCoverage); } class GLSLProcessor : public GrGLSLGeometryProcessor { public: GLSLProcessor() : fViewMatrix(SkMatrix::InvalidMatrix()), fColor(GrColor_ILLEGAL), fCoverage(0xff) {} void onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) override { const DefaultGeoProc& gp = args.fGP.cast<DefaultGeoProc>(); GrGLSLVertexBuilder* vertBuilder = args.fVertBuilder; GrGLSLPPFragmentBuilder* fragBuilder = args.fFragBuilder; GrGLSLVaryingHandler* varyingHandler = args.fVaryingHandler; GrGLSLUniformHandler* uniformHandler = args.fUniformHandler; // emit attributes varyingHandler->emitAttributes(gp); // Setup pass through color if (gp.hasVertexColor()) { GrGLSLVertToFrag varying(kVec4f_GrSLType); varyingHandler->addVarying("color", &varying); if (gp.fFlags & kColorAttributeIsSkColor_GPFlag) { // Do a red/blue swap and premul the color. vertBuilder->codeAppendf("%s = vec4(%s.a*%s.bgr, %s.a);", varying.vsOut(), gp.inColor()->fName, gp.inColor()->fName, gp.inColor()->fName); } else { vertBuilder->codeAppendf("%s = %s;\n", varying.vsOut(), gp.inColor()->fName); } fragBuilder->codeAppendf("%s = %s;", args.fOutputColor, varying.fsIn()); } else { this->setupUniformColor(fragBuilder, uniformHandler, args.fOutputColor, &fColorUniform); } // Setup position this->setupPosition(vertBuilder, uniformHandler, gpArgs, gp.inPosition()->fName, gp.viewMatrix(), &fViewMatrixUniform); if (gp.hasExplicitLocalCoords()) { // emit transforms with explicit local coords this->emitTransforms(vertBuilder, varyingHandler, uniformHandler, gpArgs->fPositionVar, gp.inLocalCoords()->fName, gp.localMatrix(), args.fFPCoordTransformHandler); } else { // emit transforms with position this->emitTransforms(vertBuilder, varyingHandler, uniformHandler, gpArgs->fPositionVar, gp.inPosition()->fName, gp.localMatrix(), args.fFPCoordTransformHandler); } // Setup coverage as pass through if (gp.hasVertexCoverage()) { fragBuilder->codeAppendf("float alpha = 1.0;"); varyingHandler->addPassThroughAttribute(gp.inCoverage(), "alpha"); fragBuilder->codeAppendf("%s = vec4(alpha);", args.fOutputCoverage); } else if (gp.coverage() == 0xff) { fragBuilder->codeAppendf("%s = vec4(1);", args.fOutputCoverage); } else { const char* fragCoverage; fCoverageUniform = uniformHandler->addUniform(kFragment_GrShaderFlag, kFloat_GrSLType, kDefault_GrSLPrecision, "Coverage", &fragCoverage); fragBuilder->codeAppendf("%s = vec4(%s);", args.fOutputCoverage, fragCoverage); } } static inline void GenKey(const GrGeometryProcessor& gp, const GrShaderCaps&, GrProcessorKeyBuilder* b) { const DefaultGeoProc& def = gp.cast<DefaultGeoProc>(); uint32_t key = def.fFlags; key |= (def.coverage() == 0xff) ? 0x10 : 0; key |= (def.localCoordsWillBeRead() && def.localMatrix().hasPerspective()) ? 0x20 : 0x0; key |= ComputePosKey(def.viewMatrix()) << 20; b->add32(key); } void setData(const GrGLSLProgramDataManager& pdman, const GrPrimitiveProcessor& gp, FPCoordTransformIter&& transformIter) override { const DefaultGeoProc& dgp = gp.cast<DefaultGeoProc>(); if (!dgp.viewMatrix().isIdentity() && !fViewMatrix.cheapEqualTo(dgp.viewMatrix())) { fViewMatrix = dgp.viewMatrix(); float viewMatrix[3 * 3]; GrGLSLGetMatrix<3>(viewMatrix, fViewMatrix); pdman.setMatrix3f(fViewMatrixUniform, viewMatrix); } if (dgp.color() != fColor && !dgp.hasVertexColor()) { float c[4]; GrColorToRGBAFloat(dgp.color(), c); pdman.set4fv(fColorUniform, 1, c); fColor = dgp.color(); } if (dgp.coverage() != fCoverage && !dgp.hasVertexCoverage()) { pdman.set1f(fCoverageUniform, GrNormalizeByteToFloat(dgp.coverage())); fCoverage = dgp.coverage(); } this->setTransformDataHelper(dgp.fLocalMatrix, pdman, &transformIter); } private: SkMatrix fViewMatrix; GrColor fColor; uint8_t fCoverage; UniformHandle fViewMatrixUniform; UniformHandle fColorUniform; UniformHandle fCoverageUniform; typedef GrGLSLGeometryProcessor INHERITED; }; void getGLSLProcessorKey(const GrShaderCaps& caps, GrProcessorKeyBuilder* b) const override { GLSLProcessor::GenKey(*this, caps, b); } GrGLSLPrimitiveProcessor* createGLSLInstance(const GrShaderCaps&) const override { return new GLSLProcessor(); } private: DefaultGeoProc(uint32_t gpTypeFlags, GrColor color, const SkMatrix& viewMatrix, const SkMatrix& localMatrix, uint8_t coverage, bool localCoordsWillBeRead) : fColor(color) , fViewMatrix(viewMatrix) , fLocalMatrix(localMatrix) , fCoverage(coverage) , fFlags(gpTypeFlags) , fLocalCoordsWillBeRead(localCoordsWillBeRead) { this->initClassID<DefaultGeoProc>(); fInPosition = &this->addVertexAttrib("inPosition", kVec2f_GrVertexAttribType, kHigh_GrSLPrecision); if (fFlags & kColorAttribute_GPFlag) { fInColor = &this->addVertexAttrib("inColor", kVec4ub_GrVertexAttribType); } if (fFlags & kLocalCoordAttribute_GPFlag) { fInLocalCoords = &this->addVertexAttrib("inLocalCoord", kVec2f_GrVertexAttribType, kHigh_GrSLPrecision); this->setHasExplicitLocalCoords(); } if (fFlags & kCoverageAttribute_GPFlag) { fInCoverage = &this->addVertexAttrib("inCoverage", kFloat_GrVertexAttribType); } } const Attribute* fInPosition = nullptr; const Attribute* fInColor = nullptr; const Attribute* fInLocalCoords = nullptr; const Attribute* fInCoverage = nullptr; GrColor fColor; SkMatrix fViewMatrix; SkMatrix fLocalMatrix; uint8_t fCoverage; uint32_t fFlags; bool fLocalCoordsWillBeRead; GR_DECLARE_GEOMETRY_PROCESSOR_TEST; typedef GrGeometryProcessor INHERITED; }; GR_DEFINE_GEOMETRY_PROCESSOR_TEST(DefaultGeoProc); #if GR_TEST_UTILS sk_sp<GrGeometryProcessor> DefaultGeoProc::TestCreate(GrProcessorTestData* d) { uint32_t flags = 0; if (d->fRandom->nextBool()) { flags |= kColorAttribute_GPFlag; } if (d->fRandom->nextBool()) { flags |= kColorAttributeIsSkColor_GPFlag; } if (d->fRandom->nextBool()) { flags |= kCoverageAttribute_GPFlag; } if (d->fRandom->nextBool()) { flags |= kLocalCoordAttribute_GPFlag; } return DefaultGeoProc::Make(flags, GrRandomColor(d->fRandom), GrTest::TestMatrix(d->fRandom), GrTest::TestMatrix(d->fRandom), d->fRandom->nextBool(), GrRandomCoverage(d->fRandom)); } #endif sk_sp<GrGeometryProcessor> GrDefaultGeoProcFactory::Make(const Color& color, const Coverage& coverage, const LocalCoords& localCoords, const SkMatrix& viewMatrix) { uint32_t flags = 0; if (Color::kPremulGrColorAttribute_Type == color.fType) { flags |= kColorAttribute_GPFlag; } else if (Color::kUnpremulSkColorAttribute_Type == color.fType) { flags |= kColorAttribute_GPFlag | kColorAttributeIsSkColor_GPFlag; } flags |= coverage.fType == Coverage::kAttribute_Type ? kCoverageAttribute_GPFlag : 0; flags |= localCoords.fType == LocalCoords::kHasExplicit_Type ? kLocalCoordAttribute_GPFlag : 0; uint8_t inCoverage = coverage.fCoverage; bool localCoordsWillBeRead = localCoords.fType != LocalCoords::kUnused_Type; GrColor inColor = color.fColor; return DefaultGeoProc::Make(flags, inColor, viewMatrix, localCoords.fMatrix ? *localCoords.fMatrix : SkMatrix::I(), localCoordsWillBeRead, inCoverage); } sk_sp<GrGeometryProcessor> GrDefaultGeoProcFactory::MakeForDeviceSpace( const Color& color, const Coverage& coverage, const LocalCoords& localCoords, const SkMatrix& viewMatrix) { SkMatrix invert = SkMatrix::I(); if (LocalCoords::kUnused_Type != localCoords.fType) { SkASSERT(LocalCoords::kUsePosition_Type == localCoords.fType); if (!viewMatrix.isIdentity() && !viewMatrix.invert(&invert)) { SkDebugf("Could not invert\n"); return nullptr; } if (localCoords.hasLocalMatrix()) { invert.preConcat(*localCoords.fMatrix); } } LocalCoords inverted(LocalCoords::kUsePosition_Type, &invert); return Make(color, coverage, inverted, SkMatrix::I()); }