/* * Copyright 2011 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkClampRange.h" #include "SkMathPriv.h" static int SkCLZ64(uint64_t value) { int count = 0; if (value >> 32) { value >>= 32; } else { count += 32; } return count + SkCLZ(SkToU32(value)); } static bool sk_64_smul_check(int64_t count, int64_t dx, int64_t* result) { // Do it the slow way until we have some assembly. if (dx == std::numeric_limits<int64_t>::min()) { return false; // SkTAbs overflow } SkASSERT(count >= 0); uint64_t ucount = static_cast<uint64_t>(count); uint64_t udx = static_cast<uint64_t>(SkTAbs(dx)); int zeros = SkCLZ64(ucount) + SkCLZ64(udx); // this is a conservative check: it may return false when in fact it would not have overflowed. // Hackers Delight uses 34 as its convervative check, but that is for 32x32 multiplies. // Since we are looking at 64x64 muls, we add 32 to the check. if (zeros < (32 + 34)) { return false; } *result = count * dx; return true; } static bool sk_64_sadd_check(int64_t a, int64_t b, int64_t* result) { if (a > 0) { if (b > std::numeric_limits<int64_t>::max() - a) { return false; } } else { if (b < std::numeric_limits<int64_t>::min() - a) { return false; } } *result = a + b; return true; } /* * returns [0..count] for the number of steps (<= count) for which x0 <= edge * given each step is followed by x0 += dx */ static int chop(int64_t x0, SkGradFixed edge, int64_t x1, int64_t dx, int count) { SkASSERT(dx > 0); SkASSERT(count >= 0); if (x0 >= edge) { return 0; } if (x1 <= edge) { return count; } int64_t n = (edge - x0 + dx - 1) / dx; SkASSERT(n >= 0); SkASSERT(n <= count); return (int)n; } void SkClampRange::initFor1(SkGradFixed fx) { fCount0 = fCount1 = fCount2 = 0; if (fx <= 0) { fCount0 = 1; } else if (fx < kFracMax_SkGradFixed) { fCount1 = 1; fFx1 = fx; } else { fCount2 = 1; } } void SkClampRange::init(SkGradFixed fx0, SkGradFixed dx0, int count, int v0, int v1) { SkASSERT(count > 0); fV0 = v0; fV1 = v1; // special case 1 == count, as it is slightly common for skia // and avoids us ever calling divide or 64bit multiply if (1 == count) { this->initFor1(fx0); return; } int64_t fx = fx0; int64_t dx = dx0; // start with ex equal to the last computed value int64_t count_times_dx, ex; if (!sk_64_smul_check(count - 1, dx, &count_times_dx) || !sk_64_sadd_check(fx, count_times_dx, &ex)) { // we can't represent the computed end in 32.32, so just draw something (first color) fCount1 = fCount2 = 0; fCount0 = count; return; } if ((uint64_t)(fx | ex) <= kFracMax_SkGradFixed) { fCount0 = fCount2 = 0; fCount1 = count; fFx1 = fx0; return; } if (fx <= 0 && ex <= 0) { fCount1 = fCount2 = 0; fCount0 = count; return; } if (fx >= kFracMax_SkGradFixed && ex >= kFracMax_SkGradFixed) { fCount0 = fCount1 = 0; fCount2 = count; return; } // now make ex be 1 past the last computed value ex += dx; bool doSwap = dx < 0; if (doSwap) { ex -= dx; fx -= dx; SkTSwap(fx, ex); dx = -dx; } fCount0 = chop(fx, 0, ex, dx, count); SkASSERT(fCount0 >= 0); SkASSERT(fCount0 <= count); count -= fCount0; fx += fCount0 * dx; SkASSERT(fx >= 0); SkASSERT(fCount0 == 0 || (fx - dx) < 0); fCount1 = chop(fx, kFracMax_SkGradFixed, ex, dx, count); SkASSERT(fCount1 >= 0); SkASSERT(fCount1 <= count); count -= fCount1; fCount2 = count; #ifdef SK_DEBUG fx += fCount1 * dx; SkASSERT(fx <= ex); if (fCount2 > 0) { SkASSERT(fx >= kFracMax_SkGradFixed); if (fCount1 > 0) { SkASSERT(fx - dx < kFracMax_SkGradFixed); } } #endif if (doSwap) { SkTSwap(fCount0, fCount2); SkTSwap(fV0, fV1); dx = -dx; } if (fCount1 > 0) { fFx1 = fx0 + fCount0 * dx; } }