/* * Copyright 2016 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SampleCode.h" #include "SkAnimTimer.h" #include "SkColor.h" #include "SkRandom.h" #include "SkRRect.h" #include "SkSVGDOM.h" #include "SkSVGG.h" #include "SkSVGPath.h" #include "SkSVGRect.h" #include "SkSVGSVG.h" namespace { static const SkRect kBounds = SkRect::MakeLTRB(0.1f, 0.1f, 0.9f, 0.9f); static const SkSize kPaddleSize = SkSize::Make(0.03f, 0.1f); static const SkScalar kBallSize = 0.04f; static const SkScalar kShadowOpacity = 0.40f; static const SkScalar kShadowParallax = 0.04f; static const SkScalar kBackgroundStroke = 0.01f; static const uint32_t kBackgroundDashCount = 20; static const SkScalar kBallSpeedMax = 0.0020f; static const SkScalar kBallSpeedMin = 0.0005f; static const SkScalar kBallSpeedFuzz = 0.0002f; static const SkScalar kTimeScaleMin = 0.0f; static const SkScalar kTimeScaleMax = 5.0f; // Box the value within [min, max), by applying infinite reflection on the interval endpoints. SkScalar box_reflect(SkScalar v, SkScalar min, SkScalar max) { const SkScalar intervalLen = max - min; SkASSERT(intervalLen > 0); // f(v) is periodic in 2 * intervalLen: one normal progression + one reflection const SkScalar P = intervalLen * 2; // relative to P origin const SkScalar vP = v - min; // map to [0, P) const SkScalar vMod = (vP < 0) ? P - SkScalarMod(-vP, P) : SkScalarMod(vP, P); // reflect if needed, to map to [0, intervalLen) const SkScalar vInterval = vMod < intervalLen ? vMod : P - vMod; // finally, reposition relative to min return vInterval + min; } // Compute <t, y> for the trajectory intersection with the next vertical edge. std::tuple<SkScalar, SkScalar> find_yintercept(const SkPoint& pos, const SkVector& spd, const SkRect& box) { const SkScalar edge = spd.fX > 0 ? box.fRight : box.fLeft; const SkScalar t = (edge - pos.fX) / spd.fX; SkASSERT(t >= 0); const SkScalar dY = t * spd.fY; return std::make_tuple(t, box_reflect(pos.fY + dY, box.fTop, box.fBottom)); } sk_sp<SkSVGRect> make_svg_rrect(const SkRRect& rrect) { sk_sp<SkSVGRect> node = SkSVGRect::Make(); node->setX(SkSVGLength(rrect.rect().x())); node->setY(SkSVGLength(rrect.rect().y())); node->setWidth(SkSVGLength(rrect.width())); node->setHeight(SkSVGLength(rrect.height())); node->setRx(SkSVGLength(rrect.getSimpleRadii().x())); node->setRy(SkSVGLength(rrect.getSimpleRadii().y())); return node; } } // anonymous ns class SVGPongView final : public SampleView { public: SVGPongView() {} protected: void onOnceBeforeDraw() override { const SkRect fieldBounds = kBounds.makeOutset(kBallSize / 2, kBallSize / 2); const SkRRect ball = SkRRect::MakeOval(SkRect::MakeWH(kBallSize, kBallSize)); const SkRRect paddle = SkRRect::MakeRectXY(SkRect::MakeWH(kPaddleSize.width(), kPaddleSize.height()), kPaddleSize.width() / 2, kPaddleSize.width() / 2); fBall.initialize(ball, SK_ColorGREEN, SkPoint::Make(kBounds.centerX(), kBounds.centerY()), SkVector::Make(fRand.nextRangeScalar(kBallSpeedMin, kBallSpeedMax), fRand.nextRangeScalar(kBallSpeedMin, kBallSpeedMax))); fPaddle0.initialize(paddle, SK_ColorBLUE, SkPoint::Make(fieldBounds.left() - kPaddleSize.width() / 2, fieldBounds.centerY()), SkVector::Make(0, 0)); fPaddle1.initialize(paddle, SK_ColorRED, SkPoint::Make(fieldBounds.right() + kPaddleSize.width() / 2, fieldBounds.centerY()), SkVector::Make(0, 0)); // Background decoration. SkPath bgPath; bgPath.moveTo(kBounds.left() , fieldBounds.top()); bgPath.lineTo(kBounds.right(), fieldBounds.top()); bgPath.moveTo(kBounds.left() , fieldBounds.bottom()); bgPath.lineTo(kBounds.right(), fieldBounds.bottom()); // TODO: stroke-dash support would come in handy right about now. for (uint32_t i = 0; i < kBackgroundDashCount; ++i) { bgPath.moveTo(kBounds.centerX(), kBounds.top() + (i + 0.25f) * kBounds.height() / kBackgroundDashCount); bgPath.lineTo(kBounds.centerX(), kBounds.top() + (i + 0.75f) * kBounds.height() / kBackgroundDashCount); } sk_sp<SkSVGPath> bg = SkSVGPath::Make(); bg->setPath(bgPath); bg->setFill(SkSVGPaint(SkSVGPaint::Type::kNone)); bg->setStroke(SkSVGPaint(SkSVGColorType(SK_ColorBLACK))); bg->setStrokeWidth(SkSVGLength(kBackgroundStroke)); // Build the SVG DOM tree. sk_sp<SkSVGSVG> root = SkSVGSVG::Make(); root->appendChild(std::move(bg)); root->appendChild(fPaddle0.shadowNode); root->appendChild(fPaddle1.shadowNode); root->appendChild(fBall.shadowNode); root->appendChild(fPaddle0.objectNode); root->appendChild(fPaddle1.objectNode); root->appendChild(fBall.objectNode); // Handle everything in a normalized 1x1 space. root->setViewBox(SkSVGViewBoxType(SkRect::MakeWH(1, 1))); fDom = sk_sp<SkSVGDOM>(new SkSVGDOM()); fDom->setContainerSize(SkSize::Make(this->width(), this->height())); fDom->setRoot(std::move(root)); // Off we go. this->updatePaddleStrategy(); } bool onQuery(SkEvent* evt) override { if (SampleCode::TitleQ(*evt)) { SampleCode::TitleR(evt, "SVGPong"); return true; } SkUnichar uni; if (SampleCode::CharQ(*evt, &uni)) { switch (uni) { case '[': fTimeScale = SkTPin(fTimeScale - 0.1f, kTimeScaleMin, kTimeScaleMax); return true; case ']': fTimeScale = SkTPin(fTimeScale + 0.1f, kTimeScaleMin, kTimeScaleMax); return true; default: break; } } return this->INHERITED::onQuery(evt); } void onSizeChange() override { if (fDom) { fDom->setContainerSize(SkSize::Make(this->width(), this->height())); } this->INHERITED::onSizeChange(); } void onDrawContent(SkCanvas* canvas) override { fDom->render(canvas); } bool onAnimate(const SkAnimTimer& timer) override { SkScalar dt = (timer.msec() - fLastTick) * fTimeScale; fLastTick = timer.msec(); fPaddle0.posTick(dt); fPaddle1.posTick(dt); fBall.posTick(dt); this->enforceConstraints(); fPaddle0.updateDom(); fPaddle1.updateDom(); fBall.updateDom(); return true; } private: struct Object { void initialize(const SkRRect& rrect, SkColor color, const SkPoint& p, const SkVector& s) { objectNode = make_svg_rrect(rrect); objectNode->setFill(SkSVGPaint(SkSVGColorType(color))); shadowNode = make_svg_rrect(rrect); shadowNode->setFillOpacity(SkSVGNumberType(kShadowOpacity)); pos = p; spd = s; size = SkSize::Make(rrect.width(), rrect.height()); } void posTick(SkScalar dt) { pos += spd * dt; } void updateDom() { const SkPoint corner = pos - SkPoint::Make(size.width() / 2, size.height() / 2); objectNode->setX(SkSVGLength(corner.x())); objectNode->setY(SkSVGLength(corner.y())); // Simulate parallax shadow for a centered light source. SkPoint shadowOffset = pos - SkPoint::Make(kBounds.centerX(), kBounds.centerY()); shadowOffset.scale(kShadowParallax); const SkPoint shadowCorner = corner + shadowOffset; shadowNode->setX(SkSVGLength(shadowCorner.x())); shadowNode->setY(SkSVGLength(shadowCorner.y())); } sk_sp<SkSVGRect> objectNode; sk_sp<SkSVGRect> shadowNode; SkPoint pos; SkVector spd; SkSize size; }; void enforceConstraints() { // Perfect vertical reflection. if (fBall.pos.fY < kBounds.fTop || fBall.pos.fY >= kBounds.fBottom) { fBall.spd.fY = -fBall.spd.fY; fBall.pos.fY = box_reflect(fBall.pos.fY, kBounds.fTop, kBounds.fBottom); } // Horizontal bounce - introduces a speed fuzz. if (fBall.pos.fX < kBounds.fLeft || fBall.pos.fX >= kBounds.fRight) { fBall.spd.fX = this->fuzzBallSpeed(-fBall.spd.fX); fBall.spd.fY = this->fuzzBallSpeed(fBall.spd.fY); fBall.pos.fX = box_reflect(fBall.pos.fX, kBounds.fLeft, kBounds.fRight); this->updatePaddleStrategy(); } } SkScalar fuzzBallSpeed(SkScalar spd) { // The speed limits are absolute values. const SkScalar sign = spd >= 0 ? 1.0f : -1.0f; const SkScalar fuzzed = fabs(spd) + fRand.nextRangeScalar(-kBallSpeedFuzz, kBallSpeedFuzz); return sign * SkTPin(fuzzed, kBallSpeedMin, kBallSpeedMax); } void updatePaddleStrategy() { Object* pitcher = fBall.spd.fX > 0 ? &fPaddle0 : &fPaddle1; Object* catcher = fBall.spd.fX > 0 ? &fPaddle1 : &fPaddle0; SkScalar t, yIntercept; std::tie(t, yIntercept) = find_yintercept(fBall.pos, fBall.spd, kBounds); // The pitcher aims for a neutral/centered position. pitcher->spd.fY = (kBounds.centerY() - pitcher->pos.fY) / t; // The catcher goes for the ball. Duh. catcher->spd.fY = (yIntercept - catcher->pos.fY) / t; } sk_sp<SkSVGDOM> fDom; Object fPaddle0, fPaddle1, fBall; SkRandom fRand; SkMSec fLastTick = 0; SkScalar fTimeScale = 1.0f; typedef SampleView INHERITED; }; static SkView* SVGPongFactory() { return new SVGPongView; } static SkViewRegister reg(SVGPongFactory);