// Amalgamated source file /* ** Defs are upb's internal representation of the constructs that can appear ** in a .proto file: ** ** - upb::MessageDef (upb_msgdef): describes a "message" construct. ** - upb::FieldDef (upb_fielddef): describes a message field. ** - upb::FileDef (upb_filedef): describes a .proto file and its defs. ** - upb::EnumDef (upb_enumdef): describes an enum. ** - upb::OneofDef (upb_oneofdef): describes a oneof. ** - upb::Def (upb_def): base class of all the others. ** ** TODO: definitions of services. ** ** Like upb_refcounted objects, defs are mutable only until frozen, and are ** only thread-safe once frozen. ** ** This is a mixed C/C++ interface that offers a full API to both languages. ** See the top-level README for more information. */ #ifndef UPB_DEF_H_ #define UPB_DEF_H_ /* ** upb::RefCounted (upb_refcounted) ** ** A refcounting scheme that supports circular refs. It accomplishes this by ** partitioning the set of objects into groups such that no cycle spans groups; ** we can then reference-count the group as a whole and ignore refs within the ** group. When objects are mutable, these groups are computed very ** conservatively; we group any objects that have ever had a link between them. ** When objects are frozen, we compute strongly-connected components which ** allows us to be precise and only group objects that are actually cyclic. ** ** This is a mixed C/C++ interface that offers a full API to both languages. ** See the top-level README for more information. */ #ifndef UPB_REFCOUNTED_H_ #define UPB_REFCOUNTED_H_ /* ** upb_table ** ** This header is INTERNAL-ONLY! Its interfaces are not public or stable! ** This file defines very fast int->upb_value (inttable) and string->upb_value ** (strtable) hash tables. ** ** The table uses chained scatter with Brent's variation (inspired by the Lua ** implementation of hash tables). The hash function for strings is Austin ** Appleby's "MurmurHash." ** ** The inttable uses uintptr_t as its key, which guarantees it can be used to ** store pointers or integers of at least 32 bits (upb isn't really useful on ** systems where sizeof(void*) < 4). ** ** The table must be homogenous (all values of the same type). In debug ** mode, we check this on insert and lookup. */ #ifndef UPB_TABLE_H_ #define UPB_TABLE_H_ #include <assert.h> #include <stdint.h> #include <string.h> /* ** This file contains shared definitions that are widely used across upb. ** ** This is a mixed C/C++ interface that offers a full API to both languages. ** See the top-level README for more information. */ #ifndef UPB_H_ #define UPB_H_ #include <assert.h> #include <stdarg.h> #include <stdbool.h> #include <stddef.h> #ifdef __cplusplus namespace upb { class Allocator; class Arena; class Environment; class ErrorSpace; class Status; template <int N> class InlinedArena; template <int N> class InlinedEnvironment; } #endif /* UPB_INLINE: inline if possible, emit standalone code if required. */ #ifdef __cplusplus #define UPB_INLINE inline #elif defined (__GNUC__) #define UPB_INLINE static __inline__ #else #define UPB_INLINE static #endif /* Define UPB_BIG_ENDIAN manually if you're on big endian and your compiler * doesn't provide these preprocessor symbols. */ #if defined(__BYTE_ORDER__) && (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__) #define UPB_BIG_ENDIAN #endif /* Macros for function attributes on compilers that support them. */ #ifdef __GNUC__ #define UPB_FORCEINLINE __inline__ __attribute__((always_inline)) #define UPB_NOINLINE __attribute__((noinline)) #define UPB_NORETURN __attribute__((__noreturn__)) #else /* !defined(__GNUC__) */ #define UPB_FORCEINLINE #define UPB_NOINLINE #define UPB_NORETURN #endif /* A few hacky workarounds for functions not in C89. * For internal use only! * TODO(haberman): fix these by including our own implementations, or finding * another workaround. */ #ifdef __GNUC__ #define _upb_snprintf __builtin_snprintf #define _upb_vsnprintf __builtin_vsnprintf #define _upb_va_copy(a, b) __va_copy(a, b) #elif __STDC_VERSION__ >= 199901L /* C99 versions. */ #define _upb_snprintf snprintf #define _upb_vsnprintf vsnprintf #define _upb_va_copy(a, b) va_copy(a, b) #else #error Need implementations of [v]snprintf and va_copy #endif #if ((defined(__cplusplus) && __cplusplus >= 201103L) || \ defined(__GXX_EXPERIMENTAL_CXX0X__)) && !defined(UPB_NO_CXX11) #define UPB_CXX11 #endif /* UPB_DISALLOW_COPY_AND_ASSIGN() * UPB_DISALLOW_POD_OPS() * * Declare these in the "private" section of a C++ class to forbid copy/assign * or all POD ops (construct, destruct, copy, assign) on that class. */ #ifdef UPB_CXX11 #include <type_traits> #define UPB_DISALLOW_COPY_AND_ASSIGN(class_name) \ class_name(const class_name&) = delete; \ void operator=(const class_name&) = delete; #define UPB_DISALLOW_POD_OPS(class_name, full_class_name) \ class_name() = delete; \ ~class_name() = delete; \ UPB_DISALLOW_COPY_AND_ASSIGN(class_name) #define UPB_ASSERT_STDLAYOUT(type) \ static_assert(std::is_standard_layout<type>::value, \ #type " must be standard layout"); #define UPB_FINAL final #else /* !defined(UPB_CXX11) */ #define UPB_DISALLOW_COPY_AND_ASSIGN(class_name) \ class_name(const class_name&); \ void operator=(const class_name&); #define UPB_DISALLOW_POD_OPS(class_name, full_class_name) \ class_name(); \ ~class_name(); \ UPB_DISALLOW_COPY_AND_ASSIGN(class_name) #define UPB_ASSERT_STDLAYOUT(type) #define UPB_FINAL #endif /* UPB_DECLARE_TYPE() * UPB_DECLARE_DERIVED_TYPE() * UPB_DECLARE_DERIVED_TYPE2() * * Macros for declaring C and C++ types both, including inheritance. * The inheritance doesn't use real C++ inheritance, to stay compatible with C. * * These macros also provide upcasts: * - in C: types-specific functions (ie. upb_foo_upcast(foo)) * - in C++: upb::upcast(foo) along with implicit conversions * * Downcasts are not provided, but upb/def.h defines downcasts for upb::Def. */ #define UPB_C_UPCASTS(ty, base) \ UPB_INLINE base *ty ## _upcast_mutable(ty *p) { return (base*)p; } \ UPB_INLINE const base *ty ## _upcast(const ty *p) { return (const base*)p; } #define UPB_C_UPCASTS2(ty, base, base2) \ UPB_C_UPCASTS(ty, base) \ UPB_INLINE base2 *ty ## _upcast2_mutable(ty *p) { return (base2*)p; } \ UPB_INLINE const base2 *ty ## _upcast2(const ty *p) { return (const base2*)p; } #ifdef __cplusplus #define UPB_BEGIN_EXTERN_C extern "C" { #define UPB_END_EXTERN_C } #define UPB_PRIVATE_FOR_CPP private: #define UPB_DECLARE_TYPE(cppname, cname) typedef cppname cname; #define UPB_DECLARE_DERIVED_TYPE(cppname, cppbase, cname, cbase) \ UPB_DECLARE_TYPE(cppname, cname) \ UPB_C_UPCASTS(cname, cbase) \ namespace upb { \ template <> \ class Pointer<cppname> : public PointerBase<cppname, cppbase> { \ public: \ explicit Pointer(cppname* ptr) \ : PointerBase<cppname, cppbase>(ptr) {} \ }; \ template <> \ class Pointer<const cppname> \ : public PointerBase<const cppname, const cppbase> { \ public: \ explicit Pointer(const cppname* ptr) \ : PointerBase<const cppname, const cppbase>(ptr) {} \ }; \ } #define UPB_DECLARE_DERIVED_TYPE2(cppname, cppbase, cppbase2, cname, cbase, \ cbase2) \ UPB_DECLARE_TYPE(cppname, cname) \ UPB_C_UPCASTS2(cname, cbase, cbase2) \ namespace upb { \ template <> \ class Pointer<cppname> : public PointerBase2<cppname, cppbase, cppbase2> { \ public: \ explicit Pointer(cppname* ptr) \ : PointerBase2<cppname, cppbase, cppbase2>(ptr) {} \ }; \ template <> \ class Pointer<const cppname> \ : public PointerBase2<const cppname, const cppbase, const cppbase2> { \ public: \ explicit Pointer(const cppname* ptr) \ : PointerBase2<const cppname, const cppbase, const cppbase2>(ptr) {} \ }; \ } #else /* !defined(__cplusplus) */ #define UPB_BEGIN_EXTERN_C #define UPB_END_EXTERN_C #define UPB_PRIVATE_FOR_CPP #define UPB_DECLARE_TYPE(cppname, cname) \ struct cname; \ typedef struct cname cname; #define UPB_DECLARE_DERIVED_TYPE(cppname, cppbase, cname, cbase) \ UPB_DECLARE_TYPE(cppname, cname) \ UPB_C_UPCASTS(cname, cbase) #define UPB_DECLARE_DERIVED_TYPE2(cppname, cppbase, cppbase2, \ cname, cbase, cbase2) \ UPB_DECLARE_TYPE(cppname, cname) \ UPB_C_UPCASTS2(cname, cbase, cbase2) #endif /* defined(__cplusplus) */ #define UPB_MAX(x, y) ((x) > (y) ? (x) : (y)) #define UPB_MIN(x, y) ((x) < (y) ? (x) : (y)) #define UPB_UNUSED(var) (void)var /* For asserting something about a variable when the variable is not used for * anything else. This prevents "unused variable" warnings when compiling in * debug mode. */ #define UPB_ASSERT_VAR(var, predicate) UPB_UNUSED(var); assert(predicate) /* Generic function type. */ typedef void upb_func(); /* C++ Casts ******************************************************************/ #ifdef __cplusplus namespace upb { template <class T> class Pointer; /* Casts to a subclass. The caller must know that cast is correct; an * incorrect cast will throw an assertion failure in debug mode. * * Example: * upb::Def* def = GetDef(); * // Assert-fails if this was not actually a MessageDef. * upb::MessgeDef* md = upb::down_cast<upb::MessageDef>(def); * * Note that downcasts are only defined for some types (at the moment you can * only downcast from a upb::Def to a specific Def type). */ template<class To, class From> To down_cast(From* f); /* Casts to a subclass. If the class does not actually match the given To type, * returns NULL. * * Example: * upb::Def* def = GetDef(); * // md will be NULL if this was not actually a MessageDef. * upb::MessgeDef* md = upb::down_cast<upb::MessageDef>(def); * * Note that dynamic casts are only defined for some types (at the moment you * can only downcast from a upb::Def to a specific Def type).. */ template<class To, class From> To dyn_cast(From* f); /* Casts to any base class, or the type itself (ie. can be a no-op). * * Example: * upb::MessageDef* md = GetDef(); * // This will fail to compile if this wasn't actually a base class. * upb::Def* def = upb::upcast(md); */ template <class T> inline Pointer<T> upcast(T *f) { return Pointer<T>(f); } /* Attempt upcast to specific base class. * * Example: * upb::MessageDef* md = GetDef(); * upb::upcast_to<upb::Def>(md)->MethodOnDef(); */ template <class T, class F> inline T* upcast_to(F *f) { return static_cast<T*>(upcast(f)); } /* PointerBase<T>: implementation detail of upb::upcast(). * It is implicitly convertable to pointers to the Base class(es). */ template <class T, class Base> class PointerBase { public: explicit PointerBase(T* ptr) : ptr_(ptr) {} operator T*() { return ptr_; } operator Base*() { return (Base*)ptr_; } private: T* ptr_; }; template <class T, class Base, class Base2> class PointerBase2 : public PointerBase<T, Base> { public: explicit PointerBase2(T* ptr) : PointerBase<T, Base>(ptr) {} operator Base2*() { return Pointer<Base>(*this); } }; } #endif /* upb::ErrorSpace ************************************************************/ /* A upb::ErrorSpace represents some domain of possible error values. This lets * upb::Status attach specific error codes to operations, like POSIX/C errno, * Win32 error codes, etc. Clients who want to know the very specific error * code can check the error space and then know the type of the integer code. * * NOTE: upb::ErrorSpace is currently not used and should be considered * experimental. It is important primarily in cases where upb is performing * I/O, but upb doesn't currently have any components that do this. */ UPB_DECLARE_TYPE(upb::ErrorSpace, upb_errorspace) #ifdef __cplusplus class upb::ErrorSpace { #else struct upb_errorspace { #endif const char *name; }; /* upb::Status ****************************************************************/ /* upb::Status represents a success or failure status and error message. * It owns no resources and allocates no memory, so it should work * even in OOM situations. */ UPB_DECLARE_TYPE(upb::Status, upb_status) /* The maximum length of an error message before it will get truncated. */ #define UPB_STATUS_MAX_MESSAGE 128 UPB_BEGIN_EXTERN_C const char *upb_status_errmsg(const upb_status *status); bool upb_ok(const upb_status *status); upb_errorspace *upb_status_errspace(const upb_status *status); int upb_status_errcode(const upb_status *status); /* Any of the functions that write to a status object allow status to be NULL, * to support use cases where the function's caller does not care about the * status message. */ void upb_status_clear(upb_status *status); void upb_status_seterrmsg(upb_status *status, const char *msg); void upb_status_seterrf(upb_status *status, const char *fmt, ...); void upb_status_vseterrf(upb_status *status, const char *fmt, va_list args); void upb_status_copy(upb_status *to, const upb_status *from); UPB_END_EXTERN_C #ifdef __cplusplus class upb::Status { public: Status() { upb_status_clear(this); } /* Returns true if there is no error. */ bool ok() const { return upb_ok(this); } /* Optional error space and code, useful if the caller wants to * programmatically check the specific kind of error. */ ErrorSpace* error_space() { return upb_status_errspace(this); } int error_code() const { return upb_status_errcode(this); } /* The returned string is invalidated by any other call into the status. */ const char *error_message() const { return upb_status_errmsg(this); } /* The error message will be truncated if it is longer than * UPB_STATUS_MAX_MESSAGE-4. */ void SetErrorMessage(const char* msg) { upb_status_seterrmsg(this, msg); } void SetFormattedErrorMessage(const char* fmt, ...) { va_list args; va_start(args, fmt); upb_status_vseterrf(this, fmt, args); va_end(args); } /* Resets the status to a successful state with no message. */ void Clear() { upb_status_clear(this); } void CopyFrom(const Status& other) { upb_status_copy(this, &other); } private: UPB_DISALLOW_COPY_AND_ASSIGN(Status) #else struct upb_status { #endif bool ok_; /* Specific status code defined by some error space (optional). */ int code_; upb_errorspace *error_space_; /* TODO(haberman): add file/line of error? */ /* Error message; NULL-terminated. */ char msg[UPB_STATUS_MAX_MESSAGE]; }; #define UPB_STATUS_INIT {true, 0, NULL, {0}} /** Built-in error spaces. ****************************************************/ /* Errors raised by upb that we want to be able to detect programmatically. */ typedef enum { UPB_NOMEM /* Can't reuse ENOMEM because it is POSIX, not ISO C. */ } upb_errcode_t; extern upb_errorspace upb_upberr; void upb_upberr_setoom(upb_status *s); /* Since errno is defined by standard C, we define an error space for it in * core upb. Other error spaces should be defined in other, platform-specific * modules. */ extern upb_errorspace upb_errnoerr; /** upb::Allocator ************************************************************/ /* A upb::Allocator is a possibly-stateful allocator object. * * It could either be an arena allocator (which doesn't require individual * free() calls) or a regular malloc() (which does). The client must therefore * free memory unless it knows that the allocator is an arena allocator. */ UPB_DECLARE_TYPE(upb::Allocator, upb_alloc) /* A malloc()/free() function. * If "size" is 0 then the function acts like free(), otherwise it acts like * realloc(). Only "oldsize" bytes from a previous allocation are preserved. */ typedef void *upb_alloc_func(upb_alloc *alloc, void *ptr, size_t oldsize, size_t size); #ifdef __cplusplus class upb::Allocator UPB_FINAL { public: Allocator() {} private: UPB_DISALLOW_COPY_AND_ASSIGN(Allocator) public: #else struct upb_alloc { #endif /* __cplusplus */ upb_alloc_func *func; }; UPB_INLINE void *upb_malloc(upb_alloc *alloc, size_t size) { assert(size > 0); return alloc->func(alloc, NULL, 0, size); } UPB_INLINE void *upb_realloc(upb_alloc *alloc, void *ptr, size_t oldsize, size_t size) { assert(size > 0); return alloc->func(alloc, ptr, oldsize, size); } UPB_INLINE void upb_free(upb_alloc *alloc, void *ptr) { alloc->func(alloc, ptr, 0, 0); } /* The global allocator used by upb. Uses the standard malloc()/free(). */ extern upb_alloc upb_alloc_global; /* Functions that hard-code the global malloc. * * We still get benefit because we can put custom logic into our global * allocator, like injecting out-of-memory faults in debug/testing builds. */ UPB_INLINE void *upb_gmalloc(size_t size) { return upb_malloc(&upb_alloc_global, size); } UPB_INLINE void *upb_grealloc(void *ptr, size_t oldsize, size_t size) { return upb_realloc(&upb_alloc_global, ptr, oldsize, size); } UPB_INLINE void upb_gfree(void *ptr) { upb_free(&upb_alloc_global, ptr); } /* upb::Arena *****************************************************************/ /* upb::Arena is a specific allocator implementation that uses arena allocation. * The user provides an allocator that will be used to allocate the underlying * arena blocks. Arenas by nature do not require the individual allocations * to be freed. However the Arena does allow users to register cleanup * functions that will run when the arena is destroyed. * * A upb::Arena is *not* thread-safe. * * You could write a thread-safe arena allocator that satisfies the * upb::Allocator interface, but it would not be as efficient for the * single-threaded case. */ UPB_DECLARE_TYPE(upb::Arena, upb_arena) typedef void upb_cleanup_func(void *ud); #define UPB_ARENA_BLOCK_OVERHEAD (sizeof(size_t)*4) UPB_BEGIN_EXTERN_C void upb_arena_init(upb_arena *a); void upb_arena_init2(upb_arena *a, void *mem, size_t n, upb_alloc *alloc); void upb_arena_uninit(upb_arena *a); upb_alloc *upb_arena_alloc(upb_arena *a); bool upb_arena_addcleanup(upb_arena *a, upb_cleanup_func *func, void *ud); size_t upb_arena_bytesallocated(const upb_arena *a); void upb_arena_setnextblocksize(upb_arena *a, size_t size); void upb_arena_setmaxblocksize(upb_arena *a, size_t size); UPB_END_EXTERN_C #ifdef __cplusplus class upb::Arena { public: /* A simple arena with no initial memory block and the default allocator. */ Arena() { upb_arena_init(this); } /* Constructs an arena with the given initial block which allocates blocks * with the given allocator. The given allocator must outlive the Arena. * * If you pass NULL for the allocator it will default to the global allocator * upb_alloc_global, and NULL/0 for the initial block will cause there to be * no initial block. */ Arena(void *mem, size_t len, Allocator* a) { upb_arena_init2(this, mem, len, a); } ~Arena() { upb_arena_uninit(this); } /* Sets the size of the next block the Arena will request (unless the * requested allocation is larger). Each block will double in size until the * max limit is reached. */ void SetNextBlockSize(size_t size) { upb_arena_setnextblocksize(this, size); } /* Sets the maximum block size. No blocks larger than this will be requested * from the underlying allocator unless individual arena allocations are * larger. */ void SetMaxBlockSize(size_t size) { upb_arena_setmaxblocksize(this, size); } /* Allows this arena to be used as a generic allocator. * * The arena does not need free() calls so when using Arena as an allocator * it is safe to skip them. However they are no-ops so there is no harm in * calling free() either. */ Allocator* allocator() { return upb_arena_alloc(this); } /* Add a cleanup function to run when the arena is destroyed. * Returns false on out-of-memory. */ bool AddCleanup(upb_cleanup_func* func, void* ud) { return upb_arena_addcleanup(this, func, ud); } /* Total number of bytes that have been allocated. It is undefined what * Realloc() does to this counter. */ size_t BytesAllocated() const { return upb_arena_bytesallocated(this); } private: UPB_DISALLOW_COPY_AND_ASSIGN(Arena) #else struct upb_arena { #endif /* __cplusplus */ /* We implement the allocator interface. * This must be the first member of upb_arena! */ upb_alloc alloc; /* Allocator to allocate arena blocks. We are responsible for freeing these * when we are destroyed. */ upb_alloc *block_alloc; size_t bytes_allocated; size_t next_block_size; size_t max_block_size; /* Linked list of blocks. Points to an arena_block, defined in env.c */ void *block_head; /* Cleanup entries. Pointer to a cleanup_ent, defined in env.c */ void *cleanup_head; /* For future expansion, since the size of this struct is exposed to users. */ void *future1; void *future2; }; /* upb::Environment ***********************************************************/ /* A upb::Environment provides a means for injecting malloc and an * error-reporting callback into encoders/decoders. This allows them to be * independent of nearly all assumptions about their actual environment. * * It is also a container for allocating the encoders/decoders themselves that * insulates clients from knowing their actual size. This provides ABI * compatibility even if the size of the objects change. And this allows the * structure definitions to be in the .c files instead of the .h files, making * the .h files smaller and more readable. * * We might want to consider renaming this to "Pipeline" if/when the concept of * a pipeline element becomes more formalized. */ UPB_DECLARE_TYPE(upb::Environment, upb_env) /* A function that receives an error report from an encoder or decoder. The * callback can return true to request that the error should be recovered, but * if the error is not recoverable this has no effect. */ typedef bool upb_error_func(void *ud, const upb_status *status); UPB_BEGIN_EXTERN_C void upb_env_init(upb_env *e); void upb_env_init2(upb_env *e, void *mem, size_t n, upb_alloc *alloc); void upb_env_uninit(upb_env *e); void upb_env_initonly(upb_env *e); upb_arena *upb_env_arena(upb_env *e); bool upb_env_ok(const upb_env *e); void upb_env_seterrorfunc(upb_env *e, upb_error_func *func, void *ud); /* Convenience wrappers around the methods of the contained arena. */ void upb_env_reporterrorsto(upb_env *e, upb_status *s); bool upb_env_reporterror(upb_env *e, const upb_status *s); void *upb_env_malloc(upb_env *e, size_t size); void *upb_env_realloc(upb_env *e, void *ptr, size_t oldsize, size_t size); void upb_env_free(upb_env *e, void *ptr); bool upb_env_addcleanup(upb_env *e, upb_cleanup_func *func, void *ud); size_t upb_env_bytesallocated(const upb_env *e); UPB_END_EXTERN_C #ifdef __cplusplus class upb::Environment { public: /* The given Arena must outlive this environment. */ Environment() { upb_env_initonly(this); } Environment(void *mem, size_t len, Allocator *a) : arena_(mem, len, a) { upb_env_initonly(this); } Arena* arena() { return upb_env_arena(this); } /* Set a custom error reporting function. */ void SetErrorFunction(upb_error_func* func, void* ud) { upb_env_seterrorfunc(this, func, ud); } /* Set the error reporting function to simply copy the status to the given * status and abort. */ void ReportErrorsTo(Status* status) { upb_env_reporterrorsto(this, status); } /* Returns true if all allocations and AddCleanup() calls have succeeded, * and no errors were reported with ReportError() (except ones that recovered * successfully). */ bool ok() const { return upb_env_ok(this); } /* Reports an error to this environment's callback, returning true if * the caller should try to recover. */ bool ReportError(const Status* status) { return upb_env_reporterror(this, status); } private: UPB_DISALLOW_COPY_AND_ASSIGN(Environment) #else struct upb_env { #endif /* __cplusplus */ upb_arena arena_; upb_error_func *error_func_; void *error_ud_; bool ok_; }; /* upb::InlinedArena **********************************************************/ /* upb::InlinedEnvironment ****************************************************/ /* upb::InlinedArena and upb::InlinedEnvironment seed their arenas with a * predefined amount of memory. No heap memory will be allocated until the * initial block is exceeded. * * These types only exist in C++ */ #ifdef __cplusplus template <int N> class upb::InlinedArena : public upb::Arena { public: InlinedArena() : Arena(initial_block_, N, NULL) {} explicit InlinedArena(Allocator* a) : Arena(initial_block_, N, a) {} private: UPB_DISALLOW_COPY_AND_ASSIGN(InlinedArena) char initial_block_[N + UPB_ARENA_BLOCK_OVERHEAD]; }; template <int N> class upb::InlinedEnvironment : public upb::Environment { public: InlinedEnvironment() : Environment(initial_block_, N, NULL) {} explicit InlinedEnvironment(Allocator *a) : Environment(initial_block_, N, a) {} private: UPB_DISALLOW_COPY_AND_ASSIGN(InlinedEnvironment) char initial_block_[N + UPB_ARENA_BLOCK_OVERHEAD]; }; #endif /* __cplusplus */ #endif /* UPB_H_ */ #ifdef __cplusplus extern "C" { #endif /* upb_value ******************************************************************/ /* A tagged union (stored untagged inside the table) so that we can check that * clients calling table accessors are correctly typed without having to have * an explosion of accessors. */ typedef enum { UPB_CTYPE_INT32 = 1, UPB_CTYPE_INT64 = 2, UPB_CTYPE_UINT32 = 3, UPB_CTYPE_UINT64 = 4, UPB_CTYPE_BOOL = 5, UPB_CTYPE_CSTR = 6, UPB_CTYPE_PTR = 7, UPB_CTYPE_CONSTPTR = 8, UPB_CTYPE_FPTR = 9 } upb_ctype_t; typedef struct { uint64_t val; #ifndef NDEBUG /* In debug mode we carry the value type around also so we can check accesses * to be sure the right member is being read. */ upb_ctype_t ctype; #endif } upb_value; #ifdef NDEBUG #define SET_TYPE(dest, val) UPB_UNUSED(val) #else #define SET_TYPE(dest, val) dest = val #endif /* Like strdup(), which isn't always available since it's not ANSI C. */ char *upb_strdup(const char *s, upb_alloc *a); /* Variant that works with a length-delimited rather than NULL-delimited string, * as supported by strtable. */ char *upb_strdup2(const char *s, size_t len, upb_alloc *a); UPB_INLINE char *upb_gstrdup(const char *s) { return upb_strdup(s, &upb_alloc_global); } UPB_INLINE void _upb_value_setval(upb_value *v, uint64_t val, upb_ctype_t ctype) { v->val = val; SET_TYPE(v->ctype, ctype); } UPB_INLINE upb_value _upb_value_val(uint64_t val, upb_ctype_t ctype) { upb_value ret; _upb_value_setval(&ret, val, ctype); return ret; } /* For each value ctype, define the following set of functions: * * // Get/set an int32 from a upb_value. * int32_t upb_value_getint32(upb_value val); * void upb_value_setint32(upb_value *val, int32_t cval); * * // Construct a new upb_value from an int32. * upb_value upb_value_int32(int32_t val); */ #define FUNCS(name, membername, type_t, converter, proto_type) \ UPB_INLINE void upb_value_set ## name(upb_value *val, type_t cval) { \ val->val = (converter)cval; \ SET_TYPE(val->ctype, proto_type); \ } \ UPB_INLINE upb_value upb_value_ ## name(type_t val) { \ upb_value ret; \ upb_value_set ## name(&ret, val); \ return ret; \ } \ UPB_INLINE type_t upb_value_get ## name(upb_value val) { \ assert(val.ctype == proto_type); \ return (type_t)(converter)val.val; \ } FUNCS(int32, int32, int32_t, int32_t, UPB_CTYPE_INT32) FUNCS(int64, int64, int64_t, int64_t, UPB_CTYPE_INT64) FUNCS(uint32, uint32, uint32_t, uint32_t, UPB_CTYPE_UINT32) FUNCS(uint64, uint64, uint64_t, uint64_t, UPB_CTYPE_UINT64) FUNCS(bool, _bool, bool, bool, UPB_CTYPE_BOOL) FUNCS(cstr, cstr, char*, uintptr_t, UPB_CTYPE_CSTR) FUNCS(ptr, ptr, void*, uintptr_t, UPB_CTYPE_PTR) FUNCS(constptr, constptr, const void*, uintptr_t, UPB_CTYPE_CONSTPTR) FUNCS(fptr, fptr, upb_func*, uintptr_t, UPB_CTYPE_FPTR) #undef FUNCS #undef SET_TYPE /* upb_tabkey *****************************************************************/ /* Either: * 1. an actual integer key, or * 2. a pointer to a string prefixed by its uint32_t length, owned by us. * * ...depending on whether this is a string table or an int table. We would * make this a union of those two types, but C89 doesn't support statically * initializing a non-first union member. */ typedef uintptr_t upb_tabkey; #define UPB_TABKEY_NUM(n) n #define UPB_TABKEY_NONE 0 /* The preprocessor isn't quite powerful enough to turn the compile-time string * length into a byte-wise string representation, so code generation needs to * help it along. * * "len1" is the low byte and len4 is the high byte. */ #ifdef UPB_BIG_ENDIAN #define UPB_TABKEY_STR(len1, len2, len3, len4, strval) \ (uintptr_t)(len4 len3 len2 len1 strval) #else #define UPB_TABKEY_STR(len1, len2, len3, len4, strval) \ (uintptr_t)(len1 len2 len3 len4 strval) #endif UPB_INLINE char *upb_tabstr(upb_tabkey key, uint32_t *len) { char* mem = (char*)key; if (len) memcpy(len, mem, sizeof(*len)); return mem + sizeof(*len); } /* upb_tabval *****************************************************************/ #ifdef __cplusplus /* Status initialization not supported. * * This separate definition is necessary because in C++, UINTPTR_MAX isn't * reliably available. */ typedef struct { uint64_t val; } upb_tabval; #else /* C -- supports static initialization, but to support static initialization of * both integers and points for both 32 and 64 bit targets, it takes a little * bit of doing. */ #if UINTPTR_MAX == 0xffffffffffffffffULL #define UPB_PTR_IS_64BITS #elif UINTPTR_MAX != 0xffffffff #error Could not determine how many bits pointers are. #endif typedef union { /* For static initialization. * * Unfortunately this ugliness is necessary -- it is the only way that we can, * with -std=c89 -pedantic, statically initialize this to either a pointer or * an integer on 32-bit platforms. */ struct { #ifdef UPB_PTR_IS_64BITS uintptr_t val; #else uintptr_t val1; uintptr_t val2; #endif } staticinit; /* The normal accessor that we use for everything at runtime. */ uint64_t val; } upb_tabval; #ifdef UPB_PTR_IS_64BITS #define UPB_TABVALUE_INT_INIT(v) {{v}} #define UPB_TABVALUE_EMPTY_INIT {{-1}} #else /* 32-bit pointers */ #ifdef UPB_BIG_ENDIAN #define UPB_TABVALUE_INT_INIT(v) {{0, v}} #define UPB_TABVALUE_EMPTY_INIT {{-1, -1}} #else #define UPB_TABVALUE_INT_INIT(v) {{v, 0}} #define UPB_TABVALUE_EMPTY_INIT {{-1, -1}} #endif #endif #define UPB_TABVALUE_PTR_INIT(v) UPB_TABVALUE_INT_INIT((uintptr_t)v) #undef UPB_PTR_IS_64BITS #endif /* __cplusplus */ /* upb_table ******************************************************************/ typedef struct _upb_tabent { upb_tabkey key; upb_tabval val; /* Internal chaining. This is const so we can create static initializers for * tables. We cast away const sometimes, but *only* when the containing * upb_table is known to be non-const. This requires a bit of care, but * the subtlety is confined to table.c. */ const struct _upb_tabent *next; } upb_tabent; typedef struct { size_t count; /* Number of entries in the hash part. */ size_t mask; /* Mask to turn hash value -> bucket. */ upb_ctype_t ctype; /* Type of all values. */ uint8_t size_lg2; /* Size of the hashtable part is 2^size_lg2 entries. */ /* Hash table entries. * Making this const isn't entirely accurate; what we really want is for it to * have the same const-ness as the table it's inside. But there's no way to * declare that in C. So we have to make it const so that we can statically * initialize const hash tables. Then we cast away const when we have to. */ const upb_tabent *entries; #ifndef NDEBUG /* This table's allocator. We make the user pass it in to every relevant * function and only use this to check it in debug mode. We do this solely * to keep upb_table as small as possible. This might seem slightly paranoid * but the plan is to use upb_table for all map fields and extension sets in * a forthcoming message representation, so there could be a lot of these. * If this turns out to be too annoying later, we can change it (since this * is an internal-only header file). */ upb_alloc *alloc; #endif } upb_table; #ifdef NDEBUG # define UPB_TABLE_INIT(count, mask, ctype, size_lg2, entries) \ {count, mask, ctype, size_lg2, entries} #else # ifdef UPB_DEBUG_REFS /* At the moment the only mutable tables we statically initialize are debug * ref tables. */ # define UPB_TABLE_INIT(count, mask, ctype, size_lg2, entries) \ {count, mask, ctype, size_lg2, entries, &upb_alloc_debugrefs} # else # define UPB_TABLE_INIT(count, mask, ctype, size_lg2, entries) \ {count, mask, ctype, size_lg2, entries, NULL} # endif #endif typedef struct { upb_table t; } upb_strtable; #define UPB_STRTABLE_INIT(count, mask, ctype, size_lg2, entries) \ {UPB_TABLE_INIT(count, mask, ctype, size_lg2, entries)} #define UPB_EMPTY_STRTABLE_INIT(ctype) \ UPB_STRTABLE_INIT(0, 0, ctype, 0, NULL) typedef struct { upb_table t; /* For entries that don't fit in the array part. */ const upb_tabval *array; /* Array part of the table. See const note above. */ size_t array_size; /* Array part size. */ size_t array_count; /* Array part number of elements. */ } upb_inttable; #define UPB_INTTABLE_INIT(count, mask, ctype, size_lg2, ent, a, asize, acount) \ {UPB_TABLE_INIT(count, mask, ctype, size_lg2, ent), a, asize, acount} #define UPB_EMPTY_INTTABLE_INIT(ctype) \ UPB_INTTABLE_INIT(0, 0, ctype, 0, NULL, NULL, 0, 0) #define UPB_ARRAY_EMPTYENT -1 UPB_INLINE size_t upb_table_size(const upb_table *t) { if (t->size_lg2 == 0) return 0; else return 1 << t->size_lg2; } /* Internal-only functions, in .h file only out of necessity. */ UPB_INLINE bool upb_tabent_isempty(const upb_tabent *e) { return e->key == 0; } /* Used by some of the unit tests for generic hashing functionality. */ uint32_t MurmurHash2(const void * key, size_t len, uint32_t seed); UPB_INLINE uintptr_t upb_intkey(uintptr_t key) { return key; } UPB_INLINE uint32_t upb_inthash(uintptr_t key) { return (uint32_t)key; } static const upb_tabent *upb_getentry(const upb_table *t, uint32_t hash) { return t->entries + (hash & t->mask); } UPB_INLINE bool upb_arrhas(upb_tabval key) { return key.val != (uint64_t)-1; } /* Initialize and uninitialize a table, respectively. If memory allocation * failed, false is returned that the table is uninitialized. */ bool upb_inttable_init2(upb_inttable *table, upb_ctype_t ctype, upb_alloc *a); bool upb_strtable_init2(upb_strtable *table, upb_ctype_t ctype, upb_alloc *a); void upb_inttable_uninit2(upb_inttable *table, upb_alloc *a); void upb_strtable_uninit2(upb_strtable *table, upb_alloc *a); UPB_INLINE bool upb_inttable_init(upb_inttable *table, upb_ctype_t ctype) { return upb_inttable_init2(table, ctype, &upb_alloc_global); } UPB_INLINE bool upb_strtable_init(upb_strtable *table, upb_ctype_t ctype) { return upb_strtable_init2(table, ctype, &upb_alloc_global); } UPB_INLINE void upb_inttable_uninit(upb_inttable *table) { upb_inttable_uninit2(table, &upb_alloc_global); } UPB_INLINE void upb_strtable_uninit(upb_strtable *table) { upb_strtable_uninit2(table, &upb_alloc_global); } /* Returns the number of values in the table. */ size_t upb_inttable_count(const upb_inttable *t); UPB_INLINE size_t upb_strtable_count(const upb_strtable *t) { return t->t.count; } /* Inserts the given key into the hashtable with the given value. The key must * not already exist in the hash table. For string tables, the key must be * NULL-terminated, and the table will make an internal copy of the key. * Inttables must not insert a value of UINTPTR_MAX. * * If a table resize was required but memory allocation failed, false is * returned and the table is unchanged. */ bool upb_inttable_insert2(upb_inttable *t, uintptr_t key, upb_value val, upb_alloc *a); bool upb_strtable_insert3(upb_strtable *t, const char *key, size_t len, upb_value val, upb_alloc *a); UPB_INLINE bool upb_inttable_insert(upb_inttable *t, uintptr_t key, upb_value val) { return upb_inttable_insert2(t, key, val, &upb_alloc_global); } UPB_INLINE bool upb_strtable_insert2(upb_strtable *t, const char *key, size_t len, upb_value val) { return upb_strtable_insert3(t, key, len, val, &upb_alloc_global); } /* For NULL-terminated strings. */ UPB_INLINE bool upb_strtable_insert(upb_strtable *t, const char *key, upb_value val) { return upb_strtable_insert2(t, key, strlen(key), val); } /* Looks up key in this table, returning "true" if the key was found. * If v is non-NULL, copies the value for this key into *v. */ bool upb_inttable_lookup(const upb_inttable *t, uintptr_t key, upb_value *v); bool upb_strtable_lookup2(const upb_strtable *t, const char *key, size_t len, upb_value *v); /* For NULL-terminated strings. */ UPB_INLINE bool upb_strtable_lookup(const upb_strtable *t, const char *key, upb_value *v) { return upb_strtable_lookup2(t, key, strlen(key), v); } /* Removes an item from the table. Returns true if the remove was successful, * and stores the removed item in *val if non-NULL. */ bool upb_inttable_remove(upb_inttable *t, uintptr_t key, upb_value *val); bool upb_strtable_remove3(upb_strtable *t, const char *key, size_t len, upb_value *val, upb_alloc *alloc); UPB_INLINE bool upb_strtable_remove2(upb_strtable *t, const char *key, size_t len, upb_value *val) { return upb_strtable_remove3(t, key, len, val, &upb_alloc_global); } /* For NULL-terminated strings. */ UPB_INLINE bool upb_strtable_remove(upb_strtable *t, const char *key, upb_value *v) { return upb_strtable_remove2(t, key, strlen(key), v); } /* Updates an existing entry in an inttable. If the entry does not exist, * returns false and does nothing. Unlike insert/remove, this does not * invalidate iterators. */ bool upb_inttable_replace(upb_inttable *t, uintptr_t key, upb_value val); /* Handy routines for treating an inttable like a stack. May not be mixed with * other insert/remove calls. */ bool upb_inttable_push2(upb_inttable *t, upb_value val, upb_alloc *a); upb_value upb_inttable_pop(upb_inttable *t); UPB_INLINE bool upb_inttable_push(upb_inttable *t, upb_value val) { return upb_inttable_push2(t, val, &upb_alloc_global); } /* Convenience routines for inttables with pointer keys. */ bool upb_inttable_insertptr2(upb_inttable *t, const void *key, upb_value val, upb_alloc *a); bool upb_inttable_removeptr(upb_inttable *t, const void *key, upb_value *val); bool upb_inttable_lookupptr( const upb_inttable *t, const void *key, upb_value *val); UPB_INLINE bool upb_inttable_insertptr(upb_inttable *t, const void *key, upb_value val) { return upb_inttable_insertptr2(t, key, val, &upb_alloc_global); } /* Optimizes the table for the current set of entries, for both memory use and * lookup time. Client should call this after all entries have been inserted; * inserting more entries is legal, but will likely require a table resize. */ void upb_inttable_compact2(upb_inttable *t, upb_alloc *a); UPB_INLINE void upb_inttable_compact(upb_inttable *t) { upb_inttable_compact2(t, &upb_alloc_global); } /* A special-case inlinable version of the lookup routine for 32-bit * integers. */ UPB_INLINE bool upb_inttable_lookup32(const upb_inttable *t, uint32_t key, upb_value *v) { *v = upb_value_int32(0); /* Silence compiler warnings. */ if (key < t->array_size) { upb_tabval arrval = t->array[key]; if (upb_arrhas(arrval)) { _upb_value_setval(v, arrval.val, t->t.ctype); return true; } else { return false; } } else { const upb_tabent *e; if (t->t.entries == NULL) return false; for (e = upb_getentry(&t->t, upb_inthash(key)); true; e = e->next) { if ((uint32_t)e->key == key) { _upb_value_setval(v, e->val.val, t->t.ctype); return true; } if (e->next == NULL) return false; } } } /* Exposed for testing only. */ bool upb_strtable_resize(upb_strtable *t, size_t size_lg2, upb_alloc *a); /* Iterators ******************************************************************/ /* Iterators for int and string tables. We are subject to some kind of unusual * design constraints: * * For high-level languages: * - we must be able to guarantee that we don't crash or corrupt memory even if * the program accesses an invalidated iterator. * * For C++11 range-based for: * - iterators must be copyable * - iterators must be comparable * - it must be possible to construct an "end" value. * * Iteration order is undefined. * * Modifying the table invalidates iterators. upb_{str,int}table_done() is * guaranteed to work even on an invalidated iterator, as long as the table it * is iterating over has not been freed. Calling next() or accessing data from * an invalidated iterator yields unspecified elements from the table, but it is * guaranteed not to crash and to return real table elements (except when done() * is true). */ /* upb_strtable_iter **********************************************************/ /* upb_strtable_iter i; * upb_strtable_begin(&i, t); * for(; !upb_strtable_done(&i); upb_strtable_next(&i)) { * const char *key = upb_strtable_iter_key(&i); * const upb_value val = upb_strtable_iter_value(&i); * // ... * } */ typedef struct { const upb_strtable *t; size_t index; } upb_strtable_iter; void upb_strtable_begin(upb_strtable_iter *i, const upb_strtable *t); void upb_strtable_next(upb_strtable_iter *i); bool upb_strtable_done(const upb_strtable_iter *i); const char *upb_strtable_iter_key(const upb_strtable_iter *i); size_t upb_strtable_iter_keylength(const upb_strtable_iter *i); upb_value upb_strtable_iter_value(const upb_strtable_iter *i); void upb_strtable_iter_setdone(upb_strtable_iter *i); bool upb_strtable_iter_isequal(const upb_strtable_iter *i1, const upb_strtable_iter *i2); /* upb_inttable_iter **********************************************************/ /* upb_inttable_iter i; * upb_inttable_begin(&i, t); * for(; !upb_inttable_done(&i); upb_inttable_next(&i)) { * uintptr_t key = upb_inttable_iter_key(&i); * upb_value val = upb_inttable_iter_value(&i); * // ... * } */ typedef struct { const upb_inttable *t; size_t index; bool array_part; } upb_inttable_iter; void upb_inttable_begin(upb_inttable_iter *i, const upb_inttable *t); void upb_inttable_next(upb_inttable_iter *i); bool upb_inttable_done(const upb_inttable_iter *i); uintptr_t upb_inttable_iter_key(const upb_inttable_iter *i); upb_value upb_inttable_iter_value(const upb_inttable_iter *i); void upb_inttable_iter_setdone(upb_inttable_iter *i); bool upb_inttable_iter_isequal(const upb_inttable_iter *i1, const upb_inttable_iter *i2); #ifdef __cplusplus } /* extern "C" */ #endif #endif /* UPB_TABLE_H_ */ /* Reference tracking will check ref()/unref() operations to make sure the * ref ownership is correct. Where possible it will also make tools like * Valgrind attribute ref leaks to the code that took the leaked ref, not * the code that originally created the object. * * Enabling this requires the application to define upb_lock()/upb_unlock() * functions that acquire/release a global mutex (or #define UPB_THREAD_UNSAFE). * For this reason we don't enable it by default, even in debug builds. */ /* #define UPB_DEBUG_REFS */ #ifdef __cplusplus namespace upb { class RefCounted; template <class T> class reffed_ptr; } #endif UPB_DECLARE_TYPE(upb::RefCounted, upb_refcounted) struct upb_refcounted_vtbl; #ifdef __cplusplus class upb::RefCounted { public: /* Returns true if the given object is frozen. */ bool IsFrozen() const; /* Increases the ref count, the new ref is owned by "owner" which must not * already own a ref (and should not itself be a refcounted object if the ref * could possibly be circular; see below). * Thread-safe iff "this" is frozen. */ void Ref(const void *owner) const; /* Release a ref that was acquired from upb_refcounted_ref() and collects any * objects it can. */ void Unref(const void *owner) const; /* Moves an existing ref from "from" to "to", without changing the overall * ref count. DonateRef(foo, NULL, owner) is the same as Ref(foo, owner), * but "to" may not be NULL. */ void DonateRef(const void *from, const void *to) const; /* Verifies that a ref to the given object is currently held by the given * owner. Only effective in UPB_DEBUG_REFS builds. */ void CheckRef(const void *owner) const; private: UPB_DISALLOW_POD_OPS(RefCounted, upb::RefCounted) #else struct upb_refcounted { #endif /* TODO(haberman): move the actual structure definition to structdefs.int.h. * The only reason they are here is because inline functions need to see the * definition of upb_handlers, which needs to see this definition. But we * can change the upb_handlers inline functions to deal in raw offsets * instead. */ /* A single reference count shared by all objects in the group. */ uint32_t *group; /* A singly-linked list of all objects in the group. */ upb_refcounted *next; /* Table of function pointers for this type. */ const struct upb_refcounted_vtbl *vtbl; /* Maintained only when mutable, this tracks the number of refs (but not * ref2's) to this object. *group should be the sum of all individual_count * in the group. */ uint32_t individual_count; bool is_frozen; #ifdef UPB_DEBUG_REFS upb_inttable *refs; /* Maps owner -> trackedref for incoming refs. */ upb_inttable *ref2s; /* Set of targets for outgoing ref2s. */ #endif }; #ifdef UPB_DEBUG_REFS extern upb_alloc upb_alloc_debugrefs; #define UPB_REFCOUNT_INIT(vtbl, refs, ref2s) \ {&static_refcount, NULL, vtbl, 0, true, refs, ref2s} #else #define UPB_REFCOUNT_INIT(vtbl, refs, ref2s) \ {&static_refcount, NULL, vtbl, 0, true} #endif UPB_BEGIN_EXTERN_C /* It is better to use tracked refs when possible, for the extra debugging * capability. But if this is not possible (because you don't have easy access * to a stable pointer value that is associated with the ref), you can pass * UPB_UNTRACKED_REF instead. */ extern const void *UPB_UNTRACKED_REF; /* Native C API. */ bool upb_refcounted_isfrozen(const upb_refcounted *r); void upb_refcounted_ref(const upb_refcounted *r, const void *owner); void upb_refcounted_unref(const upb_refcounted *r, const void *owner); void upb_refcounted_donateref( const upb_refcounted *r, const void *from, const void *to); void upb_refcounted_checkref(const upb_refcounted *r, const void *owner); #define UPB_REFCOUNTED_CMETHODS(type, upcastfunc) \ UPB_INLINE bool type ## _isfrozen(const type *v) { \ return upb_refcounted_isfrozen(upcastfunc(v)); \ } \ UPB_INLINE void type ## _ref(const type *v, const void *owner) { \ upb_refcounted_ref(upcastfunc(v), owner); \ } \ UPB_INLINE void type ## _unref(const type *v, const void *owner) { \ upb_refcounted_unref(upcastfunc(v), owner); \ } \ UPB_INLINE void type ## _donateref(const type *v, const void *from, const void *to) { \ upb_refcounted_donateref(upcastfunc(v), from, to); \ } \ UPB_INLINE void type ## _checkref(const type *v, const void *owner) { \ upb_refcounted_checkref(upcastfunc(v), owner); \ } #define UPB_REFCOUNTED_CPPMETHODS \ bool IsFrozen() const { \ return upb::upcast_to<const upb::RefCounted>(this)->IsFrozen(); \ } \ void Ref(const void *owner) const { \ return upb::upcast_to<const upb::RefCounted>(this)->Ref(owner); \ } \ void Unref(const void *owner) const { \ return upb::upcast_to<const upb::RefCounted>(this)->Unref(owner); \ } \ void DonateRef(const void *from, const void *to) const { \ return upb::upcast_to<const upb::RefCounted>(this)->DonateRef(from, to); \ } \ void CheckRef(const void *owner) const { \ return upb::upcast_to<const upb::RefCounted>(this)->CheckRef(owner); \ } /* Internal-to-upb Interface **************************************************/ typedef void upb_refcounted_visit(const upb_refcounted *r, const upb_refcounted *subobj, void *closure); struct upb_refcounted_vtbl { /* Must visit all subobjects that are currently ref'd via upb_refcounted_ref2. * Must be longjmp()-safe. */ void (*visit)(const upb_refcounted *r, upb_refcounted_visit *visit, void *c); /* Must free the object and release all references to other objects. */ void (*free)(upb_refcounted *r); }; /* Initializes the refcounted with a single ref for the given owner. Returns * false if memory could not be allocated. */ bool upb_refcounted_init(upb_refcounted *r, const struct upb_refcounted_vtbl *vtbl, const void *owner); /* Adds a ref from one refcounted object to another ("from" must not already * own a ref). These refs may be circular; cycles will be collected correctly * (if conservatively). These refs do not need to be freed in from's free() * function. */ void upb_refcounted_ref2(const upb_refcounted *r, upb_refcounted *from); /* Removes a ref that was acquired from upb_refcounted_ref2(), and collects any * object it can. This is only necessary when "from" no longer points to "r", * and not from from's "free" function. */ void upb_refcounted_unref2(const upb_refcounted *r, upb_refcounted *from); #define upb_ref2(r, from) \ upb_refcounted_ref2((const upb_refcounted*)r, (upb_refcounted*)from) #define upb_unref2(r, from) \ upb_refcounted_unref2((const upb_refcounted*)r, (upb_refcounted*)from) /* Freezes all mutable object reachable by ref2() refs from the given roots. * This will split refcounting groups into precise SCC groups, so that * refcounting of frozen objects can be more aggressive. If memory allocation * fails, or if more than 2**31 mutable objects are reachable from "roots", or * if the maximum depth of the graph exceeds "maxdepth", false is returned and * the objects are unchanged. * * After this operation succeeds, the objects are frozen/const, and may not be * used through non-const pointers. In particular, they may not be passed as * the second parameter of upb_refcounted_{ref,unref}2(). On the upside, all * operations on frozen refcounteds are threadsafe, and objects will be freed * at the precise moment that they become unreachable. * * Caller must own refs on each object in the "roots" list. */ bool upb_refcounted_freeze(upb_refcounted *const*roots, int n, upb_status *s, int maxdepth); /* Shared by all compiled-in refcounted objects. */ extern uint32_t static_refcount; UPB_END_EXTERN_C #ifdef __cplusplus /* C++ Wrappers. */ namespace upb { inline bool RefCounted::IsFrozen() const { return upb_refcounted_isfrozen(this); } inline void RefCounted::Ref(const void *owner) const { upb_refcounted_ref(this, owner); } inline void RefCounted::Unref(const void *owner) const { upb_refcounted_unref(this, owner); } inline void RefCounted::DonateRef(const void *from, const void *to) const { upb_refcounted_donateref(this, from, to); } inline void RefCounted::CheckRef(const void *owner) const { upb_refcounted_checkref(this, owner); } } /* namespace upb */ #endif /* upb::reffed_ptr ************************************************************/ #ifdef __cplusplus #include <algorithm> /* For std::swap(). */ /* Provides RAII semantics for upb refcounted objects. Each reffed_ptr owns a * ref on whatever object it points to (if any). */ template <class T> class upb::reffed_ptr { public: reffed_ptr() : ptr_(NULL) {} /* If ref_donor is NULL, takes a new ref, otherwise adopts from ref_donor. */ template <class U> reffed_ptr(U* val, const void* ref_donor = NULL) : ptr_(upb::upcast(val)) { if (ref_donor) { assert(ptr_); ptr_->DonateRef(ref_donor, this); } else if (ptr_) { ptr_->Ref(this); } } template <class U> reffed_ptr(const reffed_ptr<U>& other) : ptr_(upb::upcast(other.get())) { if (ptr_) ptr_->Ref(this); } reffed_ptr(const reffed_ptr& other) : ptr_(upb::upcast(other.get())) { if (ptr_) ptr_->Ref(this); } ~reffed_ptr() { if (ptr_) ptr_->Unref(this); } template <class U> reffed_ptr& operator=(const reffed_ptr<U>& other) { reset(other.get()); return *this; } reffed_ptr& operator=(const reffed_ptr& other) { reset(other.get()); return *this; } /* TODO(haberman): add C++11 move construction/assignment for greater * efficiency. */ void swap(reffed_ptr& other) { if (ptr_ == other.ptr_) { return; } if (ptr_) ptr_->DonateRef(this, &other); if (other.ptr_) other.ptr_->DonateRef(&other, this); std::swap(ptr_, other.ptr_); } T& operator*() const { assert(ptr_); return *ptr_; } T* operator->() const { assert(ptr_); return ptr_; } T* get() const { return ptr_; } /* If ref_donor is NULL, takes a new ref, otherwise adopts from ref_donor. */ template <class U> void reset(U* ptr = NULL, const void* ref_donor = NULL) { reffed_ptr(ptr, ref_donor).swap(*this); } template <class U> reffed_ptr<U> down_cast() { return reffed_ptr<U>(upb::down_cast<U*>(get())); } template <class U> reffed_ptr<U> dyn_cast() { return reffed_ptr<U>(upb::dyn_cast<U*>(get())); } /* Plain release() is unsafe; if we were the only owner, it would leak the * object. Instead we provide this: */ T* ReleaseTo(const void* new_owner) { T* ret = NULL; ptr_->DonateRef(this, new_owner); std::swap(ret, ptr_); return ret; } private: T* ptr_; }; #endif /* __cplusplus */ #endif /* UPB_REFCOUNT_H_ */ #ifdef __cplusplus #include <cstring> #include <string> #include <vector> namespace upb { class Def; class EnumDef; class FieldDef; class FileDef; class MessageDef; class OneofDef; } #endif UPB_DECLARE_DERIVED_TYPE(upb::Def, upb::RefCounted, upb_def, upb_refcounted) UPB_DECLARE_DERIVED_TYPE(upb::OneofDef, upb::RefCounted, upb_oneofdef, upb_refcounted) UPB_DECLARE_DERIVED_TYPE(upb::FileDef, upb::RefCounted, upb_filedef, upb_refcounted) /* The maximum message depth that the type graph can have. This is a resource * limit for the C stack since we sometimes need to recursively traverse the * graph. Cycles are ok; the traversal will stop when it detects a cycle, but * we must hit the cycle before the maximum depth is reached. * * If having a single static limit is too inflexible, we can add another variant * of Def::Freeze that allows specifying this as a parameter. */ #define UPB_MAX_MESSAGE_DEPTH 64 /* upb::Def: base class for top-level defs ***********************************/ /* All the different kind of defs that can be defined at the top-level and put * in a SymbolTable or appear in a FileDef::defs() list. This excludes some * defs (like oneofs and files). It only includes fields because they can be * defined as extensions. */ typedef enum { UPB_DEF_MSG, UPB_DEF_FIELD, UPB_DEF_ENUM, UPB_DEF_SERVICE, /* Not yet implemented. */ UPB_DEF_ANY = -1 /* Wildcard for upb_symtab_get*() */ } upb_deftype_t; #ifdef __cplusplus /* The base class of all defs. Its base is upb::RefCounted (use upb::upcast() * to convert). */ class upb::Def { public: typedef upb_deftype_t Type; Def* Dup(const void *owner) const; /* upb::RefCounted methods like Ref()/Unref(). */ UPB_REFCOUNTED_CPPMETHODS Type def_type() const; /* "fullname" is the def's fully-qualified name (eg. foo.bar.Message). */ const char *full_name() const; /* The final part of a def's name (eg. Message). */ const char *name() const; /* The def must be mutable. Caller retains ownership of fullname. Defs are * not required to have a name; if a def has no name when it is frozen, it * will remain an anonymous def. On failure, returns false and details in "s" * if non-NULL. */ bool set_full_name(const char* fullname, upb::Status* s); bool set_full_name(const std::string &fullname, upb::Status* s); /* The file in which this def appears. It is not necessary to add a def to a * file (and consequently the accessor may return NULL). Set this by calling * file->Add(def). */ FileDef* file() const; /* Freezes the given defs; this validates all constraints and marks the defs * as frozen (read-only). "defs" may not contain any fielddefs, but fields * of any msgdefs will be frozen. * * Symbolic references to sub-types and enum defaults must have already been * resolved. Any mutable defs reachable from any of "defs" must also be in * the list; more formally, "defs" must be a transitive closure of mutable * defs. * * After this operation succeeds, the finalized defs must only be accessed * through a const pointer! */ static bool Freeze(Def* const* defs, size_t n, Status* status); static bool Freeze(const std::vector<Def*>& defs, Status* status); private: UPB_DISALLOW_POD_OPS(Def, upb::Def) }; #endif /* __cplusplus */ UPB_BEGIN_EXTERN_C /* Native C API. */ upb_def *upb_def_dup(const upb_def *def, const void *owner); /* Include upb_refcounted methods like upb_def_ref()/upb_def_unref(). */ UPB_REFCOUNTED_CMETHODS(upb_def, upb_def_upcast) upb_deftype_t upb_def_type(const upb_def *d); const char *upb_def_fullname(const upb_def *d); const char *upb_def_name(const upb_def *d); const upb_filedef *upb_def_file(const upb_def *d); bool upb_def_setfullname(upb_def *def, const char *fullname, upb_status *s); bool upb_def_freeze(upb_def *const *defs, size_t n, upb_status *s); /* Temporary API: for internal use only. */ bool _upb_def_validate(upb_def *const*defs, size_t n, upb_status *s); UPB_END_EXTERN_C /* upb::Def casts *************************************************************/ #ifdef __cplusplus #define UPB_CPP_CASTS(cname, cpptype) \ namespace upb { \ template <> \ inline cpptype *down_cast<cpptype *, Def>(Def * def) { \ return upb_downcast_##cname##_mutable(def); \ } \ template <> \ inline cpptype *dyn_cast<cpptype *, Def>(Def * def) { \ return upb_dyncast_##cname##_mutable(def); \ } \ template <> \ inline const cpptype *down_cast<const cpptype *, const Def>( \ const Def *def) { \ return upb_downcast_##cname(def); \ } \ template <> \ inline const cpptype *dyn_cast<const cpptype *, const Def>(const Def *def) { \ return upb_dyncast_##cname(def); \ } \ template <> \ inline const cpptype *down_cast<const cpptype *, Def>(Def * def) { \ return upb_downcast_##cname(def); \ } \ template <> \ inline const cpptype *dyn_cast<const cpptype *, Def>(Def * def) { \ return upb_dyncast_##cname(def); \ } \ } /* namespace upb */ #else #define UPB_CPP_CASTS(cname, cpptype) #endif /* __cplusplus */ /* Dynamic casts, for determining if a def is of a particular type at runtime. * Downcasts, for when some wants to assert that a def is of a particular type. * These are only checked if we are building debug. */ #define UPB_DEF_CASTS(lower, upper, cpptype) \ UPB_INLINE const upb_##lower *upb_dyncast_##lower(const upb_def *def) { \ if (upb_def_type(def) != UPB_DEF_##upper) return NULL; \ return (upb_##lower *)def; \ } \ UPB_INLINE const upb_##lower *upb_downcast_##lower(const upb_def *def) { \ assert(upb_def_type(def) == UPB_DEF_##upper); \ return (const upb_##lower *)def; \ } \ UPB_INLINE upb_##lower *upb_dyncast_##lower##_mutable(upb_def *def) { \ return (upb_##lower *)upb_dyncast_##lower(def); \ } \ UPB_INLINE upb_##lower *upb_downcast_##lower##_mutable(upb_def *def) { \ return (upb_##lower *)upb_downcast_##lower(def); \ } \ UPB_CPP_CASTS(lower, cpptype) #define UPB_DEFINE_DEF(cppname, lower, upper, cppmethods, members) \ UPB_DEFINE_CLASS2(cppname, upb::Def, upb::RefCounted, cppmethods, \ members) \ UPB_DEF_CASTS(lower, upper, cppname) #define UPB_DECLARE_DEF_TYPE(cppname, lower, upper) \ UPB_DECLARE_DERIVED_TYPE2(cppname, upb::Def, upb::RefCounted, \ upb_ ## lower, upb_def, upb_refcounted) \ UPB_DEF_CASTS(lower, upper, cppname) UPB_DECLARE_DEF_TYPE(upb::FieldDef, fielddef, FIELD) UPB_DECLARE_DEF_TYPE(upb::MessageDef, msgdef, MSG) UPB_DECLARE_DEF_TYPE(upb::EnumDef, enumdef, ENUM) #undef UPB_DECLARE_DEF_TYPE #undef UPB_DEF_CASTS #undef UPB_CPP_CASTS /* upb::FieldDef **************************************************************/ /* The types a field can have. Note that this list is not identical to the * types defined in descriptor.proto, which gives INT32 and SINT32 separate * types (we distinguish the two with the "integer encoding" enum below). */ typedef enum { UPB_TYPE_FLOAT = 1, UPB_TYPE_DOUBLE = 2, UPB_TYPE_BOOL = 3, UPB_TYPE_STRING = 4, UPB_TYPE_BYTES = 5, UPB_TYPE_MESSAGE = 6, UPB_TYPE_ENUM = 7, /* Enum values are int32. */ UPB_TYPE_INT32 = 8, UPB_TYPE_UINT32 = 9, UPB_TYPE_INT64 = 10, UPB_TYPE_UINT64 = 11 } upb_fieldtype_t; /* The repeated-ness of each field; this matches descriptor.proto. */ typedef enum { UPB_LABEL_OPTIONAL = 1, UPB_LABEL_REQUIRED = 2, UPB_LABEL_REPEATED = 3 } upb_label_t; /* How integers should be encoded in serializations that offer multiple * integer encoding methods. */ typedef enum { UPB_INTFMT_VARIABLE = 1, UPB_INTFMT_FIXED = 2, UPB_INTFMT_ZIGZAG = 3 /* Only for signed types (INT32/INT64). */ } upb_intfmt_t; /* Descriptor types, as defined in descriptor.proto. */ typedef enum { UPB_DESCRIPTOR_TYPE_DOUBLE = 1, UPB_DESCRIPTOR_TYPE_FLOAT = 2, UPB_DESCRIPTOR_TYPE_INT64 = 3, UPB_DESCRIPTOR_TYPE_UINT64 = 4, UPB_DESCRIPTOR_TYPE_INT32 = 5, UPB_DESCRIPTOR_TYPE_FIXED64 = 6, UPB_DESCRIPTOR_TYPE_FIXED32 = 7, UPB_DESCRIPTOR_TYPE_BOOL = 8, UPB_DESCRIPTOR_TYPE_STRING = 9, UPB_DESCRIPTOR_TYPE_GROUP = 10, UPB_DESCRIPTOR_TYPE_MESSAGE = 11, UPB_DESCRIPTOR_TYPE_BYTES = 12, UPB_DESCRIPTOR_TYPE_UINT32 = 13, UPB_DESCRIPTOR_TYPE_ENUM = 14, UPB_DESCRIPTOR_TYPE_SFIXED32 = 15, UPB_DESCRIPTOR_TYPE_SFIXED64 = 16, UPB_DESCRIPTOR_TYPE_SINT32 = 17, UPB_DESCRIPTOR_TYPE_SINT64 = 18 } upb_descriptortype_t; typedef enum { UPB_SYNTAX_PROTO2 = 2, UPB_SYNTAX_PROTO3 = 3 } upb_syntax_t; /* Maximum field number allowed for FieldDefs. This is an inherent limit of the * protobuf wire format. */ #define UPB_MAX_FIELDNUMBER ((1 << 29) - 1) #ifdef __cplusplus /* A upb_fielddef describes a single field in a message. It is most often * found as a part of a upb_msgdef, but can also stand alone to represent * an extension. * * Its base class is upb::Def (use upb::upcast() to convert). */ class upb::FieldDef { public: typedef upb_fieldtype_t Type; typedef upb_label_t Label; typedef upb_intfmt_t IntegerFormat; typedef upb_descriptortype_t DescriptorType; /* These return true if the given value is a valid member of the enumeration. */ static bool CheckType(int32_t val); static bool CheckLabel(int32_t val); static bool CheckDescriptorType(int32_t val); static bool CheckIntegerFormat(int32_t val); /* These convert to the given enumeration; they require that the value is * valid. */ static Type ConvertType(int32_t val); static Label ConvertLabel(int32_t val); static DescriptorType ConvertDescriptorType(int32_t val); static IntegerFormat ConvertIntegerFormat(int32_t val); /* Returns NULL if memory allocation failed. */ static reffed_ptr<FieldDef> New(); /* Duplicates the given field, returning NULL if memory allocation failed. * When a fielddef is duplicated, the subdef (if any) is made symbolic if it * wasn't already. If the subdef is set but has no name (which is possible * since msgdefs are not required to have a name) the new fielddef's subdef * will be unset. */ FieldDef* Dup(const void* owner) const; /* upb::RefCounted methods like Ref()/Unref(). */ UPB_REFCOUNTED_CPPMETHODS /* Functionality from upb::Def. */ const char* full_name() const; bool type_is_set() const; /* set_[descriptor_]type() has been called? */ Type type() const; /* Requires that type_is_set() == true. */ Label label() const; /* Defaults to UPB_LABEL_OPTIONAL. */ const char* name() const; /* NULL if uninitialized. */ uint32_t number() const; /* Returns 0 if uninitialized. */ bool is_extension() const; /* Copies the JSON name for this field into the given buffer. Returns the * actual size of the JSON name, including the NULL terminator. If the * return value is 0, the JSON name is unset. If the return value is * greater than len, the JSON name was truncated. The buffer is always * NULL-terminated if len > 0. * * The JSON name always defaults to a camelCased version of the regular * name. However if the regular name is unset, the JSON name will be unset * also. */ size_t GetJsonName(char* buf, size_t len) const; /* Convenience version of the above function which copies the JSON name * into the given string, returning false if the name is not set. */ template <class T> bool GetJsonName(T* str) { str->resize(GetJsonName(NULL, 0)); GetJsonName(&(*str)[0], str->size()); return str->size() > 0; } /* For UPB_TYPE_MESSAGE fields only where is_tag_delimited() == false, * indicates whether this field should have lazy parsing handlers that yield * the unparsed string for the submessage. * * TODO(haberman): I think we want to move this into a FieldOptions container * when we add support for custom options (the FieldOptions struct will * contain both regular FieldOptions like "lazy" *and* custom options). */ bool lazy() const; /* For non-string, non-submessage fields, this indicates whether binary * protobufs are encoded in packed or non-packed format. * * TODO(haberman): see note above about putting options like this into a * FieldOptions container. */ bool packed() const; /* An integer that can be used as an index into an array of fields for * whatever message this field belongs to. Guaranteed to be less than * f->containing_type()->field_count(). May only be accessed once the def has * been finalized. */ uint32_t index() const; /* The MessageDef to which this field belongs. * * If this field has been added to a MessageDef, that message can be retrieved * directly (this is always the case for frozen FieldDefs). * * If the field has not yet been added to a MessageDef, you can set the name * of the containing type symbolically instead. This is mostly useful for * extensions, where the extension is declared separately from the message. */ const MessageDef* containing_type() const; const char* containing_type_name(); /* The OneofDef to which this field belongs, or NULL if this field is not part * of a oneof. */ const OneofDef* containing_oneof() const; /* The field's type according to the enum in descriptor.proto. This is not * the same as UPB_TYPE_*, because it distinguishes between (for example) * INT32 and SINT32, whereas our "type" enum does not. This return of * descriptor_type() is a function of type(), integer_format(), and * is_tag_delimited(). Likewise set_descriptor_type() sets all three * appropriately. */ DescriptorType descriptor_type() const; /* Convenient field type tests. */ bool IsSubMessage() const; bool IsString() const; bool IsSequence() const; bool IsPrimitive() const; bool IsMap() const; /* Whether this field must be able to explicitly represent presence: * * * This is always false for repeated fields (an empty repeated field is * equivalent to a repeated field with zero entries). * * * This is always true for submessages. * * * For other fields, it depends on the message (see * MessageDef::SetPrimitivesHavePresence()) */ bool HasPresence() const; /* How integers are encoded. Only meaningful for integer types. * Defaults to UPB_INTFMT_VARIABLE, and is reset when "type" changes. */ IntegerFormat integer_format() const; /* Whether a submessage field is tag-delimited or not (if false, then * length-delimited). May only be set when type() == UPB_TYPE_MESSAGE. */ bool is_tag_delimited() const; /* Returns the non-string default value for this fielddef, which may either * be something the client set explicitly or the "default default" (0 for * numbers, empty for strings). The field's type indicates the type of the * returned value, except for enum fields that are still mutable. * * Requires that the given function matches the field's current type. */ int64_t default_int64() const; int32_t default_int32() const; uint64_t default_uint64() const; uint32_t default_uint32() const; bool default_bool() const; float default_float() const; double default_double() const; /* The resulting string is always NULL-terminated. If non-NULL, the length * will be stored in *len. */ const char *default_string(size_t* len) const; /* For frozen UPB_TYPE_ENUM fields, enum defaults can always be read as either * string or int32, and both of these methods will always return true. * * For mutable UPB_TYPE_ENUM fields, the story is a bit more complicated. * Enum defaults are unusual. They can be specified either as string or int32, * but to be valid the enum must have that value as a member. And if no * default is specified, the "default default" comes from the EnumDef. * * We allow reading the default as either an int32 or a string, but only if * we have a meaningful value to report. We have a meaningful value if it was * set explicitly, or if we could get the "default default" from the EnumDef. * Also if you explicitly set the name and we find the number in the EnumDef */ bool EnumHasStringDefault() const; bool EnumHasInt32Default() const; /* Submessage and enum fields must reference a "subdef", which is the * upb::MessageDef or upb::EnumDef that defines their type. Note that when * the FieldDef is mutable it may not have a subdef *yet*, but this function * still returns true to indicate that the field's type requires a subdef. */ bool HasSubDef() const; /* Returns the enum or submessage def for this field, if any. The field's * type must match (ie. you may only call enum_subdef() for fields where * type() == UPB_TYPE_ENUM). Returns NULL if the subdef has not been set or * is currently set symbolically. */ const EnumDef* enum_subdef() const; const MessageDef* message_subdef() const; /* Returns the generic subdef for this field. Requires that HasSubDef() (ie. * only works for UPB_TYPE_ENUM and UPB_TYPE_MESSAGE fields). */ const Def* subdef() const; /* Returns the symbolic name of the subdef. If the subdef is currently set * unresolved (ie. set symbolically) returns the symbolic name. If it has * been resolved to a specific subdef, returns the name from that subdef. */ const char* subdef_name() const; /* Setters (non-const methods), only valid for mutable FieldDefs! ***********/ bool set_full_name(const char* fullname, upb::Status* s); bool set_full_name(const std::string& fullname, upb::Status* s); /* This may only be called if containing_type() == NULL (ie. the field has not * been added to a message yet). */ bool set_containing_type_name(const char *name, Status* status); bool set_containing_type_name(const std::string& name, Status* status); /* Defaults to false. When we freeze, we ensure that this can only be true * for length-delimited message fields. Prior to freezing this can be true or * false with no restrictions. */ void set_lazy(bool lazy); /* Defaults to true. Sets whether this field is encoded in packed format. */ void set_packed(bool packed); /* "type" or "descriptor_type" MUST be set explicitly before the fielddef is * finalized. These setters require that the enum value is valid; if the * value did not come directly from an enum constant, the caller should * validate it first with the functions above (CheckFieldType(), etc). */ void set_type(Type type); void set_label(Label label); void set_descriptor_type(DescriptorType type); void set_is_extension(bool is_extension); /* "number" and "name" must be set before the FieldDef is added to a * MessageDef, and may not be set after that. * * "name" is the same as full_name()/set_full_name(), but since fielddefs * most often use simple, non-qualified names, we provide this accessor * also. Generally only extensions will want to think of this name as * fully-qualified. */ bool set_number(uint32_t number, upb::Status* s); bool set_name(const char* name, upb::Status* s); bool set_name(const std::string& name, upb::Status* s); /* Sets the JSON name to the given string. */ /* TODO(haberman): implement. Right now only default json_name (camelCase) * is supported. */ bool set_json_name(const char* json_name, upb::Status* s); bool set_json_name(const std::string& name, upb::Status* s); /* Clears the JSON name. This will make it revert to its default, which is * a camelCased version of the regular field name. */ void clear_json_name(); void set_integer_format(IntegerFormat format); bool set_tag_delimited(bool tag_delimited, upb::Status* s); /* Sets default value for the field. The call must exactly match the type * of the field. Enum fields may use either setint32 or setstring to set * the default numerically or symbolically, respectively, but symbolic * defaults must be resolved before finalizing (see ResolveEnumDefault()). * * Changing the type of a field will reset its default. */ void set_default_int64(int64_t val); void set_default_int32(int32_t val); void set_default_uint64(uint64_t val); void set_default_uint32(uint32_t val); void set_default_bool(bool val); void set_default_float(float val); void set_default_double(double val); bool set_default_string(const void *str, size_t len, Status *s); bool set_default_string(const std::string &str, Status *s); void set_default_cstr(const char *str, Status *s); /* Before a fielddef is frozen, its subdef may be set either directly (with a * upb::Def*) or symbolically. Symbolic refs must be resolved before the * containing msgdef can be frozen (see upb_resolve() above). upb always * guarantees that any def reachable from a live def will also be kept alive. * * Both methods require that upb_hassubdef(f) (so the type must be set prior * to calling these methods). Returns false if this is not the case, or if * the given subdef is not of the correct type. The subdef is reset if the * field's type is changed. The subdef can be set to NULL to clear it. */ bool set_subdef(const Def* subdef, Status* s); bool set_enum_subdef(const EnumDef* subdef, Status* s); bool set_message_subdef(const MessageDef* subdef, Status* s); bool set_subdef_name(const char* name, Status* s); bool set_subdef_name(const std::string &name, Status* s); private: UPB_DISALLOW_POD_OPS(FieldDef, upb::FieldDef) }; # endif /* defined(__cplusplus) */ UPB_BEGIN_EXTERN_C /* Native C API. */ upb_fielddef *upb_fielddef_new(const void *owner); upb_fielddef *upb_fielddef_dup(const upb_fielddef *f, const void *owner); /* Include upb_refcounted methods like upb_fielddef_ref(). */ UPB_REFCOUNTED_CMETHODS(upb_fielddef, upb_fielddef_upcast2) /* Methods from upb_def. */ const char *upb_fielddef_fullname(const upb_fielddef *f); bool upb_fielddef_setfullname(upb_fielddef *f, const char *fullname, upb_status *s); bool upb_fielddef_typeisset(const upb_fielddef *f); upb_fieldtype_t upb_fielddef_type(const upb_fielddef *f); upb_descriptortype_t upb_fielddef_descriptortype(const upb_fielddef *f); upb_label_t upb_fielddef_label(const upb_fielddef *f); uint32_t upb_fielddef_number(const upb_fielddef *f); const char *upb_fielddef_name(const upb_fielddef *f); bool upb_fielddef_isextension(const upb_fielddef *f); bool upb_fielddef_lazy(const upb_fielddef *f); bool upb_fielddef_packed(const upb_fielddef *f); size_t upb_fielddef_getjsonname(const upb_fielddef *f, char *buf, size_t len); const upb_msgdef *upb_fielddef_containingtype(const upb_fielddef *f); const upb_oneofdef *upb_fielddef_containingoneof(const upb_fielddef *f); upb_msgdef *upb_fielddef_containingtype_mutable(upb_fielddef *f); const char *upb_fielddef_containingtypename(upb_fielddef *f); upb_intfmt_t upb_fielddef_intfmt(const upb_fielddef *f); uint32_t upb_fielddef_index(const upb_fielddef *f); bool upb_fielddef_istagdelim(const upb_fielddef *f); bool upb_fielddef_issubmsg(const upb_fielddef *f); bool upb_fielddef_isstring(const upb_fielddef *f); bool upb_fielddef_isseq(const upb_fielddef *f); bool upb_fielddef_isprimitive(const upb_fielddef *f); bool upb_fielddef_ismap(const upb_fielddef *f); bool upb_fielddef_haspresence(const upb_fielddef *f); int64_t upb_fielddef_defaultint64(const upb_fielddef *f); int32_t upb_fielddef_defaultint32(const upb_fielddef *f); uint64_t upb_fielddef_defaultuint64(const upb_fielddef *f); uint32_t upb_fielddef_defaultuint32(const upb_fielddef *f); bool upb_fielddef_defaultbool(const upb_fielddef *f); float upb_fielddef_defaultfloat(const upb_fielddef *f); double upb_fielddef_defaultdouble(const upb_fielddef *f); const char *upb_fielddef_defaultstr(const upb_fielddef *f, size_t *len); bool upb_fielddef_enumhasdefaultint32(const upb_fielddef *f); bool upb_fielddef_enumhasdefaultstr(const upb_fielddef *f); bool upb_fielddef_hassubdef(const upb_fielddef *f); const upb_def *upb_fielddef_subdef(const upb_fielddef *f); const upb_msgdef *upb_fielddef_msgsubdef(const upb_fielddef *f); const upb_enumdef *upb_fielddef_enumsubdef(const upb_fielddef *f); const char *upb_fielddef_subdefname(const upb_fielddef *f); void upb_fielddef_settype(upb_fielddef *f, upb_fieldtype_t type); void upb_fielddef_setdescriptortype(upb_fielddef *f, int type); void upb_fielddef_setlabel(upb_fielddef *f, upb_label_t label); bool upb_fielddef_setnumber(upb_fielddef *f, uint32_t number, upb_status *s); bool upb_fielddef_setname(upb_fielddef *f, const char *name, upb_status *s); bool upb_fielddef_setjsonname(upb_fielddef *f, const char *name, upb_status *s); bool upb_fielddef_clearjsonname(upb_fielddef *f); bool upb_fielddef_setcontainingtypename(upb_fielddef *f, const char *name, upb_status *s); void upb_fielddef_setisextension(upb_fielddef *f, bool is_extension); void upb_fielddef_setlazy(upb_fielddef *f, bool lazy); void upb_fielddef_setpacked(upb_fielddef *f, bool packed); void upb_fielddef_setintfmt(upb_fielddef *f, upb_intfmt_t fmt); void upb_fielddef_settagdelim(upb_fielddef *f, bool tag_delim); void upb_fielddef_setdefaultint64(upb_fielddef *f, int64_t val); void upb_fielddef_setdefaultint32(upb_fielddef *f, int32_t val); void upb_fielddef_setdefaultuint64(upb_fielddef *f, uint64_t val); void upb_fielddef_setdefaultuint32(upb_fielddef *f, uint32_t val); void upb_fielddef_setdefaultbool(upb_fielddef *f, bool val); void upb_fielddef_setdefaultfloat(upb_fielddef *f, float val); void upb_fielddef_setdefaultdouble(upb_fielddef *f, double val); bool upb_fielddef_setdefaultstr(upb_fielddef *f, const void *str, size_t len, upb_status *s); void upb_fielddef_setdefaultcstr(upb_fielddef *f, const char *str, upb_status *s); bool upb_fielddef_setsubdef(upb_fielddef *f, const upb_def *subdef, upb_status *s); bool upb_fielddef_setmsgsubdef(upb_fielddef *f, const upb_msgdef *subdef, upb_status *s); bool upb_fielddef_setenumsubdef(upb_fielddef *f, const upb_enumdef *subdef, upb_status *s); bool upb_fielddef_setsubdefname(upb_fielddef *f, const char *name, upb_status *s); bool upb_fielddef_checklabel(int32_t label); bool upb_fielddef_checktype(int32_t type); bool upb_fielddef_checkdescriptortype(int32_t type); bool upb_fielddef_checkintfmt(int32_t fmt); UPB_END_EXTERN_C /* upb::MessageDef ************************************************************/ typedef upb_inttable_iter upb_msg_field_iter; typedef upb_strtable_iter upb_msg_oneof_iter; /* Well-known field tag numbers for map-entry messages. */ #define UPB_MAPENTRY_KEY 1 #define UPB_MAPENTRY_VALUE 2 #ifdef __cplusplus /* Structure that describes a single .proto message type. * * Its base class is upb::Def (use upb::upcast() to convert). */ class upb::MessageDef { public: /* Returns NULL if memory allocation failed. */ static reffed_ptr<MessageDef> New(); /* upb::RefCounted methods like Ref()/Unref(). */ UPB_REFCOUNTED_CPPMETHODS /* Functionality from upb::Def. */ const char* full_name() const; const char* name() const; bool set_full_name(const char* fullname, Status* s); bool set_full_name(const std::string& fullname, Status* s); /* Call to freeze this MessageDef. * WARNING: this will fail if this message has any unfrozen submessages! * Messages with cycles must be frozen as a batch using upb::Def::Freeze(). */ bool Freeze(Status* s); /* The number of fields that belong to the MessageDef. */ int field_count() const; /* The number of oneofs that belong to the MessageDef. */ int oneof_count() const; /* Adds a field (upb_fielddef object) to a msgdef. Requires that the msgdef * and the fielddefs are mutable. The fielddef's name and number must be * set, and the message may not already contain any field with this name or * number, and this fielddef may not be part of another message. In error * cases false is returned and the msgdef is unchanged. * * If the given field is part of a oneof, this call succeeds if and only if * that oneof is already part of this msgdef. (Note that adding a oneof to a * msgdef automatically adds all of its fields to the msgdef at the time that * the oneof is added, so it is usually more idiomatic to add the oneof's * fields first then add the oneof to the msgdef. This case is supported for * convenience.) * * If |f| is already part of this MessageDef, this method performs no action * and returns true (success). Thus, this method is idempotent. */ bool AddField(FieldDef* f, Status* s); bool AddField(const reffed_ptr<FieldDef>& f, Status* s); /* Adds a oneof (upb_oneofdef object) to a msgdef. Requires that the msgdef, * oneof, and any fielddefs are mutable, that the fielddefs contained in the * oneof do not have any name or number conflicts with existing fields in the * msgdef, and that the oneof's name is unique among all oneofs in the msgdef. * If the oneof is added successfully, all of its fields will be added * directly to the msgdef as well. In error cases, false is returned and the * msgdef is unchanged. */ bool AddOneof(OneofDef* o, Status* s); bool AddOneof(const reffed_ptr<OneofDef>& o, Status* s); upb_syntax_t syntax() const; /* Returns false if we don't support this syntax value. */ bool set_syntax(upb_syntax_t syntax); /* Set this to false to indicate that primitive fields should not have * explicit presence information associated with them. This will affect all * fields added to this message. Defaults to true. */ void SetPrimitivesHavePresence(bool have_presence); /* These return NULL if the field is not found. */ FieldDef* FindFieldByNumber(uint32_t number); FieldDef* FindFieldByName(const char *name, size_t len); const FieldDef* FindFieldByNumber(uint32_t number) const; const FieldDef* FindFieldByName(const char* name, size_t len) const; FieldDef* FindFieldByName(const char *name) { return FindFieldByName(name, strlen(name)); } const FieldDef* FindFieldByName(const char *name) const { return FindFieldByName(name, strlen(name)); } template <class T> FieldDef* FindFieldByName(const T& str) { return FindFieldByName(str.c_str(), str.size()); } template <class T> const FieldDef* FindFieldByName(const T& str) const { return FindFieldByName(str.c_str(), str.size()); } OneofDef* FindOneofByName(const char* name, size_t len); const OneofDef* FindOneofByName(const char* name, size_t len) const; OneofDef* FindOneofByName(const char* name) { return FindOneofByName(name, strlen(name)); } const OneofDef* FindOneofByName(const char* name) const { return FindOneofByName(name, strlen(name)); } template<class T> OneofDef* FindOneofByName(const T& str) { return FindOneofByName(str.c_str(), str.size()); } template<class T> const OneofDef* FindOneofByName(const T& str) const { return FindOneofByName(str.c_str(), str.size()); } /* Returns a new msgdef that is a copy of the given msgdef (and a copy of all * the fields) but with any references to submessages broken and replaced * with just the name of the submessage. Returns NULL if memory allocation * failed. * * TODO(haberman): which is more useful, keeping fields resolved or * unresolving them? If there's no obvious answer, Should this functionality * just be moved into symtab.c? */ MessageDef* Dup(const void* owner) const; /* Is this message a map entry? */ void setmapentry(bool map_entry); bool mapentry() const; /* Iteration over fields. The order is undefined. */ class field_iterator : public std::iterator<std::forward_iterator_tag, FieldDef*> { public: explicit field_iterator(MessageDef* md); static field_iterator end(MessageDef* md); void operator++(); FieldDef* operator*() const; bool operator!=(const field_iterator& other) const; bool operator==(const field_iterator& other) const; private: upb_msg_field_iter iter_; }; class const_field_iterator : public std::iterator<std::forward_iterator_tag, const FieldDef*> { public: explicit const_field_iterator(const MessageDef* md); static const_field_iterator end(const MessageDef* md); void operator++(); const FieldDef* operator*() const; bool operator!=(const const_field_iterator& other) const; bool operator==(const const_field_iterator& other) const; private: upb_msg_field_iter iter_; }; /* Iteration over oneofs. The order is undefined. */ class oneof_iterator : public std::iterator<std::forward_iterator_tag, FieldDef*> { public: explicit oneof_iterator(MessageDef* md); static oneof_iterator end(MessageDef* md); void operator++(); OneofDef* operator*() const; bool operator!=(const oneof_iterator& other) const; bool operator==(const oneof_iterator& other) const; private: upb_msg_oneof_iter iter_; }; class const_oneof_iterator : public std::iterator<std::forward_iterator_tag, const FieldDef*> { public: explicit const_oneof_iterator(const MessageDef* md); static const_oneof_iterator end(const MessageDef* md); void operator++(); const OneofDef* operator*() const; bool operator!=(const const_oneof_iterator& other) const; bool operator==(const const_oneof_iterator& other) const; private: upb_msg_oneof_iter iter_; }; class FieldAccessor { public: explicit FieldAccessor(MessageDef* msg) : msg_(msg) {} field_iterator begin() { return msg_->field_begin(); } field_iterator end() { return msg_->field_end(); } private: MessageDef* msg_; }; class ConstFieldAccessor { public: explicit ConstFieldAccessor(const MessageDef* msg) : msg_(msg) {} const_field_iterator begin() { return msg_->field_begin(); } const_field_iterator end() { return msg_->field_end(); } private: const MessageDef* msg_; }; class OneofAccessor { public: explicit OneofAccessor(MessageDef* msg) : msg_(msg) {} oneof_iterator begin() { return msg_->oneof_begin(); } oneof_iterator end() { return msg_->oneof_end(); } private: MessageDef* msg_; }; class ConstOneofAccessor { public: explicit ConstOneofAccessor(const MessageDef* msg) : msg_(msg) {} const_oneof_iterator begin() { return msg_->oneof_begin(); } const_oneof_iterator end() { return msg_->oneof_end(); } private: const MessageDef* msg_; }; field_iterator field_begin(); field_iterator field_end(); const_field_iterator field_begin() const; const_field_iterator field_end() const; oneof_iterator oneof_begin(); oneof_iterator oneof_end(); const_oneof_iterator oneof_begin() const; const_oneof_iterator oneof_end() const; FieldAccessor fields() { return FieldAccessor(this); } ConstFieldAccessor fields() const { return ConstFieldAccessor(this); } OneofAccessor oneofs() { return OneofAccessor(this); } ConstOneofAccessor oneofs() const { return ConstOneofAccessor(this); } private: UPB_DISALLOW_POD_OPS(MessageDef, upb::MessageDef) }; #endif /* __cplusplus */ UPB_BEGIN_EXTERN_C /* Returns NULL if memory allocation failed. */ upb_msgdef *upb_msgdef_new(const void *owner); /* Include upb_refcounted methods like upb_msgdef_ref(). */ UPB_REFCOUNTED_CMETHODS(upb_msgdef, upb_msgdef_upcast2) bool upb_msgdef_freeze(upb_msgdef *m, upb_status *status); upb_msgdef *upb_msgdef_dup(const upb_msgdef *m, const void *owner); const char *upb_msgdef_fullname(const upb_msgdef *m); const char *upb_msgdef_name(const upb_msgdef *m); int upb_msgdef_numoneofs(const upb_msgdef *m); upb_syntax_t upb_msgdef_syntax(const upb_msgdef *m); bool upb_msgdef_addfield(upb_msgdef *m, upb_fielddef *f, const void *ref_donor, upb_status *s); bool upb_msgdef_addoneof(upb_msgdef *m, upb_oneofdef *o, const void *ref_donor, upb_status *s); bool upb_msgdef_setfullname(upb_msgdef *m, const char *fullname, upb_status *s); void upb_msgdef_setmapentry(upb_msgdef *m, bool map_entry); bool upb_msgdef_mapentry(const upb_msgdef *m); bool upb_msgdef_setsyntax(upb_msgdef *m, upb_syntax_t syntax); /* Field lookup in a couple of different variations: * - itof = int to field * - ntof = name to field * - ntofz = name to field, null-terminated string. */ const upb_fielddef *upb_msgdef_itof(const upb_msgdef *m, uint32_t i); const upb_fielddef *upb_msgdef_ntof(const upb_msgdef *m, const char *name, size_t len); int upb_msgdef_numfields(const upb_msgdef *m); UPB_INLINE const upb_fielddef *upb_msgdef_ntofz(const upb_msgdef *m, const char *name) { return upb_msgdef_ntof(m, name, strlen(name)); } UPB_INLINE upb_fielddef *upb_msgdef_itof_mutable(upb_msgdef *m, uint32_t i) { return (upb_fielddef*)upb_msgdef_itof(m, i); } UPB_INLINE upb_fielddef *upb_msgdef_ntof_mutable(upb_msgdef *m, const char *name, size_t len) { return (upb_fielddef *)upb_msgdef_ntof(m, name, len); } /* Oneof lookup: * - ntoo = name to oneof * - ntooz = name to oneof, null-terminated string. */ const upb_oneofdef *upb_msgdef_ntoo(const upb_msgdef *m, const char *name, size_t len); int upb_msgdef_numoneofs(const upb_msgdef *m); UPB_INLINE const upb_oneofdef *upb_msgdef_ntooz(const upb_msgdef *m, const char *name) { return upb_msgdef_ntoo(m, name, strlen(name)); } UPB_INLINE upb_oneofdef *upb_msgdef_ntoo_mutable(upb_msgdef *m, const char *name, size_t len) { return (upb_oneofdef *)upb_msgdef_ntoo(m, name, len); } /* Lookup of either field or oneof by name. Returns whether either was found. * If the return is true, then the found def will be set, and the non-found * one set to NULL. */ bool upb_msgdef_lookupname(const upb_msgdef *m, const char *name, size_t len, const upb_fielddef **f, const upb_oneofdef **o); UPB_INLINE bool upb_msgdef_lookupnamez(const upb_msgdef *m, const char *name, const upb_fielddef **f, const upb_oneofdef **o) { return upb_msgdef_lookupname(m, name, strlen(name), f, o); } /* Iteration over fields and oneofs. For example: * * upb_msg_field_iter i; * for(upb_msg_field_begin(&i, m); * !upb_msg_field_done(&i); * upb_msg_field_next(&i)) { * upb_fielddef *f = upb_msg_iter_field(&i); * // ... * } * * For C we don't have separate iterators for const and non-const. * It is the caller's responsibility to cast the upb_fielddef* to * const if the upb_msgdef* is const. */ void upb_msg_field_begin(upb_msg_field_iter *iter, const upb_msgdef *m); void upb_msg_field_next(upb_msg_field_iter *iter); bool upb_msg_field_done(const upb_msg_field_iter *iter); upb_fielddef *upb_msg_iter_field(const upb_msg_field_iter *iter); void upb_msg_field_iter_setdone(upb_msg_field_iter *iter); /* Similar to above, we also support iterating through the oneofs in a * msgdef. */ void upb_msg_oneof_begin(upb_msg_oneof_iter *iter, const upb_msgdef *m); void upb_msg_oneof_next(upb_msg_oneof_iter *iter); bool upb_msg_oneof_done(const upb_msg_oneof_iter *iter); upb_oneofdef *upb_msg_iter_oneof(const upb_msg_oneof_iter *iter); void upb_msg_oneof_iter_setdone(upb_msg_oneof_iter *iter); UPB_END_EXTERN_C /* upb::EnumDef ***************************************************************/ typedef upb_strtable_iter upb_enum_iter; #ifdef __cplusplus /* Class that represents an enum. Its base class is upb::Def (convert with * upb::upcast()). */ class upb::EnumDef { public: /* Returns NULL if memory allocation failed. */ static reffed_ptr<EnumDef> New(); /* upb::RefCounted methods like Ref()/Unref(). */ UPB_REFCOUNTED_CPPMETHODS /* Functionality from upb::Def. */ const char* full_name() const; const char* name() const; bool set_full_name(const char* fullname, Status* s); bool set_full_name(const std::string& fullname, Status* s); /* Call to freeze this EnumDef. */ bool Freeze(Status* s); /* The value that is used as the default when no field default is specified. * If not set explicitly, the first value that was added will be used. * The default value must be a member of the enum. * Requires that value_count() > 0. */ int32_t default_value() const; /* Sets the default value. If this value is not valid, returns false and an * error message in status. */ bool set_default_value(int32_t val, Status* status); /* Returns the number of values currently defined in the enum. Note that * multiple names can refer to the same number, so this may be greater than * the total number of unique numbers. */ int value_count() const; /* Adds a single name/number pair to the enum. Fails if this name has * already been used by another value. */ bool AddValue(const char* name, int32_t num, Status* status); bool AddValue(const std::string& name, int32_t num, Status* status); /* Lookups from name to integer, returning true if found. */ bool FindValueByName(const char* name, int32_t* num) const; /* Finds the name corresponding to the given number, or NULL if none was * found. If more than one name corresponds to this number, returns the * first one that was added. */ const char* FindValueByNumber(int32_t num) const; /* Returns a new EnumDef with all the same values. The new EnumDef will be * owned by the given owner. */ EnumDef* Dup(const void* owner) const; /* Iteration over name/value pairs. The order is undefined. * Adding an enum val invalidates any iterators. * * TODO: make compatible with range-for, with elements as pairs? */ class Iterator { public: explicit Iterator(const EnumDef*); int32_t number(); const char *name(); bool Done(); void Next(); private: upb_enum_iter iter_; }; private: UPB_DISALLOW_POD_OPS(EnumDef, upb::EnumDef) }; #endif /* __cplusplus */ UPB_BEGIN_EXTERN_C /* Native C API. */ upb_enumdef *upb_enumdef_new(const void *owner); upb_enumdef *upb_enumdef_dup(const upb_enumdef *e, const void *owner); /* Include upb_refcounted methods like upb_enumdef_ref(). */ UPB_REFCOUNTED_CMETHODS(upb_enumdef, upb_enumdef_upcast2) bool upb_enumdef_freeze(upb_enumdef *e, upb_status *status); /* From upb_def. */ const char *upb_enumdef_fullname(const upb_enumdef *e); const char *upb_enumdef_name(const upb_enumdef *e); bool upb_enumdef_setfullname(upb_enumdef *e, const char *fullname, upb_status *s); int32_t upb_enumdef_default(const upb_enumdef *e); bool upb_enumdef_setdefault(upb_enumdef *e, int32_t val, upb_status *s); int upb_enumdef_numvals(const upb_enumdef *e); bool upb_enumdef_addval(upb_enumdef *e, const char *name, int32_t num, upb_status *status); /* Enum lookups: * - ntoi: look up a name with specified length. * - ntoiz: look up a name provided as a null-terminated string. * - iton: look up an integer, returning the name as a null-terminated * string. */ bool upb_enumdef_ntoi(const upb_enumdef *e, const char *name, size_t len, int32_t *num); UPB_INLINE bool upb_enumdef_ntoiz(const upb_enumdef *e, const char *name, int32_t *num) { return upb_enumdef_ntoi(e, name, strlen(name), num); } const char *upb_enumdef_iton(const upb_enumdef *e, int32_t num); /* upb_enum_iter i; * for(upb_enum_begin(&i, e); !upb_enum_done(&i); upb_enum_next(&i)) { * // ... * } */ void upb_enum_begin(upb_enum_iter *iter, const upb_enumdef *e); void upb_enum_next(upb_enum_iter *iter); bool upb_enum_done(upb_enum_iter *iter); const char *upb_enum_iter_name(upb_enum_iter *iter); int32_t upb_enum_iter_number(upb_enum_iter *iter); UPB_END_EXTERN_C /* upb::OneofDef **************************************************************/ typedef upb_inttable_iter upb_oneof_iter; #ifdef __cplusplus /* Class that represents a oneof. */ class upb::OneofDef { public: /* Returns NULL if memory allocation failed. */ static reffed_ptr<OneofDef> New(); /* upb::RefCounted methods like Ref()/Unref(). */ UPB_REFCOUNTED_CPPMETHODS /* Returns the MessageDef that owns this OneofDef. */ const MessageDef* containing_type() const; /* Returns the name of this oneof. This is the name used to look up the oneof * by name once added to a message def. */ const char* name() const; bool set_name(const char* name, Status* s); bool set_name(const std::string& name, Status* s); /* Returns the number of fields currently defined in the oneof. */ int field_count() const; /* Adds a field to the oneof. The field must not have been added to any other * oneof or msgdef. If the oneof is not yet part of a msgdef, then when the * oneof is eventually added to a msgdef, all fields added to the oneof will * also be added to the msgdef at that time. If the oneof is already part of a * msgdef, the field must either be a part of that msgdef already, or must not * be a part of any msgdef; in the latter case, the field is added to the * msgdef as a part of this operation. * * The field may only have an OPTIONAL label, never REQUIRED or REPEATED. * * If |f| is already part of this MessageDef, this method performs no action * and returns true (success). Thus, this method is idempotent. */ bool AddField(FieldDef* field, Status* s); bool AddField(const reffed_ptr<FieldDef>& field, Status* s); /* Looks up by name. */ const FieldDef* FindFieldByName(const char* name, size_t len) const; FieldDef* FindFieldByName(const char* name, size_t len); const FieldDef* FindFieldByName(const char* name) const { return FindFieldByName(name, strlen(name)); } FieldDef* FindFieldByName(const char* name) { return FindFieldByName(name, strlen(name)); } template <class T> FieldDef* FindFieldByName(const T& str) { return FindFieldByName(str.c_str(), str.size()); } template <class T> const FieldDef* FindFieldByName(const T& str) const { return FindFieldByName(str.c_str(), str.size()); } /* Looks up by tag number. */ const FieldDef* FindFieldByNumber(uint32_t num) const; /* Returns a new OneofDef with all the same fields. The OneofDef will be owned * by the given owner. */ OneofDef* Dup(const void* owner) const; /* Iteration over fields. The order is undefined. */ class iterator : public std::iterator<std::forward_iterator_tag, FieldDef*> { public: explicit iterator(OneofDef* md); static iterator end(OneofDef* md); void operator++(); FieldDef* operator*() const; bool operator!=(const iterator& other) const; bool operator==(const iterator& other) const; private: upb_oneof_iter iter_; }; class const_iterator : public std::iterator<std::forward_iterator_tag, const FieldDef*> { public: explicit const_iterator(const OneofDef* md); static const_iterator end(const OneofDef* md); void operator++(); const FieldDef* operator*() const; bool operator!=(const const_iterator& other) const; bool operator==(const const_iterator& other) const; private: upb_oneof_iter iter_; }; iterator begin(); iterator end(); const_iterator begin() const; const_iterator end() const; private: UPB_DISALLOW_POD_OPS(OneofDef, upb::OneofDef) }; #endif /* __cplusplus */ UPB_BEGIN_EXTERN_C /* Native C API. */ upb_oneofdef *upb_oneofdef_new(const void *owner); upb_oneofdef *upb_oneofdef_dup(const upb_oneofdef *o, const void *owner); /* Include upb_refcounted methods like upb_oneofdef_ref(). */ UPB_REFCOUNTED_CMETHODS(upb_oneofdef, upb_oneofdef_upcast) const char *upb_oneofdef_name(const upb_oneofdef *o); bool upb_oneofdef_setname(upb_oneofdef *o, const char *name, upb_status *s); const upb_msgdef *upb_oneofdef_containingtype(const upb_oneofdef *o); int upb_oneofdef_numfields(const upb_oneofdef *o); bool upb_oneofdef_addfield(upb_oneofdef *o, upb_fielddef *f, const void *ref_donor, upb_status *s); /* Oneof lookups: * - ntof: look up a field by name. * - ntofz: look up a field by name (as a null-terminated string). * - itof: look up a field by number. */ const upb_fielddef *upb_oneofdef_ntof(const upb_oneofdef *o, const char *name, size_t length); UPB_INLINE const upb_fielddef *upb_oneofdef_ntofz(const upb_oneofdef *o, const char *name) { return upb_oneofdef_ntof(o, name, strlen(name)); } const upb_fielddef *upb_oneofdef_itof(const upb_oneofdef *o, uint32_t num); /* upb_oneof_iter i; * for(upb_oneof_begin(&i, e); !upb_oneof_done(&i); upb_oneof_next(&i)) { * // ... * } */ void upb_oneof_begin(upb_oneof_iter *iter, const upb_oneofdef *o); void upb_oneof_next(upb_oneof_iter *iter); bool upb_oneof_done(upb_oneof_iter *iter); upb_fielddef *upb_oneof_iter_field(const upb_oneof_iter *iter); void upb_oneof_iter_setdone(upb_oneof_iter *iter); UPB_END_EXTERN_C /* upb::FileDef ***************************************************************/ #ifdef __cplusplus /* Class that represents a .proto file with some things defined in it. * * Many users won't care about FileDefs, but they are necessary if you want to * read the values of file-level options. */ class upb::FileDef { public: /* Returns NULL if memory allocation failed. */ static reffed_ptr<FileDef> New(); /* upb::RefCounted methods like Ref()/Unref(). */ UPB_REFCOUNTED_CPPMETHODS /* Get/set name of the file (eg. "foo/bar.proto"). */ const char* name() const; bool set_name(const char* name, Status* s); bool set_name(const std::string& name, Status* s); /* Package name for definitions inside the file (eg. "foo.bar"). */ const char* package() const; bool set_package(const char* package, Status* s); /* Syntax for the file. Defaults to proto2. */ upb_syntax_t syntax() const; void set_syntax(upb_syntax_t syntax); /* Get the list of defs from the file. These are returned in the order that * they were added to the FileDef. */ int def_count() const; const Def* def(int index) const; Def* def(int index); /* Get the list of dependencies from the file. These are returned in the * order that they were added to the FileDef. */ int dependency_count() const; const FileDef* dependency(int index) const; /* Adds defs to this file. The def must not already belong to another * file. * * Note: this does *not* ensure that this def's name is unique in this file! * Use a SymbolTable if you want to check this property. Especially since * properly checking uniqueness would require a check across *all* files * (including dependencies). */ bool AddDef(Def* def, Status* s); bool AddMessage(MessageDef* m, Status* s); bool AddEnum(EnumDef* e, Status* s); bool AddExtension(FieldDef* f, Status* s); /* Adds a dependency of this file. */ bool AddDependency(const FileDef* file); /* Freezes this FileDef and all messages/enums under it. All subdefs must be * resolved and all messages/enums must validate. Returns true if this * succeeded. * * TODO(haberman): should we care whether the file's dependencies are frozen * already? */ bool Freeze(Status* s); private: UPB_DISALLOW_POD_OPS(FileDef, upb::FileDef) }; #endif UPB_BEGIN_EXTERN_C upb_filedef *upb_filedef_new(const void *owner); /* Include upb_refcounted methods like upb_msgdef_ref(). */ UPB_REFCOUNTED_CMETHODS(upb_filedef, upb_filedef_upcast) const char *upb_filedef_name(const upb_filedef *f); const char *upb_filedef_package(const upb_filedef *f); upb_syntax_t upb_filedef_syntax(const upb_filedef *f); size_t upb_filedef_defcount(const upb_filedef *f); size_t upb_filedef_depcount(const upb_filedef *f); const upb_def *upb_filedef_def(const upb_filedef *f, size_t i); const upb_filedef *upb_filedef_dep(const upb_filedef *f, size_t i); bool upb_filedef_freeze(upb_filedef *f, upb_status *s); bool upb_filedef_setname(upb_filedef *f, const char *name, upb_status *s); bool upb_filedef_setpackage(upb_filedef *f, const char *package, upb_status *s); bool upb_filedef_setsyntax(upb_filedef *f, upb_syntax_t syntax, upb_status *s); bool upb_filedef_adddef(upb_filedef *f, upb_def *def, const void *ref_donor, upb_status *s); bool upb_filedef_adddep(upb_filedef *f, const upb_filedef *dep); UPB_INLINE bool upb_filedef_addmsg(upb_filedef *f, upb_msgdef *m, const void *ref_donor, upb_status *s) { return upb_filedef_adddef(f, upb_msgdef_upcast_mutable(m), ref_donor, s); } UPB_INLINE bool upb_filedef_addenum(upb_filedef *f, upb_enumdef *e, const void *ref_donor, upb_status *s) { return upb_filedef_adddef(f, upb_enumdef_upcast_mutable(e), ref_donor, s); } UPB_INLINE bool upb_filedef_addext(upb_filedef *file, upb_fielddef *f, const void *ref_donor, upb_status *s) { return upb_filedef_adddef(file, upb_fielddef_upcast_mutable(f), ref_donor, s); } UPB_INLINE upb_def *upb_filedef_mutabledef(upb_filedef *f, int i) { return (upb_def*)upb_filedef_def(f, i); } UPB_END_EXTERN_C #ifdef __cplusplus UPB_INLINE const char* upb_safecstr(const std::string& str) { assert(str.size() == std::strlen(str.c_str())); return str.c_str(); } /* Inline C++ wrappers. */ namespace upb { inline Def* Def::Dup(const void* owner) const { return upb_def_dup(this, owner); } inline Def::Type Def::def_type() const { return upb_def_type(this); } inline const char* Def::full_name() const { return upb_def_fullname(this); } inline const char* Def::name() const { return upb_def_name(this); } inline bool Def::set_full_name(const char* fullname, Status* s) { return upb_def_setfullname(this, fullname, s); } inline bool Def::set_full_name(const std::string& fullname, Status* s) { return upb_def_setfullname(this, upb_safecstr(fullname), s); } inline bool Def::Freeze(Def* const* defs, size_t n, Status* status) { return upb_def_freeze(defs, n, status); } inline bool Def::Freeze(const std::vector<Def*>& defs, Status* status) { return upb_def_freeze((Def* const*)&defs[0], defs.size(), status); } inline bool FieldDef::CheckType(int32_t val) { return upb_fielddef_checktype(val); } inline bool FieldDef::CheckLabel(int32_t val) { return upb_fielddef_checklabel(val); } inline bool FieldDef::CheckDescriptorType(int32_t val) { return upb_fielddef_checkdescriptortype(val); } inline bool FieldDef::CheckIntegerFormat(int32_t val) { return upb_fielddef_checkintfmt(val); } inline FieldDef::Type FieldDef::ConvertType(int32_t val) { assert(CheckType(val)); return static_cast<FieldDef::Type>(val); } inline FieldDef::Label FieldDef::ConvertLabel(int32_t val) { assert(CheckLabel(val)); return static_cast<FieldDef::Label>(val); } inline FieldDef::DescriptorType FieldDef::ConvertDescriptorType(int32_t val) { assert(CheckDescriptorType(val)); return static_cast<FieldDef::DescriptorType>(val); } inline FieldDef::IntegerFormat FieldDef::ConvertIntegerFormat(int32_t val) { assert(CheckIntegerFormat(val)); return static_cast<FieldDef::IntegerFormat>(val); } inline reffed_ptr<FieldDef> FieldDef::New() { upb_fielddef *f = upb_fielddef_new(&f); return reffed_ptr<FieldDef>(f, &f); } inline FieldDef* FieldDef::Dup(const void* owner) const { return upb_fielddef_dup(this, owner); } inline const char* FieldDef::full_name() const { return upb_fielddef_fullname(this); } inline bool FieldDef::set_full_name(const char* fullname, Status* s) { return upb_fielddef_setfullname(this, fullname, s); } inline bool FieldDef::set_full_name(const std::string& fullname, Status* s) { return upb_fielddef_setfullname(this, upb_safecstr(fullname), s); } inline bool FieldDef::type_is_set() const { return upb_fielddef_typeisset(this); } inline FieldDef::Type FieldDef::type() const { return upb_fielddef_type(this); } inline FieldDef::DescriptorType FieldDef::descriptor_type() const { return upb_fielddef_descriptortype(this); } inline FieldDef::Label FieldDef::label() const { return upb_fielddef_label(this); } inline uint32_t FieldDef::number() const { return upb_fielddef_number(this); } inline const char* FieldDef::name() const { return upb_fielddef_name(this); } inline bool FieldDef::is_extension() const { return upb_fielddef_isextension(this); } inline size_t FieldDef::GetJsonName(char* buf, size_t len) const { return upb_fielddef_getjsonname(this, buf, len); } inline bool FieldDef::lazy() const { return upb_fielddef_lazy(this); } inline void FieldDef::set_lazy(bool lazy) { upb_fielddef_setlazy(this, lazy); } inline bool FieldDef::packed() const { return upb_fielddef_packed(this); } inline uint32_t FieldDef::index() const { return upb_fielddef_index(this); } inline void FieldDef::set_packed(bool packed) { upb_fielddef_setpacked(this, packed); } inline const MessageDef* FieldDef::containing_type() const { return upb_fielddef_containingtype(this); } inline const OneofDef* FieldDef::containing_oneof() const { return upb_fielddef_containingoneof(this); } inline const char* FieldDef::containing_type_name() { return upb_fielddef_containingtypename(this); } inline bool FieldDef::set_number(uint32_t number, Status* s) { return upb_fielddef_setnumber(this, number, s); } inline bool FieldDef::set_name(const char *name, Status* s) { return upb_fielddef_setname(this, name, s); } inline bool FieldDef::set_name(const std::string& name, Status* s) { return upb_fielddef_setname(this, upb_safecstr(name), s); } inline bool FieldDef::set_json_name(const char *name, Status* s) { return upb_fielddef_setjsonname(this, name, s); } inline bool FieldDef::set_json_name(const std::string& name, Status* s) { return upb_fielddef_setjsonname(this, upb_safecstr(name), s); } inline void FieldDef::clear_json_name() { upb_fielddef_clearjsonname(this); } inline bool FieldDef::set_containing_type_name(const char *name, Status* s) { return upb_fielddef_setcontainingtypename(this, name, s); } inline bool FieldDef::set_containing_type_name(const std::string &name, Status *s) { return upb_fielddef_setcontainingtypename(this, upb_safecstr(name), s); } inline void FieldDef::set_type(upb_fieldtype_t type) { upb_fielddef_settype(this, type); } inline void FieldDef::set_is_extension(bool is_extension) { upb_fielddef_setisextension(this, is_extension); } inline void FieldDef::set_descriptor_type(FieldDef::DescriptorType type) { upb_fielddef_setdescriptortype(this, type); } inline void FieldDef::set_label(upb_label_t label) { upb_fielddef_setlabel(this, label); } inline bool FieldDef::IsSubMessage() const { return upb_fielddef_issubmsg(this); } inline bool FieldDef::IsString() const { return upb_fielddef_isstring(this); } inline bool FieldDef::IsSequence() const { return upb_fielddef_isseq(this); } inline bool FieldDef::IsMap() const { return upb_fielddef_ismap(this); } inline int64_t FieldDef::default_int64() const { return upb_fielddef_defaultint64(this); } inline int32_t FieldDef::default_int32() const { return upb_fielddef_defaultint32(this); } inline uint64_t FieldDef::default_uint64() const { return upb_fielddef_defaultuint64(this); } inline uint32_t FieldDef::default_uint32() const { return upb_fielddef_defaultuint32(this); } inline bool FieldDef::default_bool() const { return upb_fielddef_defaultbool(this); } inline float FieldDef::default_float() const { return upb_fielddef_defaultfloat(this); } inline double FieldDef::default_double() const { return upb_fielddef_defaultdouble(this); } inline const char* FieldDef::default_string(size_t* len) const { return upb_fielddef_defaultstr(this, len); } inline void FieldDef::set_default_int64(int64_t value) { upb_fielddef_setdefaultint64(this, value); } inline void FieldDef::set_default_int32(int32_t value) { upb_fielddef_setdefaultint32(this, value); } inline void FieldDef::set_default_uint64(uint64_t value) { upb_fielddef_setdefaultuint64(this, value); } inline void FieldDef::set_default_uint32(uint32_t value) { upb_fielddef_setdefaultuint32(this, value); } inline void FieldDef::set_default_bool(bool value) { upb_fielddef_setdefaultbool(this, value); } inline void FieldDef::set_default_float(float value) { upb_fielddef_setdefaultfloat(this, value); } inline void FieldDef::set_default_double(double value) { upb_fielddef_setdefaultdouble(this, value); } inline bool FieldDef::set_default_string(const void *str, size_t len, Status *s) { return upb_fielddef_setdefaultstr(this, str, len, s); } inline bool FieldDef::set_default_string(const std::string& str, Status* s) { return upb_fielddef_setdefaultstr(this, str.c_str(), str.size(), s); } inline void FieldDef::set_default_cstr(const char* str, Status* s) { return upb_fielddef_setdefaultcstr(this, str, s); } inline bool FieldDef::HasSubDef() const { return upb_fielddef_hassubdef(this); } inline const Def* FieldDef::subdef() const { return upb_fielddef_subdef(this); } inline const MessageDef *FieldDef::message_subdef() const { return upb_fielddef_msgsubdef(this); } inline const EnumDef *FieldDef::enum_subdef() const { return upb_fielddef_enumsubdef(this); } inline const char* FieldDef::subdef_name() const { return upb_fielddef_subdefname(this); } inline bool FieldDef::set_subdef(const Def* subdef, Status* s) { return upb_fielddef_setsubdef(this, subdef, s); } inline bool FieldDef::set_enum_subdef(const EnumDef* subdef, Status* s) { return upb_fielddef_setenumsubdef(this, subdef, s); } inline bool FieldDef::set_message_subdef(const MessageDef* subdef, Status* s) { return upb_fielddef_setmsgsubdef(this, subdef, s); } inline bool FieldDef::set_subdef_name(const char* name, Status* s) { return upb_fielddef_setsubdefname(this, name, s); } inline bool FieldDef::set_subdef_name(const std::string& name, Status* s) { return upb_fielddef_setsubdefname(this, upb_safecstr(name), s); } inline reffed_ptr<MessageDef> MessageDef::New() { upb_msgdef *m = upb_msgdef_new(&m); return reffed_ptr<MessageDef>(m, &m); } inline const char *MessageDef::full_name() const { return upb_msgdef_fullname(this); } inline const char *MessageDef::name() const { return upb_msgdef_name(this); } inline upb_syntax_t MessageDef::syntax() const { return upb_msgdef_syntax(this); } inline bool MessageDef::set_full_name(const char* fullname, Status* s) { return upb_msgdef_setfullname(this, fullname, s); } inline bool MessageDef::set_full_name(const std::string& fullname, Status* s) { return upb_msgdef_setfullname(this, upb_safecstr(fullname), s); } inline bool MessageDef::set_syntax(upb_syntax_t syntax) { return upb_msgdef_setsyntax(this, syntax); } inline bool MessageDef::Freeze(Status* status) { return upb_msgdef_freeze(this, status); } inline int MessageDef::field_count() const { return upb_msgdef_numfields(this); } inline int MessageDef::oneof_count() const { return upb_msgdef_numoneofs(this); } inline bool MessageDef::AddField(upb_fielddef* f, Status* s) { return upb_msgdef_addfield(this, f, NULL, s); } inline bool MessageDef::AddField(const reffed_ptr<FieldDef>& f, Status* s) { return upb_msgdef_addfield(this, f.get(), NULL, s); } inline bool MessageDef::AddOneof(upb_oneofdef* o, Status* s) { return upb_msgdef_addoneof(this, o, NULL, s); } inline bool MessageDef::AddOneof(const reffed_ptr<OneofDef>& o, Status* s) { return upb_msgdef_addoneof(this, o.get(), NULL, s); } inline FieldDef* MessageDef::FindFieldByNumber(uint32_t number) { return upb_msgdef_itof_mutable(this, number); } inline FieldDef* MessageDef::FindFieldByName(const char* name, size_t len) { return upb_msgdef_ntof_mutable(this, name, len); } inline const FieldDef* MessageDef::FindFieldByNumber(uint32_t number) const { return upb_msgdef_itof(this, number); } inline const FieldDef *MessageDef::FindFieldByName(const char *name, size_t len) const { return upb_msgdef_ntof(this, name, len); } inline OneofDef* MessageDef::FindOneofByName(const char* name, size_t len) { return upb_msgdef_ntoo_mutable(this, name, len); } inline const OneofDef* MessageDef::FindOneofByName(const char* name, size_t len) const { return upb_msgdef_ntoo(this, name, len); } inline MessageDef* MessageDef::Dup(const void *owner) const { return upb_msgdef_dup(this, owner); } inline void MessageDef::setmapentry(bool map_entry) { upb_msgdef_setmapentry(this, map_entry); } inline bool MessageDef::mapentry() const { return upb_msgdef_mapentry(this); } inline MessageDef::field_iterator MessageDef::field_begin() { return field_iterator(this); } inline MessageDef::field_iterator MessageDef::field_end() { return field_iterator::end(this); } inline MessageDef::const_field_iterator MessageDef::field_begin() const { return const_field_iterator(this); } inline MessageDef::const_field_iterator MessageDef::field_end() const { return const_field_iterator::end(this); } inline MessageDef::oneof_iterator MessageDef::oneof_begin() { return oneof_iterator(this); } inline MessageDef::oneof_iterator MessageDef::oneof_end() { return oneof_iterator::end(this); } inline MessageDef::const_oneof_iterator MessageDef::oneof_begin() const { return const_oneof_iterator(this); } inline MessageDef::const_oneof_iterator MessageDef::oneof_end() const { return const_oneof_iterator::end(this); } inline MessageDef::field_iterator::field_iterator(MessageDef* md) { upb_msg_field_begin(&iter_, md); } inline MessageDef::field_iterator MessageDef::field_iterator::end( MessageDef* md) { MessageDef::field_iterator iter(md); upb_msg_field_iter_setdone(&iter.iter_); return iter; } inline FieldDef* MessageDef::field_iterator::operator*() const { return upb_msg_iter_field(&iter_); } inline void MessageDef::field_iterator::operator++() { return upb_msg_field_next(&iter_); } inline bool MessageDef::field_iterator::operator==( const field_iterator &other) const { return upb_inttable_iter_isequal(&iter_, &other.iter_); } inline bool MessageDef::field_iterator::operator!=( const field_iterator &other) const { return !(*this == other); } inline MessageDef::const_field_iterator::const_field_iterator( const MessageDef* md) { upb_msg_field_begin(&iter_, md); } inline MessageDef::const_field_iterator MessageDef::const_field_iterator::end( const MessageDef *md) { MessageDef::const_field_iterator iter(md); upb_msg_field_iter_setdone(&iter.iter_); return iter; } inline const FieldDef* MessageDef::const_field_iterator::operator*() const { return upb_msg_iter_field(&iter_); } inline void MessageDef::const_field_iterator::operator++() { return upb_msg_field_next(&iter_); } inline bool MessageDef::const_field_iterator::operator==( const const_field_iterator &other) const { return upb_inttable_iter_isequal(&iter_, &other.iter_); } inline bool MessageDef::const_field_iterator::operator!=( const const_field_iterator &other) const { return !(*this == other); } inline MessageDef::oneof_iterator::oneof_iterator(MessageDef* md) { upb_msg_oneof_begin(&iter_, md); } inline MessageDef::oneof_iterator MessageDef::oneof_iterator::end( MessageDef* md) { MessageDef::oneof_iterator iter(md); upb_msg_oneof_iter_setdone(&iter.iter_); return iter; } inline OneofDef* MessageDef::oneof_iterator::operator*() const { return upb_msg_iter_oneof(&iter_); } inline void MessageDef::oneof_iterator::operator++() { return upb_msg_oneof_next(&iter_); } inline bool MessageDef::oneof_iterator::operator==( const oneof_iterator &other) const { return upb_strtable_iter_isequal(&iter_, &other.iter_); } inline bool MessageDef::oneof_iterator::operator!=( const oneof_iterator &other) const { return !(*this == other); } inline MessageDef::const_oneof_iterator::const_oneof_iterator( const MessageDef* md) { upb_msg_oneof_begin(&iter_, md); } inline MessageDef::const_oneof_iterator MessageDef::const_oneof_iterator::end( const MessageDef *md) { MessageDef::const_oneof_iterator iter(md); upb_msg_oneof_iter_setdone(&iter.iter_); return iter; } inline const OneofDef* MessageDef::const_oneof_iterator::operator*() const { return upb_msg_iter_oneof(&iter_); } inline void MessageDef::const_oneof_iterator::operator++() { return upb_msg_oneof_next(&iter_); } inline bool MessageDef::const_oneof_iterator::operator==( const const_oneof_iterator &other) const { return upb_strtable_iter_isequal(&iter_, &other.iter_); } inline bool MessageDef::const_oneof_iterator::operator!=( const const_oneof_iterator &other) const { return !(*this == other); } inline reffed_ptr<EnumDef> EnumDef::New() { upb_enumdef *e = upb_enumdef_new(&e); return reffed_ptr<EnumDef>(e, &e); } inline const char* EnumDef::full_name() const { return upb_enumdef_fullname(this); } inline const char* EnumDef::name() const { return upb_enumdef_name(this); } inline bool EnumDef::set_full_name(const char* fullname, Status* s) { return upb_enumdef_setfullname(this, fullname, s); } inline bool EnumDef::set_full_name(const std::string& fullname, Status* s) { return upb_enumdef_setfullname(this, upb_safecstr(fullname), s); } inline bool EnumDef::Freeze(Status* status) { return upb_enumdef_freeze(this, status); } inline int32_t EnumDef::default_value() const { return upb_enumdef_default(this); } inline bool EnumDef::set_default_value(int32_t val, Status* status) { return upb_enumdef_setdefault(this, val, status); } inline int EnumDef::value_count() const { return upb_enumdef_numvals(this); } inline bool EnumDef::AddValue(const char* name, int32_t num, Status* status) { return upb_enumdef_addval(this, name, num, status); } inline bool EnumDef::AddValue(const std::string& name, int32_t num, Status* status) { return upb_enumdef_addval(this, upb_safecstr(name), num, status); } inline bool EnumDef::FindValueByName(const char* name, int32_t *num) const { return upb_enumdef_ntoiz(this, name, num); } inline const char* EnumDef::FindValueByNumber(int32_t num) const { return upb_enumdef_iton(this, num); } inline EnumDef* EnumDef::Dup(const void* owner) const { return upb_enumdef_dup(this, owner); } inline EnumDef::Iterator::Iterator(const EnumDef* e) { upb_enum_begin(&iter_, e); } inline int32_t EnumDef::Iterator::number() { return upb_enum_iter_number(&iter_); } inline const char* EnumDef::Iterator::name() { return upb_enum_iter_name(&iter_); } inline bool EnumDef::Iterator::Done() { return upb_enum_done(&iter_); } inline void EnumDef::Iterator::Next() { return upb_enum_next(&iter_); } inline reffed_ptr<OneofDef> OneofDef::New() { upb_oneofdef *o = upb_oneofdef_new(&o); return reffed_ptr<OneofDef>(o, &o); } inline const MessageDef* OneofDef::containing_type() const { return upb_oneofdef_containingtype(this); } inline const char* OneofDef::name() const { return upb_oneofdef_name(this); } inline bool OneofDef::set_name(const char* name, Status* s) { return upb_oneofdef_setname(this, name, s); } inline bool OneofDef::set_name(const std::string& name, Status* s) { return upb_oneofdef_setname(this, upb_safecstr(name), s); } inline int OneofDef::field_count() const { return upb_oneofdef_numfields(this); } inline bool OneofDef::AddField(FieldDef* field, Status* s) { return upb_oneofdef_addfield(this, field, NULL, s); } inline bool OneofDef::AddField(const reffed_ptr<FieldDef>& field, Status* s) { return upb_oneofdef_addfield(this, field.get(), NULL, s); } inline const FieldDef* OneofDef::FindFieldByName(const char* name, size_t len) const { return upb_oneofdef_ntof(this, name, len); } inline const FieldDef* OneofDef::FindFieldByNumber(uint32_t num) const { return upb_oneofdef_itof(this, num); } inline OneofDef::iterator OneofDef::begin() { return iterator(this); } inline OneofDef::iterator OneofDef::end() { return iterator::end(this); } inline OneofDef::const_iterator OneofDef::begin() const { return const_iterator(this); } inline OneofDef::const_iterator OneofDef::end() const { return const_iterator::end(this); } inline OneofDef::iterator::iterator(OneofDef* o) { upb_oneof_begin(&iter_, o); } inline OneofDef::iterator OneofDef::iterator::end(OneofDef* o) { OneofDef::iterator iter(o); upb_oneof_iter_setdone(&iter.iter_); return iter; } inline FieldDef* OneofDef::iterator::operator*() const { return upb_oneof_iter_field(&iter_); } inline void OneofDef::iterator::operator++() { return upb_oneof_next(&iter_); } inline bool OneofDef::iterator::operator==(const iterator &other) const { return upb_inttable_iter_isequal(&iter_, &other.iter_); } inline bool OneofDef::iterator::operator!=(const iterator &other) const { return !(*this == other); } inline OneofDef::const_iterator::const_iterator(const OneofDef* md) { upb_oneof_begin(&iter_, md); } inline OneofDef::const_iterator OneofDef::const_iterator::end( const OneofDef *md) { OneofDef::const_iterator iter(md); upb_oneof_iter_setdone(&iter.iter_); return iter; } inline const FieldDef* OneofDef::const_iterator::operator*() const { return upb_msg_iter_field(&iter_); } inline void OneofDef::const_iterator::operator++() { return upb_oneof_next(&iter_); } inline bool OneofDef::const_iterator::operator==( const const_iterator &other) const { return upb_inttable_iter_isequal(&iter_, &other.iter_); } inline bool OneofDef::const_iterator::operator!=( const const_iterator &other) const { return !(*this == other); } inline reffed_ptr<FileDef> FileDef::New() { upb_filedef *f = upb_filedef_new(&f); return reffed_ptr<FileDef>(f, &f); } inline const char* FileDef::name() const { return upb_filedef_name(this); } inline bool FileDef::set_name(const char* name, Status* s) { return upb_filedef_setname(this, name, s); } inline bool FileDef::set_name(const std::string& name, Status* s) { return upb_filedef_setname(this, upb_safecstr(name), s); } inline const char* FileDef::package() const { return upb_filedef_package(this); } inline bool FileDef::set_package(const char* package, Status* s) { return upb_filedef_setpackage(this, package, s); } inline int FileDef::def_count() const { return upb_filedef_defcount(this); } inline const Def* FileDef::def(int index) const { return upb_filedef_def(this, index); } inline Def* FileDef::def(int index) { return const_cast<Def*>(upb_filedef_def(this, index)); } inline int FileDef::dependency_count() const { return upb_filedef_depcount(this); } inline const FileDef* FileDef::dependency(int index) const { return upb_filedef_dep(this, index); } inline bool FileDef::AddDef(Def* def, Status* s) { return upb_filedef_adddef(this, def, NULL, s); } inline bool FileDef::AddMessage(MessageDef* m, Status* s) { return upb_filedef_addmsg(this, m, NULL, s); } inline bool FileDef::AddEnum(EnumDef* e, Status* s) { return upb_filedef_addenum(this, e, NULL, s); } inline bool FileDef::AddExtension(FieldDef* f, Status* s) { return upb_filedef_addext(this, f, NULL, s); } inline bool FileDef::AddDependency(const FileDef* file) { return upb_filedef_adddep(this, file); } } /* namespace upb */ #endif #endif /* UPB_DEF_H_ */ /* ** This file contains definitions of structs that should be considered private ** and NOT stable across versions of upb. ** ** The only reason they are declared here and not in .c files is to allow upb ** and the application (if desired) to embed statically-initialized instances ** of structures like defs. ** ** If you include this file, all guarantees of ABI compatibility go out the ** window! Any code that includes this file needs to recompile against the ** exact same version of upb that they are linking against. ** ** You also need to recompile if you change the value of the UPB_DEBUG_REFS ** flag. */ #ifndef UPB_STATICINIT_H_ #define UPB_STATICINIT_H_ #ifdef __cplusplus /* Because of how we do our typedefs, this header can't be included from C++. */ #error This file cannot be included from C++ #endif /* upb_refcounted *************************************************************/ /* upb_def ********************************************************************/ struct upb_def { upb_refcounted base; const char *fullname; const upb_filedef* file; char type; /* A upb_deftype_t (char to save space) */ /* Used as a flag during the def's mutable stage. Must be false unless * it is currently being used by a function on the stack. This allows * us to easily determine which defs were passed into the function's * current invocation. */ bool came_from_user; }; #define UPB_DEF_INIT(name, type, vtbl, refs, ref2s) \ { UPB_REFCOUNT_INIT(vtbl, refs, ref2s), name, NULL, type, false } /* upb_fielddef ***************************************************************/ struct upb_fielddef { upb_def base; union { int64_t sint; uint64_t uint; double dbl; float flt; void *bytes; } defaultval; union { const upb_msgdef *def; /* If !msg_is_symbolic. */ char *name; /* If msg_is_symbolic. */ } msg; union { const upb_def *def; /* If !subdef_is_symbolic. */ char *name; /* If subdef_is_symbolic. */ } sub; /* The msgdef or enumdef for this field, if upb_hassubdef(f). */ bool subdef_is_symbolic; bool msg_is_symbolic; const upb_oneofdef *oneof; bool default_is_string; bool type_is_set_; /* False until type is explicitly set. */ bool is_extension_; bool lazy_; bool packed_; upb_intfmt_t intfmt; bool tagdelim; upb_fieldtype_t type_; upb_label_t label_; uint32_t number_; uint32_t selector_base; /* Used to index into a upb::Handlers table. */ uint32_t index_; }; extern const struct upb_refcounted_vtbl upb_fielddef_vtbl; #define UPB_FIELDDEF_INIT(label, type, intfmt, tagdelim, is_extension, lazy, \ packed, name, num, msgdef, subdef, selector_base, \ index, defaultval, refs, ref2s) \ { \ UPB_DEF_INIT(name, UPB_DEF_FIELD, &upb_fielddef_vtbl, refs, ref2s), \ defaultval, {msgdef}, {subdef}, NULL, false, false, \ type == UPB_TYPE_STRING || type == UPB_TYPE_BYTES, true, is_extension, \ lazy, packed, intfmt, tagdelim, type, label, num, selector_base, index \ } /* upb_msgdef *****************************************************************/ struct upb_msgdef { upb_def base; size_t selector_count; uint32_t submsg_field_count; /* Tables for looking up fields by number and name. */ upb_inttable itof; /* int to field */ upb_strtable ntof; /* name to field/oneof */ /* Is this a map-entry message? */ bool map_entry; /* Whether this message has proto2 or proto3 semantics. */ upb_syntax_t syntax; /* TODO(haberman): proper extension ranges (there can be multiple). */ }; extern const struct upb_refcounted_vtbl upb_msgdef_vtbl; /* TODO: also support static initialization of the oneofs table. This will be * needed if we compile in descriptors that contain oneofs. */ #define UPB_MSGDEF_INIT(name, selector_count, submsg_field_count, itof, ntof, \ map_entry, syntax, refs, ref2s) \ { \ UPB_DEF_INIT(name, UPB_DEF_MSG, &upb_fielddef_vtbl, refs, ref2s), \ selector_count, submsg_field_count, itof, ntof, map_entry, syntax \ } /* upb_enumdef ****************************************************************/ struct upb_enumdef { upb_def base; upb_strtable ntoi; upb_inttable iton; int32_t defaultval; }; extern const struct upb_refcounted_vtbl upb_enumdef_vtbl; #define UPB_ENUMDEF_INIT(name, ntoi, iton, defaultval, refs, ref2s) \ { UPB_DEF_INIT(name, UPB_DEF_ENUM, &upb_enumdef_vtbl, refs, ref2s), ntoi, \ iton, defaultval } /* upb_oneofdef ***************************************************************/ struct upb_oneofdef { upb_refcounted base; const char *name; upb_strtable ntof; upb_inttable itof; const upb_msgdef *parent; }; extern const struct upb_refcounted_vtbl upb_oneofdef_vtbl; #define UPB_ONEOFDEF_INIT(name, ntof, itof, refs, ref2s) \ { UPB_REFCOUNT_INIT(&upb_oneofdef_vtbl, refs, ref2s), name, ntof, itof } /* upb_symtab *****************************************************************/ struct upb_symtab { upb_refcounted base; upb_strtable symtab; }; struct upb_filedef { upb_refcounted base; const char *name; const char *package; upb_syntax_t syntax; upb_inttable defs; upb_inttable deps; }; extern const struct upb_refcounted_vtbl upb_filedef_vtbl; #endif /* UPB_STATICINIT_H_ */ /* ** upb::Handlers (upb_handlers) ** ** A upb_handlers is like a virtual table for a upb_msgdef. Each field of the ** message can have associated functions that will be called when we are ** parsing or visiting a stream of data. This is similar to how handlers work ** in SAX (the Simple API for XML). ** ** The handlers have no idea where the data is coming from, so a single set of ** handlers could be used with two completely different data sources (for ** example, a parser and a visitor over in-memory objects). This decoupling is ** the most important feature of upb, because it allows parsers and serializers ** to be highly reusable. ** ** This is a mixed C/C++ interface that offers a full API to both languages. ** See the top-level README for more information. */ #ifndef UPB_HANDLERS_H #define UPB_HANDLERS_H #ifdef __cplusplus namespace upb { class BufferHandle; class BytesHandler; class HandlerAttributes; class Handlers; template <class T> class Handler; template <class T> struct CanonicalType; } /* namespace upb */ #endif UPB_DECLARE_TYPE(upb::BufferHandle, upb_bufhandle) UPB_DECLARE_TYPE(upb::BytesHandler, upb_byteshandler) UPB_DECLARE_TYPE(upb::HandlerAttributes, upb_handlerattr) UPB_DECLARE_DERIVED_TYPE(upb::Handlers, upb::RefCounted, upb_handlers, upb_refcounted) /* The maximum depth that the handler graph can have. This is a resource limit * for the C stack since we sometimes need to recursively traverse the graph. * Cycles are ok; the traversal will stop when it detects a cycle, but we must * hit the cycle before the maximum depth is reached. * * If having a single static limit is too inflexible, we can add another variant * of Handlers::Freeze that allows specifying this as a parameter. */ #define UPB_MAX_HANDLER_DEPTH 64 /* All the different types of handlers that can be registered. * Only needed for the advanced functions in upb::Handlers. */ typedef enum { UPB_HANDLER_INT32, UPB_HANDLER_INT64, UPB_HANDLER_UINT32, UPB_HANDLER_UINT64, UPB_HANDLER_FLOAT, UPB_HANDLER_DOUBLE, UPB_HANDLER_BOOL, UPB_HANDLER_STARTSTR, UPB_HANDLER_STRING, UPB_HANDLER_ENDSTR, UPB_HANDLER_STARTSUBMSG, UPB_HANDLER_ENDSUBMSG, UPB_HANDLER_STARTSEQ, UPB_HANDLER_ENDSEQ } upb_handlertype_t; #define UPB_HANDLER_MAX (UPB_HANDLER_ENDSEQ+1) #define UPB_BREAK NULL /* A convenient definition for when no closure is needed. */ extern char _upb_noclosure; #define UPB_NO_CLOSURE &_upb_noclosure /* A selector refers to a specific field handler in the Handlers object * (for example: the STARTSUBMSG handler for field "field15"). */ typedef int32_t upb_selector_t; UPB_BEGIN_EXTERN_C /* Forward-declares for C inline accessors. We need to declare these here * so we can "friend" them in the class declarations in C++. */ UPB_INLINE upb_func *upb_handlers_gethandler(const upb_handlers *h, upb_selector_t s); UPB_INLINE const void *upb_handlerattr_handlerdata(const upb_handlerattr *attr); UPB_INLINE const void *upb_handlers_gethandlerdata(const upb_handlers *h, upb_selector_t s); UPB_INLINE void upb_bufhandle_init(upb_bufhandle *h); UPB_INLINE void upb_bufhandle_setobj(upb_bufhandle *h, const void *obj, const void *type); UPB_INLINE void upb_bufhandle_setbuf(upb_bufhandle *h, const char *buf, size_t ofs); UPB_INLINE const void *upb_bufhandle_obj(const upb_bufhandle *h); UPB_INLINE const void *upb_bufhandle_objtype(const upb_bufhandle *h); UPB_INLINE const char *upb_bufhandle_buf(const upb_bufhandle *h); UPB_END_EXTERN_C /* Static selectors for upb::Handlers. */ #define UPB_STARTMSG_SELECTOR 0 #define UPB_ENDMSG_SELECTOR 1 #define UPB_STATIC_SELECTOR_COUNT 2 /* Static selectors for upb::BytesHandler. */ #define UPB_STARTSTR_SELECTOR 0 #define UPB_STRING_SELECTOR 1 #define UPB_ENDSTR_SELECTOR 2 typedef void upb_handlerfree(void *d); #ifdef __cplusplus /* A set of attributes that accompanies a handler's function pointer. */ class upb::HandlerAttributes { public: HandlerAttributes(); ~HandlerAttributes(); /* Sets the handler data that will be passed as the second parameter of the * handler. To free this pointer when the handlers are freed, call * Handlers::AddCleanup(). */ bool SetHandlerData(const void *handler_data); const void* handler_data() const; /* Use this to specify the type of the closure. This will be checked against * all other closure types for handler that use the same closure. * Registration will fail if this does not match all other non-NULL closure * types. */ bool SetClosureType(const void *closure_type); const void* closure_type() const; /* Use this to specify the type of the returned closure. Only used for * Start*{String,SubMessage,Sequence} handlers. This must match the closure * type of any handlers that use it (for example, the StringBuf handler must * match the closure returned from StartString). */ bool SetReturnClosureType(const void *return_closure_type); const void* return_closure_type() const; /* Set to indicate that the handler always returns "ok" (either "true" or a * non-NULL closure). This is a hint that can allow code generators to * generate more efficient code. */ bool SetAlwaysOk(bool always_ok); bool always_ok() const; private: friend UPB_INLINE const void * ::upb_handlerattr_handlerdata( const upb_handlerattr *attr); #else struct upb_handlerattr { #endif const void *handler_data_; const void *closure_type_; const void *return_closure_type_; bool alwaysok_; }; #define UPB_HANDLERATTR_INITIALIZER {NULL, NULL, NULL, false} typedef struct { upb_func *func; /* It is wasteful to include the entire attributes here: * * * Some of the information is redundant (like storing the closure type * separately for each handler that must match). * * Some of the info is only needed prior to freeze() (like closure types). * * alignment padding wastes a lot of space for alwaysok_. * * If/when the size and locality of handlers is an issue, we can optimize this * not to store the entire attr like this. We do not expose the table's * layout to allow this optimization in the future. */ upb_handlerattr attr; } upb_handlers_tabent; #ifdef __cplusplus /* Extra information about a buffer that is passed to a StringBuf handler. * TODO(haberman): allow the handle to be pinned so that it will outlive * the handler invocation. */ class upb::BufferHandle { public: BufferHandle(); ~BufferHandle(); /* The beginning of the buffer. This may be different than the pointer * passed to a StringBuf handler because the handler may receive data * that is from the middle or end of a larger buffer. */ const char* buffer() const; /* The offset within the attached object where this buffer begins. Only * meaningful if there is an attached object. */ size_t object_offset() const; /* Note that object_offset is the offset of "buf" within the attached * object. */ void SetBuffer(const char* buf, size_t object_offset); /* The BufferHandle can have an "attached object", which can be used to * tunnel through a pointer to the buffer's underlying representation. */ template <class T> void SetAttachedObject(const T* obj); /* Returns NULL if the attached object is not of this type. */ template <class T> const T* GetAttachedObject() const; private: friend UPB_INLINE void ::upb_bufhandle_init(upb_bufhandle *h); friend UPB_INLINE void ::upb_bufhandle_setobj(upb_bufhandle *h, const void *obj, const void *type); friend UPB_INLINE void ::upb_bufhandle_setbuf(upb_bufhandle *h, const char *buf, size_t ofs); friend UPB_INLINE const void* ::upb_bufhandle_obj(const upb_bufhandle *h); friend UPB_INLINE const void* ::upb_bufhandle_objtype( const upb_bufhandle *h); friend UPB_INLINE const char* ::upb_bufhandle_buf(const upb_bufhandle *h); #else struct upb_bufhandle { #endif const char *buf_; const void *obj_; const void *objtype_; size_t objofs_; }; #ifdef __cplusplus /* A upb::Handlers object represents the set of handlers associated with a * message in the graph of messages. You can think of it as a big virtual * table with functions corresponding to all the events that can fire while * parsing or visiting a message of a specific type. * * Any handlers that are not set behave as if they had successfully consumed * the value. Any unset Start* handlers will propagate their closure to the * inner frame. * * The easiest way to create the *Handler objects needed by the Set* methods is * with the UpbBind() and UpbMakeHandler() macros; see below. */ class upb::Handlers { public: typedef upb_selector_t Selector; typedef upb_handlertype_t Type; typedef Handler<void *(*)(void *, const void *)> StartFieldHandler; typedef Handler<bool (*)(void *, const void *)> EndFieldHandler; typedef Handler<bool (*)(void *, const void *)> StartMessageHandler; typedef Handler<bool (*)(void *, const void *, Status*)> EndMessageHandler; typedef Handler<void *(*)(void *, const void *, size_t)> StartStringHandler; typedef Handler<size_t (*)(void *, const void *, const char *, size_t, const BufferHandle *)> StringHandler; template <class T> struct ValueHandler { typedef Handler<bool(*)(void *, const void *, T)> H; }; typedef ValueHandler<int32_t>::H Int32Handler; typedef ValueHandler<int64_t>::H Int64Handler; typedef ValueHandler<uint32_t>::H UInt32Handler; typedef ValueHandler<uint64_t>::H UInt64Handler; typedef ValueHandler<float>::H FloatHandler; typedef ValueHandler<double>::H DoubleHandler; typedef ValueHandler<bool>::H BoolHandler; /* Any function pointer can be converted to this and converted back to its * correct type. */ typedef void GenericFunction(); typedef void HandlersCallback(const void *closure, upb_handlers *h); /* Returns a new handlers object for the given frozen msgdef. * Returns NULL if memory allocation failed. */ static reffed_ptr<Handlers> New(const MessageDef *m); /* Convenience function for registering a graph of handlers that mirrors the * graph of msgdefs for some message. For "m" and all its children a new set * of handlers will be created and the given callback will be invoked, * allowing the client to register handlers for this message. Note that any * subhandlers set by the callback will be overwritten. */ static reffed_ptr<const Handlers> NewFrozen(const MessageDef *m, HandlersCallback *callback, const void *closure); /* Functionality from upb::RefCounted. */ UPB_REFCOUNTED_CPPMETHODS /* All handler registration functions return bool to indicate success or * failure; details about failures are stored in this status object. If a * failure does occur, it must be cleared before the Handlers are frozen, * otherwise the freeze() operation will fail. The functions may *only* be * used while the Handlers are mutable. */ const Status* status(); void ClearError(); /* Call to freeze these Handlers. Requires that any SubHandlers are already * frozen. For cycles, you must use the static version below and freeze the * whole graph at once. */ bool Freeze(Status* s); /* Freezes the given set of handlers. You may not freeze a handler without * also freezing any handlers they point to. */ static bool Freeze(Handlers*const* handlers, int n, Status* s); static bool Freeze(const std::vector<Handlers*>& handlers, Status* s); /* Returns the msgdef associated with this handlers object. */ const MessageDef* message_def() const; /* Adds the given pointer and function to the list of cleanup functions that * will be run when these handlers are freed. If this pointer has previously * been registered, the function returns false and does nothing. */ bool AddCleanup(void *ptr, upb_handlerfree *cleanup); /* Sets the startmsg handler for the message, which is defined as follows: * * bool startmsg(MyType* closure) { * // Called when the message begins. Returns true if processing should * // continue. * return true; * } */ bool SetStartMessageHandler(const StartMessageHandler& handler); /* Sets the endmsg handler for the message, which is defined as follows: * * bool endmsg(MyType* closure, upb_status *status) { * // Called when processing of this message ends, whether in success or * // failure. "status" indicates the final status of processing, and * // can also be modified in-place to update the final status. * } */ bool SetEndMessageHandler(const EndMessageHandler& handler); /* Sets the value handler for the given field, which is defined as follows * (this is for an int32 field; other field types will pass their native * C/C++ type for "val"): * * bool OnValue(MyClosure* c, const MyHandlerData* d, int32_t val) { * // Called when the field's value is encountered. "d" contains * // whatever data was bound to this field when it was registered. * // Returns true if processing should continue. * return true; * } * * handers->SetInt32Handler(f, UpbBind(OnValue, new MyHandlerData(...))); * * The value type must exactly match f->type(). * For example, a handler that takes an int32_t parameter may only be used for * fields of type UPB_TYPE_INT32 and UPB_TYPE_ENUM. * * Returns false if the handler failed to register; in this case the cleanup * handler (if any) will be called immediately. */ bool SetInt32Handler (const FieldDef* f, const Int32Handler& h); bool SetInt64Handler (const FieldDef* f, const Int64Handler& h); bool SetUInt32Handler(const FieldDef* f, const UInt32Handler& h); bool SetUInt64Handler(const FieldDef* f, const UInt64Handler& h); bool SetFloatHandler (const FieldDef* f, const FloatHandler& h); bool SetDoubleHandler(const FieldDef* f, const DoubleHandler& h); bool SetBoolHandler (const FieldDef* f, const BoolHandler& h); /* Like the previous, but templated on the type on the value (ie. int32). * This is mostly useful to call from other templates. To call this you must * specify the template parameter explicitly, ie: * h->SetValueHandler<T>(f, UpbBind(MyHandler<T>, MyData)); */ template <class T> bool SetValueHandler( const FieldDef *f, const typename ValueHandler<typename CanonicalType<T>::Type>::H& handler); /* Sets handlers for a string field, which are defined as follows: * * MySubClosure* startstr(MyClosure* c, const MyHandlerData* d, * size_t size_hint) { * // Called when a string value begins. The return value indicates the * // closure for the string. "size_hint" indicates the size of the * // string if it is known, however if the string is length-delimited * // and the end-of-string is not available size_hint will be zero. * // This case is indistinguishable from the case where the size is * // known to be zero. * // * // TODO(haberman): is it important to distinguish these cases? * // If we had ssize_t as a type we could make -1 "unknown", but * // ssize_t is POSIX (not ANSI) and therefore less portable. * // In practice I suspect it won't be important to distinguish. * return closure; * } * * size_t str(MyClosure* closure, const MyHandlerData* d, * const char *str, size_t len) { * // Called for each buffer of string data; the multiple physical buffers * // are all part of the same logical string. The return value indicates * // how many bytes were consumed. If this number is less than "len", * // this will also indicate that processing should be halted for now, * // like returning false or UPB_BREAK from any other callback. If * // number is greater than "len", the excess bytes will be skipped over * // and not passed to the callback. * return len; * } * * bool endstr(MyClosure* c, const MyHandlerData* d) { * // Called when a string value ends. Return value indicates whether * // processing should continue. * return true; * } */ bool SetStartStringHandler(const FieldDef* f, const StartStringHandler& h); bool SetStringHandler(const FieldDef* f, const StringHandler& h); bool SetEndStringHandler(const FieldDef* f, const EndFieldHandler& h); /* Sets the startseq handler, which is defined as follows: * * MySubClosure *startseq(MyClosure* c, const MyHandlerData* d) { * // Called when a sequence (repeated field) begins. The returned * // pointer indicates the closure for the sequence (or UPB_BREAK * // to interrupt processing). * return closure; * } * * h->SetStartSequenceHandler(f, UpbBind(startseq, new MyHandlerData(...))); * * Returns "false" if "f" does not belong to this message or is not a * repeated field. */ bool SetStartSequenceHandler(const FieldDef* f, const StartFieldHandler& h); /* Sets the startsubmsg handler for the given field, which is defined as * follows: * * MySubClosure* startsubmsg(MyClosure* c, const MyHandlerData* d) { * // Called when a submessage begins. The returned pointer indicates the * // closure for the sequence (or UPB_BREAK to interrupt processing). * return closure; * } * * h->SetStartSubMessageHandler(f, UpbBind(startsubmsg, * new MyHandlerData(...))); * * Returns "false" if "f" does not belong to this message or is not a * submessage/group field. */ bool SetStartSubMessageHandler(const FieldDef* f, const StartFieldHandler& h); /* Sets the endsubmsg handler for the given field, which is defined as * follows: * * bool endsubmsg(MyClosure* c, const MyHandlerData* d) { * // Called when a submessage ends. Returns true to continue processing. * return true; * } * * Returns "false" if "f" does not belong to this message or is not a * submessage/group field. */ bool SetEndSubMessageHandler(const FieldDef *f, const EndFieldHandler &h); /* Starts the endsubseq handler for the given field, which is defined as * follows: * * bool endseq(MyClosure* c, const MyHandlerData* d) { * // Called when a sequence ends. Returns true continue processing. * return true; * } * * Returns "false" if "f" does not belong to this message or is not a * repeated field. */ bool SetEndSequenceHandler(const FieldDef* f, const EndFieldHandler& h); /* Sets or gets the object that specifies handlers for the given field, which * must be a submessage or group. Returns NULL if no handlers are set. */ bool SetSubHandlers(const FieldDef* f, const Handlers* sub); const Handlers* GetSubHandlers(const FieldDef* f) const; /* Equivalent to GetSubHandlers, but takes the STARTSUBMSG selector for the * field. */ const Handlers* GetSubHandlers(Selector startsubmsg) const; /* A selector refers to a specific field handler in the Handlers object * (for example: the STARTSUBMSG handler for field "field15"). * On success, returns true and stores the selector in "s". * If the FieldDef or Type are invalid, returns false. * The returned selector is ONLY valid for Handlers whose MessageDef * contains this FieldDef. */ static bool GetSelector(const FieldDef* f, Type type, Selector* s); /* Given a START selector of any kind, returns the corresponding END selector. */ static Selector GetEndSelector(Selector start_selector); /* Returns the function pointer for this handler. It is the client's * responsibility to cast to the correct function type before calling it. */ GenericFunction* GetHandler(Selector selector); /* Sets the given attributes to the attributes for this selector. */ bool GetAttributes(Selector selector, HandlerAttributes* attr); /* Returns the handler data that was registered with this handler. */ const void* GetHandlerData(Selector selector); /* Could add any of the following functions as-needed, with some minor * implementation changes: * * const FieldDef* GetFieldDef(Selector selector); * static bool IsSequence(Selector selector); */ private: UPB_DISALLOW_POD_OPS(Handlers, upb::Handlers) friend UPB_INLINE GenericFunction *::upb_handlers_gethandler( const upb_handlers *h, upb_selector_t s); friend UPB_INLINE const void *::upb_handlers_gethandlerdata( const upb_handlers *h, upb_selector_t s); #else struct upb_handlers { #endif upb_refcounted base; const upb_msgdef *msg; const upb_handlers **sub; const void *top_closure_type; upb_inttable cleanup_; upb_status status_; /* Used only when mutable. */ upb_handlers_tabent table[1]; /* Dynamically-sized field handler array. */ }; #ifdef __cplusplus namespace upb { /* Convenience macros for creating a Handler object that is wrapped with a * type-safe wrapper function that converts the "void*" parameters/returns * of the underlying C API into nice C++ function. * * Sample usage: * void OnValue1(MyClosure* c, const MyHandlerData* d, int32_t val) { * // do stuff ... * } * * // Handler that doesn't need any data bound to it. * void OnValue2(MyClosure* c, int32_t val) { * // do stuff ... * } * * // Handler that returns bool so it can return failure if necessary. * bool OnValue3(MyClosure* c, int32_t val) { * // do stuff ... * return ok; * } * * // Member function handler. * class MyClosure { * public: * void OnValue(int32_t val) { * // do stuff ... * } * }; * * // Takes ownership of the MyHandlerData. * handlers->SetInt32Handler(f1, UpbBind(OnValue1, new MyHandlerData(...))); * handlers->SetInt32Handler(f2, UpbMakeHandler(OnValue2)); * handlers->SetInt32Handler(f1, UpbMakeHandler(OnValue3)); * handlers->SetInt32Handler(f2, UpbMakeHandler(&MyClosure::OnValue)); */ #ifdef UPB_CXX11 /* In C++11, the "template" disambiguator can appear even outside templates, * so all calls can safely use this pair of macros. */ #define UpbMakeHandler(f) upb::MatchFunc(f).template GetFunc<f>() /* We have to be careful to only evaluate "d" once. */ #define UpbBind(f, d) upb::MatchFunc(f).template GetFunc<f>((d)) #else /* Prior to C++11, the "template" disambiguator may only appear inside a * template, so the regular macro must not use "template" */ #define UpbMakeHandler(f) upb::MatchFunc(f).GetFunc<f>() #define UpbBind(f, d) upb::MatchFunc(f).GetFunc<f>((d)) #endif /* UPB_CXX11 */ /* This macro must be used in C++98 for calls from inside a template. But we * define this variant in all cases; code that wants to be compatible with both * C++98 and C++11 should always use this macro when calling from a template. */ #define UpbMakeHandlerT(f) upb::MatchFunc(f).template GetFunc<f>() /* We have to be careful to only evaluate "d" once. */ #define UpbBindT(f, d) upb::MatchFunc(f).template GetFunc<f>((d)) /* Handler: a struct that contains the (handler, data, deleter) tuple that is * used to register all handlers. Users can Make() these directly but it's * more convenient to use the UpbMakeHandler/UpbBind macros above. */ template <class T> class Handler { public: /* The underlying, handler function signature that upb uses internally. */ typedef T FuncPtr; /* Intentionally implicit. */ template <class F> Handler(F func); ~Handler(); private: void AddCleanup(Handlers* h) const { if (cleanup_func_) { bool ok = h->AddCleanup(cleanup_data_, cleanup_func_); UPB_ASSERT_VAR(ok, ok); } } UPB_DISALLOW_COPY_AND_ASSIGN(Handler) friend class Handlers; FuncPtr handler_; mutable HandlerAttributes attr_; mutable bool registered_; void *cleanup_data_; upb_handlerfree *cleanup_func_; }; } /* namespace upb */ #endif /* __cplusplus */ UPB_BEGIN_EXTERN_C /* Native C API. */ /* Handler function typedefs. */ typedef bool upb_startmsg_handlerfunc(void *c, const void*); typedef bool upb_endmsg_handlerfunc(void *c, const void *, upb_status *status); typedef void* upb_startfield_handlerfunc(void *c, const void *hd); typedef bool upb_endfield_handlerfunc(void *c, const void *hd); typedef bool upb_int32_handlerfunc(void *c, const void *hd, int32_t val); typedef bool upb_int64_handlerfunc(void *c, const void *hd, int64_t val); typedef bool upb_uint32_handlerfunc(void *c, const void *hd, uint32_t val); typedef bool upb_uint64_handlerfunc(void *c, const void *hd, uint64_t val); typedef bool upb_float_handlerfunc(void *c, const void *hd, float val); typedef bool upb_double_handlerfunc(void *c, const void *hd, double val); typedef bool upb_bool_handlerfunc(void *c, const void *hd, bool val); typedef void *upb_startstr_handlerfunc(void *c, const void *hd, size_t size_hint); typedef size_t upb_string_handlerfunc(void *c, const void *hd, const char *buf, size_t n, const upb_bufhandle* handle); /* upb_bufhandle */ size_t upb_bufhandle_objofs(const upb_bufhandle *h); /* upb_handlerattr */ void upb_handlerattr_init(upb_handlerattr *attr); void upb_handlerattr_uninit(upb_handlerattr *attr); bool upb_handlerattr_sethandlerdata(upb_handlerattr *attr, const void *hd); bool upb_handlerattr_setclosuretype(upb_handlerattr *attr, const void *type); const void *upb_handlerattr_closuretype(const upb_handlerattr *attr); bool upb_handlerattr_setreturnclosuretype(upb_handlerattr *attr, const void *type); const void *upb_handlerattr_returnclosuretype(const upb_handlerattr *attr); bool upb_handlerattr_setalwaysok(upb_handlerattr *attr, bool alwaysok); bool upb_handlerattr_alwaysok(const upb_handlerattr *attr); UPB_INLINE const void *upb_handlerattr_handlerdata( const upb_handlerattr *attr) { return attr->handler_data_; } /* upb_handlers */ typedef void upb_handlers_callback(const void *closure, upb_handlers *h); upb_handlers *upb_handlers_new(const upb_msgdef *m, const void *owner); const upb_handlers *upb_handlers_newfrozen(const upb_msgdef *m, const void *owner, upb_handlers_callback *callback, const void *closure); /* Include refcounted methods like upb_handlers_ref(). */ UPB_REFCOUNTED_CMETHODS(upb_handlers, upb_handlers_upcast) const upb_status *upb_handlers_status(upb_handlers *h); void upb_handlers_clearerr(upb_handlers *h); const upb_msgdef *upb_handlers_msgdef(const upb_handlers *h); bool upb_handlers_addcleanup(upb_handlers *h, void *p, upb_handlerfree *hfree); bool upb_handlers_setstartmsg(upb_handlers *h, upb_startmsg_handlerfunc *func, upb_handlerattr *attr); bool upb_handlers_setendmsg(upb_handlers *h, upb_endmsg_handlerfunc *func, upb_handlerattr *attr); bool upb_handlers_setint32(upb_handlers *h, const upb_fielddef *f, upb_int32_handlerfunc *func, upb_handlerattr *attr); bool upb_handlers_setint64(upb_handlers *h, const upb_fielddef *f, upb_int64_handlerfunc *func, upb_handlerattr *attr); bool upb_handlers_setuint32(upb_handlers *h, const upb_fielddef *f, upb_uint32_handlerfunc *func, upb_handlerattr *attr); bool upb_handlers_setuint64(upb_handlers *h, const upb_fielddef *f, upb_uint64_handlerfunc *func, upb_handlerattr *attr); bool upb_handlers_setfloat(upb_handlers *h, const upb_fielddef *f, upb_float_handlerfunc *func, upb_handlerattr *attr); bool upb_handlers_setdouble(upb_handlers *h, const upb_fielddef *f, upb_double_handlerfunc *func, upb_handlerattr *attr); bool upb_handlers_setbool(upb_handlers *h, const upb_fielddef *f, upb_bool_handlerfunc *func, upb_handlerattr *attr); bool upb_handlers_setstartstr(upb_handlers *h, const upb_fielddef *f, upb_startstr_handlerfunc *func, upb_handlerattr *attr); bool upb_handlers_setstring(upb_handlers *h, const upb_fielddef *f, upb_string_handlerfunc *func, upb_handlerattr *attr); bool upb_handlers_setendstr(upb_handlers *h, const upb_fielddef *f, upb_endfield_handlerfunc *func, upb_handlerattr *attr); bool upb_handlers_setstartseq(upb_handlers *h, const upb_fielddef *f, upb_startfield_handlerfunc *func, upb_handlerattr *attr); bool upb_handlers_setstartsubmsg(upb_handlers *h, const upb_fielddef *f, upb_startfield_handlerfunc *func, upb_handlerattr *attr); bool upb_handlers_setendsubmsg(upb_handlers *h, const upb_fielddef *f, upb_endfield_handlerfunc *func, upb_handlerattr *attr); bool upb_handlers_setendseq(upb_handlers *h, const upb_fielddef *f, upb_endfield_handlerfunc *func, upb_handlerattr *attr); bool upb_handlers_setsubhandlers(upb_handlers *h, const upb_fielddef *f, const upb_handlers *sub); const upb_handlers *upb_handlers_getsubhandlers(const upb_handlers *h, const upb_fielddef *f); const upb_handlers *upb_handlers_getsubhandlers_sel(const upb_handlers *h, upb_selector_t sel); UPB_INLINE upb_func *upb_handlers_gethandler(const upb_handlers *h, upb_selector_t s) { return (upb_func *)h->table[s].func; } bool upb_handlers_getattr(const upb_handlers *h, upb_selector_t s, upb_handlerattr *attr); UPB_INLINE const void *upb_handlers_gethandlerdata(const upb_handlers *h, upb_selector_t s) { return upb_handlerattr_handlerdata(&h->table[s].attr); } #ifdef __cplusplus /* Handler types for single fields. * Right now we only have one for TYPE_BYTES but ones for other types * should follow. * * These follow the same handlers protocol for fields of a message. */ class upb::BytesHandler { public: BytesHandler(); ~BytesHandler(); #else struct upb_byteshandler { #endif upb_handlers_tabent table[3]; }; void upb_byteshandler_init(upb_byteshandler *h); /* Caller must ensure that "d" outlives the handlers. * TODO(haberman): should this have a "freeze" operation? It's not necessary * for memory management, but could be useful to force immutability and provide * a convenient moment to verify that all registration succeeded. */ bool upb_byteshandler_setstartstr(upb_byteshandler *h, upb_startstr_handlerfunc *func, void *d); bool upb_byteshandler_setstring(upb_byteshandler *h, upb_string_handlerfunc *func, void *d); bool upb_byteshandler_setendstr(upb_byteshandler *h, upb_endfield_handlerfunc *func, void *d); /* "Static" methods */ bool upb_handlers_freeze(upb_handlers *const *handlers, int n, upb_status *s); upb_handlertype_t upb_handlers_getprimitivehandlertype(const upb_fielddef *f); bool upb_handlers_getselector(const upb_fielddef *f, upb_handlertype_t type, upb_selector_t *s); UPB_INLINE upb_selector_t upb_handlers_getendselector(upb_selector_t start) { return start + 1; } /* Internal-only. */ uint32_t upb_handlers_selectorbaseoffset(const upb_fielddef *f); uint32_t upb_handlers_selectorcount(const upb_fielddef *f); UPB_END_EXTERN_C /* ** Inline definitions for handlers.h, which are particularly long and a bit ** tricky. */ #ifndef UPB_HANDLERS_INL_H_ #define UPB_HANDLERS_INL_H_ #include <limits.h> /* C inline methods. */ /* upb_bufhandle */ UPB_INLINE void upb_bufhandle_init(upb_bufhandle *h) { h->obj_ = NULL; h->objtype_ = NULL; h->buf_ = NULL; h->objofs_ = 0; } UPB_INLINE void upb_bufhandle_uninit(upb_bufhandle *h) { UPB_UNUSED(h); } UPB_INLINE void upb_bufhandle_setobj(upb_bufhandle *h, const void *obj, const void *type) { h->obj_ = obj; h->objtype_ = type; } UPB_INLINE void upb_bufhandle_setbuf(upb_bufhandle *h, const char *buf, size_t ofs) { h->buf_ = buf; h->objofs_ = ofs; } UPB_INLINE const void *upb_bufhandle_obj(const upb_bufhandle *h) { return h->obj_; } UPB_INLINE const void *upb_bufhandle_objtype(const upb_bufhandle *h) { return h->objtype_; } UPB_INLINE const char *upb_bufhandle_buf(const upb_bufhandle *h) { return h->buf_; } #ifdef __cplusplus /* Type detection and typedefs for integer types. * For platforms where there are multiple 32-bit or 64-bit types, we need to be * able to enumerate them so we can properly create overloads for all variants. * * If any platform existed where there were three integer types with the same * size, this would have to become more complicated. For example, short, int, * and long could all be 32-bits. Even more diabolically, short, int, long, * and long long could all be 64 bits and still be standard-compliant. * However, few platforms are this strange, and it's unlikely that upb will be * used on the strangest ones. */ /* Can't count on stdint.h limits like INT32_MAX, because in C++ these are * only defined when __STDC_LIMIT_MACROS are defined before the *first* include * of stdint.h. We can't guarantee that someone else didn't include these first * without defining __STDC_LIMIT_MACROS. */ #define UPB_INT32_MAX 0x7fffffffLL #define UPB_INT32_MIN (-UPB_INT32_MAX - 1) #define UPB_INT64_MAX 0x7fffffffffffffffLL #define UPB_INT64_MIN (-UPB_INT64_MAX - 1) #if INT_MAX == UPB_INT32_MAX && INT_MIN == UPB_INT32_MIN #define UPB_INT_IS_32BITS 1 #endif #if LONG_MAX == UPB_INT32_MAX && LONG_MIN == UPB_INT32_MIN #define UPB_LONG_IS_32BITS 1 #endif #if LONG_MAX == UPB_INT64_MAX && LONG_MIN == UPB_INT64_MIN #define UPB_LONG_IS_64BITS 1 #endif #if LLONG_MAX == UPB_INT64_MAX && LLONG_MIN == UPB_INT64_MIN #define UPB_LLONG_IS_64BITS 1 #endif /* We use macros instead of typedefs so we can undefine them later and avoid * leaking them outside this header file. */ #if UPB_INT_IS_32BITS #define UPB_INT32_T int #define UPB_UINT32_T unsigned int #if UPB_LONG_IS_32BITS #define UPB_TWO_32BIT_TYPES 1 #define UPB_INT32ALT_T long #define UPB_UINT32ALT_T unsigned long #endif /* UPB_LONG_IS_32BITS */ #elif UPB_LONG_IS_32BITS /* && !UPB_INT_IS_32BITS */ #define UPB_INT32_T long #define UPB_UINT32_T unsigned long #endif /* UPB_INT_IS_32BITS */ #if UPB_LONG_IS_64BITS #define UPB_INT64_T long #define UPB_UINT64_T unsigned long #if UPB_LLONG_IS_64BITS #define UPB_TWO_64BIT_TYPES 1 #define UPB_INT64ALT_T long long #define UPB_UINT64ALT_T unsigned long long #endif /* UPB_LLONG_IS_64BITS */ #elif UPB_LLONG_IS_64BITS /* && !UPB_LONG_IS_64BITS */ #define UPB_INT64_T long long #define UPB_UINT64_T unsigned long long #endif /* UPB_LONG_IS_64BITS */ #undef UPB_INT32_MAX #undef UPB_INT32_MIN #undef UPB_INT64_MAX #undef UPB_INT64_MIN #undef UPB_INT_IS_32BITS #undef UPB_LONG_IS_32BITS #undef UPB_LONG_IS_64BITS #undef UPB_LLONG_IS_64BITS namespace upb { typedef void CleanupFunc(void *ptr); /* Template to remove "const" from "const T*" and just return "T*". * * We define a nonsense default because otherwise it will fail to instantiate as * a function parameter type even in cases where we don't expect any caller to * actually match the overload. */ class CouldntRemoveConst {}; template <class T> struct remove_constptr { typedef CouldntRemoveConst type; }; template <class T> struct remove_constptr<const T *> { typedef T *type; }; /* Template that we use below to remove a template specialization from * consideration if it matches a specific type. */ template <class T, class U> struct disable_if_same { typedef void Type; }; template <class T> struct disable_if_same<T, T> {}; template <class T> void DeletePointer(void *p) { delete static_cast<T>(p); } template <class T1, class T2> struct FirstUnlessVoidOrBool { typedef T1 value; }; template <class T2> struct FirstUnlessVoidOrBool<void, T2> { typedef T2 value; }; template <class T2> struct FirstUnlessVoidOrBool<bool, T2> { typedef T2 value; }; template<class T, class U> struct is_same { static bool value; }; template<class T> struct is_same<T, T> { static bool value; }; template<class T, class U> bool is_same<T, U>::value = false; template<class T> bool is_same<T, T>::value = true; /* FuncInfo *******************************************************************/ /* Info about the user's original, pre-wrapped function. */ template <class C, class R = void> struct FuncInfo { /* The type of the closure that the function takes (its first param). */ typedef C Closure; /* The return type. */ typedef R Return; }; /* Func ***********************************************************************/ /* Func1, Func2, Func3: Template classes representing a function and its * signature. * * Since the function is a template parameter, calling the function can be * inlined at compile-time and does not require a function pointer at runtime. * These functions are not bound to a handler data so have no data or cleanup * handler. */ struct UnboundFunc { CleanupFunc *GetCleanup() { return NULL; } void *GetData() { return NULL; } }; template <class R, class P1, R F(P1), class I> struct Func1 : public UnboundFunc { typedef R Return; typedef I FuncInfo; static R Call(P1 p1) { return F(p1); } }; template <class R, class P1, class P2, R F(P1, P2), class I> struct Func2 : public UnboundFunc { typedef R Return; typedef I FuncInfo; static R Call(P1 p1, P2 p2) { return F(p1, p2); } }; template <class R, class P1, class P2, class P3, R F(P1, P2, P3), class I> struct Func3 : public UnboundFunc { typedef R Return; typedef I FuncInfo; static R Call(P1 p1, P2 p2, P3 p3) { return F(p1, p2, p3); } }; template <class R, class P1, class P2, class P3, class P4, R F(P1, P2, P3, P4), class I> struct Func4 : public UnboundFunc { typedef R Return; typedef I FuncInfo; static R Call(P1 p1, P2 p2, P3 p3, P4 p4) { return F(p1, p2, p3, p4); } }; template <class R, class P1, class P2, class P3, class P4, class P5, R F(P1, P2, P3, P4, P5), class I> struct Func5 : public UnboundFunc { typedef R Return; typedef I FuncInfo; static R Call(P1 p1, P2 p2, P3 p3, P4 p4, P5 p5) { return F(p1, p2, p3, p4, p5); } }; /* BoundFunc ******************************************************************/ /* BoundFunc2, BoundFunc3: Like Func2/Func3 except also contains a value that * shall be bound to the function's second parameter. * * Note that the second parameter is a const pointer, but our stored bound value * is non-const so we can free it when the handlers are destroyed. */ template <class T> struct BoundFunc { typedef typename remove_constptr<T>::type MutableP2; explicit BoundFunc(MutableP2 data_) : data(data_) {} CleanupFunc *GetCleanup() { return &DeletePointer<MutableP2>; } MutableP2 GetData() { return data; } MutableP2 data; }; template <class R, class P1, class P2, R F(P1, P2), class I> struct BoundFunc2 : public BoundFunc<P2> { typedef BoundFunc<P2> Base; typedef I FuncInfo; explicit BoundFunc2(typename Base::MutableP2 arg) : Base(arg) {} }; template <class R, class P1, class P2, class P3, R F(P1, P2, P3), class I> struct BoundFunc3 : public BoundFunc<P2> { typedef BoundFunc<P2> Base; typedef I FuncInfo; explicit BoundFunc3(typename Base::MutableP2 arg) : Base(arg) {} }; template <class R, class P1, class P2, class P3, class P4, R F(P1, P2, P3, P4), class I> struct BoundFunc4 : public BoundFunc<P2> { typedef BoundFunc<P2> Base; typedef I FuncInfo; explicit BoundFunc4(typename Base::MutableP2 arg) : Base(arg) {} }; template <class R, class P1, class P2, class P3, class P4, class P5, R F(P1, P2, P3, P4, P5), class I> struct BoundFunc5 : public BoundFunc<P2> { typedef BoundFunc<P2> Base; typedef I FuncInfo; explicit BoundFunc5(typename Base::MutableP2 arg) : Base(arg) {} }; /* FuncSig ********************************************************************/ /* FuncSig1, FuncSig2, FuncSig3: template classes reflecting a function * *signature*, but without a specific function attached. * * These classes contain member functions that can be invoked with a * specific function to return a Func/BoundFunc class. */ template <class R, class P1> struct FuncSig1 { template <R F(P1)> Func1<R, P1, F, FuncInfo<P1, R> > GetFunc() { return Func1<R, P1, F, FuncInfo<P1, R> >(); } }; template <class R, class P1, class P2> struct FuncSig2 { template <R F(P1, P2)> Func2<R, P1, P2, F, FuncInfo<P1, R> > GetFunc() { return Func2<R, P1, P2, F, FuncInfo<P1, R> >(); } template <R F(P1, P2)> BoundFunc2<R, P1, P2, F, FuncInfo<P1, R> > GetFunc( typename remove_constptr<P2>::type param2) { return BoundFunc2<R, P1, P2, F, FuncInfo<P1, R> >(param2); } }; template <class R, class P1, class P2, class P3> struct FuncSig3 { template <R F(P1, P2, P3)> Func3<R, P1, P2, P3, F, FuncInfo<P1, R> > GetFunc() { return Func3<R, P1, P2, P3, F, FuncInfo<P1, R> >(); } template <R F(P1, P2, P3)> BoundFunc3<R, P1, P2, P3, F, FuncInfo<P1, R> > GetFunc( typename remove_constptr<P2>::type param2) { return BoundFunc3<R, P1, P2, P3, F, FuncInfo<P1, R> >(param2); } }; template <class R, class P1, class P2, class P3, class P4> struct FuncSig4 { template <R F(P1, P2, P3, P4)> Func4<R, P1, P2, P3, P4, F, FuncInfo<P1, R> > GetFunc() { return Func4<R, P1, P2, P3, P4, F, FuncInfo<P1, R> >(); } template <R F(P1, P2, P3, P4)> BoundFunc4<R, P1, P2, P3, P4, F, FuncInfo<P1, R> > GetFunc( typename remove_constptr<P2>::type param2) { return BoundFunc4<R, P1, P2, P3, P4, F, FuncInfo<P1, R> >(param2); } }; template <class R, class P1, class P2, class P3, class P4, class P5> struct FuncSig5 { template <R F(P1, P2, P3, P4, P5)> Func5<R, P1, P2, P3, P4, P5, F, FuncInfo<P1, R> > GetFunc() { return Func5<R, P1, P2, P3, P4, P5, F, FuncInfo<P1, R> >(); } template <R F(P1, P2, P3, P4, P5)> BoundFunc5<R, P1, P2, P3, P4, P5, F, FuncInfo<P1, R> > GetFunc( typename remove_constptr<P2>::type param2) { return BoundFunc5<R, P1, P2, P3, P4, P5, F, FuncInfo<P1, R> >(param2); } }; /* Overloaded template function that can construct the appropriate FuncSig* * class given a function pointer by deducing the template parameters. */ template <class R, class P1> inline FuncSig1<R, P1> MatchFunc(R (*f)(P1)) { UPB_UNUSED(f); /* Only used for template parameter deduction. */ return FuncSig1<R, P1>(); } template <class R, class P1, class P2> inline FuncSig2<R, P1, P2> MatchFunc(R (*f)(P1, P2)) { UPB_UNUSED(f); /* Only used for template parameter deduction. */ return FuncSig2<R, P1, P2>(); } template <class R, class P1, class P2, class P3> inline FuncSig3<R, P1, P2, P3> MatchFunc(R (*f)(P1, P2, P3)) { UPB_UNUSED(f); /* Only used for template parameter deduction. */ return FuncSig3<R, P1, P2, P3>(); } template <class R, class P1, class P2, class P3, class P4> inline FuncSig4<R, P1, P2, P3, P4> MatchFunc(R (*f)(P1, P2, P3, P4)) { UPB_UNUSED(f); /* Only used for template parameter deduction. */ return FuncSig4<R, P1, P2, P3, P4>(); } template <class R, class P1, class P2, class P3, class P4, class P5> inline FuncSig5<R, P1, P2, P3, P4, P5> MatchFunc(R (*f)(P1, P2, P3, P4, P5)) { UPB_UNUSED(f); /* Only used for template parameter deduction. */ return FuncSig5<R, P1, P2, P3, P4, P5>(); } /* MethodSig ******************************************************************/ /* CallMethod*: a function template that calls a given method. */ template <class R, class C, R (C::*F)()> R CallMethod0(C *obj) { return ((*obj).*F)(); } template <class R, class C, class P1, R (C::*F)(P1)> R CallMethod1(C *obj, P1 arg1) { return ((*obj).*F)(arg1); } template <class R, class C, class P1, class P2, R (C::*F)(P1, P2)> R CallMethod2(C *obj, P1 arg1, P2 arg2) { return ((*obj).*F)(arg1, arg2); } template <class R, class C, class P1, class P2, class P3, R (C::*F)(P1, P2, P3)> R CallMethod3(C *obj, P1 arg1, P2 arg2, P3 arg3) { return ((*obj).*F)(arg1, arg2, arg3); } template <class R, class C, class P1, class P2, class P3, class P4, R (C::*F)(P1, P2, P3, P4)> R CallMethod4(C *obj, P1 arg1, P2 arg2, P3 arg3, P4 arg4) { return ((*obj).*F)(arg1, arg2, arg3, arg4); } /* MethodSig: like FuncSig, but for member functions. * * GetFunc() returns a normal FuncN object, so after calling GetFunc() no * more logic is required to special-case methods. */ template <class R, class C> struct MethodSig0 { template <R (C::*F)()> Func1<R, C *, CallMethod0<R, C, F>, FuncInfo<C *, R> > GetFunc() { return Func1<R, C *, CallMethod0<R, C, F>, FuncInfo<C *, R> >(); } }; template <class R, class C, class P1> struct MethodSig1 { template <R (C::*F)(P1)> Func2<R, C *, P1, CallMethod1<R, C, P1, F>, FuncInfo<C *, R> > GetFunc() { return Func2<R, C *, P1, CallMethod1<R, C, P1, F>, FuncInfo<C *, R> >(); } template <R (C::*F)(P1)> BoundFunc2<R, C *, P1, CallMethod1<R, C, P1, F>, FuncInfo<C *, R> > GetFunc( typename remove_constptr<P1>::type param1) { return BoundFunc2<R, C *, P1, CallMethod1<R, C, P1, F>, FuncInfo<C *, R> >( param1); } }; template <class R, class C, class P1, class P2> struct MethodSig2 { template <R (C::*F)(P1, P2)> Func3<R, C *, P1, P2, CallMethod2<R, C, P1, P2, F>, FuncInfo<C *, R> > GetFunc() { return Func3<R, C *, P1, P2, CallMethod2<R, C, P1, P2, F>, FuncInfo<C *, R> >(); } template <R (C::*F)(P1, P2)> BoundFunc3<R, C *, P1, P2, CallMethod2<R, C, P1, P2, F>, FuncInfo<C *, R> > GetFunc(typename remove_constptr<P1>::type param1) { return BoundFunc3<R, C *, P1, P2, CallMethod2<R, C, P1, P2, F>, FuncInfo<C *, R> >(param1); } }; template <class R, class C, class P1, class P2, class P3> struct MethodSig3 { template <R (C::*F)(P1, P2, P3)> Func4<R, C *, P1, P2, P3, CallMethod3<R, C, P1, P2, P3, F>, FuncInfo<C *, R> > GetFunc() { return Func4<R, C *, P1, P2, P3, CallMethod3<R, C, P1, P2, P3, F>, FuncInfo<C *, R> >(); } template <R (C::*F)(P1, P2, P3)> BoundFunc4<R, C *, P1, P2, P3, CallMethod3<R, C, P1, P2, P3, F>, FuncInfo<C *, R> > GetFunc(typename remove_constptr<P1>::type param1) { return BoundFunc4<R, C *, P1, P2, P3, CallMethod3<R, C, P1, P2, P3, F>, FuncInfo<C *, R> >(param1); } }; template <class R, class C, class P1, class P2, class P3, class P4> struct MethodSig4 { template <R (C::*F)(P1, P2, P3, P4)> Func5<R, C *, P1, P2, P3, P4, CallMethod4<R, C, P1, P2, P3, P4, F>, FuncInfo<C *, R> > GetFunc() { return Func5<R, C *, P1, P2, P3, P4, CallMethod4<R, C, P1, P2, P3, P4, F>, FuncInfo<C *, R> >(); } template <R (C::*F)(P1, P2, P3, P4)> BoundFunc5<R, C *, P1, P2, P3, P4, CallMethod4<R, C, P1, P2, P3, P4, F>, FuncInfo<C *, R> > GetFunc(typename remove_constptr<P1>::type param1) { return BoundFunc5<R, C *, P1, P2, P3, P4, CallMethod4<R, C, P1, P2, P3, P4, F>, FuncInfo<C *, R> >( param1); } }; template <class R, class C> inline MethodSig0<R, C> MatchFunc(R (C::*f)()) { UPB_UNUSED(f); /* Only used for template parameter deduction. */ return MethodSig0<R, C>(); } template <class R, class C, class P1> inline MethodSig1<R, C, P1> MatchFunc(R (C::*f)(P1)) { UPB_UNUSED(f); /* Only used for template parameter deduction. */ return MethodSig1<R, C, P1>(); } template <class R, class C, class P1, class P2> inline MethodSig2<R, C, P1, P2> MatchFunc(R (C::*f)(P1, P2)) { UPB_UNUSED(f); /* Only used for template parameter deduction. */ return MethodSig2<R, C, P1, P2>(); } template <class R, class C, class P1, class P2, class P3> inline MethodSig3<R, C, P1, P2, P3> MatchFunc(R (C::*f)(P1, P2, P3)) { UPB_UNUSED(f); /* Only used for template parameter deduction. */ return MethodSig3<R, C, P1, P2, P3>(); } template <class R, class C, class P1, class P2, class P3, class P4> inline MethodSig4<R, C, P1, P2, P3, P4> MatchFunc(R (C::*f)(P1, P2, P3, P4)) { UPB_UNUSED(f); /* Only used for template parameter deduction. */ return MethodSig4<R, C, P1, P2, P3, P4>(); } /* MaybeWrapReturn ************************************************************/ /* Template class that attempts to wrap the return value of the function so it * matches the expected type. There are two main adjustments it may make: * * 1. If the function returns void, make it return the expected type and with * a value that always indicates success. * 2. If the function returns bool, make it return the expected type with a * value that indicates success or failure. * * The "expected type" for return is: * 1. void* for start handlers. If the closure parameter has a different type * we will cast it to void* for the return in the success case. * 2. size_t for string buffer handlers. * 3. bool for everything else. */ /* Template parameters are FuncN type and desired return type. */ template <class F, class R, class Enable = void> struct MaybeWrapReturn; /* If the return type matches, return the given function unwrapped. */ template <class F> struct MaybeWrapReturn<F, typename F::Return> { typedef F Func; }; /* Function wrapper that munges the return value from void to (bool)true. */ template <class P1, class P2, void F(P1, P2)> bool ReturnTrue2(P1 p1, P2 p2) { F(p1, p2); return true; } template <class P1, class P2, class P3, void F(P1, P2, P3)> bool ReturnTrue3(P1 p1, P2 p2, P3 p3) { F(p1, p2, p3); return true; } /* Function wrapper that munges the return value from void to (void*)arg1 */ template <class P1, class P2, void F(P1, P2)> void *ReturnClosure2(P1 p1, P2 p2) { F(p1, p2); return p1; } template <class P1, class P2, class P3, void F(P1, P2, P3)> void *ReturnClosure3(P1 p1, P2 p2, P3 p3) { F(p1, p2, p3); return p1; } /* Function wrapper that munges the return value from R to void*. */ template <class R, class P1, class P2, R F(P1, P2)> void *CastReturnToVoidPtr2(P1 p1, P2 p2) { return F(p1, p2); } template <class R, class P1, class P2, class P3, R F(P1, P2, P3)> void *CastReturnToVoidPtr3(P1 p1, P2 p2, P3 p3) { return F(p1, p2, p3); } /* Function wrapper that munges the return value from bool to void*. */ template <class P1, class P2, bool F(P1, P2)> void *ReturnClosureOrBreak2(P1 p1, P2 p2) { return F(p1, p2) ? p1 : UPB_BREAK; } template <class P1, class P2, class P3, bool F(P1, P2, P3)> void *ReturnClosureOrBreak3(P1 p1, P2 p2, P3 p3) { return F(p1, p2, p3) ? p1 : UPB_BREAK; } /* For the string callback, which takes five params, returns the size param. */ template <class P1, class P2, void F(P1, P2, const char *, size_t, const BufferHandle *)> size_t ReturnStringLen(P1 p1, P2 p2, const char *p3, size_t p4, const BufferHandle *p5) { F(p1, p2, p3, p4, p5); return p4; } /* For the string callback, which takes five params, returns the size param or * zero. */ template <class P1, class P2, bool F(P1, P2, const char *, size_t, const BufferHandle *)> size_t ReturnNOr0(P1 p1, P2 p2, const char *p3, size_t p4, const BufferHandle *p5) { return F(p1, p2, p3, p4, p5) ? p4 : 0; } /* If we have a function returning void but want a function returning bool, wrap * it in a function that returns true. */ template <class P1, class P2, void F(P1, P2), class I> struct MaybeWrapReturn<Func2<void, P1, P2, F, I>, bool> { typedef Func2<bool, P1, P2, ReturnTrue2<P1, P2, F>, I> Func; }; template <class P1, class P2, class P3, void F(P1, P2, P3), class I> struct MaybeWrapReturn<Func3<void, P1, P2, P3, F, I>, bool> { typedef Func3<bool, P1, P2, P3, ReturnTrue3<P1, P2, P3, F>, I> Func; }; /* If our function returns void but we want one returning void*, wrap it in a * function that returns the first argument. */ template <class P1, class P2, void F(P1, P2), class I> struct MaybeWrapReturn<Func2<void, P1, P2, F, I>, void *> { typedef Func2<void *, P1, P2, ReturnClosure2<P1, P2, F>, I> Func; }; template <class P1, class P2, class P3, void F(P1, P2, P3), class I> struct MaybeWrapReturn<Func3<void, P1, P2, P3, F, I>, void *> { typedef Func3<void *, P1, P2, P3, ReturnClosure3<P1, P2, P3, F>, I> Func; }; /* If our function returns R* but we want one returning void*, wrap it in a * function that casts to void*. */ template <class R, class P1, class P2, R *F(P1, P2), class I> struct MaybeWrapReturn<Func2<R *, P1, P2, F, I>, void *, typename disable_if_same<R *, void *>::Type> { typedef Func2<void *, P1, P2, CastReturnToVoidPtr2<R *, P1, P2, F>, I> Func; }; template <class R, class P1, class P2, class P3, R *F(P1, P2, P3), class I> struct MaybeWrapReturn<Func3<R *, P1, P2, P3, F, I>, void *, typename disable_if_same<R *, void *>::Type> { typedef Func3<void *, P1, P2, P3, CastReturnToVoidPtr3<R *, P1, P2, P3, F>, I> Func; }; /* If our function returns bool but we want one returning void*, wrap it in a * function that returns either the first param or UPB_BREAK. */ template <class P1, class P2, bool F(P1, P2), class I> struct MaybeWrapReturn<Func2<bool, P1, P2, F, I>, void *> { typedef Func2<void *, P1, P2, ReturnClosureOrBreak2<P1, P2, F>, I> Func; }; template <class P1, class P2, class P3, bool F(P1, P2, P3), class I> struct MaybeWrapReturn<Func3<bool, P1, P2, P3, F, I>, void *> { typedef Func3<void *, P1, P2, P3, ReturnClosureOrBreak3<P1, P2, P3, F>, I> Func; }; /* If our function returns void but we want one returning size_t, wrap it in a * function that returns the size argument. */ template <class P1, class P2, void F(P1, P2, const char *, size_t, const BufferHandle *), class I> struct MaybeWrapReturn< Func5<void, P1, P2, const char *, size_t, const BufferHandle *, F, I>, size_t> { typedef Func5<size_t, P1, P2, const char *, size_t, const BufferHandle *, ReturnStringLen<P1, P2, F>, I> Func; }; /* If our function returns bool but we want one returning size_t, wrap it in a * function that returns either 0 or the buf size. */ template <class P1, class P2, bool F(P1, P2, const char *, size_t, const BufferHandle *), class I> struct MaybeWrapReturn< Func5<bool, P1, P2, const char *, size_t, const BufferHandle *, F, I>, size_t> { typedef Func5<size_t, P1, P2, const char *, size_t, const BufferHandle *, ReturnNOr0<P1, P2, F>, I> Func; }; /* ConvertParams **************************************************************/ /* Template class that converts the function parameters if necessary, and * ignores the HandlerData parameter if appropriate. * * Template parameter is the are FuncN function type. */ template <class F, class T> struct ConvertParams; /* Function that discards the handler data parameter. */ template <class R, class P1, R F(P1)> R IgnoreHandlerData2(void *p1, const void *hd) { UPB_UNUSED(hd); return F(static_cast<P1>(p1)); } template <class R, class P1, class P2Wrapper, class P2Wrapped, R F(P1, P2Wrapped)> R IgnoreHandlerData3(void *p1, const void *hd, P2Wrapper p2) { UPB_UNUSED(hd); return F(static_cast<P1>(p1), p2); } template <class R, class P1, class P2, class P3, R F(P1, P2, P3)> R IgnoreHandlerData4(void *p1, const void *hd, P2 p2, P3 p3) { UPB_UNUSED(hd); return F(static_cast<P1>(p1), p2, p3); } template <class R, class P1, class P2, class P3, class P4, R F(P1, P2, P3, P4)> R IgnoreHandlerData5(void *p1, const void *hd, P2 p2, P3 p3, P4 p4) { UPB_UNUSED(hd); return F(static_cast<P1>(p1), p2, p3, p4); } template <class R, class P1, R F(P1, const char*, size_t)> R IgnoreHandlerDataIgnoreHandle(void *p1, const void *hd, const char *p2, size_t p3, const BufferHandle *handle) { UPB_UNUSED(hd); UPB_UNUSED(handle); return F(static_cast<P1>(p1), p2, p3); } /* Function that casts the handler data parameter. */ template <class R, class P1, class P2, R F(P1, P2)> R CastHandlerData2(void *c, const void *hd) { return F(static_cast<P1>(c), static_cast<P2>(hd)); } template <class R, class P1, class P2, class P3Wrapper, class P3Wrapped, R F(P1, P2, P3Wrapped)> R CastHandlerData3(void *c, const void *hd, P3Wrapper p3) { return F(static_cast<P1>(c), static_cast<P2>(hd), p3); } template <class R, class P1, class P2, class P3, class P4, class P5, R F(P1, P2, P3, P4, P5)> R CastHandlerData5(void *c, const void *hd, P3 p3, P4 p4, P5 p5) { return F(static_cast<P1>(c), static_cast<P2>(hd), p3, p4, p5); } template <class R, class P1, class P2, R F(P1, P2, const char *, size_t)> R CastHandlerDataIgnoreHandle(void *c, const void *hd, const char *p3, size_t p4, const BufferHandle *handle) { UPB_UNUSED(handle); return F(static_cast<P1>(c), static_cast<P2>(hd), p3, p4); } /* For unbound functions, ignore the handler data. */ template <class R, class P1, R F(P1), class I, class T> struct ConvertParams<Func1<R, P1, F, I>, T> { typedef Func2<R, void *, const void *, IgnoreHandlerData2<R, P1, F>, I> Func; }; template <class R, class P1, class P2, R F(P1, P2), class I, class R2, class P1_2, class P2_2, class P3_2> struct ConvertParams<Func2<R, P1, P2, F, I>, R2 (*)(P1_2, P2_2, P3_2)> { typedef Func3<R, void *, const void *, P3_2, IgnoreHandlerData3<R, P1, P3_2, P2, F>, I> Func; }; /* For StringBuffer only; this ignores both the handler data and the * BufferHandle. */ template <class R, class P1, R F(P1, const char *, size_t), class I, class T> struct ConvertParams<Func3<R, P1, const char *, size_t, F, I>, T> { typedef Func5<R, void *, const void *, const char *, size_t, const BufferHandle *, IgnoreHandlerDataIgnoreHandle<R, P1, F>, I> Func; }; template <class R, class P1, class P2, class P3, class P4, R F(P1, P2, P3, P4), class I, class T> struct ConvertParams<Func4<R, P1, P2, P3, P4, F, I>, T> { typedef Func5<R, void *, const void *, P2, P3, P4, IgnoreHandlerData5<R, P1, P2, P3, P4, F>, I> Func; }; /* For bound functions, cast the handler data. */ template <class R, class P1, class P2, R F(P1, P2), class I, class T> struct ConvertParams<BoundFunc2<R, P1, P2, F, I>, T> { typedef Func2<R, void *, const void *, CastHandlerData2<R, P1, P2, F>, I> Func; }; template <class R, class P1, class P2, class P3, R F(P1, P2, P3), class I, class R2, class P1_2, class P2_2, class P3_2> struct ConvertParams<BoundFunc3<R, P1, P2, P3, F, I>, R2 (*)(P1_2, P2_2, P3_2)> { typedef Func3<R, void *, const void *, P3_2, CastHandlerData3<R, P1, P2, P3_2, P3, F>, I> Func; }; /* For StringBuffer only; this ignores the BufferHandle. */ template <class R, class P1, class P2, R F(P1, P2, const char *, size_t), class I, class T> struct ConvertParams<BoundFunc4<R, P1, P2, const char *, size_t, F, I>, T> { typedef Func5<R, void *, const void *, const char *, size_t, const BufferHandle *, CastHandlerDataIgnoreHandle<R, P1, P2, F>, I> Func; }; template <class R, class P1, class P2, class P3, class P4, class P5, R F(P1, P2, P3, P4, P5), class I, class T> struct ConvertParams<BoundFunc5<R, P1, P2, P3, P4, P5, F, I>, T> { typedef Func5<R, void *, const void *, P3, P4, P5, CastHandlerData5<R, P1, P2, P3, P4, P5, F>, I> Func; }; /* utype/ltype are upper/lower-case, ctype is canonical C type, vtype is * variant C type. */ #define TYPE_METHODS(utype, ltype, ctype, vtype) \ template <> struct CanonicalType<vtype> { \ typedef ctype Type; \ }; \ template <> \ inline bool Handlers::SetValueHandler<vtype>( \ const FieldDef *f, \ const Handlers::utype ## Handler& handler) { \ assert(!handler.registered_); \ handler.AddCleanup(this); \ handler.registered_ = true; \ return upb_handlers_set##ltype(this, f, handler.handler_, &handler.attr_); \ } \ TYPE_METHODS(Double, double, double, double) TYPE_METHODS(Float, float, float, float) TYPE_METHODS(UInt64, uint64, uint64_t, UPB_UINT64_T) TYPE_METHODS(UInt32, uint32, uint32_t, UPB_UINT32_T) TYPE_METHODS(Int64, int64, int64_t, UPB_INT64_T) TYPE_METHODS(Int32, int32, int32_t, UPB_INT32_T) TYPE_METHODS(Bool, bool, bool, bool) #ifdef UPB_TWO_32BIT_TYPES TYPE_METHODS(Int32, int32, int32_t, UPB_INT32ALT_T) TYPE_METHODS(UInt32, uint32, uint32_t, UPB_UINT32ALT_T) #endif #ifdef UPB_TWO_64BIT_TYPES TYPE_METHODS(Int64, int64, int64_t, UPB_INT64ALT_T) TYPE_METHODS(UInt64, uint64, uint64_t, UPB_UINT64ALT_T) #endif #undef TYPE_METHODS template <> struct CanonicalType<Status*> { typedef Status* Type; }; /* Type methods that are only one-per-canonical-type and not * one-per-cvariant. */ #define TYPE_METHODS(utype, ctype) \ inline bool Handlers::Set##utype##Handler(const FieldDef *f, \ const utype##Handler &h) { \ return SetValueHandler<ctype>(f, h); \ } \ TYPE_METHODS(Double, double) TYPE_METHODS(Float, float) TYPE_METHODS(UInt64, uint64_t) TYPE_METHODS(UInt32, uint32_t) TYPE_METHODS(Int64, int64_t) TYPE_METHODS(Int32, int32_t) TYPE_METHODS(Bool, bool) #undef TYPE_METHODS template <class F> struct ReturnOf; template <class R, class P1, class P2> struct ReturnOf<R (*)(P1, P2)> { typedef R Return; }; template <class R, class P1, class P2, class P3> struct ReturnOf<R (*)(P1, P2, P3)> { typedef R Return; }; template <class R, class P1, class P2, class P3, class P4> struct ReturnOf<R (*)(P1, P2, P3, P4)> { typedef R Return; }; template <class R, class P1, class P2, class P3, class P4, class P5> struct ReturnOf<R (*)(P1, P2, P3, P4, P5)> { typedef R Return; }; template<class T> const void *UniquePtrForType() { static const char ch = 0; return &ch; } template <class T> template <class F> inline Handler<T>::Handler(F func) : registered_(false), cleanup_data_(func.GetData()), cleanup_func_(func.GetCleanup()) { upb_handlerattr_sethandlerdata(&attr_, func.GetData()); typedef typename ReturnOf<T>::Return Return; typedef typename ConvertParams<F, T>::Func ConvertedParamsFunc; typedef typename MaybeWrapReturn<ConvertedParamsFunc, Return>::Func ReturnWrappedFunc; handler_ = ReturnWrappedFunc().Call; /* Set attributes based on what templates can statically tell us about the * user's function. */ /* If the original function returns void, then we know that we wrapped it to * always return ok. */ bool always_ok = is_same<typename F::FuncInfo::Return, void>::value; attr_.SetAlwaysOk(always_ok); /* Closure parameter and return type. */ attr_.SetClosureType(UniquePtrForType<typename F::FuncInfo::Closure>()); /* We use the closure type (from the first parameter) if the return type is * void or bool, since these are the two cases we wrap to return the closure's * type anyway. * * This is all nonsense for non START* handlers, but it doesn't matter because * in that case the value will be ignored. */ typedef typename FirstUnlessVoidOrBool<typename F::FuncInfo::Return, typename F::FuncInfo::Closure>::value EffectiveReturn; attr_.SetReturnClosureType(UniquePtrForType<EffectiveReturn>()); } template <class T> inline Handler<T>::~Handler() { assert(registered_); } inline HandlerAttributes::HandlerAttributes() { upb_handlerattr_init(this); } inline HandlerAttributes::~HandlerAttributes() { upb_handlerattr_uninit(this); } inline bool HandlerAttributes::SetHandlerData(const void *hd) { return upb_handlerattr_sethandlerdata(this, hd); } inline const void* HandlerAttributes::handler_data() const { return upb_handlerattr_handlerdata(this); } inline bool HandlerAttributes::SetClosureType(const void *type) { return upb_handlerattr_setclosuretype(this, type); } inline const void* HandlerAttributes::closure_type() const { return upb_handlerattr_closuretype(this); } inline bool HandlerAttributes::SetReturnClosureType(const void *type) { return upb_handlerattr_setreturnclosuretype(this, type); } inline const void* HandlerAttributes::return_closure_type() const { return upb_handlerattr_returnclosuretype(this); } inline bool HandlerAttributes::SetAlwaysOk(bool always_ok) { return upb_handlerattr_setalwaysok(this, always_ok); } inline bool HandlerAttributes::always_ok() const { return upb_handlerattr_alwaysok(this); } inline BufferHandle::BufferHandle() { upb_bufhandle_init(this); } inline BufferHandle::~BufferHandle() { upb_bufhandle_uninit(this); } inline const char* BufferHandle::buffer() const { return upb_bufhandle_buf(this); } inline size_t BufferHandle::object_offset() const { return upb_bufhandle_objofs(this); } inline void BufferHandle::SetBuffer(const char* buf, size_t ofs) { upb_bufhandle_setbuf(this, buf, ofs); } template <class T> void BufferHandle::SetAttachedObject(const T* obj) { upb_bufhandle_setobj(this, obj, UniquePtrForType<T>()); } template <class T> const T* BufferHandle::GetAttachedObject() const { return upb_bufhandle_objtype(this) == UniquePtrForType<T>() ? static_cast<const T *>(upb_bufhandle_obj(this)) : NULL; } inline reffed_ptr<Handlers> Handlers::New(const MessageDef *m) { upb_handlers *h = upb_handlers_new(m, &h); return reffed_ptr<Handlers>(h, &h); } inline reffed_ptr<const Handlers> Handlers::NewFrozen( const MessageDef *m, upb_handlers_callback *callback, const void *closure) { const upb_handlers *h = upb_handlers_newfrozen(m, &h, callback, closure); return reffed_ptr<const Handlers>(h, &h); } inline const Status* Handlers::status() { return upb_handlers_status(this); } inline void Handlers::ClearError() { return upb_handlers_clearerr(this); } inline bool Handlers::Freeze(Status *s) { upb::Handlers* h = this; return upb_handlers_freeze(&h, 1, s); } inline bool Handlers::Freeze(Handlers *const *handlers, int n, Status *s) { return upb_handlers_freeze(handlers, n, s); } inline bool Handlers::Freeze(const std::vector<Handlers*>& h, Status* status) { return upb_handlers_freeze((Handlers* const*)&h[0], h.size(), status); } inline const MessageDef *Handlers::message_def() const { return upb_handlers_msgdef(this); } inline bool Handlers::AddCleanup(void *p, upb_handlerfree *func) { return upb_handlers_addcleanup(this, p, func); } inline bool Handlers::SetStartMessageHandler( const Handlers::StartMessageHandler &handler) { assert(!handler.registered_); handler.registered_ = true; handler.AddCleanup(this); return upb_handlers_setstartmsg(this, handler.handler_, &handler.attr_); } inline bool Handlers::SetEndMessageHandler( const Handlers::EndMessageHandler &handler) { assert(!handler.registered_); handler.registered_ = true; handler.AddCleanup(this); return upb_handlers_setendmsg(this, handler.handler_, &handler.attr_); } inline bool Handlers::SetStartStringHandler(const FieldDef *f, const StartStringHandler &handler) { assert(!handler.registered_); handler.registered_ = true; handler.AddCleanup(this); return upb_handlers_setstartstr(this, f, handler.handler_, &handler.attr_); } inline bool Handlers::SetEndStringHandler(const FieldDef *f, const EndFieldHandler &handler) { assert(!handler.registered_); handler.registered_ = true; handler.AddCleanup(this); return upb_handlers_setendstr(this, f, handler.handler_, &handler.attr_); } inline bool Handlers::SetStringHandler(const FieldDef *f, const StringHandler& handler) { assert(!handler.registered_); handler.registered_ = true; handler.AddCleanup(this); return upb_handlers_setstring(this, f, handler.handler_, &handler.attr_); } inline bool Handlers::SetStartSequenceHandler( const FieldDef *f, const StartFieldHandler &handler) { assert(!handler.registered_); handler.registered_ = true; handler.AddCleanup(this); return upb_handlers_setstartseq(this, f, handler.handler_, &handler.attr_); } inline bool Handlers::SetStartSubMessageHandler( const FieldDef *f, const StartFieldHandler &handler) { assert(!handler.registered_); handler.registered_ = true; handler.AddCleanup(this); return upb_handlers_setstartsubmsg(this, f, handler.handler_, &handler.attr_); } inline bool Handlers::SetEndSubMessageHandler(const FieldDef *f, const EndFieldHandler &handler) { assert(!handler.registered_); handler.registered_ = true; handler.AddCleanup(this); return upb_handlers_setendsubmsg(this, f, handler.handler_, &handler.attr_); } inline bool Handlers::SetEndSequenceHandler(const FieldDef *f, const EndFieldHandler &handler) { assert(!handler.registered_); handler.registered_ = true; handler.AddCleanup(this); return upb_handlers_setendseq(this, f, handler.handler_, &handler.attr_); } inline bool Handlers::SetSubHandlers(const FieldDef *f, const Handlers *sub) { return upb_handlers_setsubhandlers(this, f, sub); } inline const Handlers *Handlers::GetSubHandlers(const FieldDef *f) const { return upb_handlers_getsubhandlers(this, f); } inline const Handlers *Handlers::GetSubHandlers(Handlers::Selector sel) const { return upb_handlers_getsubhandlers_sel(this, sel); } inline bool Handlers::GetSelector(const FieldDef *f, Handlers::Type type, Handlers::Selector *s) { return upb_handlers_getselector(f, type, s); } inline Handlers::Selector Handlers::GetEndSelector(Handlers::Selector start) { return upb_handlers_getendselector(start); } inline Handlers::GenericFunction *Handlers::GetHandler( Handlers::Selector selector) { return upb_handlers_gethandler(this, selector); } inline const void *Handlers::GetHandlerData(Handlers::Selector selector) { return upb_handlers_gethandlerdata(this, selector); } inline BytesHandler::BytesHandler() { upb_byteshandler_init(this); } inline BytesHandler::~BytesHandler() {} } /* namespace upb */ #endif /* __cplusplus */ #undef UPB_TWO_32BIT_TYPES #undef UPB_TWO_64BIT_TYPES #undef UPB_INT32_T #undef UPB_UINT32_T #undef UPB_INT32ALT_T #undef UPB_UINT32ALT_T #undef UPB_INT64_T #undef UPB_UINT64_T #undef UPB_INT64ALT_T #undef UPB_UINT64ALT_T #endif /* UPB_HANDLERS_INL_H_ */ #endif /* UPB_HANDLERS_H */ /* ** upb::Sink (upb_sink) ** upb::BytesSink (upb_bytessink) ** ** A upb_sink is an object that binds a upb_handlers object to some runtime ** state. It is the object that can actually receive data via the upb_handlers ** interface. ** ** Unlike upb_def and upb_handlers, upb_sink is never frozen, immutable, or ** thread-safe. You can create as many of them as you want, but each one may ** only be used in a single thread at a time. ** ** If we compare with class-based OOP, a you can think of a upb_def as an ** abstract base class, a upb_handlers as a concrete derived class, and a ** upb_sink as an object (class instance). */ #ifndef UPB_SINK_H #define UPB_SINK_H #ifdef __cplusplus namespace upb { class BufferSource; class BytesSink; class Sink; } #endif UPB_DECLARE_TYPE(upb::BufferSource, upb_bufsrc) UPB_DECLARE_TYPE(upb::BytesSink, upb_bytessink) UPB_DECLARE_TYPE(upb::Sink, upb_sink) #ifdef __cplusplus /* A upb::Sink is an object that binds a upb::Handlers object to some runtime * state. It represents an endpoint to which data can be sent. * * TODO(haberman): right now all of these functions take selectors. Should they * take selectorbase instead? * * ie. instead of calling: * sink->StartString(FOO_FIELD_START_STRING, ...) * a selector base would let you say: * sink->StartString(FOO_FIELD, ...) * * This would make call sites a little nicer and require emitting fewer selector * definitions in .h files. * * But the current scheme has the benefit that you can retrieve a function * pointer for any handler with handlers->GetHandler(selector), without having * to have a separate GetHandler() function for each handler type. The JIT * compiler uses this. To accommodate we'd have to expose a separate * GetHandler() for every handler type. * * Also to ponder: selectors right now are independent of a specific Handlers * instance. In other words, they allocate a number to every possible handler * that *could* be registered, without knowing anything about what handlers * *are* registered. That means that using selectors as table offsets prohibits * us from compacting the handler table at Freeze() time. If the table is very * sparse, this could be wasteful. * * Having another selector-like thing that is specific to a Handlers instance * would allow this compacting, but then it would be impossible to write code * ahead-of-time that can be bound to any Handlers instance at runtime. For * example, a .proto file parser written as straight C will not know what * Handlers it will be bound to, so when it calls sink->StartString() what * selector will it pass? It needs a selector like we have today, that is * independent of any particular upb::Handlers. * * Is there a way then to allow Handlers table compaction? */ class upb::Sink { public: /* Constructor with no initialization; must be Reset() before use. */ Sink() {} /* Constructs a new sink for the given frozen handlers and closure. * * TODO: once the Handlers know the expected closure type, verify that T * matches it. */ template <class T> Sink(const Handlers* handlers, T* closure); /* Resets the value of the sink. */ template <class T> void Reset(const Handlers* handlers, T* closure); /* Returns the top-level object that is bound to this sink. * * TODO: once the Handlers know the expected closure type, verify that T * matches it. */ template <class T> T* GetObject() const; /* Functions for pushing data into the sink. * * These return false if processing should stop (either due to error or just * to suspend). * * These may not be called from within one of the same sink's handlers (in * other words, handlers are not re-entrant). */ /* Should be called at the start and end of every message; both the top-level * message and submessages. This means that submessages should use the * following sequence: * sink->StartSubMessage(startsubmsg_selector); * sink->StartMessage(); * // ... * sink->EndMessage(&status); * sink->EndSubMessage(endsubmsg_selector); */ bool StartMessage(); bool EndMessage(Status* status); /* Putting of individual values. These work for both repeated and * non-repeated fields, but for repeated fields you must wrap them in * calls to StartSequence()/EndSequence(). */ bool PutInt32(Handlers::Selector s, int32_t val); bool PutInt64(Handlers::Selector s, int64_t val); bool PutUInt32(Handlers::Selector s, uint32_t val); bool PutUInt64(Handlers::Selector s, uint64_t val); bool PutFloat(Handlers::Selector s, float val); bool PutDouble(Handlers::Selector s, double val); bool PutBool(Handlers::Selector s, bool val); /* Putting of string/bytes values. Each string can consist of zero or more * non-contiguous buffers of data. * * For StartString(), the function will write a sink for the string to "sub." * The sub-sink must be used for any/all PutStringBuffer() calls. */ bool StartString(Handlers::Selector s, size_t size_hint, Sink* sub); size_t PutStringBuffer(Handlers::Selector s, const char *buf, size_t len, const BufferHandle *handle); bool EndString(Handlers::Selector s); /* For submessage fields. * * For StartSubMessage(), the function will write a sink for the string to * "sub." The sub-sink must be used for any/all handlers called within the * submessage. */ bool StartSubMessage(Handlers::Selector s, Sink* sub); bool EndSubMessage(Handlers::Selector s); /* For repeated fields of any type, the sequence of values must be wrapped in * these calls. * * For StartSequence(), the function will write a sink for the string to * "sub." The sub-sink must be used for any/all handlers called within the * sequence. */ bool StartSequence(Handlers::Selector s, Sink* sub); bool EndSequence(Handlers::Selector s); /* Copy and assign specifically allowed. * We don't even bother making these members private because so many * functions need them and this is mainly just a dumb data container anyway. */ #else struct upb_sink { #endif const upb_handlers *handlers; void *closure; }; #ifdef __cplusplus class upb::BytesSink { public: BytesSink() {} /* Constructs a new sink for the given frozen handlers and closure. * * TODO(haberman): once the Handlers know the expected closure type, verify * that T matches it. */ template <class T> BytesSink(const BytesHandler* handler, T* closure); /* Resets the value of the sink. */ template <class T> void Reset(const BytesHandler* handler, T* closure); bool Start(size_t size_hint, void **subc); size_t PutBuffer(void *subc, const char *buf, size_t len, const BufferHandle *handle); bool End(); #else struct upb_bytessink { #endif const upb_byteshandler *handler; void *closure; }; #ifdef __cplusplus /* A class for pushing a flat buffer of data to a BytesSink. * You can construct an instance of this to get a resumable source, * or just call the static PutBuffer() to do a non-resumable push all in one * go. */ class upb::BufferSource { public: BufferSource(); BufferSource(const char* buf, size_t len, BytesSink* sink); /* Returns true if the entire buffer was pushed successfully. Otherwise the * next call to PutNext() will resume where the previous one left off. * TODO(haberman): implement this. */ bool PutNext(); /* A static version; with this version is it not possible to resume in the * case of failure or a partially-consumed buffer. */ static bool PutBuffer(const char* buf, size_t len, BytesSink* sink); template <class T> static bool PutBuffer(const T& str, BytesSink* sink) { return PutBuffer(str.c_str(), str.size(), sink); } #else struct upb_bufsrc { char dummy; #endif }; UPB_BEGIN_EXTERN_C /* Inline definitions. */ UPB_INLINE void upb_bytessink_reset(upb_bytessink *s, const upb_byteshandler *h, void *closure) { s->handler = h; s->closure = closure; } UPB_INLINE bool upb_bytessink_start(upb_bytessink *s, size_t size_hint, void **subc) { typedef upb_startstr_handlerfunc func; func *start; *subc = s->closure; if (!s->handler) return true; start = (func *)s->handler->table[UPB_STARTSTR_SELECTOR].func; if (!start) return true; *subc = start(s->closure, upb_handlerattr_handlerdata( &s->handler->table[UPB_STARTSTR_SELECTOR].attr), size_hint); return *subc != NULL; } UPB_INLINE size_t upb_bytessink_putbuf(upb_bytessink *s, void *subc, const char *buf, size_t size, const upb_bufhandle* handle) { typedef upb_string_handlerfunc func; func *putbuf; if (!s->handler) return true; putbuf = (func *)s->handler->table[UPB_STRING_SELECTOR].func; if (!putbuf) return true; return putbuf(subc, upb_handlerattr_handlerdata( &s->handler->table[UPB_STRING_SELECTOR].attr), buf, size, handle); } UPB_INLINE bool upb_bytessink_end(upb_bytessink *s) { typedef upb_endfield_handlerfunc func; func *end; if (!s->handler) return true; end = (func *)s->handler->table[UPB_ENDSTR_SELECTOR].func; if (!end) return true; return end(s->closure, upb_handlerattr_handlerdata( &s->handler->table[UPB_ENDSTR_SELECTOR].attr)); } UPB_INLINE bool upb_bufsrc_putbuf(const char *buf, size_t len, upb_bytessink *sink) { void *subc; bool ret; upb_bufhandle handle; upb_bufhandle_init(&handle); upb_bufhandle_setbuf(&handle, buf, 0); ret = upb_bytessink_start(sink, len, &subc); if (ret && len != 0) { ret = (upb_bytessink_putbuf(sink, subc, buf, len, &handle) >= len); } if (ret) { ret = upb_bytessink_end(sink); } upb_bufhandle_uninit(&handle); return ret; } #define PUTVAL(type, ctype) \ UPB_INLINE bool upb_sink_put##type(upb_sink *s, upb_selector_t sel, \ ctype val) { \ typedef upb_##type##_handlerfunc functype; \ functype *func; \ const void *hd; \ if (!s->handlers) return true; \ func = (functype *)upb_handlers_gethandler(s->handlers, sel); \ if (!func) return true; \ hd = upb_handlers_gethandlerdata(s->handlers, sel); \ return func(s->closure, hd, val); \ } PUTVAL(int32, int32_t) PUTVAL(int64, int64_t) PUTVAL(uint32, uint32_t) PUTVAL(uint64, uint64_t) PUTVAL(float, float) PUTVAL(double, double) PUTVAL(bool, bool) #undef PUTVAL UPB_INLINE void upb_sink_reset(upb_sink *s, const upb_handlers *h, void *c) { s->handlers = h; s->closure = c; } UPB_INLINE size_t upb_sink_putstring(upb_sink *s, upb_selector_t sel, const char *buf, size_t n, const upb_bufhandle *handle) { typedef upb_string_handlerfunc func; func *handler; const void *hd; if (!s->handlers) return n; handler = (func *)upb_handlers_gethandler(s->handlers, sel); if (!handler) return n; hd = upb_handlers_gethandlerdata(s->handlers, sel); return handler(s->closure, hd, buf, n, handle); } UPB_INLINE bool upb_sink_startmsg(upb_sink *s) { typedef upb_startmsg_handlerfunc func; func *startmsg; const void *hd; if (!s->handlers) return true; startmsg = (func*)upb_handlers_gethandler(s->handlers, UPB_STARTMSG_SELECTOR); if (!startmsg) return true; hd = upb_handlers_gethandlerdata(s->handlers, UPB_STARTMSG_SELECTOR); return startmsg(s->closure, hd); } UPB_INLINE bool upb_sink_endmsg(upb_sink *s, upb_status *status) { typedef upb_endmsg_handlerfunc func; func *endmsg; const void *hd; if (!s->handlers) return true; endmsg = (func *)upb_handlers_gethandler(s->handlers, UPB_ENDMSG_SELECTOR); if (!endmsg) return true; hd = upb_handlers_gethandlerdata(s->handlers, UPB_ENDMSG_SELECTOR); return endmsg(s->closure, hd, status); } UPB_INLINE bool upb_sink_startseq(upb_sink *s, upb_selector_t sel, upb_sink *sub) { typedef upb_startfield_handlerfunc func; func *startseq; const void *hd; sub->closure = s->closure; sub->handlers = s->handlers; if (!s->handlers) return true; startseq = (func*)upb_handlers_gethandler(s->handlers, sel); if (!startseq) return true; hd = upb_handlers_gethandlerdata(s->handlers, sel); sub->closure = startseq(s->closure, hd); return sub->closure ? true : false; } UPB_INLINE bool upb_sink_endseq(upb_sink *s, upb_selector_t sel) { typedef upb_endfield_handlerfunc func; func *endseq; const void *hd; if (!s->handlers) return true; endseq = (func*)upb_handlers_gethandler(s->handlers, sel); if (!endseq) return true; hd = upb_handlers_gethandlerdata(s->handlers, sel); return endseq(s->closure, hd); } UPB_INLINE bool upb_sink_startstr(upb_sink *s, upb_selector_t sel, size_t size_hint, upb_sink *sub) { typedef upb_startstr_handlerfunc func; func *startstr; const void *hd; sub->closure = s->closure; sub->handlers = s->handlers; if (!s->handlers) return true; startstr = (func*)upb_handlers_gethandler(s->handlers, sel); if (!startstr) return true; hd = upb_handlers_gethandlerdata(s->handlers, sel); sub->closure = startstr(s->closure, hd, size_hint); return sub->closure ? true : false; } UPB_INLINE bool upb_sink_endstr(upb_sink *s, upb_selector_t sel) { typedef upb_endfield_handlerfunc func; func *endstr; const void *hd; if (!s->handlers) return true; endstr = (func*)upb_handlers_gethandler(s->handlers, sel); if (!endstr) return true; hd = upb_handlers_gethandlerdata(s->handlers, sel); return endstr(s->closure, hd); } UPB_INLINE bool upb_sink_startsubmsg(upb_sink *s, upb_selector_t sel, upb_sink *sub) { typedef upb_startfield_handlerfunc func; func *startsubmsg; const void *hd; sub->closure = s->closure; if (!s->handlers) { sub->handlers = NULL; return true; } sub->handlers = upb_handlers_getsubhandlers_sel(s->handlers, sel); startsubmsg = (func*)upb_handlers_gethandler(s->handlers, sel); if (!startsubmsg) return true; hd = upb_handlers_gethandlerdata(s->handlers, sel); sub->closure = startsubmsg(s->closure, hd); return sub->closure ? true : false; } UPB_INLINE bool upb_sink_endsubmsg(upb_sink *s, upb_selector_t sel) { typedef upb_endfield_handlerfunc func; func *endsubmsg; const void *hd; if (!s->handlers) return true; endsubmsg = (func*)upb_handlers_gethandler(s->handlers, sel); if (!endsubmsg) return s->closure; hd = upb_handlers_gethandlerdata(s->handlers, sel); return endsubmsg(s->closure, hd); } UPB_END_EXTERN_C #ifdef __cplusplus namespace upb { template <class T> Sink::Sink(const Handlers* handlers, T* closure) { upb_sink_reset(this, handlers, closure); } template <class T> inline void Sink::Reset(const Handlers* handlers, T* closure) { upb_sink_reset(this, handlers, closure); } inline bool Sink::StartMessage() { return upb_sink_startmsg(this); } inline bool Sink::EndMessage(Status* status) { return upb_sink_endmsg(this, status); } inline bool Sink::PutInt32(Handlers::Selector sel, int32_t val) { return upb_sink_putint32(this, sel, val); } inline bool Sink::PutInt64(Handlers::Selector sel, int64_t val) { return upb_sink_putint64(this, sel, val); } inline bool Sink::PutUInt32(Handlers::Selector sel, uint32_t val) { return upb_sink_putuint32(this, sel, val); } inline bool Sink::PutUInt64(Handlers::Selector sel, uint64_t val) { return upb_sink_putuint64(this, sel, val); } inline bool Sink::PutFloat(Handlers::Selector sel, float val) { return upb_sink_putfloat(this, sel, val); } inline bool Sink::PutDouble(Handlers::Selector sel, double val) { return upb_sink_putdouble(this, sel, val); } inline bool Sink::PutBool(Handlers::Selector sel, bool val) { return upb_sink_putbool(this, sel, val); } inline bool Sink::StartString(Handlers::Selector sel, size_t size_hint, Sink *sub) { return upb_sink_startstr(this, sel, size_hint, sub); } inline size_t Sink::PutStringBuffer(Handlers::Selector sel, const char *buf, size_t len, const BufferHandle* handle) { return upb_sink_putstring(this, sel, buf, len, handle); } inline bool Sink::EndString(Handlers::Selector sel) { return upb_sink_endstr(this, sel); } inline bool Sink::StartSubMessage(Handlers::Selector sel, Sink* sub) { return upb_sink_startsubmsg(this, sel, sub); } inline bool Sink::EndSubMessage(Handlers::Selector sel) { return upb_sink_endsubmsg(this, sel); } inline bool Sink::StartSequence(Handlers::Selector sel, Sink* sub) { return upb_sink_startseq(this, sel, sub); } inline bool Sink::EndSequence(Handlers::Selector sel) { return upb_sink_endseq(this, sel); } template <class T> BytesSink::BytesSink(const BytesHandler* handler, T* closure) { Reset(handler, closure); } template <class T> void BytesSink::Reset(const BytesHandler *handler, T *closure) { upb_bytessink_reset(this, handler, closure); } inline bool BytesSink::Start(size_t size_hint, void **subc) { return upb_bytessink_start(this, size_hint, subc); } inline size_t BytesSink::PutBuffer(void *subc, const char *buf, size_t len, const BufferHandle *handle) { return upb_bytessink_putbuf(this, subc, buf, len, handle); } inline bool BytesSink::End() { return upb_bytessink_end(this); } inline bool BufferSource::PutBuffer(const char *buf, size_t len, BytesSink *sink) { return upb_bufsrc_putbuf(buf, len, sink); } } /* namespace upb */ #endif #endif /* ** For handlers that do very tiny, very simple operations, the function call ** overhead of calling a handler can be significant. This file allows the ** user to define handlers that do something very simple like store the value ** to memory and/or set a hasbit. JIT compilers can then special-case these ** handlers and emit specialized code for them instead of actually calling the ** handler. ** ** The functionality is very simple/limited right now but may expand to be able ** to call another function. */ #ifndef UPB_SHIM_H #define UPB_SHIM_H typedef struct { size_t offset; int32_t hasbit; } upb_shim_data; #ifdef __cplusplus namespace upb { struct Shim { typedef upb_shim_data Data; /* Sets a handler for the given field that writes the value to the given * offset and, if hasbit >= 0, sets a bit at the given bit offset. Returns * true if the handler was set successfully. */ static bool Set(Handlers *h, const FieldDef *f, size_t ofs, int32_t hasbit); /* If this handler is a shim, returns the corresponding upb::Shim::Data and * stores the type in "type". Otherwise returns NULL. */ static const Data* GetData(const Handlers* h, Handlers::Selector s, FieldDef::Type* type); }; } /* namespace upb */ #endif UPB_BEGIN_EXTERN_C /* C API. */ bool upb_shim_set(upb_handlers *h, const upb_fielddef *f, size_t offset, int32_t hasbit); const upb_shim_data *upb_shim_getdata(const upb_handlers *h, upb_selector_t s, upb_fieldtype_t *type); UPB_END_EXTERN_C #ifdef __cplusplus /* C++ Wrappers. */ namespace upb { inline bool Shim::Set(Handlers* h, const FieldDef* f, size_t ofs, int32_t hasbit) { return upb_shim_set(h, f, ofs, hasbit); } inline const Shim::Data* Shim::GetData(const Handlers* h, Handlers::Selector s, FieldDef::Type* type) { return upb_shim_getdata(h, s, type); } } /* namespace upb */ #endif #endif /* UPB_SHIM_H */ /* ** upb::SymbolTable (upb_symtab) ** ** A symtab (symbol table) stores a name->def map of upb_defs. Clients could ** always create such tables themselves, but upb_symtab has logic for resolving ** symbolic references, and in particular, for keeping a whole set of consistent ** defs when replacing some subset of those defs. This logic is nontrivial. ** ** This is a mixed C/C++ interface that offers a full API to both languages. ** See the top-level README for more information. */ #ifndef UPB_SYMTAB_H_ #define UPB_SYMTAB_H_ #ifdef __cplusplus #include <vector> namespace upb { class SymbolTable; } #endif UPB_DECLARE_DERIVED_TYPE(upb::SymbolTable, upb::RefCounted, upb_symtab, upb_refcounted) typedef struct { UPB_PRIVATE_FOR_CPP upb_strtable_iter iter; upb_deftype_t type; } upb_symtab_iter; #ifdef __cplusplus /* Non-const methods in upb::SymbolTable are NOT thread-safe. */ class upb::SymbolTable { public: /* Returns a new symbol table with a single ref owned by "owner." * Returns NULL if memory allocation failed. */ static reffed_ptr<SymbolTable> New(); /* Include RefCounted base methods. */ UPB_REFCOUNTED_CPPMETHODS /* For all lookup functions, the returned pointer is not owned by the * caller; it may be invalidated by any non-const call or unref of the * SymbolTable! To protect against this, take a ref if desired. */ /* Freezes the symbol table: prevents further modification of it. * After the Freeze() operation is successful, the SymbolTable must only be * accessed via a const pointer. * * Unlike with upb::MessageDef/upb::EnumDef/etc, freezing a SymbolTable is not * a necessary step in using a SymbolTable. If you have no need for it to be * immutable, there is no need to freeze it ever. However sometimes it is * useful, and SymbolTables that are statically compiled into the binary are * always frozen by nature. */ void Freeze(); /* Resolves the given symbol using the rules described in descriptor.proto, * namely: * * If the name starts with a '.', it is fully-qualified. Otherwise, * C++-like scoping rules are used to find the type (i.e. first the nested * types within this message are searched, then within the parent, on up * to the root namespace). * * If not found, returns NULL. */ const Def* Resolve(const char* base, const char* sym) const; /* Finds an entry in the symbol table with this exact name. If not found, * returns NULL. */ const Def* Lookup(const char *sym) const; const MessageDef* LookupMessage(const char *sym) const; const EnumDef* LookupEnum(const char *sym) const; /* TODO: introduce a C++ iterator, but make it nice and templated so that if * you ask for an iterator of MessageDef the iterated elements are strongly * typed as MessageDef*. */ /* Adds the given mutable defs to the symtab, resolving all symbols * (including enum default values) and finalizing the defs. Only one def per * name may be in the list, but defs can replace existing defs in the symtab. * All defs must have a name -- anonymous defs are not allowed. Anonymous * defs can still be frozen by calling upb_def_freeze() directly. * * Any existing defs that can reach defs that are being replaced will * themselves be replaced also, so that the resulting set of defs is fully * consistent. * * This logic implemented in this method is a convenience; ultimately it * calls some combination of upb_fielddef_setsubdef(), upb_def_dup(), and * upb_freeze(), any of which the client could call themself. However, since * the logic for doing so is nontrivial, we provide it here. * * The entire operation either succeeds or fails. If the operation fails, * the symtab is unchanged, false is returned, and status indicates the * error. The caller passes a ref on all defs to the symtab (even if the * operation fails). * * TODO(haberman): currently failure will leave the symtab unchanged, but may * leave the defs themselves partially resolved. Does this matter? If so we * could do a prepass that ensures that all symbols are resolvable and bail * if not, so we don't mutate anything until we know the operation will * succeed. * * TODO(haberman): since the defs must be mutable, refining a frozen def * requires making mutable copies of the entire tree. This is wasteful if * only a few messages are changing. We may want to add a way of adding a * tree of frozen defs to the symtab (perhaps an alternate constructor where * you pass the root of the tree?) */ bool Add(Def*const* defs, size_t n, void* ref_donor, Status* status); bool Add(const std::vector<Def*>& defs, void *owner, Status* status) { return Add((Def*const*)&defs[0], defs.size(), owner, status); } /* Resolves all subdefs for messages in this file and attempts to freeze the * file. If this succeeds, adds all the symbols to this SymbolTable * (replacing any existing ones with the same names). */ bool AddFile(FileDef* file, Status* s); private: UPB_DISALLOW_POD_OPS(SymbolTable, upb::SymbolTable) }; #endif /* __cplusplus */ UPB_BEGIN_EXTERN_C /* Native C API. */ /* Include refcounted methods like upb_symtab_ref(). */ UPB_REFCOUNTED_CMETHODS(upb_symtab, upb_symtab_upcast) upb_symtab *upb_symtab_new(const void *owner); void upb_symtab_freeze(upb_symtab *s); const upb_def *upb_symtab_resolve(const upb_symtab *s, const char *base, const char *sym); const upb_def *upb_symtab_lookup(const upb_symtab *s, const char *sym); const upb_msgdef *upb_symtab_lookupmsg(const upb_symtab *s, const char *sym); const upb_enumdef *upb_symtab_lookupenum(const upb_symtab *s, const char *sym); bool upb_symtab_add(upb_symtab *s, upb_def *const*defs, size_t n, void *ref_donor, upb_status *status); bool upb_symtab_addfile(upb_symtab *s, upb_filedef *file, upb_status* status); /* upb_symtab_iter i; * for(upb_symtab_begin(&i, s, type); !upb_symtab_done(&i); * upb_symtab_next(&i)) { * const upb_def *def = upb_symtab_iter_def(&i); * // ... * } * * For C we don't have separate iterators for const and non-const. * It is the caller's responsibility to cast the upb_fielddef* to * const if the upb_msgdef* is const. */ void upb_symtab_begin(upb_symtab_iter *iter, const upb_symtab *s, upb_deftype_t type); void upb_symtab_next(upb_symtab_iter *iter); bool upb_symtab_done(const upb_symtab_iter *iter); const upb_def *upb_symtab_iter_def(const upb_symtab_iter *iter); UPB_END_EXTERN_C #ifdef __cplusplus /* C++ inline wrappers. */ namespace upb { inline reffed_ptr<SymbolTable> SymbolTable::New() { upb_symtab *s = upb_symtab_new(&s); return reffed_ptr<SymbolTable>(s, &s); } inline void SymbolTable::Freeze() { return upb_symtab_freeze(this); } inline const Def *SymbolTable::Resolve(const char *base, const char *sym) const { return upb_symtab_resolve(this, base, sym); } inline const Def* SymbolTable::Lookup(const char *sym) const { return upb_symtab_lookup(this, sym); } inline const MessageDef *SymbolTable::LookupMessage(const char *sym) const { return upb_symtab_lookupmsg(this, sym); } inline bool SymbolTable::Add( Def*const* defs, size_t n, void* ref_donor, Status* status) { return upb_symtab_add(this, (upb_def*const*)defs, n, ref_donor, status); } inline bool SymbolTable::AddFile(FileDef* file, Status* s) { return upb_symtab_addfile(this, file, s); } } /* namespace upb */ #endif #endif /* UPB_SYMTAB_H_ */ /* ** upb::descriptor::Reader (upb_descreader) ** ** Provides a way of building upb::Defs from data in descriptor.proto format. */ #ifndef UPB_DESCRIPTOR_H #define UPB_DESCRIPTOR_H #ifdef __cplusplus namespace upb { namespace descriptor { class Reader; } /* namespace descriptor */ } /* namespace upb */ #endif UPB_DECLARE_TYPE(upb::descriptor::Reader, upb_descreader) #ifdef __cplusplus /* Class that receives descriptor data according to the descriptor.proto schema * and use it to build upb::Defs corresponding to that schema. */ class upb::descriptor::Reader { public: /* These handlers must have come from NewHandlers() and must outlive the * Reader. * * TODO: generate the handlers statically (like we do with the * descriptor.proto defs) so that there is no need to pass this parameter (or * to build/memory-manage the handlers at runtime at all). Unfortunately this * is a bit tricky to implement for Handlers, but necessary to simplify this * interface. */ static Reader* Create(Environment* env, const Handlers* handlers); /* The reader's input; this is where descriptor.proto data should be sent. */ Sink* input(); /* Use to get the FileDefs that have been parsed. */ size_t file_count() const; FileDef* file(size_t i) const; /* Builds and returns handlers for the reader, owned by "owner." */ static Handlers* NewHandlers(const void* owner); private: UPB_DISALLOW_POD_OPS(Reader, upb::descriptor::Reader) }; #endif UPB_BEGIN_EXTERN_C /* C API. */ upb_descreader *upb_descreader_create(upb_env *e, const upb_handlers *h); upb_sink *upb_descreader_input(upb_descreader *r); size_t upb_descreader_filecount(const upb_descreader *r); upb_filedef *upb_descreader_file(const upb_descreader *r, size_t i); const upb_handlers *upb_descreader_newhandlers(const void *owner); UPB_END_EXTERN_C #ifdef __cplusplus /* C++ implementation details. ************************************************/ namespace upb { namespace descriptor { inline Reader* Reader::Create(Environment* e, const Handlers *h) { return upb_descreader_create(e, h); } inline Sink* Reader::input() { return upb_descreader_input(this); } inline size_t Reader::file_count() const { return upb_descreader_filecount(this); } inline FileDef* Reader::file(size_t i) const { return upb_descreader_file(this, i); } } /* namespace descriptor */ } /* namespace upb */ #endif #endif /* UPB_DESCRIPTOR_H */ /* This file contains accessors for a set of compiled-in defs. * Note that unlike Google's protobuf, it does *not* define * generated classes or any other kind of data structure for * actually storing protobufs. It only contains *defs* which * let you reflect over a protobuf *schema*. */ /* This file was generated by upbc (the upb compiler) from the input * file: * * upb/descriptor/descriptor.proto * * Do not edit -- your changes will be discarded when the file is * regenerated. */ #ifndef UPB_DESCRIPTOR_DESCRIPTOR_PROTO_UPB_H_ #define UPB_DESCRIPTOR_DESCRIPTOR_PROTO_UPB_H_ UPB_BEGIN_EXTERN_C /* Enums */ typedef enum { google_protobuf_FieldDescriptorProto_LABEL_OPTIONAL = 1, google_protobuf_FieldDescriptorProto_LABEL_REQUIRED = 2, google_protobuf_FieldDescriptorProto_LABEL_REPEATED = 3 } google_protobuf_FieldDescriptorProto_Label; typedef enum { google_protobuf_FieldDescriptorProto_TYPE_DOUBLE = 1, google_protobuf_FieldDescriptorProto_TYPE_FLOAT = 2, google_protobuf_FieldDescriptorProto_TYPE_INT64 = 3, google_protobuf_FieldDescriptorProto_TYPE_UINT64 = 4, google_protobuf_FieldDescriptorProto_TYPE_INT32 = 5, google_protobuf_FieldDescriptorProto_TYPE_FIXED64 = 6, google_protobuf_FieldDescriptorProto_TYPE_FIXED32 = 7, google_protobuf_FieldDescriptorProto_TYPE_BOOL = 8, google_protobuf_FieldDescriptorProto_TYPE_STRING = 9, google_protobuf_FieldDescriptorProto_TYPE_GROUP = 10, google_protobuf_FieldDescriptorProto_TYPE_MESSAGE = 11, google_protobuf_FieldDescriptorProto_TYPE_BYTES = 12, google_protobuf_FieldDescriptorProto_TYPE_UINT32 = 13, google_protobuf_FieldDescriptorProto_TYPE_ENUM = 14, google_protobuf_FieldDescriptorProto_TYPE_SFIXED32 = 15, google_protobuf_FieldDescriptorProto_TYPE_SFIXED64 = 16, google_protobuf_FieldDescriptorProto_TYPE_SINT32 = 17, google_protobuf_FieldDescriptorProto_TYPE_SINT64 = 18 } google_protobuf_FieldDescriptorProto_Type; typedef enum { google_protobuf_FieldOptions_STRING = 0, google_protobuf_FieldOptions_CORD = 1, google_protobuf_FieldOptions_STRING_PIECE = 2 } google_protobuf_FieldOptions_CType; typedef enum { google_protobuf_FieldOptions_JS_NORMAL = 0, google_protobuf_FieldOptions_JS_STRING = 1, google_protobuf_FieldOptions_JS_NUMBER = 2 } google_protobuf_FieldOptions_JSType; typedef enum { google_protobuf_FileOptions_SPEED = 1, google_protobuf_FileOptions_CODE_SIZE = 2, google_protobuf_FileOptions_LITE_RUNTIME = 3 } google_protobuf_FileOptions_OptimizeMode; /* MessageDefs: call these functions to get a ref to a msgdef. */ const upb_msgdef *upbdefs_google_protobuf_DescriptorProto_get(const void *owner); const upb_msgdef *upbdefs_google_protobuf_DescriptorProto_ExtensionRange_get(const void *owner); const upb_msgdef *upbdefs_google_protobuf_DescriptorProto_ReservedRange_get(const void *owner); const upb_msgdef *upbdefs_google_protobuf_EnumDescriptorProto_get(const void *owner); const upb_msgdef *upbdefs_google_protobuf_EnumOptions_get(const void *owner); const upb_msgdef *upbdefs_google_protobuf_EnumValueDescriptorProto_get(const void *owner); const upb_msgdef *upbdefs_google_protobuf_EnumValueOptions_get(const void *owner); const upb_msgdef *upbdefs_google_protobuf_FieldDescriptorProto_get(const void *owner); const upb_msgdef *upbdefs_google_protobuf_FieldOptions_get(const void *owner); const upb_msgdef *upbdefs_google_protobuf_FileDescriptorProto_get(const void *owner); const upb_msgdef *upbdefs_google_protobuf_FileDescriptorSet_get(const void *owner); const upb_msgdef *upbdefs_google_protobuf_FileOptions_get(const void *owner); const upb_msgdef *upbdefs_google_protobuf_MessageOptions_get(const void *owner); const upb_msgdef *upbdefs_google_protobuf_MethodDescriptorProto_get(const void *owner); const upb_msgdef *upbdefs_google_protobuf_MethodOptions_get(const void *owner); const upb_msgdef *upbdefs_google_protobuf_OneofDescriptorProto_get(const void *owner); const upb_msgdef *upbdefs_google_protobuf_ServiceDescriptorProto_get(const void *owner); const upb_msgdef *upbdefs_google_protobuf_ServiceOptions_get(const void *owner); const upb_msgdef *upbdefs_google_protobuf_SourceCodeInfo_get(const void *owner); const upb_msgdef *upbdefs_google_protobuf_SourceCodeInfo_Location_get(const void *owner); const upb_msgdef *upbdefs_google_protobuf_UninterpretedOption_get(const void *owner); const upb_msgdef *upbdefs_google_protobuf_UninterpretedOption_NamePart_get(const void *owner); /* EnumDefs: call these functions to get a ref to an enumdef. */ const upb_enumdef *upbdefs_google_protobuf_FieldDescriptorProto_Label_get(const void *owner); const upb_enumdef *upbdefs_google_protobuf_FieldDescriptorProto_Type_get(const void *owner); const upb_enumdef *upbdefs_google_protobuf_FieldOptions_CType_get(const void *owner); const upb_enumdef *upbdefs_google_protobuf_FieldOptions_JSType_get(const void *owner); const upb_enumdef *upbdefs_google_protobuf_FileOptions_OptimizeMode_get(const void *owner); /* Functions to test whether this message is of a certain type. */ UPB_INLINE bool upbdefs_google_protobuf_DescriptorProto_is(const upb_msgdef *m) { return strcmp(upb_msgdef_fullname(m), "google.protobuf.DescriptorProto") == 0; } UPB_INLINE bool upbdefs_google_protobuf_DescriptorProto_ExtensionRange_is(const upb_msgdef *m) { return strcmp(upb_msgdef_fullname(m), "google.protobuf.DescriptorProto.ExtensionRange") == 0; } UPB_INLINE bool upbdefs_google_protobuf_DescriptorProto_ReservedRange_is(const upb_msgdef *m) { return strcmp(upb_msgdef_fullname(m), "google.protobuf.DescriptorProto.ReservedRange") == 0; } UPB_INLINE bool upbdefs_google_protobuf_EnumDescriptorProto_is(const upb_msgdef *m) { return strcmp(upb_msgdef_fullname(m), "google.protobuf.EnumDescriptorProto") == 0; } UPB_INLINE bool upbdefs_google_protobuf_EnumOptions_is(const upb_msgdef *m) { return strcmp(upb_msgdef_fullname(m), "google.protobuf.EnumOptions") == 0; } UPB_INLINE bool upbdefs_google_protobuf_EnumValueDescriptorProto_is(const upb_msgdef *m) { return strcmp(upb_msgdef_fullname(m), "google.protobuf.EnumValueDescriptorProto") == 0; } UPB_INLINE bool upbdefs_google_protobuf_EnumValueOptions_is(const upb_msgdef *m) { return strcmp(upb_msgdef_fullname(m), "google.protobuf.EnumValueOptions") == 0; } UPB_INLINE bool upbdefs_google_protobuf_FieldDescriptorProto_is(const upb_msgdef *m) { return strcmp(upb_msgdef_fullname(m), "google.protobuf.FieldDescriptorProto") == 0; } UPB_INLINE bool upbdefs_google_protobuf_FieldOptions_is(const upb_msgdef *m) { return strcmp(upb_msgdef_fullname(m), "google.protobuf.FieldOptions") == 0; } UPB_INLINE bool upbdefs_google_protobuf_FileDescriptorProto_is(const upb_msgdef *m) { return strcmp(upb_msgdef_fullname(m), "google.protobuf.FileDescriptorProto") == 0; } UPB_INLINE bool upbdefs_google_protobuf_FileDescriptorSet_is(const upb_msgdef *m) { return strcmp(upb_msgdef_fullname(m), "google.protobuf.FileDescriptorSet") == 0; } UPB_INLINE bool upbdefs_google_protobuf_FileOptions_is(const upb_msgdef *m) { return strcmp(upb_msgdef_fullname(m), "google.protobuf.FileOptions") == 0; } UPB_INLINE bool upbdefs_google_protobuf_MessageOptions_is(const upb_msgdef *m) { return strcmp(upb_msgdef_fullname(m), "google.protobuf.MessageOptions") == 0; } UPB_INLINE bool upbdefs_google_protobuf_MethodDescriptorProto_is(const upb_msgdef *m) { return strcmp(upb_msgdef_fullname(m), "google.protobuf.MethodDescriptorProto") == 0; } UPB_INLINE bool upbdefs_google_protobuf_MethodOptions_is(const upb_msgdef *m) { return strcmp(upb_msgdef_fullname(m), "google.protobuf.MethodOptions") == 0; } UPB_INLINE bool upbdefs_google_protobuf_OneofDescriptorProto_is(const upb_msgdef *m) { return strcmp(upb_msgdef_fullname(m), "google.protobuf.OneofDescriptorProto") == 0; } UPB_INLINE bool upbdefs_google_protobuf_ServiceDescriptorProto_is(const upb_msgdef *m) { return strcmp(upb_msgdef_fullname(m), "google.protobuf.ServiceDescriptorProto") == 0; } UPB_INLINE bool upbdefs_google_protobuf_ServiceOptions_is(const upb_msgdef *m) { return strcmp(upb_msgdef_fullname(m), "google.protobuf.ServiceOptions") == 0; } UPB_INLINE bool upbdefs_google_protobuf_SourceCodeInfo_is(const upb_msgdef *m) { return strcmp(upb_msgdef_fullname(m), "google.protobuf.SourceCodeInfo") == 0; } UPB_INLINE bool upbdefs_google_protobuf_SourceCodeInfo_Location_is(const upb_msgdef *m) { return strcmp(upb_msgdef_fullname(m), "google.protobuf.SourceCodeInfo.Location") == 0; } UPB_INLINE bool upbdefs_google_protobuf_UninterpretedOption_is(const upb_msgdef *m) { return strcmp(upb_msgdef_fullname(m), "google.protobuf.UninterpretedOption") == 0; } UPB_INLINE bool upbdefs_google_protobuf_UninterpretedOption_NamePart_is(const upb_msgdef *m) { return strcmp(upb_msgdef_fullname(m), "google.protobuf.UninterpretedOption.NamePart") == 0; } /* Functions to test whether this enum is of a certain type. */ UPB_INLINE bool upbdefs_google_protobuf_FieldDescriptorProto_Label_is(const upb_enumdef *e) { return strcmp(upb_enumdef_fullname(e), "google.protobuf.FieldDescriptorProto.Label") == 0; } UPB_INLINE bool upbdefs_google_protobuf_FieldDescriptorProto_Type_is(const upb_enumdef *e) { return strcmp(upb_enumdef_fullname(e), "google.protobuf.FieldDescriptorProto.Type") == 0; } UPB_INLINE bool upbdefs_google_protobuf_FieldOptions_CType_is(const upb_enumdef *e) { return strcmp(upb_enumdef_fullname(e), "google.protobuf.FieldOptions.CType") == 0; } UPB_INLINE bool upbdefs_google_protobuf_FieldOptions_JSType_is(const upb_enumdef *e) { return strcmp(upb_enumdef_fullname(e), "google.protobuf.FieldOptions.JSType") == 0; } UPB_INLINE bool upbdefs_google_protobuf_FileOptions_OptimizeMode_is(const upb_enumdef *e) { return strcmp(upb_enumdef_fullname(e), "google.protobuf.FileOptions.OptimizeMode") == 0; } /* Functions to get a fielddef from a msgdef reference. */ UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_ExtensionRange_f_end(const upb_msgdef *m) { assert(upbdefs_google_protobuf_DescriptorProto_ExtensionRange_is(m)); return upb_msgdef_itof(m, 2); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_ExtensionRange_f_start(const upb_msgdef *m) { assert(upbdefs_google_protobuf_DescriptorProto_ExtensionRange_is(m)); return upb_msgdef_itof(m, 1); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_ReservedRange_f_end(const upb_msgdef *m) { assert(upbdefs_google_protobuf_DescriptorProto_ReservedRange_is(m)); return upb_msgdef_itof(m, 2); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_ReservedRange_f_start(const upb_msgdef *m) { assert(upbdefs_google_protobuf_DescriptorProto_ReservedRange_is(m)); return upb_msgdef_itof(m, 1); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_f_enum_type(const upb_msgdef *m) { assert(upbdefs_google_protobuf_DescriptorProto_is(m)); return upb_msgdef_itof(m, 4); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_f_extension(const upb_msgdef *m) { assert(upbdefs_google_protobuf_DescriptorProto_is(m)); return upb_msgdef_itof(m, 6); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_f_extension_range(const upb_msgdef *m) { assert(upbdefs_google_protobuf_DescriptorProto_is(m)); return upb_msgdef_itof(m, 5); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_f_field(const upb_msgdef *m) { assert(upbdefs_google_protobuf_DescriptorProto_is(m)); return upb_msgdef_itof(m, 2); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_f_name(const upb_msgdef *m) { assert(upbdefs_google_protobuf_DescriptorProto_is(m)); return upb_msgdef_itof(m, 1); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_f_nested_type(const upb_msgdef *m) { assert(upbdefs_google_protobuf_DescriptorProto_is(m)); return upb_msgdef_itof(m, 3); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_f_oneof_decl(const upb_msgdef *m) { assert(upbdefs_google_protobuf_DescriptorProto_is(m)); return upb_msgdef_itof(m, 8); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_f_options(const upb_msgdef *m) { assert(upbdefs_google_protobuf_DescriptorProto_is(m)); return upb_msgdef_itof(m, 7); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_f_reserved_name(const upb_msgdef *m) { assert(upbdefs_google_protobuf_DescriptorProto_is(m)); return upb_msgdef_itof(m, 10); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_DescriptorProto_f_reserved_range(const upb_msgdef *m) { assert(upbdefs_google_protobuf_DescriptorProto_is(m)); return upb_msgdef_itof(m, 9); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_EnumDescriptorProto_f_name(const upb_msgdef *m) { assert(upbdefs_google_protobuf_EnumDescriptorProto_is(m)); return upb_msgdef_itof(m, 1); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_EnumDescriptorProto_f_options(const upb_msgdef *m) { assert(upbdefs_google_protobuf_EnumDescriptorProto_is(m)); return upb_msgdef_itof(m, 3); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_EnumDescriptorProto_f_value(const upb_msgdef *m) { assert(upbdefs_google_protobuf_EnumDescriptorProto_is(m)); return upb_msgdef_itof(m, 2); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_EnumOptions_f_allow_alias(const upb_msgdef *m) { assert(upbdefs_google_protobuf_EnumOptions_is(m)); return upb_msgdef_itof(m, 2); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_EnumOptions_f_deprecated(const upb_msgdef *m) { assert(upbdefs_google_protobuf_EnumOptions_is(m)); return upb_msgdef_itof(m, 3); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_EnumOptions_f_uninterpreted_option(const upb_msgdef *m) { assert(upbdefs_google_protobuf_EnumOptions_is(m)); return upb_msgdef_itof(m, 999); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_EnumValueDescriptorProto_f_name(const upb_msgdef *m) { assert(upbdefs_google_protobuf_EnumValueDescriptorProto_is(m)); return upb_msgdef_itof(m, 1); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_EnumValueDescriptorProto_f_number(const upb_msgdef *m) { assert(upbdefs_google_protobuf_EnumValueDescriptorProto_is(m)); return upb_msgdef_itof(m, 2); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_EnumValueDescriptorProto_f_options(const upb_msgdef *m) { assert(upbdefs_google_protobuf_EnumValueDescriptorProto_is(m)); return upb_msgdef_itof(m, 3); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_EnumValueOptions_f_deprecated(const upb_msgdef *m) { assert(upbdefs_google_protobuf_EnumValueOptions_is(m)); return upb_msgdef_itof(m, 1); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_EnumValueOptions_f_uninterpreted_option(const upb_msgdef *m) { assert(upbdefs_google_protobuf_EnumValueOptions_is(m)); return upb_msgdef_itof(m, 999); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldDescriptorProto_f_default_value(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FieldDescriptorProto_is(m)); return upb_msgdef_itof(m, 7); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldDescriptorProto_f_extendee(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FieldDescriptorProto_is(m)); return upb_msgdef_itof(m, 2); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldDescriptorProto_f_json_name(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FieldDescriptorProto_is(m)); return upb_msgdef_itof(m, 10); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldDescriptorProto_f_label(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FieldDescriptorProto_is(m)); return upb_msgdef_itof(m, 4); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldDescriptorProto_f_name(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FieldDescriptorProto_is(m)); return upb_msgdef_itof(m, 1); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldDescriptorProto_f_number(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FieldDescriptorProto_is(m)); return upb_msgdef_itof(m, 3); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldDescriptorProto_f_oneof_index(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FieldDescriptorProto_is(m)); return upb_msgdef_itof(m, 9); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldDescriptorProto_f_options(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FieldDescriptorProto_is(m)); return upb_msgdef_itof(m, 8); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldDescriptorProto_f_type(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FieldDescriptorProto_is(m)); return upb_msgdef_itof(m, 5); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldDescriptorProto_f_type_name(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FieldDescriptorProto_is(m)); return upb_msgdef_itof(m, 6); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldOptions_f_ctype(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FieldOptions_is(m)); return upb_msgdef_itof(m, 1); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldOptions_f_deprecated(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FieldOptions_is(m)); return upb_msgdef_itof(m, 3); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldOptions_f_jstype(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FieldOptions_is(m)); return upb_msgdef_itof(m, 6); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldOptions_f_lazy(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FieldOptions_is(m)); return upb_msgdef_itof(m, 5); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldOptions_f_packed(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FieldOptions_is(m)); return upb_msgdef_itof(m, 2); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldOptions_f_uninterpreted_option(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FieldOptions_is(m)); return upb_msgdef_itof(m, 999); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FieldOptions_f_weak(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FieldOptions_is(m)); return upb_msgdef_itof(m, 10); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_f_dependency(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileDescriptorProto_is(m)); return upb_msgdef_itof(m, 3); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_f_enum_type(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileDescriptorProto_is(m)); return upb_msgdef_itof(m, 5); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_f_extension(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileDescriptorProto_is(m)); return upb_msgdef_itof(m, 7); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_f_message_type(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileDescriptorProto_is(m)); return upb_msgdef_itof(m, 4); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_f_name(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileDescriptorProto_is(m)); return upb_msgdef_itof(m, 1); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_f_options(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileDescriptorProto_is(m)); return upb_msgdef_itof(m, 8); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_f_package(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileDescriptorProto_is(m)); return upb_msgdef_itof(m, 2); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_f_public_dependency(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileDescriptorProto_is(m)); return upb_msgdef_itof(m, 10); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_f_service(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileDescriptorProto_is(m)); return upb_msgdef_itof(m, 6); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_f_source_code_info(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileDescriptorProto_is(m)); return upb_msgdef_itof(m, 9); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_f_syntax(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileDescriptorProto_is(m)); return upb_msgdef_itof(m, 12); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorProto_f_weak_dependency(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileDescriptorProto_is(m)); return upb_msgdef_itof(m, 11); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileDescriptorSet_f_file(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileDescriptorSet_is(m)); return upb_msgdef_itof(m, 1); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_f_cc_enable_arenas(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileOptions_is(m)); return upb_msgdef_itof(m, 31); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_f_cc_generic_services(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileOptions_is(m)); return upb_msgdef_itof(m, 16); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_f_csharp_namespace(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileOptions_is(m)); return upb_msgdef_itof(m, 37); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_f_deprecated(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileOptions_is(m)); return upb_msgdef_itof(m, 23); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_f_go_package(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileOptions_is(m)); return upb_msgdef_itof(m, 11); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_f_java_generate_equals_and_hash(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileOptions_is(m)); return upb_msgdef_itof(m, 20); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_f_java_generic_services(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileOptions_is(m)); return upb_msgdef_itof(m, 17); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_f_java_multiple_files(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileOptions_is(m)); return upb_msgdef_itof(m, 10); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_f_java_outer_classname(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileOptions_is(m)); return upb_msgdef_itof(m, 8); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_f_java_package(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileOptions_is(m)); return upb_msgdef_itof(m, 1); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_f_java_string_check_utf8(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileOptions_is(m)); return upb_msgdef_itof(m, 27); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_f_javanano_use_deprecated_package(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileOptions_is(m)); return upb_msgdef_itof(m, 38); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_f_objc_class_prefix(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileOptions_is(m)); return upb_msgdef_itof(m, 36); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_f_optimize_for(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileOptions_is(m)); return upb_msgdef_itof(m, 9); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_f_py_generic_services(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileOptions_is(m)); return upb_msgdef_itof(m, 18); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_FileOptions_f_uninterpreted_option(const upb_msgdef *m) { assert(upbdefs_google_protobuf_FileOptions_is(m)); return upb_msgdef_itof(m, 999); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_MessageOptions_f_deprecated(const upb_msgdef *m) { assert(upbdefs_google_protobuf_MessageOptions_is(m)); return upb_msgdef_itof(m, 3); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_MessageOptions_f_map_entry(const upb_msgdef *m) { assert(upbdefs_google_protobuf_MessageOptions_is(m)); return upb_msgdef_itof(m, 7); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_MessageOptions_f_message_set_wire_format(const upb_msgdef *m) { assert(upbdefs_google_protobuf_MessageOptions_is(m)); return upb_msgdef_itof(m, 1); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_MessageOptions_f_no_standard_descriptor_accessor(const upb_msgdef *m) { assert(upbdefs_google_protobuf_MessageOptions_is(m)); return upb_msgdef_itof(m, 2); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_MessageOptions_f_uninterpreted_option(const upb_msgdef *m) { assert(upbdefs_google_protobuf_MessageOptions_is(m)); return upb_msgdef_itof(m, 999); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_MethodDescriptorProto_f_client_streaming(const upb_msgdef *m) { assert(upbdefs_google_protobuf_MethodDescriptorProto_is(m)); return upb_msgdef_itof(m, 5); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_MethodDescriptorProto_f_input_type(const upb_msgdef *m) { assert(upbdefs_google_protobuf_MethodDescriptorProto_is(m)); return upb_msgdef_itof(m, 2); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_MethodDescriptorProto_f_name(const upb_msgdef *m) { assert(upbdefs_google_protobuf_MethodDescriptorProto_is(m)); return upb_msgdef_itof(m, 1); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_MethodDescriptorProto_f_options(const upb_msgdef *m) { assert(upbdefs_google_protobuf_MethodDescriptorProto_is(m)); return upb_msgdef_itof(m, 4); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_MethodDescriptorProto_f_output_type(const upb_msgdef *m) { assert(upbdefs_google_protobuf_MethodDescriptorProto_is(m)); return upb_msgdef_itof(m, 3); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_MethodDescriptorProto_f_server_streaming(const upb_msgdef *m) { assert(upbdefs_google_protobuf_MethodDescriptorProto_is(m)); return upb_msgdef_itof(m, 6); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_MethodOptions_f_deprecated(const upb_msgdef *m) { assert(upbdefs_google_protobuf_MethodOptions_is(m)); return upb_msgdef_itof(m, 33); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_MethodOptions_f_uninterpreted_option(const upb_msgdef *m) { assert(upbdefs_google_protobuf_MethodOptions_is(m)); return upb_msgdef_itof(m, 999); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_OneofDescriptorProto_f_name(const upb_msgdef *m) { assert(upbdefs_google_protobuf_OneofDescriptorProto_is(m)); return upb_msgdef_itof(m, 1); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_ServiceDescriptorProto_f_method(const upb_msgdef *m) { assert(upbdefs_google_protobuf_ServiceDescriptorProto_is(m)); return upb_msgdef_itof(m, 2); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_ServiceDescriptorProto_f_name(const upb_msgdef *m) { assert(upbdefs_google_protobuf_ServiceDescriptorProto_is(m)); return upb_msgdef_itof(m, 1); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_ServiceDescriptorProto_f_options(const upb_msgdef *m) { assert(upbdefs_google_protobuf_ServiceDescriptorProto_is(m)); return upb_msgdef_itof(m, 3); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_ServiceOptions_f_deprecated(const upb_msgdef *m) { assert(upbdefs_google_protobuf_ServiceOptions_is(m)); return upb_msgdef_itof(m, 33); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_ServiceOptions_f_uninterpreted_option(const upb_msgdef *m) { assert(upbdefs_google_protobuf_ServiceOptions_is(m)); return upb_msgdef_itof(m, 999); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_SourceCodeInfo_Location_f_leading_comments(const upb_msgdef *m) { assert(upbdefs_google_protobuf_SourceCodeInfo_Location_is(m)); return upb_msgdef_itof(m, 3); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_SourceCodeInfo_Location_f_leading_detached_comments(const upb_msgdef *m) { assert(upbdefs_google_protobuf_SourceCodeInfo_Location_is(m)); return upb_msgdef_itof(m, 6); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_SourceCodeInfo_Location_f_path(const upb_msgdef *m) { assert(upbdefs_google_protobuf_SourceCodeInfo_Location_is(m)); return upb_msgdef_itof(m, 1); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_SourceCodeInfo_Location_f_span(const upb_msgdef *m) { assert(upbdefs_google_protobuf_SourceCodeInfo_Location_is(m)); return upb_msgdef_itof(m, 2); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_SourceCodeInfo_Location_f_trailing_comments(const upb_msgdef *m) { assert(upbdefs_google_protobuf_SourceCodeInfo_Location_is(m)); return upb_msgdef_itof(m, 4); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_SourceCodeInfo_f_location(const upb_msgdef *m) { assert(upbdefs_google_protobuf_SourceCodeInfo_is(m)); return upb_msgdef_itof(m, 1); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_UninterpretedOption_NamePart_f_is_extension(const upb_msgdef *m) { assert(upbdefs_google_protobuf_UninterpretedOption_NamePart_is(m)); return upb_msgdef_itof(m, 2); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_UninterpretedOption_NamePart_f_name_part(const upb_msgdef *m) { assert(upbdefs_google_protobuf_UninterpretedOption_NamePart_is(m)); return upb_msgdef_itof(m, 1); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_UninterpretedOption_f_aggregate_value(const upb_msgdef *m) { assert(upbdefs_google_protobuf_UninterpretedOption_is(m)); return upb_msgdef_itof(m, 8); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_UninterpretedOption_f_double_value(const upb_msgdef *m) { assert(upbdefs_google_protobuf_UninterpretedOption_is(m)); return upb_msgdef_itof(m, 6); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_UninterpretedOption_f_identifier_value(const upb_msgdef *m) { assert(upbdefs_google_protobuf_UninterpretedOption_is(m)); return upb_msgdef_itof(m, 3); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_UninterpretedOption_f_name(const upb_msgdef *m) { assert(upbdefs_google_protobuf_UninterpretedOption_is(m)); return upb_msgdef_itof(m, 2); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_UninterpretedOption_f_negative_int_value(const upb_msgdef *m) { assert(upbdefs_google_protobuf_UninterpretedOption_is(m)); return upb_msgdef_itof(m, 5); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_UninterpretedOption_f_positive_int_value(const upb_msgdef *m) { assert(upbdefs_google_protobuf_UninterpretedOption_is(m)); return upb_msgdef_itof(m, 4); } UPB_INLINE const upb_fielddef *upbdefs_google_protobuf_UninterpretedOption_f_string_value(const upb_msgdef *m) { assert(upbdefs_google_protobuf_UninterpretedOption_is(m)); return upb_msgdef_itof(m, 7); } UPB_END_EXTERN_C #ifdef __cplusplus namespace upbdefs { namespace google { namespace protobuf { class DescriptorProto : public ::upb::reffed_ptr<const ::upb::MessageDef> { public: DescriptorProto(const ::upb::MessageDef* m, const void *ref_donor = NULL) : reffed_ptr(m, ref_donor) { assert(upbdefs_google_protobuf_DescriptorProto_is(m)); } static DescriptorProto get() { const ::upb::MessageDef* m = upbdefs_google_protobuf_DescriptorProto_get(&m); return DescriptorProto(m, &m); } class ExtensionRange : public ::upb::reffed_ptr<const ::upb::MessageDef> { public: ExtensionRange(const ::upb::MessageDef* m, const void *ref_donor = NULL) : reffed_ptr(m, ref_donor) { assert(upbdefs_google_protobuf_DescriptorProto_ExtensionRange_is(m)); } static ExtensionRange get() { const ::upb::MessageDef* m = upbdefs_google_protobuf_DescriptorProto_ExtensionRange_get(&m); return ExtensionRange(m, &m); } }; class ReservedRange : public ::upb::reffed_ptr<const ::upb::MessageDef> { public: ReservedRange(const ::upb::MessageDef* m, const void *ref_donor = NULL) : reffed_ptr(m, ref_donor) { assert(upbdefs_google_protobuf_DescriptorProto_ReservedRange_is(m)); } static ReservedRange get() { const ::upb::MessageDef* m = upbdefs_google_protobuf_DescriptorProto_ReservedRange_get(&m); return ReservedRange(m, &m); } }; }; class EnumDescriptorProto : public ::upb::reffed_ptr<const ::upb::MessageDef> { public: EnumDescriptorProto(const ::upb::MessageDef* m, const void *ref_donor = NULL) : reffed_ptr(m, ref_donor) { assert(upbdefs_google_protobuf_EnumDescriptorProto_is(m)); } static EnumDescriptorProto get() { const ::upb::MessageDef* m = upbdefs_google_protobuf_EnumDescriptorProto_get(&m); return EnumDescriptorProto(m, &m); } }; class EnumOptions : public ::upb::reffed_ptr<const ::upb::MessageDef> { public: EnumOptions(const ::upb::MessageDef* m, const void *ref_donor = NULL) : reffed_ptr(m, ref_donor) { assert(upbdefs_google_protobuf_EnumOptions_is(m)); } static EnumOptions get() { const ::upb::MessageDef* m = upbdefs_google_protobuf_EnumOptions_get(&m); return EnumOptions(m, &m); } }; class EnumValueDescriptorProto : public ::upb::reffed_ptr<const ::upb::MessageDef> { public: EnumValueDescriptorProto(const ::upb::MessageDef* m, const void *ref_donor = NULL) : reffed_ptr(m, ref_donor) { assert(upbdefs_google_protobuf_EnumValueDescriptorProto_is(m)); } static EnumValueDescriptorProto get() { const ::upb::MessageDef* m = upbdefs_google_protobuf_EnumValueDescriptorProto_get(&m); return EnumValueDescriptorProto(m, &m); } }; class EnumValueOptions : public ::upb::reffed_ptr<const ::upb::MessageDef> { public: EnumValueOptions(const ::upb::MessageDef* m, const void *ref_donor = NULL) : reffed_ptr(m, ref_donor) { assert(upbdefs_google_protobuf_EnumValueOptions_is(m)); } static EnumValueOptions get() { const ::upb::MessageDef* m = upbdefs_google_protobuf_EnumValueOptions_get(&m); return EnumValueOptions(m, &m); } }; class FieldDescriptorProto : public ::upb::reffed_ptr<const ::upb::MessageDef> { public: FieldDescriptorProto(const ::upb::MessageDef* m, const void *ref_donor = NULL) : reffed_ptr(m, ref_donor) { assert(upbdefs_google_protobuf_FieldDescriptorProto_is(m)); } static FieldDescriptorProto get() { const ::upb::MessageDef* m = upbdefs_google_protobuf_FieldDescriptorProto_get(&m); return FieldDescriptorProto(m, &m); } class Label : public ::upb::reffed_ptr<const ::upb::EnumDef> { public: Label(const ::upb::EnumDef* e, const void *ref_donor = NULL) : reffed_ptr(e, ref_donor) { assert(upbdefs_google_protobuf_FieldDescriptorProto_Label_is(e)); } static Label get() { const ::upb::EnumDef* e = upbdefs_google_protobuf_FieldDescriptorProto_Label_get(&e); return Label(e, &e); } }; class Type : public ::upb::reffed_ptr<const ::upb::EnumDef> { public: Type(const ::upb::EnumDef* e, const void *ref_donor = NULL) : reffed_ptr(e, ref_donor) { assert(upbdefs_google_protobuf_FieldDescriptorProto_Type_is(e)); } static Type get() { const ::upb::EnumDef* e = upbdefs_google_protobuf_FieldDescriptorProto_Type_get(&e); return Type(e, &e); } }; }; class FieldOptions : public ::upb::reffed_ptr<const ::upb::MessageDef> { public: FieldOptions(const ::upb::MessageDef* m, const void *ref_donor = NULL) : reffed_ptr(m, ref_donor) { assert(upbdefs_google_protobuf_FieldOptions_is(m)); } static FieldOptions get() { const ::upb::MessageDef* m = upbdefs_google_protobuf_FieldOptions_get(&m); return FieldOptions(m, &m); } class CType : public ::upb::reffed_ptr<const ::upb::EnumDef> { public: CType(const ::upb::EnumDef* e, const void *ref_donor = NULL) : reffed_ptr(e, ref_donor) { assert(upbdefs_google_protobuf_FieldOptions_CType_is(e)); } static CType get() { const ::upb::EnumDef* e = upbdefs_google_protobuf_FieldOptions_CType_get(&e); return CType(e, &e); } }; class JSType : public ::upb::reffed_ptr<const ::upb::EnumDef> { public: JSType(const ::upb::EnumDef* e, const void *ref_donor = NULL) : reffed_ptr(e, ref_donor) { assert(upbdefs_google_protobuf_FieldOptions_JSType_is(e)); } static JSType get() { const ::upb::EnumDef* e = upbdefs_google_protobuf_FieldOptions_JSType_get(&e); return JSType(e, &e); } }; }; class FileDescriptorProto : public ::upb::reffed_ptr<const ::upb::MessageDef> { public: FileDescriptorProto(const ::upb::MessageDef* m, const void *ref_donor = NULL) : reffed_ptr(m, ref_donor) { assert(upbdefs_google_protobuf_FileDescriptorProto_is(m)); } static FileDescriptorProto get() { const ::upb::MessageDef* m = upbdefs_google_protobuf_FileDescriptorProto_get(&m); return FileDescriptorProto(m, &m); } }; class FileDescriptorSet : public ::upb::reffed_ptr<const ::upb::MessageDef> { public: FileDescriptorSet(const ::upb::MessageDef* m, const void *ref_donor = NULL) : reffed_ptr(m, ref_donor) { assert(upbdefs_google_protobuf_FileDescriptorSet_is(m)); } static FileDescriptorSet get() { const ::upb::MessageDef* m = upbdefs_google_protobuf_FileDescriptorSet_get(&m); return FileDescriptorSet(m, &m); } }; class FileOptions : public ::upb::reffed_ptr<const ::upb::MessageDef> { public: FileOptions(const ::upb::MessageDef* m, const void *ref_donor = NULL) : reffed_ptr(m, ref_donor) { assert(upbdefs_google_protobuf_FileOptions_is(m)); } static FileOptions get() { const ::upb::MessageDef* m = upbdefs_google_protobuf_FileOptions_get(&m); return FileOptions(m, &m); } class OptimizeMode : public ::upb::reffed_ptr<const ::upb::EnumDef> { public: OptimizeMode(const ::upb::EnumDef* e, const void *ref_donor = NULL) : reffed_ptr(e, ref_donor) { assert(upbdefs_google_protobuf_FileOptions_OptimizeMode_is(e)); } static OptimizeMode get() { const ::upb::EnumDef* e = upbdefs_google_protobuf_FileOptions_OptimizeMode_get(&e); return OptimizeMode(e, &e); } }; }; class MessageOptions : public ::upb::reffed_ptr<const ::upb::MessageDef> { public: MessageOptions(const ::upb::MessageDef* m, const void *ref_donor = NULL) : reffed_ptr(m, ref_donor) { assert(upbdefs_google_protobuf_MessageOptions_is(m)); } static MessageOptions get() { const ::upb::MessageDef* m = upbdefs_google_protobuf_MessageOptions_get(&m); return MessageOptions(m, &m); } }; class MethodDescriptorProto : public ::upb::reffed_ptr<const ::upb::MessageDef> { public: MethodDescriptorProto(const ::upb::MessageDef* m, const void *ref_donor = NULL) : reffed_ptr(m, ref_donor) { assert(upbdefs_google_protobuf_MethodDescriptorProto_is(m)); } static MethodDescriptorProto get() { const ::upb::MessageDef* m = upbdefs_google_protobuf_MethodDescriptorProto_get(&m); return MethodDescriptorProto(m, &m); } }; class MethodOptions : public ::upb::reffed_ptr<const ::upb::MessageDef> { public: MethodOptions(const ::upb::MessageDef* m, const void *ref_donor = NULL) : reffed_ptr(m, ref_donor) { assert(upbdefs_google_protobuf_MethodOptions_is(m)); } static MethodOptions get() { const ::upb::MessageDef* m = upbdefs_google_protobuf_MethodOptions_get(&m); return MethodOptions(m, &m); } }; class OneofDescriptorProto : public ::upb::reffed_ptr<const ::upb::MessageDef> { public: OneofDescriptorProto(const ::upb::MessageDef* m, const void *ref_donor = NULL) : reffed_ptr(m, ref_donor) { assert(upbdefs_google_protobuf_OneofDescriptorProto_is(m)); } static OneofDescriptorProto get() { const ::upb::MessageDef* m = upbdefs_google_protobuf_OneofDescriptorProto_get(&m); return OneofDescriptorProto(m, &m); } }; class ServiceDescriptorProto : public ::upb::reffed_ptr<const ::upb::MessageDef> { public: ServiceDescriptorProto(const ::upb::MessageDef* m, const void *ref_donor = NULL) : reffed_ptr(m, ref_donor) { assert(upbdefs_google_protobuf_ServiceDescriptorProto_is(m)); } static ServiceDescriptorProto get() { const ::upb::MessageDef* m = upbdefs_google_protobuf_ServiceDescriptorProto_get(&m); return ServiceDescriptorProto(m, &m); } }; class ServiceOptions : public ::upb::reffed_ptr<const ::upb::MessageDef> { public: ServiceOptions(const ::upb::MessageDef* m, const void *ref_donor = NULL) : reffed_ptr(m, ref_donor) { assert(upbdefs_google_protobuf_ServiceOptions_is(m)); } static ServiceOptions get() { const ::upb::MessageDef* m = upbdefs_google_protobuf_ServiceOptions_get(&m); return ServiceOptions(m, &m); } }; class SourceCodeInfo : public ::upb::reffed_ptr<const ::upb::MessageDef> { public: SourceCodeInfo(const ::upb::MessageDef* m, const void *ref_donor = NULL) : reffed_ptr(m, ref_donor) { assert(upbdefs_google_protobuf_SourceCodeInfo_is(m)); } static SourceCodeInfo get() { const ::upb::MessageDef* m = upbdefs_google_protobuf_SourceCodeInfo_get(&m); return SourceCodeInfo(m, &m); } class Location : public ::upb::reffed_ptr<const ::upb::MessageDef> { public: Location(const ::upb::MessageDef* m, const void *ref_donor = NULL) : reffed_ptr(m, ref_donor) { assert(upbdefs_google_protobuf_SourceCodeInfo_Location_is(m)); } static Location get() { const ::upb::MessageDef* m = upbdefs_google_protobuf_SourceCodeInfo_Location_get(&m); return Location(m, &m); } }; }; class UninterpretedOption : public ::upb::reffed_ptr<const ::upb::MessageDef> { public: UninterpretedOption(const ::upb::MessageDef* m, const void *ref_donor = NULL) : reffed_ptr(m, ref_donor) { assert(upbdefs_google_protobuf_UninterpretedOption_is(m)); } static UninterpretedOption get() { const ::upb::MessageDef* m = upbdefs_google_protobuf_UninterpretedOption_get(&m); return UninterpretedOption(m, &m); } class NamePart : public ::upb::reffed_ptr<const ::upb::MessageDef> { public: NamePart(const ::upb::MessageDef* m, const void *ref_donor = NULL) : reffed_ptr(m, ref_donor) { assert(upbdefs_google_protobuf_UninterpretedOption_NamePart_is(m)); } static NamePart get() { const ::upb::MessageDef* m = upbdefs_google_protobuf_UninterpretedOption_NamePart_get(&m); return NamePart(m, &m); } }; }; } /* namespace protobuf */ } /* namespace google */ } /* namespace upbdefs */ #endif /* __cplusplus */ #endif /* UPB_DESCRIPTOR_DESCRIPTOR_PROTO_UPB_H_ */ /* ** Internal-only definitions for the decoder. */ #ifndef UPB_DECODER_INT_H_ #define UPB_DECODER_INT_H_ /* ** upb::pb::Decoder ** ** A high performance, streaming, resumable decoder for the binary protobuf ** format. ** ** This interface works the same regardless of what decoder backend is being ** used. A client of this class does not need to know whether decoding is using ** a JITted decoder (DynASM, LLVM, etc) or an interpreted decoder. By default, ** it will always use the fastest available decoder. However, you can call ** set_allow_jit(false) to disable any JIT decoder that might be available. ** This is primarily useful for testing purposes. */ #ifndef UPB_DECODER_H_ #define UPB_DECODER_H_ #ifdef __cplusplus namespace upb { namespace pb { class CodeCache; class Decoder; class DecoderMethod; class DecoderMethodOptions; } /* namespace pb */ } /* namespace upb */ #endif UPB_DECLARE_TYPE(upb::pb::CodeCache, upb_pbcodecache) UPB_DECLARE_TYPE(upb::pb::Decoder, upb_pbdecoder) UPB_DECLARE_TYPE(upb::pb::DecoderMethodOptions, upb_pbdecodermethodopts) UPB_DECLARE_DERIVED_TYPE(upb::pb::DecoderMethod, upb::RefCounted, upb_pbdecodermethod, upb_refcounted) /* The maximum number of bytes we are required to buffer internally between * calls to the decoder. The value is 14: a 5 byte unknown tag plus ten-byte * varint, less one because we are buffering an incomplete value. * * Should only be used by unit tests. */ #define UPB_DECODER_MAX_RESIDUAL_BYTES 14 #ifdef __cplusplus /* The parameters one uses to construct a DecoderMethod. * TODO(haberman): move allowjit here? Seems more convenient for users. * TODO(haberman): move this to be heap allocated for ABI stability. */ class upb::pb::DecoderMethodOptions { public: /* Parameter represents the destination handlers that this method will push * to. */ explicit DecoderMethodOptions(const Handlers* dest_handlers); /* Should the decoder push submessages to lazy handlers for fields that have * them? The caller should set this iff the lazy handlers expect data that is * in protobuf binary format and the caller wishes to lazy parse it. */ void set_lazy(bool lazy); #else struct upb_pbdecodermethodopts { #endif const upb_handlers *handlers; bool lazy; }; #ifdef __cplusplus /* Represents the code to parse a protobuf according to a destination * Handlers. */ class upb::pb::DecoderMethod { public: /* Include base methods from upb::ReferenceCounted. */ UPB_REFCOUNTED_CPPMETHODS /* The destination handlers that are statically bound to this method. * This method is only capable of outputting to a sink that uses these * handlers. */ const Handlers* dest_handlers() const; /* The input handlers for this decoder method. */ const BytesHandler* input_handler() const; /* Whether this method is native. */ bool is_native() const; /* Convenience method for generating a DecoderMethod without explicitly * creating a CodeCache. */ static reffed_ptr<const DecoderMethod> New(const DecoderMethodOptions& opts); private: UPB_DISALLOW_POD_OPS(DecoderMethod, upb::pb::DecoderMethod) }; #endif /* Preallocation hint: decoder won't allocate more bytes than this when first * constructed. This hint may be an overestimate for some build configurations. * But if the decoder library is upgraded without recompiling the application, * it may be an underestimate. */ #define UPB_PB_DECODER_SIZE 4416 #ifdef __cplusplus /* A Decoder receives binary protobuf data on its input sink and pushes the * decoded data to its output sink. */ class upb::pb::Decoder { public: /* Constructs a decoder instance for the given method, which must outlive this * decoder. Any errors during parsing will be set on the given status, which * must also outlive this decoder. * * The sink must match the given method. */ static Decoder* Create(Environment* env, const DecoderMethod* method, Sink* output); /* Returns the DecoderMethod this decoder is parsing from. */ const DecoderMethod* method() const; /* The sink on which this decoder receives input. */ BytesSink* input(); /* Returns number of bytes successfully parsed. * * This can be useful for determining the stream position where an error * occurred. * * This value may not be up-to-date when called from inside a parsing * callback. */ uint64_t BytesParsed() const; /* Gets/sets the parsing nexting limit. If the total number of nested * submessages and repeated fields hits this limit, parsing will fail. This * is a resource limit that controls the amount of memory used by the parsing * stack. * * Setting the limit will fail if the parser is currently suspended at a depth * greater than this, or if memory allocation of the stack fails. */ size_t max_nesting() const; bool set_max_nesting(size_t max); void Reset(); static const size_t kSize = UPB_PB_DECODER_SIZE; private: UPB_DISALLOW_POD_OPS(Decoder, upb::pb::Decoder) }; #endif /* __cplusplus */ #ifdef __cplusplus /* A class for caching protobuf processing code, whether bytecode for the * interpreted decoder or machine code for the JIT. * * This class is not thread-safe. * * TODO(haberman): move this to be heap allocated for ABI stability. */ class upb::pb::CodeCache { public: CodeCache(); ~CodeCache(); /* Whether the cache is allowed to generate machine code. Defaults to true. * There is no real reason to turn it off except for testing or if you are * having a specific problem with the JIT. * * Note that allow_jit = true does not *guarantee* that the code will be JIT * compiled. If this platform is not supported or the JIT was not compiled * in, the code may still be interpreted. */ bool allow_jit() const; /* This may only be called when the object is first constructed, and prior to * any code generation, otherwise returns false and does nothing. */ bool set_allow_jit(bool allow); /* Returns a DecoderMethod that can push data to the given handlers. * If a suitable method already exists, it will be returned from the cache. * * Specifying the destination handlers here allows the DecoderMethod to be * statically bound to the destination handlers if possible, which can allow * more efficient decoding. However the returned method may or may not * actually be statically bound. But in all cases, the returned method can * push data to the given handlers. */ const DecoderMethod *GetDecoderMethod(const DecoderMethodOptions& opts); /* If/when someone needs to explicitly create a dynamically-bound * DecoderMethod*, we can add a method to get it here. */ private: UPB_DISALLOW_COPY_AND_ASSIGN(CodeCache) #else struct upb_pbcodecache { #endif bool allow_jit_; /* Array of mgroups. */ upb_inttable groups; }; UPB_BEGIN_EXTERN_C upb_pbdecoder *upb_pbdecoder_create(upb_env *e, const upb_pbdecodermethod *method, upb_sink *output); const upb_pbdecodermethod *upb_pbdecoder_method(const upb_pbdecoder *d); upb_bytessink *upb_pbdecoder_input(upb_pbdecoder *d); uint64_t upb_pbdecoder_bytesparsed(const upb_pbdecoder *d); size_t upb_pbdecoder_maxnesting(const upb_pbdecoder *d); bool upb_pbdecoder_setmaxnesting(upb_pbdecoder *d, size_t max); void upb_pbdecoder_reset(upb_pbdecoder *d); void upb_pbdecodermethodopts_init(upb_pbdecodermethodopts *opts, const upb_handlers *h); void upb_pbdecodermethodopts_setlazy(upb_pbdecodermethodopts *opts, bool lazy); /* Include refcounted methods like upb_pbdecodermethod_ref(). */ UPB_REFCOUNTED_CMETHODS(upb_pbdecodermethod, upb_pbdecodermethod_upcast) const upb_handlers *upb_pbdecodermethod_desthandlers( const upb_pbdecodermethod *m); const upb_byteshandler *upb_pbdecodermethod_inputhandler( const upb_pbdecodermethod *m); bool upb_pbdecodermethod_isnative(const upb_pbdecodermethod *m); const upb_pbdecodermethod *upb_pbdecodermethod_new( const upb_pbdecodermethodopts *opts, const void *owner); void upb_pbcodecache_init(upb_pbcodecache *c); void upb_pbcodecache_uninit(upb_pbcodecache *c); bool upb_pbcodecache_allowjit(const upb_pbcodecache *c); bool upb_pbcodecache_setallowjit(upb_pbcodecache *c, bool allow); const upb_pbdecodermethod *upb_pbcodecache_getdecodermethod( upb_pbcodecache *c, const upb_pbdecodermethodopts *opts); UPB_END_EXTERN_C #ifdef __cplusplus namespace upb { namespace pb { /* static */ inline Decoder* Decoder::Create(Environment* env, const DecoderMethod* m, Sink* sink) { return upb_pbdecoder_create(env, m, sink); } inline const DecoderMethod* Decoder::method() const { return upb_pbdecoder_method(this); } inline BytesSink* Decoder::input() { return upb_pbdecoder_input(this); } inline uint64_t Decoder::BytesParsed() const { return upb_pbdecoder_bytesparsed(this); } inline size_t Decoder::max_nesting() const { return upb_pbdecoder_maxnesting(this); } inline bool Decoder::set_max_nesting(size_t max) { return upb_pbdecoder_setmaxnesting(this, max); } inline void Decoder::Reset() { upb_pbdecoder_reset(this); } inline DecoderMethodOptions::DecoderMethodOptions(const Handlers* h) { upb_pbdecodermethodopts_init(this, h); } inline void DecoderMethodOptions::set_lazy(bool lazy) { upb_pbdecodermethodopts_setlazy(this, lazy); } inline const Handlers* DecoderMethod::dest_handlers() const { return upb_pbdecodermethod_desthandlers(this); } inline const BytesHandler* DecoderMethod::input_handler() const { return upb_pbdecodermethod_inputhandler(this); } inline bool DecoderMethod::is_native() const { return upb_pbdecodermethod_isnative(this); } /* static */ inline reffed_ptr<const DecoderMethod> DecoderMethod::New( const DecoderMethodOptions &opts) { const upb_pbdecodermethod *m = upb_pbdecodermethod_new(&opts, &m); return reffed_ptr<const DecoderMethod>(m, &m); } inline CodeCache::CodeCache() { upb_pbcodecache_init(this); } inline CodeCache::~CodeCache() { upb_pbcodecache_uninit(this); } inline bool CodeCache::allow_jit() const { return upb_pbcodecache_allowjit(this); } inline bool CodeCache::set_allow_jit(bool allow) { return upb_pbcodecache_setallowjit(this, allow); } inline const DecoderMethod *CodeCache::GetDecoderMethod( const DecoderMethodOptions& opts) { return upb_pbcodecache_getdecodermethod(this, &opts); } } /* namespace pb */ } /* namespace upb */ #endif /* __cplusplus */ #endif /* UPB_DECODER_H_ */ /* C++ names are not actually used since this type isn't exposed to users. */ #ifdef __cplusplus namespace upb { namespace pb { class MessageGroup; } /* namespace pb */ } /* namespace upb */ #endif UPB_DECLARE_DERIVED_TYPE(upb::pb::MessageGroup, upb::RefCounted, mgroup, upb_refcounted) /* Opcode definitions. The canonical meaning of each opcode is its * implementation in the interpreter (the JIT is written to match this). * * All instructions have the opcode in the low byte. * Instruction format for most instructions is: * * +-------------------+--------+ * | arg (24) | op (8) | * +-------------------+--------+ * * Exceptions are indicated below. A few opcodes are multi-word. */ typedef enum { /* Opcodes 1-8, 13, 15-18 parse their respective descriptor types. * Arg for all of these is the upb selector for this field. */ #define T(type) OP_PARSE_ ## type = UPB_DESCRIPTOR_TYPE_ ## type T(DOUBLE), T(FLOAT), T(INT64), T(UINT64), T(INT32), T(FIXED64), T(FIXED32), T(BOOL), T(UINT32), T(SFIXED32), T(SFIXED64), T(SINT32), T(SINT64), #undef T OP_STARTMSG = 9, /* No arg. */ OP_ENDMSG = 10, /* No arg. */ OP_STARTSEQ = 11, OP_ENDSEQ = 12, OP_STARTSUBMSG = 14, OP_ENDSUBMSG = 19, OP_STARTSTR = 20, OP_STRING = 21, OP_ENDSTR = 22, OP_PUSHTAGDELIM = 23, /* No arg. */ OP_PUSHLENDELIM = 24, /* No arg. */ OP_POP = 25, /* No arg. */ OP_SETDELIM = 26, /* No arg. */ OP_SETBIGGROUPNUM = 27, /* two words: * | unused (24) | opc (8) | * | groupnum (32) | */ OP_CHECKDELIM = 28, OP_CALL = 29, OP_RET = 30, OP_BRANCH = 31, /* Different opcodes depending on how many bytes expected. */ OP_TAG1 = 32, /* | match tag (16) | jump target (8) | opc (8) | */ OP_TAG2 = 33, /* | match tag (16) | jump target (8) | opc (8) | */ OP_TAGN = 34, /* three words: */ /* | unused (16) | jump target(8) | opc (8) | */ /* | match tag 1 (32) | */ /* | match tag 2 (32) | */ OP_SETDISPATCH = 35, /* N words: */ /* | unused (24) | opc | */ /* | upb_inttable* (32 or 64) | */ OP_DISPATCH = 36, /* No arg. */ OP_HALT = 37 /* No arg. */ } opcode; #define OP_MAX OP_HALT UPB_INLINE opcode getop(uint32_t instr) { return instr & 0xff; } /* Method group; represents a set of decoder methods that had their code * emitted together, and must therefore be freed together. Immutable once * created. It is possible we may want to expose this to users at some point. * * Overall ownership of Decoder objects looks like this: * * +----------+ * | | <---> DecoderMethod * | method | * CodeCache ---> | group | <---> DecoderMethod * | | * | (mgroup) | <---> DecoderMethod * +----------+ */ struct mgroup { upb_refcounted base; /* Maps upb_msgdef/upb_handlers -> upb_pbdecodermethod. We own refs on the * methods. */ upb_inttable methods; /* When we add the ability to link to previously existing mgroups, we'll * need an array of mgroups we reference here, and own refs on them. */ /* The bytecode for our methods, if any exists. Owned by us. */ uint32_t *bytecode; uint32_t *bytecode_end; #ifdef UPB_USE_JIT_X64 /* JIT-generated machine code, if any. */ upb_string_handlerfunc *jit_code; /* The size of the jit_code (required to munmap()). */ size_t jit_size; char *debug_info; void *dl; #endif }; /* The maximum that any submessages can be nested. Matches proto2's limit. * This specifies the size of the decoder's statically-sized array and therefore * setting it high will cause the upb::pb::Decoder object to be larger. * * If necessary we can add a runtime-settable property to Decoder that allow * this to be larger than the compile-time setting, but this would add * complexity, particularly since we would have to decide how/if to give users * the ability to set a custom memory allocation function. */ #define UPB_DECODER_MAX_NESTING 64 /* Internal-only struct used by the decoder. */ typedef struct { /* Space optimization note: we store two pointers here that the JIT * doesn't need at all; the upb_handlers* inside the sink and * the dispatch table pointer. We can optimze so that the JIT uses * smaller stack frames than the interpreter. The only thing we need * to guarantee is that the fallback routines can find end_ofs. */ upb_sink sink; /* The absolute stream offset of the end-of-frame delimiter. * Non-delimited frames (groups and non-packed repeated fields) reuse the * delimiter of their parent, even though the frame may not end there. * * NOTE: the JIT stores a slightly different value here for non-top frames. * It stores the value relative to the end of the enclosed message. But the * top frame is still stored the same way, which is important for ensuring * that calls from the JIT into C work correctly. */ uint64_t end_ofs; const uint32_t *base; /* 0 indicates a length-delimited field. * A positive number indicates a known group. * A negative number indicates an unknown group. */ int32_t groupnum; upb_inttable *dispatch; /* Not used by the JIT. */ } upb_pbdecoder_frame; struct upb_pbdecodermethod { upb_refcounted base; /* While compiling, the base is relative in "ofs", after compiling it is * absolute in "ptr". */ union { uint32_t ofs; /* PC offset of method. */ void *ptr; /* Pointer to bytecode or machine code for this method. */ } code_base; /* The decoder method group to which this method belongs. We own a ref. * Owning a ref on the entire group is more coarse-grained than is strictly * necessary; all we truly require is that methods we directly reference * outlive us, while the group could contain many other messages we don't * require. But the group represents the messages that were * allocated+compiled together, so it makes the most sense to free them * together also. */ const upb_refcounted *group; /* Whether this method is native code or bytecode. */ bool is_native_; /* The handler one calls to invoke this method. */ upb_byteshandler input_handler_; /* The destination handlers this method is bound to. We own a ref. */ const upb_handlers *dest_handlers_; /* Dispatch table -- used by both bytecode decoder and JIT when encountering a * field number that wasn't the one we were expecting to see. See * decoder.int.h for the layout of this table. */ upb_inttable dispatch; }; struct upb_pbdecoder { upb_env *env; /* Our input sink. */ upb_bytessink input_; /* The decoder method we are parsing with (owned). */ const upb_pbdecodermethod *method_; size_t call_len; const uint32_t *pc, *last; /* Current input buffer and its stream offset. */ const char *buf, *ptr, *end, *checkpoint; /* End of the delimited region, relative to ptr, NULL if not in this buf. */ const char *delim_end; /* End of the delimited region, relative to ptr, end if not in this buf. */ const char *data_end; /* Overall stream offset of "buf." */ uint64_t bufstart_ofs; /* Buffer for residual bytes not parsed from the previous buffer. */ char residual[UPB_DECODER_MAX_RESIDUAL_BYTES]; char *residual_end; /* Bytes of data that should be discarded from the input beore we start * parsing again. We set this when we internally determine that we can * safely skip the next N bytes, but this region extends past the current * user buffer. */ size_t skip; /* Stores the user buffer passed to our decode function. */ const char *buf_param; size_t size_param; const upb_bufhandle *handle; /* Our internal stack. */ upb_pbdecoder_frame *stack, *top, *limit; const uint32_t **callstack; size_t stack_size; upb_status *status; #ifdef UPB_USE_JIT_X64 /* Used momentarily by the generated code to store a value while a user * function is called. */ uint32_t tmp_len; const void *saved_rsp; #endif }; /* Decoder entry points; used as handlers. */ void *upb_pbdecoder_startbc(void *closure, const void *pc, size_t size_hint); void *upb_pbdecoder_startjit(void *closure, const void *hd, size_t size_hint); size_t upb_pbdecoder_decode(void *closure, const void *hd, const char *buf, size_t size, const upb_bufhandle *handle); bool upb_pbdecoder_end(void *closure, const void *handler_data); /* Decoder-internal functions that the JIT calls to handle fallback paths. */ int32_t upb_pbdecoder_resume(upb_pbdecoder *d, void *p, const char *buf, size_t size, const upb_bufhandle *handle); size_t upb_pbdecoder_suspend(upb_pbdecoder *d); int32_t upb_pbdecoder_skipunknown(upb_pbdecoder *d, int32_t fieldnum, uint8_t wire_type); int32_t upb_pbdecoder_checktag_slow(upb_pbdecoder *d, uint64_t expected); int32_t upb_pbdecoder_decode_varint_slow(upb_pbdecoder *d, uint64_t *u64); int32_t upb_pbdecoder_decode_f32(upb_pbdecoder *d, uint32_t *u32); int32_t upb_pbdecoder_decode_f64(upb_pbdecoder *d, uint64_t *u64); void upb_pbdecoder_seterr(upb_pbdecoder *d, const char *msg); /* Error messages that are shared between the bytecode and JIT decoders. */ extern const char *kPbDecoderStackOverflow; extern const char *kPbDecoderSubmessageTooLong; /* Access to decoderplan members needed by the decoder. */ const char *upb_pbdecoder_getopname(unsigned int op); /* JIT codegen entry point. */ void upb_pbdecoder_jit(mgroup *group); void upb_pbdecoder_freejit(mgroup *group); UPB_REFCOUNTED_CMETHODS(mgroup, mgroup_upcast) /* A special label that means "do field dispatch for this message and branch to * wherever that takes you." */ #define LABEL_DISPATCH 0 /* A special slot in the dispatch table that stores the epilogue (ENDMSG and/or * RET) for branching to when we find an appropriate ENDGROUP tag. */ #define DISPATCH_ENDMSG 0 /* It's important to use this invalid wire type instead of 0 (which is a valid * wire type). */ #define NO_WIRE_TYPE 0xff /* The dispatch table layout is: * [field number] -> [ 48-bit offset ][ 8-bit wt2 ][ 8-bit wt1 ] * * If wt1 matches, jump to the 48-bit offset. If wt2 matches, lookup * (UPB_MAX_FIELDNUMBER + fieldnum) and jump there. * * We need two wire types because of packed/non-packed compatibility. A * primitive repeated field can use either wire type and be valid. While we * could key the table on fieldnum+wiretype, the table would be 8x sparser. * * Storing two wire types in the primary value allows us to quickly rule out * the second wire type without needing to do a separate lookup (this case is * less common than an unknown field). */ UPB_INLINE uint64_t upb_pbdecoder_packdispatch(uint64_t ofs, uint8_t wt1, uint8_t wt2) { return (ofs << 16) | (wt2 << 8) | wt1; } UPB_INLINE void upb_pbdecoder_unpackdispatch(uint64_t dispatch, uint64_t *ofs, uint8_t *wt1, uint8_t *wt2) { *wt1 = (uint8_t)dispatch; *wt2 = (uint8_t)(dispatch >> 8); *ofs = dispatch >> 16; } /* All of the functions in decoder.c that return int32_t return values according * to the following scheme: * 1. negative values indicate a return code from the following list. * 2. positive values indicate that error or end of buffer was hit, and * that the decode function should immediately return the given value * (the decoder state has already been suspended and is ready to be * resumed). */ #define DECODE_OK -1 #define DECODE_MISMATCH -2 /* Used only from checktag_slow(). */ #define DECODE_ENDGROUP -3 /* Used only from checkunknown(). */ #define CHECK_RETURN(x) { int32_t ret = x; if (ret >= 0) return ret; } #endif /* UPB_DECODER_INT_H_ */ /* ** A number of routines for varint manipulation (we keep them all around to ** have multiple approaches available for benchmarking). */ #ifndef UPB_VARINT_DECODER_H_ #define UPB_VARINT_DECODER_H_ #include <assert.h> #include <stdint.h> #include <string.h> #ifdef __cplusplus extern "C" { #endif /* A list of types as they are encoded on-the-wire. */ typedef enum { UPB_WIRE_TYPE_VARINT = 0, UPB_WIRE_TYPE_64BIT = 1, UPB_WIRE_TYPE_DELIMITED = 2, UPB_WIRE_TYPE_START_GROUP = 3, UPB_WIRE_TYPE_END_GROUP = 4, UPB_WIRE_TYPE_32BIT = 5 } upb_wiretype_t; #define UPB_MAX_WIRE_TYPE 5 /* The maximum number of bytes that it takes to encode a 64-bit varint. * Note that with a better encoding this could be 9 (TODO: write up a * wiki document about this). */ #define UPB_PB_VARINT_MAX_LEN 10 /* Array of the "native" (ie. non-packed-repeated) wire type for the given a * descriptor type (upb_descriptortype_t). */ extern const uint8_t upb_pb_native_wire_types[]; /* Zig-zag encoding/decoding **************************************************/ UPB_INLINE int32_t upb_zzdec_32(uint32_t n) { return (n >> 1) ^ -(int32_t)(n & 1); } UPB_INLINE int64_t upb_zzdec_64(uint64_t n) { return (n >> 1) ^ -(int64_t)(n & 1); } UPB_INLINE uint32_t upb_zzenc_32(int32_t n) { return (n << 1) ^ (n >> 31); } UPB_INLINE uint64_t upb_zzenc_64(int64_t n) { return (n << 1) ^ (n >> 63); } /* Decoding *******************************************************************/ /* All decoding functions return this struct by value. */ typedef struct { const char *p; /* NULL if the varint was unterminated. */ uint64_t val; } upb_decoderet; UPB_INLINE upb_decoderet upb_decoderet_make(const char *p, uint64_t val) { upb_decoderet ret; ret.p = p; ret.val = val; return ret; } /* Four functions for decoding a varint of at most eight bytes. They are all * functionally identical, but are implemented in different ways and likely have * different performance profiles. We keep them around for performance testing. * * Note that these functions may not read byte-by-byte, so they must not be used * unless there are at least eight bytes left in the buffer! */ upb_decoderet upb_vdecode_max8_branch32(upb_decoderet r); upb_decoderet upb_vdecode_max8_branch64(upb_decoderet r); upb_decoderet upb_vdecode_max8_wright(upb_decoderet r); upb_decoderet upb_vdecode_max8_massimino(upb_decoderet r); /* Template for a function that checks the first two bytes with branching * and dispatches 2-10 bytes with a separate function. Note that this may read * up to 10 bytes, so it must not be used unless there are at least ten bytes * left in the buffer! */ #define UPB_VARINT_DECODER_CHECK2(name, decode_max8_function) \ UPB_INLINE upb_decoderet upb_vdecode_check2_ ## name(const char *_p) { \ uint8_t *p = (uint8_t*)_p; \ upb_decoderet r; \ if ((*p & 0x80) == 0) { \ /* Common case: one-byte varint. */ \ return upb_decoderet_make(_p + 1, *p & 0x7fU); \ } \ r = upb_decoderet_make(_p + 2, (*p & 0x7fU) | ((*(p + 1) & 0x7fU) << 7)); \ if ((*(p + 1) & 0x80) == 0) { \ /* Two-byte varint. */ \ return r; \ } \ /* Longer varint, fallback to out-of-line function. */ \ return decode_max8_function(r); \ } UPB_VARINT_DECODER_CHECK2(branch32, upb_vdecode_max8_branch32) UPB_VARINT_DECODER_CHECK2(branch64, upb_vdecode_max8_branch64) UPB_VARINT_DECODER_CHECK2(wright, upb_vdecode_max8_wright) UPB_VARINT_DECODER_CHECK2(massimino, upb_vdecode_max8_massimino) #undef UPB_VARINT_DECODER_CHECK2 /* Our canonical functions for decoding varints, based on the currently * favored best-performing implementations. */ UPB_INLINE upb_decoderet upb_vdecode_fast(const char *p) { if (sizeof(long) == 8) return upb_vdecode_check2_branch64(p); else return upb_vdecode_check2_branch32(p); } UPB_INLINE upb_decoderet upb_vdecode_max8_fast(upb_decoderet r) { return upb_vdecode_max8_massimino(r); } /* Encoding *******************************************************************/ UPB_INLINE int upb_value_size(uint64_t val) { #ifdef __GNUC__ int high_bit = 63 - __builtin_clzll(val); /* 0-based, undef if val == 0. */ #else int high_bit = 0; uint64_t tmp = val; while(tmp >>= 1) high_bit++; #endif return val == 0 ? 1 : high_bit / 8 + 1; } /* Encodes a 64-bit varint into buf (which must be >=UPB_PB_VARINT_MAX_LEN * bytes long), returning how many bytes were used. * * TODO: benchmark and optimize if necessary. */ UPB_INLINE size_t upb_vencode64(uint64_t val, char *buf) { size_t i; if (val == 0) { buf[0] = 0; return 1; } i = 0; while (val) { uint8_t byte = val & 0x7fU; val >>= 7; if (val) byte |= 0x80U; buf[i++] = byte; } return i; } UPB_INLINE size_t upb_varint_size(uint64_t val) { char buf[UPB_PB_VARINT_MAX_LEN]; return upb_vencode64(val, buf); } /* Encodes a 32-bit varint, *not* sign-extended. */ UPB_INLINE uint64_t upb_vencode32(uint32_t val) { char buf[UPB_PB_VARINT_MAX_LEN]; size_t bytes = upb_vencode64(val, buf); uint64_t ret = 0; assert(bytes <= 5); memcpy(&ret, buf, bytes); assert(ret <= 0xffffffffffU); return ret; } #ifdef __cplusplus } /* extern "C" */ #endif #endif /* UPB_VARINT_DECODER_H_ */ /* ** upb::pb::Encoder (upb_pb_encoder) ** ** Implements a set of upb_handlers that write protobuf data to the binary wire ** format. ** ** This encoder implementation does not have any access to any out-of-band or ** precomputed lengths for submessages, so it must buffer submessages internally ** before it can emit the first byte. */ #ifndef UPB_ENCODER_H_ #define UPB_ENCODER_H_ #ifdef __cplusplus namespace upb { namespace pb { class Encoder; } /* namespace pb */ } /* namespace upb */ #endif UPB_DECLARE_TYPE(upb::pb::Encoder, upb_pb_encoder) #define UPB_PBENCODER_MAX_NESTING 100 /* upb::pb::Encoder ***********************************************************/ /* Preallocation hint: decoder won't allocate more bytes than this when first * constructed. This hint may be an overestimate for some build configurations. * But if the decoder library is upgraded without recompiling the application, * it may be an underestimate. */ #define UPB_PB_ENCODER_SIZE 768 #ifdef __cplusplus class upb::pb::Encoder { public: /* Creates a new encoder in the given environment. The Handlers must have * come from NewHandlers() below. */ static Encoder* Create(Environment* env, const Handlers* handlers, BytesSink* output); /* The input to the encoder. */ Sink* input(); /* Creates a new set of handlers for this MessageDef. */ static reffed_ptr<const Handlers> NewHandlers(const MessageDef* msg); static const size_t kSize = UPB_PB_ENCODER_SIZE; private: UPB_DISALLOW_POD_OPS(Encoder, upb::pb::Encoder) }; #endif UPB_BEGIN_EXTERN_C const upb_handlers *upb_pb_encoder_newhandlers(const upb_msgdef *m, const void *owner); upb_sink *upb_pb_encoder_input(upb_pb_encoder *p); upb_pb_encoder* upb_pb_encoder_create(upb_env* e, const upb_handlers* h, upb_bytessink* output); UPB_END_EXTERN_C #ifdef __cplusplus namespace upb { namespace pb { inline Encoder* Encoder::Create(Environment* env, const Handlers* handlers, BytesSink* output) { return upb_pb_encoder_create(env, handlers, output); } inline Sink* Encoder::input() { return upb_pb_encoder_input(this); } inline reffed_ptr<const Handlers> Encoder::NewHandlers( const upb::MessageDef *md) { const Handlers* h = upb_pb_encoder_newhandlers(md, &h); return reffed_ptr<const Handlers>(h, &h); } } /* namespace pb */ } /* namespace upb */ #endif #endif /* UPB_ENCODER_H_ */ /* ** upb's core components like upb_decoder and upb_msg are carefully designed to ** avoid depending on each other for maximum orthogonality. In other words, ** you can use a upb_decoder to decode into *any* kind of structure; upb_msg is ** just one such structure. A upb_msg can be serialized/deserialized into any ** format, protobuf binary format is just one such format. ** ** However, for convenience we provide functions here for doing common ** operations like deserializing protobuf binary format into a upb_msg. The ** compromise is that this file drags in almost all of upb as a dependency, ** which could be undesirable if you're trying to use a trimmed-down build of ** upb. ** ** While these routines are convenient, they do not reuse any encoding/decoding ** state. For example, if a decoder is JIT-based, it will be re-JITted every ** time these functions are called. For this reason, if you are parsing lots ** of data and efficiency is an issue, these may not be the best functions to ** use (though they are useful for prototyping, before optimizing). */ #ifndef UPB_GLUE_H #define UPB_GLUE_H #include <stdbool.h> #ifdef __cplusplus #include <vector> extern "C" { #endif /* Loads a binary descriptor and returns a NULL-terminated array of unfrozen * filedefs. The caller owns the returned array, which must be freed with * upb_gfree(). */ upb_filedef **upb_loaddescriptor(const char *buf, size_t n, const void *owner, upb_status *status); #ifdef __cplusplus } /* extern "C" */ namespace upb { inline bool LoadDescriptor(const char* buf, size_t n, Status* status, std::vector<reffed_ptr<FileDef> >* files) { FileDef** parsed_files = upb_loaddescriptor(buf, n, &parsed_files, status); if (parsed_files) { FileDef** p = parsed_files; while (*p) { files->push_back(reffed_ptr<FileDef>(*p, &parsed_files)); ++p; } free(parsed_files); return true; } else { return false; } } /* Templated so it can accept both string and std::string. */ template <typename T> bool LoadDescriptor(const T& desc, Status* status, std::vector<reffed_ptr<FileDef> >* files) { return LoadDescriptor(desc.c_str(), desc.size(), status, files); } } /* namespace upb */ #endif #endif /* UPB_GLUE_H */ /* ** upb::pb::TextPrinter (upb_textprinter) ** ** Handlers for writing to protobuf text format. */ #ifndef UPB_TEXT_H_ #define UPB_TEXT_H_ #ifdef __cplusplus namespace upb { namespace pb { class TextPrinter; } /* namespace pb */ } /* namespace upb */ #endif UPB_DECLARE_TYPE(upb::pb::TextPrinter, upb_textprinter) #ifdef __cplusplus class upb::pb::TextPrinter { public: /* The given handlers must have come from NewHandlers(). It must outlive the * TextPrinter. */ static TextPrinter *Create(Environment *env, const upb::Handlers *handlers, BytesSink *output); void SetSingleLineMode(bool single_line); Sink* input(); /* If handler caching becomes a requirement we can add a code cache as in * decoder.h */ static reffed_ptr<const Handlers> NewHandlers(const MessageDef* md); }; #endif UPB_BEGIN_EXTERN_C /* C API. */ upb_textprinter *upb_textprinter_create(upb_env *env, const upb_handlers *h, upb_bytessink *output); void upb_textprinter_setsingleline(upb_textprinter *p, bool single_line); upb_sink *upb_textprinter_input(upb_textprinter *p); const upb_handlers *upb_textprinter_newhandlers(const upb_msgdef *m, const void *owner); UPB_END_EXTERN_C #ifdef __cplusplus namespace upb { namespace pb { inline TextPrinter *TextPrinter::Create(Environment *env, const upb::Handlers *handlers, BytesSink *output) { return upb_textprinter_create(env, handlers, output); } inline void TextPrinter::SetSingleLineMode(bool single_line) { upb_textprinter_setsingleline(this, single_line); } inline Sink* TextPrinter::input() { return upb_textprinter_input(this); } inline reffed_ptr<const Handlers> TextPrinter::NewHandlers( const MessageDef *md) { const Handlers* h = upb_textprinter_newhandlers(md, &h); return reffed_ptr<const Handlers>(h, &h); } } /* namespace pb */ } /* namespace upb */ #endif #endif /* UPB_TEXT_H_ */ /* ** upb::json::Parser (upb_json_parser) ** ** Parses JSON according to a specific schema. ** Support for parsing arbitrary JSON (schema-less) will be added later. */ #ifndef UPB_JSON_PARSER_H_ #define UPB_JSON_PARSER_H_ #ifdef __cplusplus namespace upb { namespace json { class Parser; class ParserMethod; } /* namespace json */ } /* namespace upb */ #endif UPB_DECLARE_TYPE(upb::json::Parser, upb_json_parser) UPB_DECLARE_DERIVED_TYPE(upb::json::ParserMethod, upb::RefCounted, upb_json_parsermethod, upb_refcounted) /* upb::json::Parser **********************************************************/ /* Preallocation hint: parser won't allocate more bytes than this when first * constructed. This hint may be an overestimate for some build configurations. * But if the parser library is upgraded without recompiling the application, * it may be an underestimate. */ #define UPB_JSON_PARSER_SIZE 4112 #ifdef __cplusplus /* Parses an incoming BytesStream, pushing the results to the destination * sink. */ class upb::json::Parser { public: static Parser* Create(Environment* env, const ParserMethod* method, Sink* output); BytesSink* input(); private: UPB_DISALLOW_POD_OPS(Parser, upb::json::Parser) }; class upb::json::ParserMethod { public: /* Include base methods from upb::ReferenceCounted. */ UPB_REFCOUNTED_CPPMETHODS /* Returns handlers for parsing according to the specified schema. */ static reffed_ptr<const ParserMethod> New(const upb::MessageDef* md); /* The destination handlers that are statically bound to this method. * This method is only capable of outputting to a sink that uses these * handlers. */ const Handlers* dest_handlers() const; /* The input handlers for this decoder method. */ const BytesHandler* input_handler() const; private: UPB_DISALLOW_POD_OPS(ParserMethod, upb::json::ParserMethod) }; #endif UPB_BEGIN_EXTERN_C upb_json_parser* upb_json_parser_create(upb_env* e, const upb_json_parsermethod* m, upb_sink* output); upb_bytessink *upb_json_parser_input(upb_json_parser *p); upb_json_parsermethod* upb_json_parsermethod_new(const upb_msgdef* md, const void* owner); const upb_handlers *upb_json_parsermethod_desthandlers( const upb_json_parsermethod *m); const upb_byteshandler *upb_json_parsermethod_inputhandler( const upb_json_parsermethod *m); /* Include refcounted methods like upb_json_parsermethod_ref(). */ UPB_REFCOUNTED_CMETHODS(upb_json_parsermethod, upb_json_parsermethod_upcast) UPB_END_EXTERN_C #ifdef __cplusplus namespace upb { namespace json { inline Parser* Parser::Create(Environment* env, const ParserMethod* method, Sink* output) { return upb_json_parser_create(env, method, output); } inline BytesSink* Parser::input() { return upb_json_parser_input(this); } inline const Handlers* ParserMethod::dest_handlers() const { return upb_json_parsermethod_desthandlers(this); } inline const BytesHandler* ParserMethod::input_handler() const { return upb_json_parsermethod_inputhandler(this); } /* static */ inline reffed_ptr<const ParserMethod> ParserMethod::New( const MessageDef* md) { const upb_json_parsermethod *m = upb_json_parsermethod_new(md, &m); return reffed_ptr<const ParserMethod>(m, &m); } } /* namespace json */ } /* namespace upb */ #endif #endif /* UPB_JSON_PARSER_H_ */ /* ** upb::json::Printer ** ** Handlers that emit JSON according to a specific protobuf schema. */ #ifndef UPB_JSON_TYPED_PRINTER_H_ #define UPB_JSON_TYPED_PRINTER_H_ #ifdef __cplusplus namespace upb { namespace json { class Printer; } /* namespace json */ } /* namespace upb */ #endif UPB_DECLARE_TYPE(upb::json::Printer, upb_json_printer) /* upb::json::Printer *********************************************************/ #define UPB_JSON_PRINTER_SIZE 176 #ifdef __cplusplus /* Prints an incoming stream of data to a BytesSink in JSON format. */ class upb::json::Printer { public: static Printer* Create(Environment* env, const upb::Handlers* handlers, BytesSink* output); /* The input to the printer. */ Sink* input(); /* Returns handlers for printing according to the specified schema. * If preserve_proto_fieldnames is true, the output JSON will use the * original .proto field names (ie. {"my_field":3}) instead of using * camelCased names, which is the default: (eg. {"myField":3}). */ static reffed_ptr<const Handlers> NewHandlers(const upb::MessageDef* md, bool preserve_proto_fieldnames); static const size_t kSize = UPB_JSON_PRINTER_SIZE; private: UPB_DISALLOW_POD_OPS(Printer, upb::json::Printer) }; #endif UPB_BEGIN_EXTERN_C /* Native C API. */ upb_json_printer *upb_json_printer_create(upb_env *e, const upb_handlers *h, upb_bytessink *output); upb_sink *upb_json_printer_input(upb_json_printer *p); const upb_handlers *upb_json_printer_newhandlers(const upb_msgdef *md, bool preserve_fieldnames, const void *owner); UPB_END_EXTERN_C #ifdef __cplusplus namespace upb { namespace json { inline Printer* Printer::Create(Environment* env, const upb::Handlers* handlers, BytesSink* output) { return upb_json_printer_create(env, handlers, output); } inline Sink* Printer::input() { return upb_json_printer_input(this); } inline reffed_ptr<const Handlers> Printer::NewHandlers( const upb::MessageDef *md, bool preserve_proto_fieldnames) { const Handlers* h = upb_json_printer_newhandlers( md, preserve_proto_fieldnames, &h); return reffed_ptr<const Handlers>(h, &h); } } /* namespace json */ } /* namespace upb */ #endif #endif /* UPB_JSON_TYPED_PRINTER_H_ */