// Amalgamated source file #include "upb.h" #include <ctype.h> #include <stdlib.h> #include <string.h> typedef struct { size_t len; char str[1]; /* Null-terminated string data follows. */ } str_t; static str_t *newstr(const char *data, size_t len) { str_t *ret = upb_gmalloc(sizeof(*ret) + len); if (!ret) return NULL; ret->len = len; memcpy(ret->str, data, len); ret->str[len] = '\0'; return ret; } static void freestr(str_t *s) { upb_gfree(s); } /* isalpha() etc. from <ctype.h> are locale-dependent, which we don't want. */ static bool upb_isbetween(char c, char low, char high) { return c >= low && c <= high; } static bool upb_isletter(char c) { return upb_isbetween(c, 'A', 'Z') || upb_isbetween(c, 'a', 'z') || c == '_'; } static bool upb_isalphanum(char c) { return upb_isletter(c) || upb_isbetween(c, '0', '9'); } static bool upb_isident(const char *str, size_t len, bool full, upb_status *s) { bool start = true; size_t i; for (i = 0; i < len; i++) { char c = str[i]; if (c == '.') { if (start || !full) { upb_status_seterrf(s, "invalid name: unexpected '.' (%s)", str); return false; } start = true; } else if (start) { if (!upb_isletter(c)) { upb_status_seterrf( s, "invalid name: path components must start with a letter (%s)", str); return false; } start = false; } else { if (!upb_isalphanum(c)) { upb_status_seterrf(s, "invalid name: non-alphanumeric character (%s)", str); return false; } } } return !start; } static bool upb_isoneof(const upb_refcounted *def) { return def->vtbl == &upb_oneofdef_vtbl; } static bool upb_isfield(const upb_refcounted *def) { return def->vtbl == &upb_fielddef_vtbl; } static const upb_oneofdef *upb_trygetoneof(const upb_refcounted *def) { return upb_isoneof(def) ? (const upb_oneofdef*)def : NULL; } static const upb_fielddef *upb_trygetfield(const upb_refcounted *def) { return upb_isfield(def) ? (const upb_fielddef*)def : NULL; } /* upb_def ********************************************************************/ upb_deftype_t upb_def_type(const upb_def *d) { return d->type; } const char *upb_def_fullname(const upb_def *d) { return d->fullname; } const char *upb_def_name(const upb_def *d) { const char *p; if (d->fullname == NULL) { return NULL; } else if ((p = strrchr(d->fullname, '.')) == NULL) { /* No '.' in the name, return the full string. */ return d->fullname; } else { /* Return one past the last '.'. */ return p + 1; } } bool upb_def_setfullname(upb_def *def, const char *fullname, upb_status *s) { assert(!upb_def_isfrozen(def)); if (!upb_isident(fullname, strlen(fullname), true, s)) { return false; } fullname = upb_gstrdup(fullname); if (!fullname) { upb_upberr_setoom(s); return false; } upb_gfree((void*)def->fullname); def->fullname = fullname; return true; } const upb_filedef *upb_def_file(const upb_def *d) { return d->file; } upb_def *upb_def_dup(const upb_def *def, const void *o) { switch (def->type) { case UPB_DEF_MSG: return upb_msgdef_upcast_mutable( upb_msgdef_dup(upb_downcast_msgdef(def), o)); case UPB_DEF_FIELD: return upb_fielddef_upcast_mutable( upb_fielddef_dup(upb_downcast_fielddef(def), o)); case UPB_DEF_ENUM: return upb_enumdef_upcast_mutable( upb_enumdef_dup(upb_downcast_enumdef(def), o)); default: assert(false); return NULL; } } static bool upb_def_init(upb_def *def, upb_deftype_t type, const struct upb_refcounted_vtbl *vtbl, const void *owner) { if (!upb_refcounted_init(upb_def_upcast_mutable(def), vtbl, owner)) return false; def->type = type; def->fullname = NULL; def->came_from_user = false; def->file = NULL; return true; } static void upb_def_uninit(upb_def *def) { upb_gfree((void*)def->fullname); } static const char *msgdef_name(const upb_msgdef *m) { const char *name = upb_def_fullname(upb_msgdef_upcast(m)); return name ? name : "(anonymous)"; } static bool upb_validate_field(upb_fielddef *f, upb_status *s) { if (upb_fielddef_name(f) == NULL || upb_fielddef_number(f) == 0) { upb_status_seterrmsg(s, "fielddef must have name and number set"); return false; } if (!f->type_is_set_) { upb_status_seterrmsg(s, "fielddef type was not initialized"); return false; } if (upb_fielddef_lazy(f) && upb_fielddef_descriptortype(f) != UPB_DESCRIPTOR_TYPE_MESSAGE) { upb_status_seterrmsg(s, "only length-delimited submessage fields may be lazy"); return false; } if (upb_fielddef_hassubdef(f)) { const upb_def *subdef; if (f->subdef_is_symbolic) { upb_status_seterrf(s, "field '%s.%s' has not been resolved", msgdef_name(f->msg.def), upb_fielddef_name(f)); return false; } subdef = upb_fielddef_subdef(f); if (subdef == NULL) { upb_status_seterrf(s, "field %s.%s is missing required subdef", msgdef_name(f->msg.def), upb_fielddef_name(f)); return false; } if (!upb_def_isfrozen(subdef) && !subdef->came_from_user) { upb_status_seterrf(s, "subdef of field %s.%s is not frozen or being frozen", msgdef_name(f->msg.def), upb_fielddef_name(f)); return false; } } if (upb_fielddef_type(f) == UPB_TYPE_ENUM) { bool has_default_name = upb_fielddef_enumhasdefaultstr(f); bool has_default_number = upb_fielddef_enumhasdefaultint32(f); /* Previously verified by upb_validate_enumdef(). */ assert(upb_enumdef_numvals(upb_fielddef_enumsubdef(f)) > 0); /* We've already validated that we have an associated enumdef and that it * has at least one member, so at least one of these should be true. * Because if the user didn't set anything, we'll pick up the enum's * default, but if the user *did* set something we should at least pick up * the one they set (int32 or string). */ assert(has_default_name || has_default_number); if (!has_default_name) { upb_status_seterrf(s, "enum default for field %s.%s (%d) is not in the enum", msgdef_name(f->msg.def), upb_fielddef_name(f), upb_fielddef_defaultint32(f)); return false; } if (!has_default_number) { upb_status_seterrf(s, "enum default for field %s.%s (%s) is not in the enum", msgdef_name(f->msg.def), upb_fielddef_name(f), upb_fielddef_defaultstr(f, NULL)); return false; } /* Lift the effective numeric default into the field's default slot, in case * we were only getting it "by reference" from the enumdef. */ upb_fielddef_setdefaultint32(f, upb_fielddef_defaultint32(f)); } /* Ensure that MapEntry submessages only appear as repeated fields, not * optional/required (singular) fields. */ if (upb_fielddef_type(f) == UPB_TYPE_MESSAGE && upb_fielddef_msgsubdef(f) != NULL) { const upb_msgdef *subdef = upb_fielddef_msgsubdef(f); if (upb_msgdef_mapentry(subdef) && !upb_fielddef_isseq(f)) { upb_status_seterrf(s, "Field %s refers to mapentry message but is not " "a repeated field", upb_fielddef_name(f) ? upb_fielddef_name(f) : "(unnamed)"); return false; } } return true; } static bool upb_validate_enumdef(const upb_enumdef *e, upb_status *s) { if (upb_enumdef_numvals(e) == 0) { upb_status_seterrf(s, "enum %s has no members (must have at least one)", upb_enumdef_fullname(e)); return false; } return true; } /* All submessage fields are lower than all other fields. * Secondly, fields are increasing in order. */ uint32_t field_rank(const upb_fielddef *f) { uint32_t ret = upb_fielddef_number(f); const uint32_t high_bit = 1 << 30; assert(ret < high_bit); if (!upb_fielddef_issubmsg(f)) ret |= high_bit; return ret; } int cmp_fields(const void *p1, const void *p2) { const upb_fielddef *f1 = *(upb_fielddef*const*)p1; const upb_fielddef *f2 = *(upb_fielddef*const*)p2; return field_rank(f1) - field_rank(f2); } static bool assign_msg_indices(upb_msgdef *m, upb_status *s) { /* Sort fields. upb internally relies on UPB_TYPE_MESSAGE fields having the * lowest indexes, but we do not publicly guarantee this. */ upb_msg_field_iter j; int i; uint32_t selector; int n = upb_msgdef_numfields(m); upb_fielddef **fields; if (n == 0) { m->selector_count = UPB_STATIC_SELECTOR_COUNT; m->submsg_field_count = 0; return true; } fields = upb_gmalloc(n * sizeof(*fields)); if (!fields) { upb_upberr_setoom(s); return false; } m->submsg_field_count = 0; for(i = 0, upb_msg_field_begin(&j, m); !upb_msg_field_done(&j); upb_msg_field_next(&j), i++) { upb_fielddef *f = upb_msg_iter_field(&j); assert(f->msg.def == m); if (!upb_validate_field(f, s)) { upb_gfree(fields); return false; } if (upb_fielddef_issubmsg(f)) { m->submsg_field_count++; } fields[i] = f; } qsort(fields, n, sizeof(*fields), cmp_fields); selector = UPB_STATIC_SELECTOR_COUNT + m->submsg_field_count; for (i = 0; i < n; i++) { upb_fielddef *f = fields[i]; f->index_ = i; f->selector_base = selector + upb_handlers_selectorbaseoffset(f); selector += upb_handlers_selectorcount(f); } m->selector_count = selector; #ifndef NDEBUG { /* Verify that all selectors for the message are distinct. */ #define TRY(type) \ if (upb_handlers_getselector(f, type, &sel)) upb_inttable_insert(&t, sel, v); upb_inttable t; upb_value v; upb_selector_t sel; upb_inttable_init(&t, UPB_CTYPE_BOOL); v = upb_value_bool(true); upb_inttable_insert(&t, UPB_STARTMSG_SELECTOR, v); upb_inttable_insert(&t, UPB_ENDMSG_SELECTOR, v); for(upb_msg_field_begin(&j, m); !upb_msg_field_done(&j); upb_msg_field_next(&j)) { upb_fielddef *f = upb_msg_iter_field(&j); /* These calls will assert-fail in upb_table if the value already * exists. */ TRY(UPB_HANDLER_INT32); TRY(UPB_HANDLER_INT64) TRY(UPB_HANDLER_UINT32) TRY(UPB_HANDLER_UINT64) TRY(UPB_HANDLER_FLOAT) TRY(UPB_HANDLER_DOUBLE) TRY(UPB_HANDLER_BOOL) TRY(UPB_HANDLER_STARTSTR) TRY(UPB_HANDLER_STRING) TRY(UPB_HANDLER_ENDSTR) TRY(UPB_HANDLER_STARTSUBMSG) TRY(UPB_HANDLER_ENDSUBMSG) TRY(UPB_HANDLER_STARTSEQ) TRY(UPB_HANDLER_ENDSEQ) } upb_inttable_uninit(&t); } #undef TRY #endif upb_gfree(fields); return true; } bool _upb_def_validate(upb_def *const*defs, size_t n, upb_status *s) { size_t i; /* First perform validation, in two passes so we can check that we have a * transitive closure without needing to search. */ for (i = 0; i < n; i++) { upb_def *def = defs[i]; if (upb_def_isfrozen(def)) { /* Could relax this requirement if it's annoying. */ upb_status_seterrmsg(s, "def is already frozen"); goto err; } else if (def->type == UPB_DEF_FIELD) { upb_status_seterrmsg(s, "standalone fielddefs can not be frozen"); goto err; } else if (def->type == UPB_DEF_ENUM) { if (!upb_validate_enumdef(upb_dyncast_enumdef(def), s)) { goto err; } } else { /* Set now to detect transitive closure in the second pass. */ def->came_from_user = true; } } /* Second pass of validation. Also assign selector bases and indexes, and * compact tables. */ for (i = 0; i < n; i++) { upb_def *def = defs[i]; upb_msgdef *m = upb_dyncast_msgdef_mutable(def); upb_enumdef *e = upb_dyncast_enumdef_mutable(def); if (m) { upb_inttable_compact(&m->itof); if (!assign_msg_indices(m, s)) { goto err; } } else if (e) { upb_inttable_compact(&e->iton); } } return true; err: for (i = 0; i < n; i++) { upb_def *def = defs[i]; def->came_from_user = false; } assert(!(s && upb_ok(s))); return false; } bool upb_def_freeze(upb_def *const* defs, size_t n, upb_status *s) { /* Def graph contains FieldDefs between each MessageDef, so double the * limit. */ const size_t maxdepth = UPB_MAX_MESSAGE_DEPTH * 2; if (!_upb_def_validate(defs, n, s)) { return false; } /* Validation all passed; freeze the objects. */ return upb_refcounted_freeze((upb_refcounted *const*)defs, n, s, maxdepth); } /* upb_enumdef ****************************************************************/ static void upb_enumdef_free(upb_refcounted *r) { upb_enumdef *e = (upb_enumdef*)r; upb_inttable_iter i; upb_inttable_begin(&i, &e->iton); for( ; !upb_inttable_done(&i); upb_inttable_next(&i)) { /* To clean up the upb_gstrdup() from upb_enumdef_addval(). */ upb_gfree(upb_value_getcstr(upb_inttable_iter_value(&i))); } upb_strtable_uninit(&e->ntoi); upb_inttable_uninit(&e->iton); upb_def_uninit(upb_enumdef_upcast_mutable(e)); upb_gfree(e); } const struct upb_refcounted_vtbl upb_enumdef_vtbl = {NULL, &upb_enumdef_free}; upb_enumdef *upb_enumdef_new(const void *owner) { upb_enumdef *e = upb_gmalloc(sizeof(*e)); if (!e) return NULL; if (!upb_def_init(upb_enumdef_upcast_mutable(e), UPB_DEF_ENUM, &upb_enumdef_vtbl, owner)) { goto err2; } if (!upb_strtable_init(&e->ntoi, UPB_CTYPE_INT32)) goto err2; if (!upb_inttable_init(&e->iton, UPB_CTYPE_CSTR)) goto err1; return e; err1: upb_strtable_uninit(&e->ntoi); err2: upb_gfree(e); return NULL; } upb_enumdef *upb_enumdef_dup(const upb_enumdef *e, const void *owner) { upb_enum_iter i; upb_enumdef *new_e = upb_enumdef_new(owner); if (!new_e) return NULL; for(upb_enum_begin(&i, e); !upb_enum_done(&i); upb_enum_next(&i)) { bool success = upb_enumdef_addval( new_e, upb_enum_iter_name(&i),upb_enum_iter_number(&i), NULL); if (!success) { upb_enumdef_unref(new_e, owner); return NULL; } } return new_e; } bool upb_enumdef_freeze(upb_enumdef *e, upb_status *status) { upb_def *d = upb_enumdef_upcast_mutable(e); return upb_def_freeze(&d, 1, status); } const char *upb_enumdef_fullname(const upb_enumdef *e) { return upb_def_fullname(upb_enumdef_upcast(e)); } const char *upb_enumdef_name(const upb_enumdef *e) { return upb_def_name(upb_enumdef_upcast(e)); } bool upb_enumdef_setfullname(upb_enumdef *e, const char *fullname, upb_status *s) { return upb_def_setfullname(upb_enumdef_upcast_mutable(e), fullname, s); } bool upb_enumdef_addval(upb_enumdef *e, const char *name, int32_t num, upb_status *status) { char *name2; if (!upb_isident(name, strlen(name), false, status)) { return false; } if (upb_enumdef_ntoiz(e, name, NULL)) { upb_status_seterrf(status, "name '%s' is already defined", name); return false; } if (!upb_strtable_insert(&e->ntoi, name, upb_value_int32(num))) { upb_status_seterrmsg(status, "out of memory"); return false; } if (!upb_inttable_lookup(&e->iton, num, NULL)) { name2 = upb_gstrdup(name); if (!name2 || !upb_inttable_insert(&e->iton, num, upb_value_cstr(name2))) { upb_status_seterrmsg(status, "out of memory"); upb_strtable_remove(&e->ntoi, name, NULL); return false; } } if (upb_enumdef_numvals(e) == 1) { bool ok = upb_enumdef_setdefault(e, num, NULL); UPB_ASSERT_VAR(ok, ok); } return true; } int32_t upb_enumdef_default(const upb_enumdef *e) { assert(upb_enumdef_iton(e, e->defaultval)); return e->defaultval; } bool upb_enumdef_setdefault(upb_enumdef *e, int32_t val, upb_status *s) { assert(!upb_enumdef_isfrozen(e)); if (!upb_enumdef_iton(e, val)) { upb_status_seterrf(s, "number '%d' is not in the enum.", val); return false; } e->defaultval = val; return true; } int upb_enumdef_numvals(const upb_enumdef *e) { return upb_strtable_count(&e->ntoi); } void upb_enum_begin(upb_enum_iter *i, const upb_enumdef *e) { /* We iterate over the ntoi table, to account for duplicate numbers. */ upb_strtable_begin(i, &e->ntoi); } void upb_enum_next(upb_enum_iter *iter) { upb_strtable_next(iter); } bool upb_enum_done(upb_enum_iter *iter) { return upb_strtable_done(iter); } bool upb_enumdef_ntoi(const upb_enumdef *def, const char *name, size_t len, int32_t *num) { upb_value v; if (!upb_strtable_lookup2(&def->ntoi, name, len, &v)) { return false; } if (num) *num = upb_value_getint32(v); return true; } const char *upb_enumdef_iton(const upb_enumdef *def, int32_t num) { upb_value v; return upb_inttable_lookup32(&def->iton, num, &v) ? upb_value_getcstr(v) : NULL; } const char *upb_enum_iter_name(upb_enum_iter *iter) { return upb_strtable_iter_key(iter); } int32_t upb_enum_iter_number(upb_enum_iter *iter) { return upb_value_getint32(upb_strtable_iter_value(iter)); } /* upb_fielddef ***************************************************************/ static void upb_fielddef_init_default(upb_fielddef *f); static void upb_fielddef_uninit_default(upb_fielddef *f) { if (f->type_is_set_ && f->default_is_string && f->defaultval.bytes) freestr(f->defaultval.bytes); } const char *upb_fielddef_fullname(const upb_fielddef *e) { return upb_def_fullname(upb_fielddef_upcast(e)); } static void visitfield(const upb_refcounted *r, upb_refcounted_visit *visit, void *closure) { const upb_fielddef *f = (const upb_fielddef*)r; if (upb_fielddef_containingtype(f)) { visit(r, upb_msgdef_upcast2(upb_fielddef_containingtype(f)), closure); } if (upb_fielddef_containingoneof(f)) { visit(r, upb_oneofdef_upcast(upb_fielddef_containingoneof(f)), closure); } if (upb_fielddef_subdef(f)) { visit(r, upb_def_upcast(upb_fielddef_subdef(f)), closure); } } static void freefield(upb_refcounted *r) { upb_fielddef *f = (upb_fielddef*)r; upb_fielddef_uninit_default(f); if (f->subdef_is_symbolic) upb_gfree(f->sub.name); upb_def_uninit(upb_fielddef_upcast_mutable(f)); upb_gfree(f); } static const char *enumdefaultstr(const upb_fielddef *f) { const upb_enumdef *e; assert(f->type_is_set_ && f->type_ == UPB_TYPE_ENUM); e = upb_fielddef_enumsubdef(f); if (f->default_is_string && f->defaultval.bytes) { /* Default was explicitly set as a string. */ str_t *s = f->defaultval.bytes; return s->str; } else if (e) { if (!f->default_is_string) { /* Default was explicitly set as an integer; look it up in enumdef. */ const char *name = upb_enumdef_iton(e, f->defaultval.sint); if (name) { return name; } } else { /* Default is completely unset; pull enumdef default. */ if (upb_enumdef_numvals(e) > 0) { const char *name = upb_enumdef_iton(e, upb_enumdef_default(e)); assert(name); return name; } } } return NULL; } static bool enumdefaultint32(const upb_fielddef *f, int32_t *val) { const upb_enumdef *e; assert(f->type_is_set_ && f->type_ == UPB_TYPE_ENUM); e = upb_fielddef_enumsubdef(f); if (!f->default_is_string) { /* Default was explicitly set as an integer. */ *val = f->defaultval.sint; return true; } else if (e) { if (f->defaultval.bytes) { /* Default was explicitly set as a str; try to lookup corresponding int. */ str_t *s = f->defaultval.bytes; if (upb_enumdef_ntoiz(e, s->str, val)) { return true; } } else { /* Default is unset; try to pull in enumdef default. */ if (upb_enumdef_numvals(e) > 0) { *val = upb_enumdef_default(e); return true; } } } return false; } const struct upb_refcounted_vtbl upb_fielddef_vtbl = {visitfield, freefield}; upb_fielddef *upb_fielddef_new(const void *o) { upb_fielddef *f = upb_gmalloc(sizeof(*f)); if (!f) return NULL; if (!upb_def_init(upb_fielddef_upcast_mutable(f), UPB_DEF_FIELD, &upb_fielddef_vtbl, o)) { upb_gfree(f); return NULL; } f->msg.def = NULL; f->sub.def = NULL; f->oneof = NULL; f->subdef_is_symbolic = false; f->msg_is_symbolic = false; f->label_ = UPB_LABEL_OPTIONAL; f->type_ = UPB_TYPE_INT32; f->number_ = 0; f->type_is_set_ = false; f->tagdelim = false; f->is_extension_ = false; f->lazy_ = false; f->packed_ = true; /* For the moment we default this to UPB_INTFMT_VARIABLE, since it will work * with all integer types and is in some since more "default" since the most * normal-looking proto2 types int32/int64/uint32/uint64 use variable. * * Other options to consider: * - there is no default; users must set this manually (like type). * - default signed integers to UPB_INTFMT_ZIGZAG, since it's more likely to * be an optimal default for signed integers. */ f->intfmt = UPB_INTFMT_VARIABLE; return f; } upb_fielddef *upb_fielddef_dup(const upb_fielddef *f, const void *owner) { const char *srcname; upb_fielddef *newf = upb_fielddef_new(owner); if (!newf) return NULL; upb_fielddef_settype(newf, upb_fielddef_type(f)); upb_fielddef_setlabel(newf, upb_fielddef_label(f)); upb_fielddef_setnumber(newf, upb_fielddef_number(f), NULL); upb_fielddef_setname(newf, upb_fielddef_name(f), NULL); if (f->default_is_string && f->defaultval.bytes) { str_t *s = f->defaultval.bytes; upb_fielddef_setdefaultstr(newf, s->str, s->len, NULL); } else { newf->default_is_string = f->default_is_string; newf->defaultval = f->defaultval; } if (f->subdef_is_symbolic) { srcname = f->sub.name; /* Might be NULL. */ } else { srcname = f->sub.def ? upb_def_fullname(f->sub.def) : NULL; } if (srcname) { char *newname = upb_gmalloc(strlen(f->sub.def->fullname) + 2); if (!newname) { upb_fielddef_unref(newf, owner); return NULL; } strcpy(newname, "."); strcat(newname, f->sub.def->fullname); upb_fielddef_setsubdefname(newf, newname, NULL); upb_gfree(newname); } return newf; } bool upb_fielddef_typeisset(const upb_fielddef *f) { return f->type_is_set_; } upb_fieldtype_t upb_fielddef_type(const upb_fielddef *f) { assert(f->type_is_set_); return f->type_; } uint32_t upb_fielddef_index(const upb_fielddef *f) { return f->index_; } upb_label_t upb_fielddef_label(const upb_fielddef *f) { return f->label_; } upb_intfmt_t upb_fielddef_intfmt(const upb_fielddef *f) { return f->intfmt; } bool upb_fielddef_istagdelim(const upb_fielddef *f) { return f->tagdelim; } uint32_t upb_fielddef_number(const upb_fielddef *f) { return f->number_; } bool upb_fielddef_isextension(const upb_fielddef *f) { return f->is_extension_; } bool upb_fielddef_lazy(const upb_fielddef *f) { return f->lazy_; } bool upb_fielddef_packed(const upb_fielddef *f) { return f->packed_; } const char *upb_fielddef_name(const upb_fielddef *f) { return upb_def_fullname(upb_fielddef_upcast(f)); } size_t upb_fielddef_getjsonname(const upb_fielddef *f, char *buf, size_t len) { const char *name = upb_fielddef_name(f); size_t src, dst = 0; bool ucase_next = false; #define WRITE(byte) \ ++dst; \ if (dst < len) buf[dst - 1] = byte; \ else if (dst == len) buf[dst - 1] = '\0' if (!name) { WRITE('\0'); return 0; } /* Implement the transformation as described in the spec: * 1. upper case all letters after an underscore. * 2. remove all underscores. */ for (src = 0; name[src]; src++) { if (name[src] == '_') { ucase_next = true; continue; } if (ucase_next) { WRITE(toupper(name[src])); ucase_next = false; } else { WRITE(name[src]); } } WRITE('\0'); return dst; #undef WRITE } const upb_msgdef *upb_fielddef_containingtype(const upb_fielddef *f) { return f->msg_is_symbolic ? NULL : f->msg.def; } const upb_oneofdef *upb_fielddef_containingoneof(const upb_fielddef *f) { return f->oneof; } upb_msgdef *upb_fielddef_containingtype_mutable(upb_fielddef *f) { return (upb_msgdef*)upb_fielddef_containingtype(f); } const char *upb_fielddef_containingtypename(upb_fielddef *f) { return f->msg_is_symbolic ? f->msg.name : NULL; } static void release_containingtype(upb_fielddef *f) { if (f->msg_is_symbolic) upb_gfree(f->msg.name); } bool upb_fielddef_setcontainingtypename(upb_fielddef *f, const char *name, upb_status *s) { char *name_copy; assert(!upb_fielddef_isfrozen(f)); if (upb_fielddef_containingtype(f)) { upb_status_seterrmsg(s, "field has already been added to a message."); return false; } /* TODO: validate name (upb_isident() doesn't quite work atm because this name * may have a leading "."). */ name_copy = upb_gstrdup(name); if (!name_copy) { upb_upberr_setoom(s); return false; } release_containingtype(f); f->msg.name = name_copy; f->msg_is_symbolic = true; return true; } bool upb_fielddef_setname(upb_fielddef *f, const char *name, upb_status *s) { if (upb_fielddef_containingtype(f) || upb_fielddef_containingoneof(f)) { upb_status_seterrmsg(s, "Already added to message or oneof"); return false; } return upb_def_setfullname(upb_fielddef_upcast_mutable(f), name, s); } static void chkdefaulttype(const upb_fielddef *f, upb_fieldtype_t type) { UPB_UNUSED(f); UPB_UNUSED(type); assert(f->type_is_set_ && upb_fielddef_type(f) == type); } int64_t upb_fielddef_defaultint64(const upb_fielddef *f) { chkdefaulttype(f, UPB_TYPE_INT64); return f->defaultval.sint; } int32_t upb_fielddef_defaultint32(const upb_fielddef *f) { if (f->type_is_set_ && upb_fielddef_type(f) == UPB_TYPE_ENUM) { int32_t val; bool ok = enumdefaultint32(f, &val); UPB_ASSERT_VAR(ok, ok); return val; } else { chkdefaulttype(f, UPB_TYPE_INT32); return f->defaultval.sint; } } uint64_t upb_fielddef_defaultuint64(const upb_fielddef *f) { chkdefaulttype(f, UPB_TYPE_UINT64); return f->defaultval.uint; } uint32_t upb_fielddef_defaultuint32(const upb_fielddef *f) { chkdefaulttype(f, UPB_TYPE_UINT32); return f->defaultval.uint; } bool upb_fielddef_defaultbool(const upb_fielddef *f) { chkdefaulttype(f, UPB_TYPE_BOOL); return f->defaultval.uint; } float upb_fielddef_defaultfloat(const upb_fielddef *f) { chkdefaulttype(f, UPB_TYPE_FLOAT); return f->defaultval.flt; } double upb_fielddef_defaultdouble(const upb_fielddef *f) { chkdefaulttype(f, UPB_TYPE_DOUBLE); return f->defaultval.dbl; } const char *upb_fielddef_defaultstr(const upb_fielddef *f, size_t *len) { assert(f->type_is_set_); assert(upb_fielddef_type(f) == UPB_TYPE_STRING || upb_fielddef_type(f) == UPB_TYPE_BYTES || upb_fielddef_type(f) == UPB_TYPE_ENUM); if (upb_fielddef_type(f) == UPB_TYPE_ENUM) { const char *ret = enumdefaultstr(f); assert(ret); /* Enum defaults can't have embedded NULLs. */ if (len) *len = strlen(ret); return ret; } if (f->default_is_string) { str_t *str = f->defaultval.bytes; if (len) *len = str->len; return str->str; } return NULL; } static void upb_fielddef_init_default(upb_fielddef *f) { f->default_is_string = false; switch (upb_fielddef_type(f)) { case UPB_TYPE_DOUBLE: f->defaultval.dbl = 0; break; case UPB_TYPE_FLOAT: f->defaultval.flt = 0; break; case UPB_TYPE_INT32: case UPB_TYPE_INT64: f->defaultval.sint = 0; break; case UPB_TYPE_UINT64: case UPB_TYPE_UINT32: case UPB_TYPE_BOOL: f->defaultval.uint = 0; break; case UPB_TYPE_STRING: case UPB_TYPE_BYTES: f->defaultval.bytes = newstr("", 0); f->default_is_string = true; break; case UPB_TYPE_MESSAGE: break; case UPB_TYPE_ENUM: /* This is our special sentinel that indicates "not set" for an enum. */ f->default_is_string = true; f->defaultval.bytes = NULL; break; } } const upb_def *upb_fielddef_subdef(const upb_fielddef *f) { return f->subdef_is_symbolic ? NULL : f->sub.def; } const upb_msgdef *upb_fielddef_msgsubdef(const upb_fielddef *f) { const upb_def *def = upb_fielddef_subdef(f); return def ? upb_dyncast_msgdef(def) : NULL; } const upb_enumdef *upb_fielddef_enumsubdef(const upb_fielddef *f) { const upb_def *def = upb_fielddef_subdef(f); return def ? upb_dyncast_enumdef(def) : NULL; } upb_def *upb_fielddef_subdef_mutable(upb_fielddef *f) { return (upb_def*)upb_fielddef_subdef(f); } const char *upb_fielddef_subdefname(const upb_fielddef *f) { if (f->subdef_is_symbolic) { return f->sub.name; } else if (f->sub.def) { return upb_def_fullname(f->sub.def); } else { return NULL; } } bool upb_fielddef_setnumber(upb_fielddef *f, uint32_t number, upb_status *s) { if (upb_fielddef_containingtype(f)) { upb_status_seterrmsg( s, "cannot change field number after adding to a message"); return false; } if (number == 0 || number > UPB_MAX_FIELDNUMBER) { upb_status_seterrf(s, "invalid field number (%u)", number); return false; } f->number_ = number; return true; } void upb_fielddef_settype(upb_fielddef *f, upb_fieldtype_t type) { assert(!upb_fielddef_isfrozen(f)); assert(upb_fielddef_checktype(type)); upb_fielddef_uninit_default(f); f->type_ = type; f->type_is_set_ = true; upb_fielddef_init_default(f); } void upb_fielddef_setdescriptortype(upb_fielddef *f, int type) { assert(!upb_fielddef_isfrozen(f)); switch (type) { case UPB_DESCRIPTOR_TYPE_DOUBLE: upb_fielddef_settype(f, UPB_TYPE_DOUBLE); break; case UPB_DESCRIPTOR_TYPE_FLOAT: upb_fielddef_settype(f, UPB_TYPE_FLOAT); break; case UPB_DESCRIPTOR_TYPE_INT64: case UPB_DESCRIPTOR_TYPE_SFIXED64: case UPB_DESCRIPTOR_TYPE_SINT64: upb_fielddef_settype(f, UPB_TYPE_INT64); break; case UPB_DESCRIPTOR_TYPE_UINT64: case UPB_DESCRIPTOR_TYPE_FIXED64: upb_fielddef_settype(f, UPB_TYPE_UINT64); break; case UPB_DESCRIPTOR_TYPE_INT32: case UPB_DESCRIPTOR_TYPE_SFIXED32: case UPB_DESCRIPTOR_TYPE_SINT32: upb_fielddef_settype(f, UPB_TYPE_INT32); break; case UPB_DESCRIPTOR_TYPE_UINT32: case UPB_DESCRIPTOR_TYPE_FIXED32: upb_fielddef_settype(f, UPB_TYPE_UINT32); break; case UPB_DESCRIPTOR_TYPE_BOOL: upb_fielddef_settype(f, UPB_TYPE_BOOL); break; case UPB_DESCRIPTOR_TYPE_STRING: upb_fielddef_settype(f, UPB_TYPE_STRING); break; case UPB_DESCRIPTOR_TYPE_BYTES: upb_fielddef_settype(f, UPB_TYPE_BYTES); break; case UPB_DESCRIPTOR_TYPE_GROUP: case UPB_DESCRIPTOR_TYPE_MESSAGE: upb_fielddef_settype(f, UPB_TYPE_MESSAGE); break; case UPB_DESCRIPTOR_TYPE_ENUM: upb_fielddef_settype(f, UPB_TYPE_ENUM); break; default: assert(false); } if (type == UPB_DESCRIPTOR_TYPE_FIXED64 || type == UPB_DESCRIPTOR_TYPE_FIXED32 || type == UPB_DESCRIPTOR_TYPE_SFIXED64 || type == UPB_DESCRIPTOR_TYPE_SFIXED32) { upb_fielddef_setintfmt(f, UPB_INTFMT_FIXED); } else if (type == UPB_DESCRIPTOR_TYPE_SINT64 || type == UPB_DESCRIPTOR_TYPE_SINT32) { upb_fielddef_setintfmt(f, UPB_INTFMT_ZIGZAG); } else { upb_fielddef_setintfmt(f, UPB_INTFMT_VARIABLE); } upb_fielddef_settagdelim(f, type == UPB_DESCRIPTOR_TYPE_GROUP); } upb_descriptortype_t upb_fielddef_descriptortype(const upb_fielddef *f) { switch (upb_fielddef_type(f)) { case UPB_TYPE_FLOAT: return UPB_DESCRIPTOR_TYPE_FLOAT; case UPB_TYPE_DOUBLE: return UPB_DESCRIPTOR_TYPE_DOUBLE; case UPB_TYPE_BOOL: return UPB_DESCRIPTOR_TYPE_BOOL; case UPB_TYPE_STRING: return UPB_DESCRIPTOR_TYPE_STRING; case UPB_TYPE_BYTES: return UPB_DESCRIPTOR_TYPE_BYTES; case UPB_TYPE_ENUM: return UPB_DESCRIPTOR_TYPE_ENUM; case UPB_TYPE_INT32: switch (upb_fielddef_intfmt(f)) { case UPB_INTFMT_VARIABLE: return UPB_DESCRIPTOR_TYPE_INT32; case UPB_INTFMT_FIXED: return UPB_DESCRIPTOR_TYPE_SFIXED32; case UPB_INTFMT_ZIGZAG: return UPB_DESCRIPTOR_TYPE_SINT32; } case UPB_TYPE_INT64: switch (upb_fielddef_intfmt(f)) { case UPB_INTFMT_VARIABLE: return UPB_DESCRIPTOR_TYPE_INT64; case UPB_INTFMT_FIXED: return UPB_DESCRIPTOR_TYPE_SFIXED64; case UPB_INTFMT_ZIGZAG: return UPB_DESCRIPTOR_TYPE_SINT64; } case UPB_TYPE_UINT32: switch (upb_fielddef_intfmt(f)) { case UPB_INTFMT_VARIABLE: return UPB_DESCRIPTOR_TYPE_UINT32; case UPB_INTFMT_FIXED: return UPB_DESCRIPTOR_TYPE_FIXED32; case UPB_INTFMT_ZIGZAG: return -1; } case UPB_TYPE_UINT64: switch (upb_fielddef_intfmt(f)) { case UPB_INTFMT_VARIABLE: return UPB_DESCRIPTOR_TYPE_UINT64; case UPB_INTFMT_FIXED: return UPB_DESCRIPTOR_TYPE_FIXED64; case UPB_INTFMT_ZIGZAG: return -1; } case UPB_TYPE_MESSAGE: return upb_fielddef_istagdelim(f) ? UPB_DESCRIPTOR_TYPE_GROUP : UPB_DESCRIPTOR_TYPE_MESSAGE; } return 0; } void upb_fielddef_setisextension(upb_fielddef *f, bool is_extension) { assert(!upb_fielddef_isfrozen(f)); f->is_extension_ = is_extension; } void upb_fielddef_setlazy(upb_fielddef *f, bool lazy) { assert(!upb_fielddef_isfrozen(f)); f->lazy_ = lazy; } void upb_fielddef_setpacked(upb_fielddef *f, bool packed) { assert(!upb_fielddef_isfrozen(f)); f->packed_ = packed; } void upb_fielddef_setlabel(upb_fielddef *f, upb_label_t label) { assert(!upb_fielddef_isfrozen(f)); assert(upb_fielddef_checklabel(label)); f->label_ = label; } void upb_fielddef_setintfmt(upb_fielddef *f, upb_intfmt_t fmt) { assert(!upb_fielddef_isfrozen(f)); assert(upb_fielddef_checkintfmt(fmt)); f->intfmt = fmt; } void upb_fielddef_settagdelim(upb_fielddef *f, bool tag_delim) { assert(!upb_fielddef_isfrozen(f)); f->tagdelim = tag_delim; f->tagdelim = tag_delim; } static bool checksetdefault(upb_fielddef *f, upb_fieldtype_t type) { if (!f->type_is_set_ || upb_fielddef_isfrozen(f) || upb_fielddef_type(f) != type) { assert(false); return false; } if (f->default_is_string) { str_t *s = f->defaultval.bytes; assert(s || type == UPB_TYPE_ENUM); if (s) freestr(s); } f->default_is_string = false; return true; } void upb_fielddef_setdefaultint64(upb_fielddef *f, int64_t value) { if (checksetdefault(f, UPB_TYPE_INT64)) f->defaultval.sint = value; } void upb_fielddef_setdefaultint32(upb_fielddef *f, int32_t value) { if ((upb_fielddef_type(f) == UPB_TYPE_ENUM && checksetdefault(f, UPB_TYPE_ENUM)) || checksetdefault(f, UPB_TYPE_INT32)) { f->defaultval.sint = value; } } void upb_fielddef_setdefaultuint64(upb_fielddef *f, uint64_t value) { if (checksetdefault(f, UPB_TYPE_UINT64)) f->defaultval.uint = value; } void upb_fielddef_setdefaultuint32(upb_fielddef *f, uint32_t value) { if (checksetdefault(f, UPB_TYPE_UINT32)) f->defaultval.uint = value; } void upb_fielddef_setdefaultbool(upb_fielddef *f, bool value) { if (checksetdefault(f, UPB_TYPE_BOOL)) f->defaultval.uint = value; } void upb_fielddef_setdefaultfloat(upb_fielddef *f, float value) { if (checksetdefault(f, UPB_TYPE_FLOAT)) f->defaultval.flt = value; } void upb_fielddef_setdefaultdouble(upb_fielddef *f, double value) { if (checksetdefault(f, UPB_TYPE_DOUBLE)) f->defaultval.dbl = value; } bool upb_fielddef_setdefaultstr(upb_fielddef *f, const void *str, size_t len, upb_status *s) { str_t *str2; assert(upb_fielddef_isstring(f) || f->type_ == UPB_TYPE_ENUM); if (f->type_ == UPB_TYPE_ENUM && !upb_isident(str, len, false, s)) return false; if (f->default_is_string) { str_t *s = f->defaultval.bytes; assert(s || f->type_ == UPB_TYPE_ENUM); if (s) freestr(s); } else { assert(f->type_ == UPB_TYPE_ENUM); } str2 = newstr(str, len); f->defaultval.bytes = str2; f->default_is_string = true; return true; } void upb_fielddef_setdefaultcstr(upb_fielddef *f, const char *str, upb_status *s) { assert(f->type_is_set_); upb_fielddef_setdefaultstr(f, str, str ? strlen(str) : 0, s); } bool upb_fielddef_enumhasdefaultint32(const upb_fielddef *f) { int32_t val; assert(f->type_is_set_ && f->type_ == UPB_TYPE_ENUM); return enumdefaultint32(f, &val); } bool upb_fielddef_enumhasdefaultstr(const upb_fielddef *f) { assert(f->type_is_set_ && f->type_ == UPB_TYPE_ENUM); return enumdefaultstr(f) != NULL; } static bool upb_subdef_typecheck(upb_fielddef *f, const upb_def *subdef, upb_status *s) { if (f->type_ == UPB_TYPE_MESSAGE) { if (upb_dyncast_msgdef(subdef)) return true; upb_status_seterrmsg(s, "invalid subdef type for this submessage field"); return false; } else if (f->type_ == UPB_TYPE_ENUM) { if (upb_dyncast_enumdef(subdef)) return true; upb_status_seterrmsg(s, "invalid subdef type for this enum field"); return false; } else { upb_status_seterrmsg(s, "only message and enum fields can have a subdef"); return false; } } static void release_subdef(upb_fielddef *f) { if (f->subdef_is_symbolic) { upb_gfree(f->sub.name); } else if (f->sub.def) { upb_unref2(f->sub.def, f); } } bool upb_fielddef_setsubdef(upb_fielddef *f, const upb_def *subdef, upb_status *s) { assert(!upb_fielddef_isfrozen(f)); assert(upb_fielddef_hassubdef(f)); if (subdef && !upb_subdef_typecheck(f, subdef, s)) return false; release_subdef(f); f->sub.def = subdef; f->subdef_is_symbolic = false; if (f->sub.def) upb_ref2(f->sub.def, f); return true; } bool upb_fielddef_setmsgsubdef(upb_fielddef *f, const upb_msgdef *subdef, upb_status *s) { return upb_fielddef_setsubdef(f, upb_msgdef_upcast(subdef), s); } bool upb_fielddef_setenumsubdef(upb_fielddef *f, const upb_enumdef *subdef, upb_status *s) { return upb_fielddef_setsubdef(f, upb_enumdef_upcast(subdef), s); } bool upb_fielddef_setsubdefname(upb_fielddef *f, const char *name, upb_status *s) { char *name_copy; assert(!upb_fielddef_isfrozen(f)); if (!upb_fielddef_hassubdef(f)) { upb_status_seterrmsg(s, "field type does not accept a subdef"); return false; } name_copy = upb_gstrdup(name); if (!name_copy) { upb_upberr_setoom(s); return false; } /* TODO: validate name (upb_isident() doesn't quite work atm because this name * may have a leading "."). */ release_subdef(f); f->sub.name = name_copy; f->subdef_is_symbolic = true; return true; } bool upb_fielddef_issubmsg(const upb_fielddef *f) { return upb_fielddef_type(f) == UPB_TYPE_MESSAGE; } bool upb_fielddef_isstring(const upb_fielddef *f) { return upb_fielddef_type(f) == UPB_TYPE_STRING || upb_fielddef_type(f) == UPB_TYPE_BYTES; } bool upb_fielddef_isseq(const upb_fielddef *f) { return upb_fielddef_label(f) == UPB_LABEL_REPEATED; } bool upb_fielddef_isprimitive(const upb_fielddef *f) { return !upb_fielddef_isstring(f) && !upb_fielddef_issubmsg(f); } bool upb_fielddef_ismap(const upb_fielddef *f) { return upb_fielddef_isseq(f) && upb_fielddef_issubmsg(f) && upb_msgdef_mapentry(upb_fielddef_msgsubdef(f)); } bool upb_fielddef_haspresence(const upb_fielddef *f) { if (upb_fielddef_isseq(f)) return false; if (upb_fielddef_issubmsg(f)) return true; /* Primitive field: return true unless there is a message that specifies * presence should not exist. */ if (f->msg_is_symbolic || !f->msg.def) return true; return f->msg.def->syntax == UPB_SYNTAX_PROTO2; } bool upb_fielddef_hassubdef(const upb_fielddef *f) { return upb_fielddef_issubmsg(f) || upb_fielddef_type(f) == UPB_TYPE_ENUM; } static bool between(int32_t x, int32_t low, int32_t high) { return x >= low && x <= high; } bool upb_fielddef_checklabel(int32_t label) { return between(label, 1, 3); } bool upb_fielddef_checktype(int32_t type) { return between(type, 1, 11); } bool upb_fielddef_checkintfmt(int32_t fmt) { return between(fmt, 1, 3); } bool upb_fielddef_checkdescriptortype(int32_t type) { return between(type, 1, 18); } /* upb_msgdef *****************************************************************/ static void visitmsg(const upb_refcounted *r, upb_refcounted_visit *visit, void *closure) { upb_msg_oneof_iter o; const upb_msgdef *m = (const upb_msgdef*)r; upb_msg_field_iter i; for(upb_msg_field_begin(&i, m); !upb_msg_field_done(&i); upb_msg_field_next(&i)) { upb_fielddef *f = upb_msg_iter_field(&i); visit(r, upb_fielddef_upcast2(f), closure); } for(upb_msg_oneof_begin(&o, m); !upb_msg_oneof_done(&o); upb_msg_oneof_next(&o)) { upb_oneofdef *f = upb_msg_iter_oneof(&o); visit(r, upb_oneofdef_upcast(f), closure); } } static void freemsg(upb_refcounted *r) { upb_msgdef *m = (upb_msgdef*)r; upb_strtable_uninit(&m->ntof); upb_inttable_uninit(&m->itof); upb_def_uninit(upb_msgdef_upcast_mutable(m)); upb_gfree(m); } const struct upb_refcounted_vtbl upb_msgdef_vtbl = {visitmsg, freemsg}; upb_msgdef *upb_msgdef_new(const void *owner) { upb_msgdef *m = upb_gmalloc(sizeof(*m)); if (!m) return NULL; if (!upb_def_init(upb_msgdef_upcast_mutable(m), UPB_DEF_MSG, &upb_msgdef_vtbl, owner)) { goto err2; } if (!upb_inttable_init(&m->itof, UPB_CTYPE_PTR)) goto err2; if (!upb_strtable_init(&m->ntof, UPB_CTYPE_PTR)) goto err1; m->map_entry = false; m->syntax = UPB_SYNTAX_PROTO2; return m; err1: upb_inttable_uninit(&m->itof); err2: upb_gfree(m); return NULL; } upb_msgdef *upb_msgdef_dup(const upb_msgdef *m, const void *owner) { bool ok; upb_msg_field_iter i; upb_msg_oneof_iter o; upb_msgdef *newm = upb_msgdef_new(owner); if (!newm) return NULL; ok = upb_def_setfullname(upb_msgdef_upcast_mutable(newm), upb_def_fullname(upb_msgdef_upcast(m)), NULL); newm->map_entry = m->map_entry; newm->syntax = m->syntax; UPB_ASSERT_VAR(ok, ok); for(upb_msg_field_begin(&i, m); !upb_msg_field_done(&i); upb_msg_field_next(&i)) { upb_fielddef *f = upb_fielddef_dup(upb_msg_iter_field(&i), &f); /* Fields in oneofs are dup'd below. */ if (upb_fielddef_containingoneof(f)) continue; if (!f || !upb_msgdef_addfield(newm, f, &f, NULL)) { upb_msgdef_unref(newm, owner); return NULL; } } for(upb_msg_oneof_begin(&o, m); !upb_msg_oneof_done(&o); upb_msg_oneof_next(&o)) { upb_oneofdef *f = upb_oneofdef_dup(upb_msg_iter_oneof(&o), &f); if (!f || !upb_msgdef_addoneof(newm, f, &f, NULL)) { upb_msgdef_unref(newm, owner); return NULL; } } return newm; } bool upb_msgdef_freeze(upb_msgdef *m, upb_status *status) { upb_def *d = upb_msgdef_upcast_mutable(m); return upb_def_freeze(&d, 1, status); } const char *upb_msgdef_fullname(const upb_msgdef *m) { return upb_def_fullname(upb_msgdef_upcast(m)); } const char *upb_msgdef_name(const upb_msgdef *m) { return upb_def_name(upb_msgdef_upcast(m)); } bool upb_msgdef_setfullname(upb_msgdef *m, const char *fullname, upb_status *s) { return upb_def_setfullname(upb_msgdef_upcast_mutable(m), fullname, s); } bool upb_msgdef_setsyntax(upb_msgdef *m, upb_syntax_t syntax) { if (syntax != UPB_SYNTAX_PROTO2 && syntax != UPB_SYNTAX_PROTO3) { return false; } m->syntax = syntax; return true; } upb_syntax_t upb_msgdef_syntax(const upb_msgdef *m) { return m->syntax; } /* Helper: check that the field |f| is safe to add to msgdef |m|. Set an error * on status |s| and return false if not. */ static bool check_field_add(const upb_msgdef *m, const upb_fielddef *f, upb_status *s) { if (upb_fielddef_containingtype(f) != NULL) { upb_status_seterrmsg(s, "fielddef already belongs to a message"); return false; } else if (upb_fielddef_name(f) == NULL || upb_fielddef_number(f) == 0) { upb_status_seterrmsg(s, "field name or number were not set"); return false; } else if (upb_msgdef_itof(m, upb_fielddef_number(f))) { upb_status_seterrmsg(s, "duplicate field number"); return false; } else if (upb_strtable_lookup(&m->ntof, upb_fielddef_name(f), NULL)) { upb_status_seterrmsg(s, "name conflicts with existing field or oneof"); return false; } return true; } static void add_field(upb_msgdef *m, upb_fielddef *f, const void *ref_donor) { release_containingtype(f); f->msg.def = m; f->msg_is_symbolic = false; upb_inttable_insert(&m->itof, upb_fielddef_number(f), upb_value_ptr(f)); upb_strtable_insert(&m->ntof, upb_fielddef_name(f), upb_value_ptr(f)); upb_ref2(f, m); upb_ref2(m, f); if (ref_donor) upb_fielddef_unref(f, ref_donor); } bool upb_msgdef_addfield(upb_msgdef *m, upb_fielddef *f, const void *ref_donor, upb_status *s) { /* TODO: extensions need to have a separate namespace, because proto2 allows a * top-level extension (ie. one not in any package) to have the same name as a * field from the message. * * This also implies that there needs to be a separate lookup-by-name method * for extensions. It seems desirable for iteration to return both extensions * and non-extensions though. * * We also need to validate that the field number is in an extension range iff * it is an extension. * * This method is idempotent. Check if |f| is already part of this msgdef and * return immediately if so. */ if (upb_fielddef_containingtype(f) == m) { return true; } /* Check constraints for all fields before performing any action. */ if (!check_field_add(m, f, s)) { return false; } else if (upb_fielddef_containingoneof(f) != NULL) { /* Fields in a oneof can only be added by adding the oneof to the msgdef. */ upb_status_seterrmsg(s, "fielddef is part of a oneof"); return false; } /* Constraint checks ok, perform the action. */ add_field(m, f, ref_donor); return true; } bool upb_msgdef_addoneof(upb_msgdef *m, upb_oneofdef *o, const void *ref_donor, upb_status *s) { upb_oneof_iter it; /* Check various conditions that would prevent this oneof from being added. */ if (upb_oneofdef_containingtype(o)) { upb_status_seterrmsg(s, "oneofdef already belongs to a message"); return false; } else if (upb_oneofdef_name(o) == NULL) { upb_status_seterrmsg(s, "oneofdef name was not set"); return false; } else if (upb_strtable_lookup(&m->ntof, upb_oneofdef_name(o), NULL)) { upb_status_seterrmsg(s, "name conflicts with existing field or oneof"); return false; } /* Check that all of the oneof's fields do not conflict with names or numbers * of fields already in the message. */ for (upb_oneof_begin(&it, o); !upb_oneof_done(&it); upb_oneof_next(&it)) { const upb_fielddef *f = upb_oneof_iter_field(&it); if (!check_field_add(m, f, s)) { return false; } } /* Everything checks out -- commit now. */ /* Add oneof itself first. */ o->parent = m; upb_strtable_insert(&m->ntof, upb_oneofdef_name(o), upb_value_ptr(o)); upb_ref2(o, m); upb_ref2(m, o); /* Add each field of the oneof directly to the msgdef. */ for (upb_oneof_begin(&it, o); !upb_oneof_done(&it); upb_oneof_next(&it)) { upb_fielddef *f = upb_oneof_iter_field(&it); add_field(m, f, NULL); } if (ref_donor) upb_oneofdef_unref(o, ref_donor); return true; } const upb_fielddef *upb_msgdef_itof(const upb_msgdef *m, uint32_t i) { upb_value val; return upb_inttable_lookup32(&m->itof, i, &val) ? upb_value_getptr(val) : NULL; } const upb_fielddef *upb_msgdef_ntof(const upb_msgdef *m, const char *name, size_t len) { upb_value val; if (!upb_strtable_lookup2(&m->ntof, name, len, &val)) { return NULL; } return upb_trygetfield(upb_value_getptr(val)); } const upb_oneofdef *upb_msgdef_ntoo(const upb_msgdef *m, const char *name, size_t len) { upb_value val; if (!upb_strtable_lookup2(&m->ntof, name, len, &val)) { return NULL; } return upb_trygetoneof(upb_value_getptr(val)); } bool upb_msgdef_lookupname(const upb_msgdef *m, const char *name, size_t len, const upb_fielddef **f, const upb_oneofdef **o) { upb_value val; if (!upb_strtable_lookup2(&m->ntof, name, len, &val)) { return false; } *o = upb_trygetoneof(upb_value_getptr(val)); *f = upb_trygetfield(upb_value_getptr(val)); assert((*o != NULL) ^ (*f != NULL)); /* Exactly one of the two should be set. */ return true; } int upb_msgdef_numfields(const upb_msgdef *m) { /* The number table contains only fields. */ return upb_inttable_count(&m->itof); } int upb_msgdef_numoneofs(const upb_msgdef *m) { /* The name table includes oneofs, and the number table does not. */ return upb_strtable_count(&m->ntof) - upb_inttable_count(&m->itof); } void upb_msgdef_setmapentry(upb_msgdef *m, bool map_entry) { assert(!upb_msgdef_isfrozen(m)); m->map_entry = map_entry; } bool upb_msgdef_mapentry(const upb_msgdef *m) { return m->map_entry; } void upb_msg_field_begin(upb_msg_field_iter *iter, const upb_msgdef *m) { upb_inttable_begin(iter, &m->itof); } void upb_msg_field_next(upb_msg_field_iter *iter) { upb_inttable_next(iter); } bool upb_msg_field_done(const upb_msg_field_iter *iter) { return upb_inttable_done(iter); } upb_fielddef *upb_msg_iter_field(const upb_msg_field_iter *iter) { return (upb_fielddef*)upb_value_getptr(upb_inttable_iter_value(iter)); } void upb_msg_field_iter_setdone(upb_msg_field_iter *iter) { upb_inttable_iter_setdone(iter); } void upb_msg_oneof_begin(upb_msg_oneof_iter *iter, const upb_msgdef *m) { upb_strtable_begin(iter, &m->ntof); /* We need to skip past any initial fields. */ while (!upb_strtable_done(iter) && !upb_isoneof(upb_value_getptr(upb_strtable_iter_value(iter)))) { upb_strtable_next(iter); } } void upb_msg_oneof_next(upb_msg_oneof_iter *iter) { /* We need to skip past fields to return only oneofs. */ do { upb_strtable_next(iter); } while (!upb_strtable_done(iter) && !upb_isoneof(upb_value_getptr(upb_strtable_iter_value(iter)))); } bool upb_msg_oneof_done(const upb_msg_oneof_iter *iter) { return upb_strtable_done(iter); } upb_oneofdef *upb_msg_iter_oneof(const upb_msg_oneof_iter *iter) { return (upb_oneofdef*)upb_value_getptr(upb_strtable_iter_value(iter)); } void upb_msg_oneof_iter_setdone(upb_msg_oneof_iter *iter) { upb_strtable_iter_setdone(iter); } /* upb_oneofdef ***************************************************************/ static void visitoneof(const upb_refcounted *r, upb_refcounted_visit *visit, void *closure) { const upb_oneofdef *o = (const upb_oneofdef*)r; upb_oneof_iter i; for (upb_oneof_begin(&i, o); !upb_oneof_done(&i); upb_oneof_next(&i)) { const upb_fielddef *f = upb_oneof_iter_field(&i); visit(r, upb_fielddef_upcast2(f), closure); } if (o->parent) { visit(r, upb_msgdef_upcast2(o->parent), closure); } } static void freeoneof(upb_refcounted *r) { upb_oneofdef *o = (upb_oneofdef*)r; upb_strtable_uninit(&o->ntof); upb_inttable_uninit(&o->itof); upb_gfree((void*)o->name); upb_gfree(o); } const struct upb_refcounted_vtbl upb_oneofdef_vtbl = {visitoneof, freeoneof}; upb_oneofdef *upb_oneofdef_new(const void *owner) { upb_oneofdef *o = upb_gmalloc(sizeof(*o)); if (!o) { return NULL; } o->parent = NULL; o->name = NULL; if (!upb_refcounted_init(upb_oneofdef_upcast_mutable(o), &upb_oneofdef_vtbl, owner)) { goto err2; } if (!upb_inttable_init(&o->itof, UPB_CTYPE_PTR)) goto err2; if (!upb_strtable_init(&o->ntof, UPB_CTYPE_PTR)) goto err1; return o; err1: upb_inttable_uninit(&o->itof); err2: upb_gfree(o); return NULL; } upb_oneofdef *upb_oneofdef_dup(const upb_oneofdef *o, const void *owner) { bool ok; upb_oneof_iter i; upb_oneofdef *newo = upb_oneofdef_new(owner); if (!newo) return NULL; ok = upb_oneofdef_setname(newo, upb_oneofdef_name(o), NULL); UPB_ASSERT_VAR(ok, ok); for (upb_oneof_begin(&i, o); !upb_oneof_done(&i); upb_oneof_next(&i)) { upb_fielddef *f = upb_fielddef_dup(upb_oneof_iter_field(&i), &f); if (!f || !upb_oneofdef_addfield(newo, f, &f, NULL)) { upb_oneofdef_unref(newo, owner); return NULL; } } return newo; } const char *upb_oneofdef_name(const upb_oneofdef *o) { return o->name; } bool upb_oneofdef_setname(upb_oneofdef *o, const char *name, upb_status *s) { assert(!upb_oneofdef_isfrozen(o)); if (upb_oneofdef_containingtype(o)) { upb_status_seterrmsg(s, "oneof already added to a message"); return false; } if (!upb_isident(name, strlen(name), true, s)) { return false; } name = upb_gstrdup(name); if (!name) { upb_status_seterrmsg(s, "One of memory"); return false; } upb_gfree((void*)o->name); o->name = name; return true; } const upb_msgdef *upb_oneofdef_containingtype(const upb_oneofdef *o) { return o->parent; } int upb_oneofdef_numfields(const upb_oneofdef *o) { return upb_strtable_count(&o->ntof); } bool upb_oneofdef_addfield(upb_oneofdef *o, upb_fielddef *f, const void *ref_donor, upb_status *s) { assert(!upb_oneofdef_isfrozen(o)); assert(!o->parent || !upb_msgdef_isfrozen(o->parent)); /* This method is idempotent. Check if |f| is already part of this oneofdef * and return immediately if so. */ if (upb_fielddef_containingoneof(f) == o) { return true; } /* The field must have an OPTIONAL label. */ if (upb_fielddef_label(f) != UPB_LABEL_OPTIONAL) { upb_status_seterrmsg(s, "fields in oneof must have OPTIONAL label"); return false; } /* Check that no field with this name or number exists already in the oneof. * Also check that the field is not already part of a oneof. */ if (upb_fielddef_name(f) == NULL || upb_fielddef_number(f) == 0) { upb_status_seterrmsg(s, "field name or number were not set"); return false; } else if (upb_oneofdef_itof(o, upb_fielddef_number(f)) || upb_oneofdef_ntofz(o, upb_fielddef_name(f))) { upb_status_seterrmsg(s, "duplicate field name or number"); return false; } else if (upb_fielddef_containingoneof(f) != NULL) { upb_status_seterrmsg(s, "fielddef already belongs to a oneof"); return false; } /* We allow adding a field to the oneof either if the field is not part of a * msgdef, or if it is and we are also part of the same msgdef. */ if (o->parent == NULL) { /* If we're not in a msgdef, the field cannot be either. Otherwise we would * need to magically add this oneof to a msgdef to remain consistent, which * is surprising behavior. */ if (upb_fielddef_containingtype(f) != NULL) { upb_status_seterrmsg(s, "fielddef already belongs to a message, but " "oneof does not"); return false; } } else { /* If we're in a msgdef, the user can add fields that either aren't in any * msgdef (in which case they're added to our msgdef) or already a part of * our msgdef. */ if (upb_fielddef_containingtype(f) != NULL && upb_fielddef_containingtype(f) != o->parent) { upb_status_seterrmsg(s, "fielddef belongs to a different message " "than oneof"); return false; } } /* Commit phase. First add the field to our parent msgdef, if any, because * that may fail; then add the field to our own tables. */ if (o->parent != NULL && upb_fielddef_containingtype(f) == NULL) { if (!upb_msgdef_addfield((upb_msgdef*)o->parent, f, NULL, s)) { return false; } } release_containingtype(f); f->oneof = o; upb_inttable_insert(&o->itof, upb_fielddef_number(f), upb_value_ptr(f)); upb_strtable_insert(&o->ntof, upb_fielddef_name(f), upb_value_ptr(f)); upb_ref2(f, o); upb_ref2(o, f); if (ref_donor) upb_fielddef_unref(f, ref_donor); return true; } const upb_fielddef *upb_oneofdef_ntof(const upb_oneofdef *o, const char *name, size_t length) { upb_value val; return upb_strtable_lookup2(&o->ntof, name, length, &val) ? upb_value_getptr(val) : NULL; } const upb_fielddef *upb_oneofdef_itof(const upb_oneofdef *o, uint32_t num) { upb_value val; return upb_inttable_lookup32(&o->itof, num, &val) ? upb_value_getptr(val) : NULL; } void upb_oneof_begin(upb_oneof_iter *iter, const upb_oneofdef *o) { upb_inttable_begin(iter, &o->itof); } void upb_oneof_next(upb_oneof_iter *iter) { upb_inttable_next(iter); } bool upb_oneof_done(upb_oneof_iter *iter) { return upb_inttable_done(iter); } upb_fielddef *upb_oneof_iter_field(const upb_oneof_iter *iter) { return (upb_fielddef*)upb_value_getptr(upb_inttable_iter_value(iter)); } void upb_oneof_iter_setdone(upb_oneof_iter *iter) { upb_inttable_iter_setdone(iter); } /* upb_filedef ****************************************************************/ static void visitfiledef(const upb_refcounted *r, upb_refcounted_visit *visit, void *closure) { const upb_filedef *f = (const upb_filedef*)r; size_t i; for(i = 0; i < upb_filedef_defcount(f); i++) { visit(r, upb_def_upcast(upb_filedef_def(f, i)), closure); } } static void freefiledef(upb_refcounted *r) { upb_filedef *f = (upb_filedef*)r; size_t i; for(i = 0; i < upb_filedef_depcount(f); i++) { upb_filedef_unref(upb_filedef_dep(f, i), f); } upb_inttable_uninit(&f->defs); upb_inttable_uninit(&f->deps); upb_gfree((void*)f->name); upb_gfree((void*)f->package); upb_gfree(f); } const struct upb_refcounted_vtbl upb_filedef_vtbl = {visitfiledef, freefiledef}; upb_filedef *upb_filedef_new(const void *owner) { upb_filedef *f = upb_gmalloc(sizeof(*f)); if (!f) { return NULL; } f->package = NULL; f->name = NULL; f->syntax = UPB_SYNTAX_PROTO2; if (!upb_refcounted_init(upb_filedef_upcast_mutable(f), &upb_filedef_vtbl, owner)) { goto err; } if (!upb_inttable_init(&f->defs, UPB_CTYPE_CONSTPTR)) { goto err; } if (!upb_inttable_init(&f->deps, UPB_CTYPE_CONSTPTR)) { goto err2; } return f; err2: upb_inttable_uninit(&f->defs); err: upb_gfree(f); return NULL; } const char *upb_filedef_name(const upb_filedef *f) { return f->name; } const char *upb_filedef_package(const upb_filedef *f) { return f->package; } upb_syntax_t upb_filedef_syntax(const upb_filedef *f) { return f->syntax; } size_t upb_filedef_defcount(const upb_filedef *f) { return upb_inttable_count(&f->defs); } size_t upb_filedef_depcount(const upb_filedef *f) { return upb_inttable_count(&f->deps); } const upb_def *upb_filedef_def(const upb_filedef *f, size_t i) { upb_value v; if (upb_inttable_lookup32(&f->defs, i, &v)) { return upb_value_getconstptr(v); } else { return NULL; } } const upb_filedef *upb_filedef_dep(const upb_filedef *f, size_t i) { upb_value v; if (upb_inttable_lookup32(&f->deps, i, &v)) { return upb_value_getconstptr(v); } else { return NULL; } } bool upb_filedef_setname(upb_filedef *f, const char *name, upb_status *s) { name = upb_gstrdup(name); if (!name) { upb_upberr_setoom(s); return false; } upb_gfree((void*)f->name); f->name = name; return true; } bool upb_filedef_setpackage(upb_filedef *f, const char *package, upb_status *s) { if (!upb_isident(package, strlen(package), true, s)) return false; package = upb_gstrdup(package); if (!package) { upb_upberr_setoom(s); return false; } upb_gfree((void*)f->package); f->package = package; return true; } bool upb_filedef_setsyntax(upb_filedef *f, upb_syntax_t syntax, upb_status *s) { UPB_UNUSED(s); if (syntax != UPB_SYNTAX_PROTO2 && syntax != UPB_SYNTAX_PROTO3) { upb_status_seterrmsg(s, "Unknown syntax value."); return false; } f->syntax = syntax; { /* Set all messages in this file to match. */ size_t i; for (i = 0; i < upb_filedef_defcount(f); i++) { /* Casting const away is safe since all defs in mutable filedef must * also be mutable. */ upb_def *def = (upb_def*)upb_filedef_def(f, i); upb_msgdef *m = upb_dyncast_msgdef_mutable(def); if (m) { m->syntax = syntax; } } } return true; } bool upb_filedef_adddef(upb_filedef *f, upb_def *def, const void *ref_donor, upb_status *s) { if (def->file) { upb_status_seterrmsg(s, "Def is already part of another filedef."); return false; } if (upb_inttable_push(&f->defs, upb_value_constptr(def))) { def->file = f; upb_ref2(def, f); if (ref_donor) upb_def_unref(def, ref_donor); if (def->type == UPB_DEF_MSG) { upb_downcast_msgdef_mutable(def)->syntax = f->syntax; } return true; } else { upb_upberr_setoom(s); return false; } } bool upb_filedef_adddep(upb_filedef *f, const upb_filedef *dep) { if (upb_inttable_push(&f->deps, upb_value_constptr(dep))) { /* Regular ref instead of ref2 because files can't form cycles. */ upb_filedef_ref(dep, f); return true; } else { return false; } } /* ** TODO(haberman): it's unclear whether a lot of the consistency checks should ** assert() or return false. */ #include <string.h> static void *upb_calloc(size_t size) { void *mem = upb_gmalloc(size); if (mem) { memset(mem, 0, size); } return mem; } /* Defined for the sole purpose of having a unique pointer value for * UPB_NO_CLOSURE. */ char _upb_noclosure; static void freehandlers(upb_refcounted *r) { upb_handlers *h = (upb_handlers*)r; upb_inttable_iter i; upb_inttable_begin(&i, &h->cleanup_); for(; !upb_inttable_done(&i); upb_inttable_next(&i)) { void *val = (void*)upb_inttable_iter_key(&i); upb_value func_val = upb_inttable_iter_value(&i); upb_handlerfree *func = upb_value_getfptr(func_val); func(val); } upb_inttable_uninit(&h->cleanup_); upb_msgdef_unref(h->msg, h); upb_gfree(h->sub); upb_gfree(h); } static void visithandlers(const upb_refcounted *r, upb_refcounted_visit *visit, void *closure) { const upb_handlers *h = (const upb_handlers*)r; upb_msg_field_iter i; for(upb_msg_field_begin(&i, h->msg); !upb_msg_field_done(&i); upb_msg_field_next(&i)) { upb_fielddef *f = upb_msg_iter_field(&i); const upb_handlers *sub; if (!upb_fielddef_issubmsg(f)) continue; sub = upb_handlers_getsubhandlers(h, f); if (sub) visit(r, upb_handlers_upcast(sub), closure); } } static const struct upb_refcounted_vtbl vtbl = {visithandlers, freehandlers}; typedef struct { upb_inttable tab; /* maps upb_msgdef* -> upb_handlers*. */ upb_handlers_callback *callback; const void *closure; } dfs_state; /* TODO(haberman): discard upb_handlers* objects that do not actually have any * handlers set and cannot reach any upb_handlers* object that does. This is * slightly tricky to do correctly. */ static upb_handlers *newformsg(const upb_msgdef *m, const void *owner, dfs_state *s) { upb_msg_field_iter i; upb_handlers *h = upb_handlers_new(m, owner); if (!h) return NULL; if (!upb_inttable_insertptr(&s->tab, m, upb_value_ptr(h))) goto oom; s->callback(s->closure, h); /* For each submessage field, get or create a handlers object and set it as * the subhandlers. */ for(upb_msg_field_begin(&i, m); !upb_msg_field_done(&i); upb_msg_field_next(&i)) { upb_fielddef *f = upb_msg_iter_field(&i); const upb_msgdef *subdef; upb_value subm_ent; if (!upb_fielddef_issubmsg(f)) continue; subdef = upb_downcast_msgdef(upb_fielddef_subdef(f)); if (upb_inttable_lookupptr(&s->tab, subdef, &subm_ent)) { upb_handlers_setsubhandlers(h, f, upb_value_getptr(subm_ent)); } else { upb_handlers *sub_mh = newformsg(subdef, &sub_mh, s); if (!sub_mh) goto oom; upb_handlers_setsubhandlers(h, f, sub_mh); upb_handlers_unref(sub_mh, &sub_mh); } } return h; oom: upb_handlers_unref(h, owner); return NULL; } /* Given a selector for a STARTSUBMSG handler, resolves to a pointer to the * subhandlers for this submessage field. */ #define SUBH(h, selector) (h->sub[selector]) /* The selector for a submessage field is the field index. */ #define SUBH_F(h, f) SUBH(h, f->index_) static int32_t trygetsel(upb_handlers *h, const upb_fielddef *f, upb_handlertype_t type) { upb_selector_t sel; assert(!upb_handlers_isfrozen(h)); if (upb_handlers_msgdef(h) != upb_fielddef_containingtype(f)) { upb_status_seterrf( &h->status_, "type mismatch: field %s does not belong to message %s", upb_fielddef_name(f), upb_msgdef_fullname(upb_handlers_msgdef(h))); return -1; } if (!upb_handlers_getselector(f, type, &sel)) { upb_status_seterrf( &h->status_, "type mismatch: cannot register handler type %d for field %s", type, upb_fielddef_name(f)); return -1; } return sel; } static upb_selector_t handlers_getsel(upb_handlers *h, const upb_fielddef *f, upb_handlertype_t type) { int32_t sel = trygetsel(h, f, type); assert(sel >= 0); return sel; } static const void **returntype(upb_handlers *h, const upb_fielddef *f, upb_handlertype_t type) { return &h->table[handlers_getsel(h, f, type)].attr.return_closure_type_; } static bool doset(upb_handlers *h, int32_t sel, const upb_fielddef *f, upb_handlertype_t type, upb_func *func, upb_handlerattr *attr) { upb_handlerattr set_attr = UPB_HANDLERATTR_INITIALIZER; const void *closure_type; const void **context_closure_type; assert(!upb_handlers_isfrozen(h)); if (sel < 0) { upb_status_seterrmsg(&h->status_, "incorrect handler type for this field."); return false; } if (h->table[sel].func) { upb_status_seterrmsg(&h->status_, "cannot change handler once it has been set."); return false; } if (attr) { set_attr = *attr; } /* Check that the given closure type matches the closure type that has been * established for this context (if any). */ closure_type = upb_handlerattr_closuretype(&set_attr); if (type == UPB_HANDLER_STRING) { context_closure_type = returntype(h, f, UPB_HANDLER_STARTSTR); } else if (f && upb_fielddef_isseq(f) && type != UPB_HANDLER_STARTSEQ && type != UPB_HANDLER_ENDSEQ) { context_closure_type = returntype(h, f, UPB_HANDLER_STARTSEQ); } else { context_closure_type = &h->top_closure_type; } if (closure_type && *context_closure_type && closure_type != *context_closure_type) { /* TODO(haberman): better message for debugging. */ if (f) { upb_status_seterrf(&h->status_, "closure type does not match for field %s", upb_fielddef_name(f)); } else { upb_status_seterrmsg( &h->status_, "closure type does not match for message-level handler"); } return false; } if (closure_type) *context_closure_type = closure_type; /* If this is a STARTSEQ or STARTSTR handler, check that the returned pointer * matches any pre-existing expectations about what type is expected. */ if (type == UPB_HANDLER_STARTSEQ || type == UPB_HANDLER_STARTSTR) { const void *return_type = upb_handlerattr_returnclosuretype(&set_attr); const void *table_return_type = upb_handlerattr_returnclosuretype(&h->table[sel].attr); if (return_type && table_return_type && return_type != table_return_type) { upb_status_seterrmsg(&h->status_, "closure return type does not match"); return false; } if (table_return_type && !return_type) upb_handlerattr_setreturnclosuretype(&set_attr, table_return_type); } h->table[sel].func = (upb_func*)func; h->table[sel].attr = set_attr; return true; } /* Returns the effective closure type for this handler (which will propagate * from outer frames if this frame has no START* handler). Not implemented for * UPB_HANDLER_STRING at the moment since this is not needed. Returns NULL is * the effective closure type is unspecified (either no handler was registered * to specify it or the handler that was registered did not specify the closure * type). */ const void *effective_closure_type(upb_handlers *h, const upb_fielddef *f, upb_handlertype_t type) { const void *ret; upb_selector_t sel; assert(type != UPB_HANDLER_STRING); ret = h->top_closure_type; if (upb_fielddef_isseq(f) && type != UPB_HANDLER_STARTSEQ && type != UPB_HANDLER_ENDSEQ && h->table[sel = handlers_getsel(h, f, UPB_HANDLER_STARTSEQ)].func) { ret = upb_handlerattr_returnclosuretype(&h->table[sel].attr); } if (type == UPB_HANDLER_STRING && h->table[sel = handlers_getsel(h, f, UPB_HANDLER_STARTSTR)].func) { ret = upb_handlerattr_returnclosuretype(&h->table[sel].attr); } /* The effective type of the submessage; not used yet. * if (type == SUBMESSAGE && * h->table[sel = handlers_getsel(h, f, UPB_HANDLER_STARTSUBMSG)].func) { * ret = upb_handlerattr_returnclosuretype(&h->table[sel].attr); * } */ return ret; } /* Checks whether the START* handler specified by f & type is missing even * though it is required to convert the established type of an outer frame * ("closure_type") into the established type of an inner frame (represented in * the return closure type of this handler's attr. */ bool checkstart(upb_handlers *h, const upb_fielddef *f, upb_handlertype_t type, upb_status *status) { const void *closure_type; const upb_handlerattr *attr; const void *return_closure_type; upb_selector_t sel = handlers_getsel(h, f, type); if (h->table[sel].func) return true; closure_type = effective_closure_type(h, f, type); attr = &h->table[sel].attr; return_closure_type = upb_handlerattr_returnclosuretype(attr); if (closure_type && return_closure_type && closure_type != return_closure_type) { upb_status_seterrf(status, "expected start handler to return sub type for field %f", upb_fielddef_name(f)); return false; } return true; } /* Public interface ***********************************************************/ upb_handlers *upb_handlers_new(const upb_msgdef *md, const void *owner) { int extra; upb_handlers *h; assert(upb_msgdef_isfrozen(md)); extra = sizeof(upb_handlers_tabent) * (md->selector_count - 1); h = upb_calloc(sizeof(*h) + extra); if (!h) return NULL; h->msg = md; upb_msgdef_ref(h->msg, h); upb_status_clear(&h->status_); if (md->submsg_field_count > 0) { h->sub = upb_calloc(md->submsg_field_count * sizeof(*h->sub)); if (!h->sub) goto oom; } else { h->sub = 0; } if (!upb_refcounted_init(upb_handlers_upcast_mutable(h), &vtbl, owner)) goto oom; if (!upb_inttable_init(&h->cleanup_, UPB_CTYPE_FPTR)) goto oom; /* calloc() above initialized all handlers to NULL. */ return h; oom: freehandlers(upb_handlers_upcast_mutable(h)); return NULL; } const upb_handlers *upb_handlers_newfrozen(const upb_msgdef *m, const void *owner, upb_handlers_callback *callback, const void *closure) { dfs_state state; upb_handlers *ret; bool ok; upb_refcounted *r; state.callback = callback; state.closure = closure; if (!upb_inttable_init(&state.tab, UPB_CTYPE_PTR)) return NULL; ret = newformsg(m, owner, &state); upb_inttable_uninit(&state.tab); if (!ret) return NULL; r = upb_handlers_upcast_mutable(ret); ok = upb_refcounted_freeze(&r, 1, NULL, UPB_MAX_HANDLER_DEPTH); UPB_ASSERT_VAR(ok, ok); return ret; } const upb_status *upb_handlers_status(upb_handlers *h) { assert(!upb_handlers_isfrozen(h)); return &h->status_; } void upb_handlers_clearerr(upb_handlers *h) { assert(!upb_handlers_isfrozen(h)); upb_status_clear(&h->status_); } #define SETTER(name, handlerctype, handlertype) \ bool upb_handlers_set ## name(upb_handlers *h, const upb_fielddef *f, \ handlerctype func, upb_handlerattr *attr) { \ int32_t sel = trygetsel(h, f, handlertype); \ return doset(h, sel, f, handlertype, (upb_func*)func, attr); \ } SETTER(int32, upb_int32_handlerfunc*, UPB_HANDLER_INT32) SETTER(int64, upb_int64_handlerfunc*, UPB_HANDLER_INT64) SETTER(uint32, upb_uint32_handlerfunc*, UPB_HANDLER_UINT32) SETTER(uint64, upb_uint64_handlerfunc*, UPB_HANDLER_UINT64) SETTER(float, upb_float_handlerfunc*, UPB_HANDLER_FLOAT) SETTER(double, upb_double_handlerfunc*, UPB_HANDLER_DOUBLE) SETTER(bool, upb_bool_handlerfunc*, UPB_HANDLER_BOOL) SETTER(startstr, upb_startstr_handlerfunc*, UPB_HANDLER_STARTSTR) SETTER(string, upb_string_handlerfunc*, UPB_HANDLER_STRING) SETTER(endstr, upb_endfield_handlerfunc*, UPB_HANDLER_ENDSTR) SETTER(startseq, upb_startfield_handlerfunc*, UPB_HANDLER_STARTSEQ) SETTER(startsubmsg, upb_startfield_handlerfunc*, UPB_HANDLER_STARTSUBMSG) SETTER(endsubmsg, upb_endfield_handlerfunc*, UPB_HANDLER_ENDSUBMSG) SETTER(endseq, upb_endfield_handlerfunc*, UPB_HANDLER_ENDSEQ) #undef SETTER bool upb_handlers_setstartmsg(upb_handlers *h, upb_startmsg_handlerfunc *func, upb_handlerattr *attr) { return doset(h, UPB_STARTMSG_SELECTOR, NULL, UPB_HANDLER_INT32, (upb_func *)func, attr); } bool upb_handlers_setendmsg(upb_handlers *h, upb_endmsg_handlerfunc *func, upb_handlerattr *attr) { assert(!upb_handlers_isfrozen(h)); return doset(h, UPB_ENDMSG_SELECTOR, NULL, UPB_HANDLER_INT32, (upb_func *)func, attr); } bool upb_handlers_setsubhandlers(upb_handlers *h, const upb_fielddef *f, const upb_handlers *sub) { assert(sub); assert(!upb_handlers_isfrozen(h)); assert(upb_fielddef_issubmsg(f)); if (SUBH_F(h, f)) return false; /* Can't reset. */ if (upb_msgdef_upcast(upb_handlers_msgdef(sub)) != upb_fielddef_subdef(f)) { return false; } SUBH_F(h, f) = sub; upb_ref2(sub, h); return true; } const upb_handlers *upb_handlers_getsubhandlers(const upb_handlers *h, const upb_fielddef *f) { assert(upb_fielddef_issubmsg(f)); return SUBH_F(h, f); } bool upb_handlers_getattr(const upb_handlers *h, upb_selector_t sel, upb_handlerattr *attr) { if (!upb_handlers_gethandler(h, sel)) return false; *attr = h->table[sel].attr; return true; } const upb_handlers *upb_handlers_getsubhandlers_sel(const upb_handlers *h, upb_selector_t sel) { /* STARTSUBMSG selector in sel is the field's selector base. */ return SUBH(h, sel - UPB_STATIC_SELECTOR_COUNT); } const upb_msgdef *upb_handlers_msgdef(const upb_handlers *h) { return h->msg; } bool upb_handlers_addcleanup(upb_handlers *h, void *p, upb_handlerfree *func) { bool ok; if (upb_inttable_lookupptr(&h->cleanup_, p, NULL)) { return false; } ok = upb_inttable_insertptr(&h->cleanup_, p, upb_value_fptr(func)); UPB_ASSERT_VAR(ok, ok); return true; } /* "Static" methods ***********************************************************/ bool upb_handlers_freeze(upb_handlers *const*handlers, int n, upb_status *s) { /* TODO: verify we have a transitive closure. */ int i; for (i = 0; i < n; i++) { upb_msg_field_iter j; upb_handlers *h = handlers[i]; if (!upb_ok(&h->status_)) { upb_status_seterrf(s, "handlers for message %s had error status: %s", upb_msgdef_fullname(upb_handlers_msgdef(h)), upb_status_errmsg(&h->status_)); return false; } /* Check that there are no closure mismatches due to missing Start* handlers * or subhandlers with different type-level types. */ for(upb_msg_field_begin(&j, h->msg); !upb_msg_field_done(&j); upb_msg_field_next(&j)) { const upb_fielddef *f = upb_msg_iter_field(&j); if (upb_fielddef_isseq(f)) { if (!checkstart(h, f, UPB_HANDLER_STARTSEQ, s)) return false; } if (upb_fielddef_isstring(f)) { if (!checkstart(h, f, UPB_HANDLER_STARTSTR, s)) return false; } if (upb_fielddef_issubmsg(f)) { bool hashandler = false; if (upb_handlers_gethandler( h, handlers_getsel(h, f, UPB_HANDLER_STARTSUBMSG)) || upb_handlers_gethandler( h, handlers_getsel(h, f, UPB_HANDLER_ENDSUBMSG))) { hashandler = true; } if (upb_fielddef_isseq(f) && (upb_handlers_gethandler( h, handlers_getsel(h, f, UPB_HANDLER_STARTSEQ)) || upb_handlers_gethandler( h, handlers_getsel(h, f, UPB_HANDLER_ENDSEQ)))) { hashandler = true; } if (hashandler && !upb_handlers_getsubhandlers(h, f)) { /* For now we add an empty subhandlers in this case. It makes the * decoder code generator simpler, because it only has to handle two * cases (submessage has handlers or not) as opposed to three * (submessage has handlers in enclosing message but no subhandlers). * * This makes parsing less efficient in the case that we want to * notice a submessage but skip its contents (like if we're testing * for submessage presence or counting the number of repeated * submessages). In this case we will end up parsing the submessage * field by field and throwing away the results for each, instead of * skipping the whole delimited thing at once. If this is an issue we * can revisit it, but do remember that this only arises when you have * handlers (startseq/startsubmsg/endsubmsg/endseq) set for the * submessage but no subhandlers. The uses cases for this are * limited. */ upb_handlers *sub = upb_handlers_new(upb_fielddef_msgsubdef(f), &sub); upb_handlers_setsubhandlers(h, f, sub); upb_handlers_unref(sub, &sub); } /* TODO(haberman): check type of submessage. * This is slightly tricky; also consider whether we should check that * they match at setsubhandlers time. */ } } } if (!upb_refcounted_freeze((upb_refcounted*const*)handlers, n, s, UPB_MAX_HANDLER_DEPTH)) { return false; } return true; } upb_handlertype_t upb_handlers_getprimitivehandlertype(const upb_fielddef *f) { switch (upb_fielddef_type(f)) { case UPB_TYPE_INT32: case UPB_TYPE_ENUM: return UPB_HANDLER_INT32; case UPB_TYPE_INT64: return UPB_HANDLER_INT64; case UPB_TYPE_UINT32: return UPB_HANDLER_UINT32; case UPB_TYPE_UINT64: return UPB_HANDLER_UINT64; case UPB_TYPE_FLOAT: return UPB_HANDLER_FLOAT; case UPB_TYPE_DOUBLE: return UPB_HANDLER_DOUBLE; case UPB_TYPE_BOOL: return UPB_HANDLER_BOOL; default: assert(false); return -1; /* Invalid input. */ } } bool upb_handlers_getselector(const upb_fielddef *f, upb_handlertype_t type, upb_selector_t *s) { switch (type) { case UPB_HANDLER_INT32: case UPB_HANDLER_INT64: case UPB_HANDLER_UINT32: case UPB_HANDLER_UINT64: case UPB_HANDLER_FLOAT: case UPB_HANDLER_DOUBLE: case UPB_HANDLER_BOOL: if (!upb_fielddef_isprimitive(f) || upb_handlers_getprimitivehandlertype(f) != type) return false; *s = f->selector_base; break; case UPB_HANDLER_STRING: if (upb_fielddef_isstring(f)) { *s = f->selector_base; } else if (upb_fielddef_lazy(f)) { *s = f->selector_base + 3; } else { return false; } break; case UPB_HANDLER_STARTSTR: if (upb_fielddef_isstring(f) || upb_fielddef_lazy(f)) { *s = f->selector_base + 1; } else { return false; } break; case UPB_HANDLER_ENDSTR: if (upb_fielddef_isstring(f) || upb_fielddef_lazy(f)) { *s = f->selector_base + 2; } else { return false; } break; case UPB_HANDLER_STARTSEQ: if (!upb_fielddef_isseq(f)) return false; *s = f->selector_base - 2; break; case UPB_HANDLER_ENDSEQ: if (!upb_fielddef_isseq(f)) return false; *s = f->selector_base - 1; break; case UPB_HANDLER_STARTSUBMSG: if (!upb_fielddef_issubmsg(f)) return false; /* Selectors for STARTSUBMSG are at the beginning of the table so that the * selector can also be used as an index into the "sub" array of * subhandlers. The indexes for the two into these two tables are the * same, except that in the handler table the static selectors come first. */ *s = f->index_ + UPB_STATIC_SELECTOR_COUNT; break; case UPB_HANDLER_ENDSUBMSG: if (!upb_fielddef_issubmsg(f)) return false; *s = f->selector_base; break; } assert((size_t)*s < upb_fielddef_containingtype(f)->selector_count); return true; } uint32_t upb_handlers_selectorbaseoffset(const upb_fielddef *f) { return upb_fielddef_isseq(f) ? 2 : 0; } uint32_t upb_handlers_selectorcount(const upb_fielddef *f) { uint32_t ret = 1; if (upb_fielddef_isseq(f)) ret += 2; /* STARTSEQ/ENDSEQ */ if (upb_fielddef_isstring(f)) ret += 2; /* [STRING]/STARTSTR/ENDSTR */ if (upb_fielddef_issubmsg(f)) { /* ENDSUBMSG (STARTSUBMSG is at table beginning) */ ret += 0; if (upb_fielddef_lazy(f)) { /* STARTSTR/ENDSTR/STRING (for lazy) */ ret += 3; } } return ret; } /* upb_handlerattr ************************************************************/ void upb_handlerattr_init(upb_handlerattr *attr) { upb_handlerattr from = UPB_HANDLERATTR_INITIALIZER; memcpy(attr, &from, sizeof(*attr)); } void upb_handlerattr_uninit(upb_handlerattr *attr) { UPB_UNUSED(attr); } bool upb_handlerattr_sethandlerdata(upb_handlerattr *attr, const void *hd) { attr->handler_data_ = hd; return true; } bool upb_handlerattr_setclosuretype(upb_handlerattr *attr, const void *type) { attr->closure_type_ = type; return true; } const void *upb_handlerattr_closuretype(const upb_handlerattr *attr) { return attr->closure_type_; } bool upb_handlerattr_setreturnclosuretype(upb_handlerattr *attr, const void *type) { attr->return_closure_type_ = type; return true; } const void *upb_handlerattr_returnclosuretype(const upb_handlerattr *attr) { return attr->return_closure_type_; } bool upb_handlerattr_setalwaysok(upb_handlerattr *attr, bool alwaysok) { attr->alwaysok_ = alwaysok; return true; } bool upb_handlerattr_alwaysok(const upb_handlerattr *attr) { return attr->alwaysok_; } /* upb_bufhandle **************************************************************/ size_t upb_bufhandle_objofs(const upb_bufhandle *h) { return h->objofs_; } /* upb_byteshandler ***********************************************************/ void upb_byteshandler_init(upb_byteshandler* h) { memset(h, 0, sizeof(*h)); } /* For when we support handlerfree callbacks. */ void upb_byteshandler_uninit(upb_byteshandler* h) { UPB_UNUSED(h); } bool upb_byteshandler_setstartstr(upb_byteshandler *h, upb_startstr_handlerfunc *func, void *d) { h->table[UPB_STARTSTR_SELECTOR].func = (upb_func*)func; h->table[UPB_STARTSTR_SELECTOR].attr.handler_data_ = d; return true; } bool upb_byteshandler_setstring(upb_byteshandler *h, upb_string_handlerfunc *func, void *d) { h->table[UPB_STRING_SELECTOR].func = (upb_func*)func; h->table[UPB_STRING_SELECTOR].attr.handler_data_ = d; return true; } bool upb_byteshandler_setendstr(upb_byteshandler *h, upb_endfield_handlerfunc *func, void *d) { h->table[UPB_ENDSTR_SELECTOR].func = (upb_func*)func; h->table[UPB_ENDSTR_SELECTOR].attr.handler_data_ = d; return true; } /* ** upb::RefCounted Implementation ** ** Our key invariants are: ** 1. reference cycles never span groups ** 2. for ref2(to, from), we increment to's count iff group(from) != group(to) ** ** The previous two are how we avoid leaking cycles. Other important ** invariants are: ** 3. for mutable objects "from" and "to", if there exists a ref2(to, from) ** this implies group(from) == group(to). (In practice, what we implement ** is even stronger; "from" and "to" will share a group if there has *ever* ** been a ref2(to, from), but all that is necessary for correctness is the ** weaker one). ** 4. mutable and immutable objects are never in the same group. */ #include <setjmp.h> static void freeobj(upb_refcounted *o); const char untracked_val; const void *UPB_UNTRACKED_REF = &untracked_val; /* arch-specific atomic primitives *******************************************/ #ifdef UPB_THREAD_UNSAFE /*---------------------------------------------------*/ static void atomic_inc(uint32_t *a) { (*a)++; } static bool atomic_dec(uint32_t *a) { return --(*a) == 0; } #elif defined(__GNUC__) || defined(__clang__) /*------------------------------*/ static void atomic_inc(uint32_t *a) { __sync_fetch_and_add(a, 1); } static bool atomic_dec(uint32_t *a) { return __sync_sub_and_fetch(a, 1) == 0; } #elif defined(WIN32) /*-------------------------------------------------------*/ #include <Windows.h> static void atomic_inc(upb_atomic_t *a) { InterlockedIncrement(&a->val); } static bool atomic_dec(upb_atomic_t *a) { return InterlockedDecrement(&a->val) == 0; } #else #error Atomic primitives not defined for your platform/CPU. \ Implement them or compile with UPB_THREAD_UNSAFE. #endif /* All static objects point to this refcount. * It is special-cased in ref/unref below. */ uint32_t static_refcount = -1; /* We can avoid atomic ops for statically-declared objects. * This is a minor optimization but nice since we can avoid degrading under * contention in this case. */ static void refgroup(uint32_t *group) { if (group != &static_refcount) atomic_inc(group); } static bool unrefgroup(uint32_t *group) { if (group == &static_refcount) { return false; } else { return atomic_dec(group); } } /* Reference tracking (debug only) ********************************************/ #ifdef UPB_DEBUG_REFS #ifdef UPB_THREAD_UNSAFE static void upb_lock() {} static void upb_unlock() {} #else /* User must define functions that lock/unlock a global mutex and link this * file against them. */ void upb_lock(); void upb_unlock(); #endif /* UPB_DEBUG_REFS mode counts on being able to malloc() memory in some * code-paths that can normally never fail, like upb_refcounted_ref(). Since * we have no way to propagage out-of-memory errors back to the user, and since * these errors can only occur in UPB_DEBUG_REFS mode, we use an allocator that * immediately aborts on failure (avoiding the global allocator, which might * inject failures). */ #include <stdlib.h> static void *upb_debugrefs_allocfunc(upb_alloc *alloc, void *ptr, size_t oldsize, size_t size) { UPB_UNUSED(alloc); UPB_UNUSED(oldsize); if (size == 0) { free(ptr); return NULL; } else { void *ret = realloc(ptr, size); if (!ret) { abort(); } return ret; } } upb_alloc upb_alloc_debugrefs = {&upb_debugrefs_allocfunc}; typedef struct { int count; /* How many refs there are (duplicates only allowed for ref2). */ bool is_ref2; } trackedref; static trackedref *trackedref_new(bool is_ref2) { trackedref *ret = upb_malloc(&upb_alloc_debugrefs, sizeof(*ret)); ret->count = 1; ret->is_ref2 = is_ref2; return ret; } static void track(const upb_refcounted *r, const void *owner, bool ref2) { upb_value v; assert(owner); if (owner == UPB_UNTRACKED_REF) return; upb_lock(); if (upb_inttable_lookupptr(r->refs, owner, &v)) { trackedref *ref = upb_value_getptr(v); /* Since we allow multiple ref2's for the same to/from pair without * allocating separate memory for each one, we lose the fine-grained * tracking behavior we get with regular refs. Since ref2s only happen * inside upb, we'll accept this limitation until/unless there is a really * difficult upb-internal bug that can't be figured out without it. */ assert(ref2); assert(ref->is_ref2); ref->count++; } else { trackedref *ref = trackedref_new(ref2); upb_inttable_insertptr2(r->refs, owner, upb_value_ptr(ref), &upb_alloc_debugrefs); if (ref2) { /* We know this cast is safe when it is a ref2, because it's coming from * another refcounted object. */ const upb_refcounted *from = owner; assert(!upb_inttable_lookupptr(from->ref2s, r, NULL)); upb_inttable_insertptr2(from->ref2s, r, upb_value_ptr(NULL), &upb_alloc_debugrefs); } } upb_unlock(); } static void untrack(const upb_refcounted *r, const void *owner, bool ref2) { upb_value v; bool found; trackedref *ref; assert(owner); if (owner == UPB_UNTRACKED_REF) return; upb_lock(); found = upb_inttable_lookupptr(r->refs, owner, &v); /* This assert will fail if an owner attempts to release a ref it didn't have. */ UPB_ASSERT_VAR(found, found); ref = upb_value_getptr(v); assert(ref->is_ref2 == ref2); if (--ref->count == 0) { free(ref); upb_inttable_removeptr(r->refs, owner, NULL); if (ref2) { /* We know this cast is safe when it is a ref2, because it's coming from * another refcounted object. */ const upb_refcounted *from = owner; bool removed = upb_inttable_removeptr(from->ref2s, r, NULL); assert(removed); } } upb_unlock(); } static void checkref(const upb_refcounted *r, const void *owner, bool ref2) { upb_value v; bool found; trackedref *ref; upb_lock(); found = upb_inttable_lookupptr(r->refs, owner, &v); UPB_ASSERT_VAR(found, found); ref = upb_value_getptr(v); assert(ref->is_ref2 == ref2); upb_unlock(); } /* Populates the given UPB_CTYPE_INT32 inttable with counts of ref2's that * originate from the given owner. */ static void getref2s(const upb_refcounted *owner, upb_inttable *tab) { upb_inttable_iter i; upb_lock(); upb_inttable_begin(&i, owner->ref2s); for(; !upb_inttable_done(&i); upb_inttable_next(&i)) { upb_value v; upb_value count; trackedref *ref; bool found; upb_refcounted *to = (upb_refcounted*)upb_inttable_iter_key(&i); /* To get the count we need to look in the target's table. */ found = upb_inttable_lookupptr(to->refs, owner, &v); assert(found); ref = upb_value_getptr(v); count = upb_value_int32(ref->count); upb_inttable_insertptr2(tab, to, count, &upb_alloc_debugrefs); } upb_unlock(); } typedef struct { upb_inttable ref2; const upb_refcounted *obj; } check_state; static void visit_check(const upb_refcounted *obj, const upb_refcounted *subobj, void *closure) { check_state *s = closure; upb_inttable *ref2 = &s->ref2; upb_value v; bool removed; int32_t newcount; assert(obj == s->obj); assert(subobj); removed = upb_inttable_removeptr(ref2, subobj, &v); /* The following assertion will fail if the visit() function visits a subobj * that it did not have a ref2 on, or visits the same subobj too many times. */ assert(removed); newcount = upb_value_getint32(v) - 1; if (newcount > 0) { upb_inttable_insert2(ref2, (uintptr_t)subobj, upb_value_int32(newcount), &upb_alloc_debugrefs); } } static void visit(const upb_refcounted *r, upb_refcounted_visit *v, void *closure) { /* In DEBUG_REFS mode we know what existing ref2 refs there are, so we know * exactly the set of nodes that visit() should visit. So we verify visit()'s * correctness here. */ check_state state; state.obj = r; upb_inttable_init2(&state.ref2, UPB_CTYPE_INT32, &upb_alloc_debugrefs); getref2s(r, &state.ref2); /* This should visit any children in the ref2 table. */ if (r->vtbl->visit) r->vtbl->visit(r, visit_check, &state); /* This assertion will fail if the visit() function missed any children. */ assert(upb_inttable_count(&state.ref2) == 0); upb_inttable_uninit2(&state.ref2, &upb_alloc_debugrefs); if (r->vtbl->visit) r->vtbl->visit(r, v, closure); } static void trackinit(upb_refcounted *r) { r->refs = upb_malloc(&upb_alloc_debugrefs, sizeof(*r->refs)); r->ref2s = upb_malloc(&upb_alloc_debugrefs, sizeof(*r->ref2s)); upb_inttable_init2(r->refs, UPB_CTYPE_PTR, &upb_alloc_debugrefs); upb_inttable_init2(r->ref2s, UPB_CTYPE_PTR, &upb_alloc_debugrefs); } static void trackfree(const upb_refcounted *r) { upb_inttable_uninit2(r->refs, &upb_alloc_debugrefs); upb_inttable_uninit2(r->ref2s, &upb_alloc_debugrefs); upb_free(&upb_alloc_debugrefs, r->refs); upb_free(&upb_alloc_debugrefs, r->ref2s); } #else static void track(const upb_refcounted *r, const void *owner, bool ref2) { UPB_UNUSED(r); UPB_UNUSED(owner); UPB_UNUSED(ref2); } static void untrack(const upb_refcounted *r, const void *owner, bool ref2) { UPB_UNUSED(r); UPB_UNUSED(owner); UPB_UNUSED(ref2); } static void checkref(const upb_refcounted *r, const void *owner, bool ref2) { UPB_UNUSED(r); UPB_UNUSED(owner); UPB_UNUSED(ref2); } static void trackinit(upb_refcounted *r) { UPB_UNUSED(r); } static void trackfree(const upb_refcounted *r) { UPB_UNUSED(r); } static void visit(const upb_refcounted *r, upb_refcounted_visit *v, void *closure) { if (r->vtbl->visit) r->vtbl->visit(r, v, closure); } #endif /* UPB_DEBUG_REFS */ /* freeze() *******************************************************************/ /* The freeze() operation is by far the most complicated part of this scheme. * We compute strongly-connected components and then mutate the graph such that * we preserve the invariants documented at the top of this file. And we must * handle out-of-memory errors gracefully (without leaving the graph * inconsistent), which adds to the fun. */ /* The state used by the freeze operation (shared across many functions). */ typedef struct { int depth; int maxdepth; uint64_t index; /* Maps upb_refcounted* -> attributes (color, etc). attr layout varies by * color. */ upb_inttable objattr; upb_inttable stack; /* stack of upb_refcounted* for Tarjan's algorithm. */ upb_inttable groups; /* array of uint32_t*, malloc'd refcounts for new groups */ upb_status *status; jmp_buf err; } tarjan; static void release_ref2(const upb_refcounted *obj, const upb_refcounted *subobj, void *closure); /* Node attributes -----------------------------------------------------------*/ /* After our analysis phase all nodes will be either GRAY or WHITE. */ typedef enum { BLACK = 0, /* Object has not been seen. */ GRAY, /* Object has been found via a refgroup but may not be reachable. */ GREEN, /* Object is reachable and is currently on the Tarjan stack. */ WHITE /* Object is reachable and has been assigned a group (SCC). */ } color_t; UPB_NORETURN static void err(tarjan *t) { longjmp(t->err, 1); } UPB_NORETURN static void oom(tarjan *t) { upb_status_seterrmsg(t->status, "out of memory"); err(t); } static uint64_t trygetattr(const tarjan *t, const upb_refcounted *r) { upb_value v; return upb_inttable_lookupptr(&t->objattr, r, &v) ? upb_value_getuint64(v) : 0; } static uint64_t getattr(const tarjan *t, const upb_refcounted *r) { upb_value v; bool found = upb_inttable_lookupptr(&t->objattr, r, &v); UPB_ASSERT_VAR(found, found); return upb_value_getuint64(v); } static void setattr(tarjan *t, const upb_refcounted *r, uint64_t attr) { upb_inttable_removeptr(&t->objattr, r, NULL); upb_inttable_insertptr(&t->objattr, r, upb_value_uint64(attr)); } static color_t color(tarjan *t, const upb_refcounted *r) { return trygetattr(t, r) & 0x3; /* Color is always stored in the low 2 bits. */ } static void set_gray(tarjan *t, const upb_refcounted *r) { assert(color(t, r) == BLACK); setattr(t, r, GRAY); } /* Pushes an obj onto the Tarjan stack and sets it to GREEN. */ static void push(tarjan *t, const upb_refcounted *r) { assert(color(t, r) == BLACK || color(t, r) == GRAY); /* This defines the attr layout for the GREEN state. "index" and "lowlink" * get 31 bits, which is plenty (limit of 2B objects frozen at a time). */ setattr(t, r, GREEN | (t->index << 2) | (t->index << 33)); if (++t->index == 0x80000000) { upb_status_seterrmsg(t->status, "too many objects to freeze"); err(t); } upb_inttable_push(&t->stack, upb_value_ptr((void*)r)); } /* Pops an obj from the Tarjan stack and sets it to WHITE, with a ptr to its * SCC group. */ static upb_refcounted *pop(tarjan *t) { upb_refcounted *r = upb_value_getptr(upb_inttable_pop(&t->stack)); assert(color(t, r) == GREEN); /* This defines the attr layout for nodes in the WHITE state. * Top of group stack is [group, NULL]; we point at group. */ setattr(t, r, WHITE | (upb_inttable_count(&t->groups) - 2) << 8); return r; } static void tarjan_newgroup(tarjan *t) { uint32_t *group = upb_gmalloc(sizeof(*group)); if (!group) oom(t); /* Push group and empty group leader (we'll fill in leader later). */ if (!upb_inttable_push(&t->groups, upb_value_ptr(group)) || !upb_inttable_push(&t->groups, upb_value_ptr(NULL))) { upb_gfree(group); oom(t); } *group = 0; } static uint32_t idx(tarjan *t, const upb_refcounted *r) { assert(color(t, r) == GREEN); return (getattr(t, r) >> 2) & 0x7FFFFFFF; } static uint32_t lowlink(tarjan *t, const upb_refcounted *r) { if (color(t, r) == GREEN) { return getattr(t, r) >> 33; } else { return UINT32_MAX; } } static void set_lowlink(tarjan *t, const upb_refcounted *r, uint32_t lowlink) { assert(color(t, r) == GREEN); setattr(t, r, ((uint64_t)lowlink << 33) | (getattr(t, r) & 0x1FFFFFFFF)); } static uint32_t *group(tarjan *t, upb_refcounted *r) { uint64_t groupnum; upb_value v; bool found; assert(color(t, r) == WHITE); groupnum = getattr(t, r) >> 8; found = upb_inttable_lookup(&t->groups, groupnum, &v); UPB_ASSERT_VAR(found, found); return upb_value_getptr(v); } /* If the group leader for this object's group has not previously been set, * the given object is assigned to be its leader. */ static upb_refcounted *groupleader(tarjan *t, upb_refcounted *r) { uint64_t leader_slot; upb_value v; bool found; assert(color(t, r) == WHITE); leader_slot = (getattr(t, r) >> 8) + 1; found = upb_inttable_lookup(&t->groups, leader_slot, &v); UPB_ASSERT_VAR(found, found); if (upb_value_getptr(v)) { return upb_value_getptr(v); } else { upb_inttable_remove(&t->groups, leader_slot, NULL); upb_inttable_insert(&t->groups, leader_slot, upb_value_ptr(r)); return r; } } /* Tarjan's algorithm --------------------------------------------------------*/ /* See: * http://en.wikipedia.org/wiki/Tarjan%27s_strongly_connected_components_algorithm */ static void do_tarjan(const upb_refcounted *obj, tarjan *t); static void tarjan_visit(const upb_refcounted *obj, const upb_refcounted *subobj, void *closure) { tarjan *t = closure; if (++t->depth > t->maxdepth) { upb_status_seterrf(t->status, "graph too deep to freeze (%d)", t->maxdepth); err(t); } else if (subobj->is_frozen || color(t, subobj) == WHITE) { /* Do nothing: we don't want to visit or color already-frozen nodes, * and WHITE nodes have already been assigned a SCC. */ } else if (color(t, subobj) < GREEN) { /* Subdef has not yet been visited; recurse on it. */ do_tarjan(subobj, t); set_lowlink(t, obj, UPB_MIN(lowlink(t, obj), lowlink(t, subobj))); } else if (color(t, subobj) == GREEN) { /* Subdef is in the stack and hence in the current SCC. */ set_lowlink(t, obj, UPB_MIN(lowlink(t, obj), idx(t, subobj))); } --t->depth; } static void do_tarjan(const upb_refcounted *obj, tarjan *t) { if (color(t, obj) == BLACK) { /* We haven't seen this object's group; mark the whole group GRAY. */ const upb_refcounted *o = obj; do { set_gray(t, o); } while ((o = o->next) != obj); } push(t, obj); visit(obj, tarjan_visit, t); if (lowlink(t, obj) == idx(t, obj)) { tarjan_newgroup(t); while (pop(t) != obj) ; } } /* freeze() ------------------------------------------------------------------*/ static void crossref(const upb_refcounted *r, const upb_refcounted *subobj, void *_t) { tarjan *t = _t; assert(color(t, r) > BLACK); if (color(t, subobj) > BLACK && r->group != subobj->group) { /* Previously this ref was not reflected in subobj->group because they * were in the same group; now that they are split a ref must be taken. */ refgroup(subobj->group); } } static bool freeze(upb_refcounted *const*roots, int n, upb_status *s, int maxdepth) { volatile bool ret = false; int i; upb_inttable_iter iter; /* We run in two passes so that we can allocate all memory before performing * any mutation of the input -- this allows us to leave the input unchanged * in the case of memory allocation failure. */ tarjan t; t.index = 0; t.depth = 0; t.maxdepth = maxdepth; t.status = s; if (!upb_inttable_init(&t.objattr, UPB_CTYPE_UINT64)) goto err1; if (!upb_inttable_init(&t.stack, UPB_CTYPE_PTR)) goto err2; if (!upb_inttable_init(&t.groups, UPB_CTYPE_PTR)) goto err3; if (setjmp(t.err) != 0) goto err4; for (i = 0; i < n; i++) { if (color(&t, roots[i]) < GREEN) { do_tarjan(roots[i], &t); } } /* If we've made it this far, no further errors are possible so it's safe to * mutate the objects without risk of leaving them in an inconsistent state. */ ret = true; /* The transformation that follows requires care. The preconditions are: * - all objects in attr map are WHITE or GRAY, and are in mutable groups * (groups of all mutable objs) * - no ref2(to, from) refs have incremented count(to) if both "to" and * "from" are in our attr map (this follows from invariants (2) and (3)) */ /* Pass 1: we remove WHITE objects from their mutable groups, and add them to * new groups according to the SCC's we computed. These new groups will * consist of only frozen objects. None will be immediately collectible, * because WHITE objects are by definition reachable from one of "roots", * which the caller must own refs on. */ upb_inttable_begin(&iter, &t.objattr); for(; !upb_inttable_done(&iter); upb_inttable_next(&iter)) { upb_refcounted *obj = (upb_refcounted*)upb_inttable_iter_key(&iter); /* Since removal from a singly-linked list requires access to the object's * predecessor, we consider obj->next instead of obj for moving. With the * while() loop we guarantee that we will visit every node's predecessor. * Proof: * 1. every node's predecessor is in our attr map. * 2. though the loop body may change a node's predecessor, it will only * change it to be the node we are currently operating on, so with a * while() loop we guarantee ourselves the chance to remove each node. */ while (color(&t, obj->next) == WHITE && group(&t, obj->next) != obj->next->group) { upb_refcounted *leader; /* Remove from old group. */ upb_refcounted *move = obj->next; if (obj == move) { /* Removing the last object from a group. */ assert(*obj->group == obj->individual_count); upb_gfree(obj->group); } else { obj->next = move->next; /* This may decrease to zero; we'll collect GRAY objects (if any) that * remain in the group in the third pass. */ assert(*move->group >= move->individual_count); *move->group -= move->individual_count; } /* Add to new group. */ leader = groupleader(&t, move); if (move == leader) { /* First object added to new group is its leader. */ move->group = group(&t, move); move->next = move; *move->group = move->individual_count; } else { /* Group already has at least one object in it. */ assert(leader->group == group(&t, move)); move->group = group(&t, move); move->next = leader->next; leader->next = move; *move->group += move->individual_count; } move->is_frozen = true; } } /* Pass 2: GRAY and WHITE objects "obj" with ref2(to, obj) references must * increment count(to) if group(obj) != group(to) (which could now be the * case if "to" was just frozen). */ upb_inttable_begin(&iter, &t.objattr); for(; !upb_inttable_done(&iter); upb_inttable_next(&iter)) { upb_refcounted *obj = (upb_refcounted*)upb_inttable_iter_key(&iter); visit(obj, crossref, &t); } /* Pass 3: GRAY objects are collected if their group's refcount dropped to * zero when we removed its white nodes. This can happen if they had only * been kept alive by virtue of sharing a group with an object that was just * frozen. * * It is important that we do this last, since the GRAY object's free() * function could call unref2() on just-frozen objects, which will decrement * refs that were added in pass 2. */ upb_inttable_begin(&iter, &t.objattr); for(; !upb_inttable_done(&iter); upb_inttable_next(&iter)) { upb_refcounted *obj = (upb_refcounted*)upb_inttable_iter_key(&iter); if (obj->group == NULL || *obj->group == 0) { if (obj->group) { upb_refcounted *o; /* We eagerly free() the group's count (since we can't easily determine * the group's remaining size it's the easiest way to ensure it gets * done). */ upb_gfree(obj->group); /* Visit to release ref2's (done in a separate pass since release_ref2 * depends on o->group being unmodified so it can test merged()). */ o = obj; do { visit(o, release_ref2, NULL); } while ((o = o->next) != obj); /* Mark "group" fields as NULL so we know to free the objects later in * this loop, but also don't try to delete the group twice. */ o = obj; do { o->group = NULL; } while ((o = o->next) != obj); } freeobj(obj); } } err4: if (!ret) { upb_inttable_begin(&iter, &t.groups); for(; !upb_inttable_done(&iter); upb_inttable_next(&iter)) upb_gfree(upb_value_getptr(upb_inttable_iter_value(&iter))); } upb_inttable_uninit(&t.groups); err3: upb_inttable_uninit(&t.stack); err2: upb_inttable_uninit(&t.objattr); err1: return ret; } /* Misc internal functions ***************************************************/ static bool merged(const upb_refcounted *r, const upb_refcounted *r2) { return r->group == r2->group; } static void merge(upb_refcounted *r, upb_refcounted *from) { upb_refcounted *base; upb_refcounted *tmp; if (merged(r, from)) return; *r->group += *from->group; upb_gfree(from->group); base = from; /* Set all refcount pointers in the "from" chain to the merged refcount. * * TODO(haberman): this linear algorithm can result in an overall O(n^2) bound * if the user continuously extends a group by one object. Prevent this by * using one of the techniques in this paper: * ftp://www.ncedc.org/outgoing/geomorph/dino/orals/p245-tarjan.pdf */ do { from->group = r->group; } while ((from = from->next) != base); /* Merge the two circularly linked lists by swapping their next pointers. */ tmp = r->next; r->next = base->next; base->next = tmp; } static void unref(const upb_refcounted *r); static void release_ref2(const upb_refcounted *obj, const upb_refcounted *subobj, void *closure) { UPB_UNUSED(closure); untrack(subobj, obj, true); if (!merged(obj, subobj)) { assert(subobj->is_frozen); unref(subobj); } } static void unref(const upb_refcounted *r) { if (unrefgroup(r->group)) { const upb_refcounted *o; upb_gfree(r->group); /* In two passes, since release_ref2 needs a guarantee that any subobjs * are alive. */ o = r; do { visit(o, release_ref2, NULL); } while((o = o->next) != r); o = r; do { const upb_refcounted *next = o->next; assert(o->is_frozen || o->individual_count == 0); freeobj((upb_refcounted*)o); o = next; } while(o != r); } } static void freeobj(upb_refcounted *o) { trackfree(o); o->vtbl->free((upb_refcounted*)o); } /* Public interface ***********************************************************/ bool upb_refcounted_init(upb_refcounted *r, const struct upb_refcounted_vtbl *vtbl, const void *owner) { #ifndef NDEBUG /* Endianness check. This is unrelated to upb_refcounted, it's just a * convenient place to put the check that we can be assured will run for * basically every program using upb. */ const int x = 1; #ifdef UPB_BIG_ENDIAN assert(*(char*)&x != 1); #else assert(*(char*)&x == 1); #endif #endif r->next = r; r->vtbl = vtbl; r->individual_count = 0; r->is_frozen = false; r->group = upb_gmalloc(sizeof(*r->group)); if (!r->group) return false; *r->group = 0; trackinit(r); upb_refcounted_ref(r, owner); return true; } bool upb_refcounted_isfrozen(const upb_refcounted *r) { return r->is_frozen; } void upb_refcounted_ref(const upb_refcounted *r, const void *owner) { track(r, owner, false); if (!r->is_frozen) ((upb_refcounted*)r)->individual_count++; refgroup(r->group); } void upb_refcounted_unref(const upb_refcounted *r, const void *owner) { untrack(r, owner, false); if (!r->is_frozen) ((upb_refcounted*)r)->individual_count--; unref(r); } void upb_refcounted_ref2(const upb_refcounted *r, upb_refcounted *from) { assert(!from->is_frozen); /* Non-const pointer implies this. */ track(r, from, true); if (r->is_frozen) { refgroup(r->group); } else { merge((upb_refcounted*)r, from); } } void upb_refcounted_unref2(const upb_refcounted *r, upb_refcounted *from) { assert(!from->is_frozen); /* Non-const pointer implies this. */ untrack(r, from, true); if (r->is_frozen) { unref(r); } else { assert(merged(r, from)); } } void upb_refcounted_donateref( const upb_refcounted *r, const void *from, const void *to) { assert(from != to); if (to != NULL) upb_refcounted_ref(r, to); if (from != NULL) upb_refcounted_unref(r, from); } void upb_refcounted_checkref(const upb_refcounted *r, const void *owner) { checkref(r, owner, false); } bool upb_refcounted_freeze(upb_refcounted *const*roots, int n, upb_status *s, int maxdepth) { int i; bool ret; for (i = 0; i < n; i++) { assert(!roots[i]->is_frozen); } ret = freeze(roots, n, s, maxdepth); assert(!s || ret == upb_ok(s)); return ret; } /* Fallback implementation if the shim is not specialized by the JIT. */ #define SHIM_WRITER(type, ctype) \ bool upb_shim_set ## type (void *c, const void *hd, ctype val) { \ uint8_t *m = c; \ const upb_shim_data *d = hd; \ if (d->hasbit > 0) \ *(uint8_t*)&m[d->hasbit / 8] |= 1 << (d->hasbit % 8); \ *(ctype*)&m[d->offset] = val; \ return true; \ } \ SHIM_WRITER(double, double) SHIM_WRITER(float, float) SHIM_WRITER(int32, int32_t) SHIM_WRITER(int64, int64_t) SHIM_WRITER(uint32, uint32_t) SHIM_WRITER(uint64, uint64_t) SHIM_WRITER(bool, bool) #undef SHIM_WRITER bool upb_shim_set(upb_handlers *h, const upb_fielddef *f, size_t offset, int32_t hasbit) { upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER; bool ok; upb_shim_data *d = upb_gmalloc(sizeof(*d)); if (!d) return false; d->offset = offset; d->hasbit = hasbit; upb_handlerattr_sethandlerdata(&attr, d); upb_handlerattr_setalwaysok(&attr, true); upb_handlers_addcleanup(h, d, upb_gfree); #define TYPE(u, l) \ case UPB_TYPE_##u: \ ok = upb_handlers_set##l(h, f, upb_shim_set##l, &attr); break; ok = false; switch (upb_fielddef_type(f)) { TYPE(INT64, int64); TYPE(INT32, int32); TYPE(ENUM, int32); TYPE(UINT64, uint64); TYPE(UINT32, uint32); TYPE(DOUBLE, double); TYPE(FLOAT, float); TYPE(BOOL, bool); default: assert(false); break; } #undef TYPE upb_handlerattr_uninit(&attr); return ok; } const upb_shim_data *upb_shim_getdata(const upb_handlers *h, upb_selector_t s, upb_fieldtype_t *type) { upb_func *f = upb_handlers_gethandler(h, s); if ((upb_int64_handlerfunc*)f == upb_shim_setint64) { *type = UPB_TYPE_INT64; } else if ((upb_int32_handlerfunc*)f == upb_shim_setint32) { *type = UPB_TYPE_INT32; } else if ((upb_uint64_handlerfunc*)f == upb_shim_setuint64) { *type = UPB_TYPE_UINT64; } else if ((upb_uint32_handlerfunc*)f == upb_shim_setuint32) { *type = UPB_TYPE_UINT32; } else if ((upb_double_handlerfunc*)f == upb_shim_setdouble) { *type = UPB_TYPE_DOUBLE; } else if ((upb_float_handlerfunc*)f == upb_shim_setfloat) { *type = UPB_TYPE_FLOAT; } else if ((upb_bool_handlerfunc*)f == upb_shim_setbool) { *type = UPB_TYPE_BOOL; } else { return NULL; } return (const upb_shim_data*)upb_handlers_gethandlerdata(h, s); } #include <string.h> static void upb_symtab_free(upb_refcounted *r) { upb_symtab *s = (upb_symtab*)r; upb_strtable_iter i; upb_strtable_begin(&i, &s->symtab); for (; !upb_strtable_done(&i); upb_strtable_next(&i)) { const upb_def *def = upb_value_getptr(upb_strtable_iter_value(&i)); upb_def_unref(def, s); } upb_strtable_uninit(&s->symtab); upb_gfree(s); } upb_symtab *upb_symtab_new(const void *owner) { static const struct upb_refcounted_vtbl vtbl = {NULL, &upb_symtab_free}; upb_symtab *s = upb_gmalloc(sizeof(*s)); if (!s) { return NULL; } upb_refcounted_init(upb_symtab_upcast_mutable(s), &vtbl, owner); upb_strtable_init(&s->symtab, UPB_CTYPE_PTR); return s; } void upb_symtab_freeze(upb_symtab *s) { upb_refcounted *r; bool ok; assert(!upb_symtab_isfrozen(s)); r = upb_symtab_upcast_mutable(s); /* The symtab does not take ref2's (see refcounted.h) on the defs, because * defs cannot refer back to the table and therefore cannot create cycles. So * 0 will suffice for maxdepth here. */ ok = upb_refcounted_freeze(&r, 1, NULL, 0); UPB_ASSERT_VAR(ok, ok); } const upb_def *upb_symtab_lookup(const upb_symtab *s, const char *sym) { upb_value v; upb_def *ret = upb_strtable_lookup(&s->symtab, sym, &v) ? upb_value_getptr(v) : NULL; return ret; } const upb_msgdef *upb_symtab_lookupmsg(const upb_symtab *s, const char *sym) { upb_value v; upb_def *def = upb_strtable_lookup(&s->symtab, sym, &v) ? upb_value_getptr(v) : NULL; return def ? upb_dyncast_msgdef(def) : NULL; } const upb_enumdef *upb_symtab_lookupenum(const upb_symtab *s, const char *sym) { upb_value v; upb_def *def = upb_strtable_lookup(&s->symtab, sym, &v) ? upb_value_getptr(v) : NULL; return def ? upb_dyncast_enumdef(def) : NULL; } /* Given a symbol and the base symbol inside which it is defined, find the * symbol's definition in t. */ static upb_def *upb_resolvename(const upb_strtable *t, const char *base, const char *sym) { if(strlen(sym) == 0) return NULL; if(sym[0] == '.') { /* Symbols starting with '.' are absolute, so we do a single lookup. * Slice to omit the leading '.' */ upb_value v; return upb_strtable_lookup(t, sym + 1, &v) ? upb_value_getptr(v) : NULL; } else { /* Remove components from base until we find an entry or run out. * TODO: This branch is totally broken, but currently not used. */ (void)base; assert(false); return NULL; } } const upb_def *upb_symtab_resolve(const upb_symtab *s, const char *base, const char *sym) { upb_def *ret = upb_resolvename(&s->symtab, base, sym); return ret; } /* Starts a depth-first traversal at "def", recursing into any subdefs * (ie. submessage types). Adds duplicates of existing defs to addtab * wherever necessary, so that the resulting symtab will be consistent once * addtab is added. * * More specifically, if any def D is found in the DFS that: * * 1. can reach a def that is being replaced by something in addtab, AND * * 2. is not itself being replaced already (ie. this name doesn't already * exist in addtab) * * ...then a duplicate (new copy) of D will be added to addtab. * * Returns true if this happened for any def reachable from "def." * * It is slightly tricky to do this correctly in the presence of cycles. If we * detect that our DFS has hit a cycle, we might not yet know if any SCCs on * our stack can reach a def in addtab or not. Once we figure this out, that * answer needs to apply to *all* defs in these SCCs, even if we visited them * already. So a straight up one-pass cycle-detecting DFS won't work. * * To work around this problem, we traverse each SCC (which we already * computed, since these defs are frozen) as a single node. We first compute * whether the SCC as a whole can reach any def in addtab, then we dup (or not) * the entire SCC. This requires breaking the encapsulation of upb_refcounted, * since that is where we get the data about what SCC we are in. */ static bool upb_resolve_dfs(const upb_def *def, upb_strtable *addtab, const void *new_owner, upb_inttable *seen, upb_status *s) { upb_value v; bool need_dup; const upb_def *base; const void* memoize_key; /* Memoize results of this function for efficiency (since we're traversing a * DAG this is not needed to limit the depth of the search). * * We memoize by SCC instead of by individual def. */ memoize_key = def->base.group; if (upb_inttable_lookupptr(seen, memoize_key, &v)) return upb_value_getbool(v); /* Visit submessages for all messages in the SCC. */ need_dup = false; base = def; do { upb_value v; const upb_msgdef *m; assert(upb_def_isfrozen(def)); if (def->type == UPB_DEF_FIELD) continue; if (upb_strtable_lookup(addtab, upb_def_fullname(def), &v)) { need_dup = true; } /* For messages, continue the recursion by visiting all subdefs, but only * ones in different SCCs. */ m = upb_dyncast_msgdef(def); if (m) { upb_msg_field_iter i; for(upb_msg_field_begin(&i, m); !upb_msg_field_done(&i); upb_msg_field_next(&i)) { upb_fielddef *f = upb_msg_iter_field(&i); const upb_def *subdef; if (!upb_fielddef_hassubdef(f)) continue; subdef = upb_fielddef_subdef(f); /* Skip subdefs in this SCC. */ if (def->base.group == subdef->base.group) continue; /* |= to avoid short-circuit; we need its side-effects. */ need_dup |= upb_resolve_dfs(subdef, addtab, new_owner, seen, s); if (!upb_ok(s)) return false; } } } while ((def = (upb_def*)def->base.next) != base); if (need_dup) { /* Dup all defs in this SCC that don't already have entries in addtab. */ def = base; do { const char *name; if (def->type == UPB_DEF_FIELD) continue; name = upb_def_fullname(def); if (!upb_strtable_lookup(addtab, name, NULL)) { upb_def *newdef = upb_def_dup(def, new_owner); if (!newdef) goto oom; newdef->came_from_user = false; if (!upb_strtable_insert(addtab, name, upb_value_ptr(newdef))) goto oom; } } while ((def = (upb_def*)def->base.next) != base); } upb_inttable_insertptr(seen, memoize_key, upb_value_bool(need_dup)); return need_dup; oom: upb_status_seterrmsg(s, "out of memory"); return false; } /* TODO(haberman): we need a lot more testing of error conditions. * The came_from_user stuff in particular is not tested. */ static bool symtab_add(upb_symtab *s, upb_def *const*defs, size_t n, void *ref_donor, upb_refcounted *freeze_also, upb_status *status) { size_t i; size_t add_n; size_t freeze_n; upb_strtable_iter iter; upb_refcounted **add_objs = NULL; upb_def **add_defs = NULL; size_t add_objs_size; upb_strtable addtab; upb_inttable seen; if (n == 0 && !freeze_also) { return true; } assert(!upb_symtab_isfrozen(s)); if (!upb_strtable_init(&addtab, UPB_CTYPE_PTR)) { upb_status_seterrmsg(status, "out of memory"); return false; } /* Add new defs to our "add" set. */ for (i = 0; i < n; i++) { upb_def *def = defs[i]; const char *fullname; upb_fielddef *f; if (upb_def_isfrozen(def)) { upb_status_seterrmsg(status, "added defs must be mutable"); goto err; } assert(!upb_def_isfrozen(def)); fullname = upb_def_fullname(def); if (!fullname) { upb_status_seterrmsg( status, "Anonymous defs cannot be added to a symtab"); goto err; } f = upb_dyncast_fielddef_mutable(def); if (f) { if (!upb_fielddef_containingtypename(f)) { upb_status_seterrmsg(status, "Standalone fielddefs must have a containing type " "(extendee) name set"); goto err; } } else { if (upb_strtable_lookup(&addtab, fullname, NULL)) { upb_status_seterrf(status, "Conflicting defs named '%s'", fullname); goto err; } /* We need this to back out properly, because if there is a failure we * need to donate the ref back to the caller. */ def->came_from_user = true; upb_def_donateref(def, ref_donor, s); if (!upb_strtable_insert(&addtab, fullname, upb_value_ptr(def))) goto oom_err; } } /* Add standalone fielddefs (ie. extensions) to the appropriate messages. * If the appropriate message only exists in the existing symtab, duplicate * it so we have a mutable copy we can add the fields to. */ for (i = 0; i < n; i++) { upb_def *def = defs[i]; upb_fielddef *f = upb_dyncast_fielddef_mutable(def); const char *msgname; upb_value v; upb_msgdef *m; if (!f) continue; msgname = upb_fielddef_containingtypename(f); /* We validated this earlier in this function. */ assert(msgname); /* If the extendee name is absolutely qualified, move past the initial ".". * TODO(haberman): it is not obvious what it would mean if this was not * absolutely qualified. */ if (msgname[0] == '.') { msgname++; } if (upb_strtable_lookup(&addtab, msgname, &v)) { /* Extendee is in the set of defs the user asked us to add. */ m = upb_value_getptr(v); } else { /* Need to find and dup the extendee from the existing symtab. */ const upb_msgdef *frozen_m = upb_symtab_lookupmsg(s, msgname); if (!frozen_m) { upb_status_seterrf(status, "Tried to extend message %s that does not exist " "in this SymbolTable.", msgname); goto err; } m = upb_msgdef_dup(frozen_m, s); if (!m) goto oom_err; if (!upb_strtable_insert(&addtab, msgname, upb_value_ptr(m))) { upb_msgdef_unref(m, s); goto oom_err; } } if (!upb_msgdef_addfield(m, f, ref_donor, status)) { goto err; } } /* Add dups of any existing def that can reach a def with the same name as * anything in our "add" set. */ if (!upb_inttable_init(&seen, UPB_CTYPE_BOOL)) goto oom_err; upb_strtable_begin(&iter, &s->symtab); for (; !upb_strtable_done(&iter); upb_strtable_next(&iter)) { upb_def *def = upb_value_getptr(upb_strtable_iter_value(&iter)); upb_resolve_dfs(def, &addtab, s, &seen, status); if (!upb_ok(status)) goto err; } upb_inttable_uninit(&seen); /* Now using the table, resolve symbolic references for subdefs. */ upb_strtable_begin(&iter, &addtab); for (; !upb_strtable_done(&iter); upb_strtable_next(&iter)) { const char *base; upb_def *def = upb_value_getptr(upb_strtable_iter_value(&iter)); upb_msgdef *m = upb_dyncast_msgdef_mutable(def); upb_msg_field_iter j; if (!m) continue; /* Type names are resolved relative to the message in which they appear. */ base = upb_msgdef_fullname(m); for(upb_msg_field_begin(&j, m); !upb_msg_field_done(&j); upb_msg_field_next(&j)) { upb_fielddef *f = upb_msg_iter_field(&j); const char *name = upb_fielddef_subdefname(f); if (name && !upb_fielddef_subdef(f)) { /* Try the lookup in the current set of to-be-added defs first. If not * there, try existing defs. */ upb_def *subdef = upb_resolvename(&addtab, base, name); if (subdef == NULL) { subdef = upb_resolvename(&s->symtab, base, name); } if (subdef == NULL) { upb_status_seterrf( status, "couldn't resolve name '%s' in message '%s'", name, base); goto err; } else if (!upb_fielddef_setsubdef(f, subdef, status)) { goto err; } } } } /* We need an array of the defs in addtab, for passing to * upb_refcounted_freeze(). */ add_objs_size = upb_strtable_count(&addtab); if (freeze_also) { add_objs_size++; } add_defs = upb_gmalloc(sizeof(void*) * add_objs_size); if (add_defs == NULL) goto oom_err; upb_strtable_begin(&iter, &addtab); for (add_n = 0; !upb_strtable_done(&iter); upb_strtable_next(&iter)) { add_defs[add_n++] = upb_value_getptr(upb_strtable_iter_value(&iter)); } /* Validate defs. */ if (!_upb_def_validate(add_defs, add_n, status)) { goto err; } /* Cheat a little and give the array a new type. * This is probably undefined behavior, but this code will be deleted soon. */ add_objs = (upb_refcounted**)add_defs; freeze_n = add_n; if (freeze_also) { add_objs[freeze_n++] = freeze_also; } if (!upb_refcounted_freeze(add_objs, freeze_n, status, UPB_MAX_MESSAGE_DEPTH * 2)) { goto err; } /* This must be delayed until all errors have been detected, since error * recovery code uses this table to cleanup defs. */ upb_strtable_uninit(&addtab); /* TODO(haberman) we don't properly handle errors after this point (like * OOM in upb_strtable_insert() below). */ for (i = 0; i < add_n; i++) { upb_def *def = (upb_def*)add_objs[i]; const char *name = upb_def_fullname(def); upb_value v; bool success; if (upb_strtable_remove(&s->symtab, name, &v)) { const upb_def *def = upb_value_getptr(v); upb_def_unref(def, s); } success = upb_strtable_insert(&s->symtab, name, upb_value_ptr(def)); UPB_ASSERT_VAR(success, success == true); } upb_gfree(add_defs); return true; oom_err: upb_status_seterrmsg(status, "out of memory"); err: { /* For defs the user passed in, we need to donate the refs back. For defs * we dup'd, we need to just unref them. */ upb_strtable_begin(&iter, &addtab); for (; !upb_strtable_done(&iter); upb_strtable_next(&iter)) { upb_def *def = upb_value_getptr(upb_strtable_iter_value(&iter)); bool came_from_user = def->came_from_user; def->came_from_user = false; if (came_from_user) { upb_def_donateref(def, s, ref_donor); } else { upb_def_unref(def, s); } } } upb_strtable_uninit(&addtab); upb_gfree(add_defs); assert(!upb_ok(status)); return false; } bool upb_symtab_add(upb_symtab *s, upb_def *const*defs, size_t n, void *ref_donor, upb_status *status) { return symtab_add(s, defs, n, ref_donor, NULL, status); } bool upb_symtab_addfile(upb_symtab *s, upb_filedef *file, upb_status *status) { size_t n; size_t i; upb_def **defs; bool ret; n = upb_filedef_defcount(file); defs = upb_gmalloc(sizeof(*defs) * n); if (defs == NULL) { upb_status_seterrmsg(status, "Out of memory"); return false; } for (i = 0; i < n; i++) { defs[i] = upb_filedef_mutabledef(file, i); } ret = symtab_add(s, defs, n, NULL, upb_filedef_upcast_mutable(file), status); upb_gfree(defs); return ret; } /* Iteration. */ static void advance_to_matching(upb_symtab_iter *iter) { if (iter->type == UPB_DEF_ANY) return; while (!upb_strtable_done(&iter->iter) && iter->type != upb_symtab_iter_def(iter)->type) { upb_strtable_next(&iter->iter); } } void upb_symtab_begin(upb_symtab_iter *iter, const upb_symtab *s, upb_deftype_t type) { upb_strtable_begin(&iter->iter, &s->symtab); iter->type = type; advance_to_matching(iter); } void upb_symtab_next(upb_symtab_iter *iter) { upb_strtable_next(&iter->iter); advance_to_matching(iter); } bool upb_symtab_done(const upb_symtab_iter *iter) { return upb_strtable_done(&iter->iter); } const upb_def *upb_symtab_iter_def(const upb_symtab_iter *iter) { return upb_value_getptr(upb_strtable_iter_value(&iter->iter)); } /* ** upb_table Implementation ** ** Implementation is heavily inspired by Lua's ltable.c. */ #include <string.h> #define UPB_MAXARRSIZE 16 /* 64k. */ /* From Chromium. */ #define ARRAY_SIZE(x) \ ((sizeof(x)/sizeof(0[x])) / ((size_t)(!(sizeof(x) % sizeof(0[x]))))) #ifdef NDEBUG static void upb_check_alloc(upb_table *t, upb_alloc *a) { UPB_UNUSED(t); UPB_UNUSED(a); } #else static void upb_check_alloc(upb_table *t, upb_alloc *a) { assert(t->alloc == a); } #endif static const double MAX_LOAD = 0.85; /* The minimum utilization of the array part of a mixed hash/array table. This * is a speed/memory-usage tradeoff (though it's not straightforward because of * cache effects). The lower this is, the more memory we'll use. */ static const double MIN_DENSITY = 0.1; bool is_pow2(uint64_t v) { return v == 0 || (v & (v - 1)) == 0; } int log2ceil(uint64_t v) { int ret = 0; bool pow2 = is_pow2(v); while (v >>= 1) ret++; ret = pow2 ? ret : ret + 1; /* Ceiling. */ return UPB_MIN(UPB_MAXARRSIZE, ret); } char *upb_strdup(const char *s, upb_alloc *a) { return upb_strdup2(s, strlen(s), a); } char *upb_strdup2(const char *s, size_t len, upb_alloc *a) { size_t n; char *p; /* Prevent overflow errors. */ if (len == SIZE_MAX) return NULL; /* Always null-terminate, even if binary data; but don't rely on the input to * have a null-terminating byte since it may be a raw binary buffer. */ n = len + 1; p = upb_malloc(a, n); if (p) { memcpy(p, s, len); p[len] = 0; } return p; } /* A type to represent the lookup key of either a strtable or an inttable. */ typedef union { uintptr_t num; struct { const char *str; size_t len; } str; } lookupkey_t; static lookupkey_t strkey2(const char *str, size_t len) { lookupkey_t k; k.str.str = str; k.str.len = len; return k; } static lookupkey_t intkey(uintptr_t key) { lookupkey_t k; k.num = key; return k; } typedef uint32_t hashfunc_t(upb_tabkey key); typedef bool eqlfunc_t(upb_tabkey k1, lookupkey_t k2); /* Base table (shared code) ***************************************************/ /* For when we need to cast away const. */ static upb_tabent *mutable_entries(upb_table *t) { return (upb_tabent*)t->entries; } static bool isfull(upb_table *t) { if (upb_table_size(t) == 0) { return true; } else { return ((double)(t->count + 1) / upb_table_size(t)) > MAX_LOAD; } } static bool init(upb_table *t, upb_ctype_t ctype, uint8_t size_lg2, upb_alloc *a) { size_t bytes; t->count = 0; t->ctype = ctype; t->size_lg2 = size_lg2; t->mask = upb_table_size(t) ? upb_table_size(t) - 1 : 0; #ifndef NDEBUG t->alloc = a; #endif bytes = upb_table_size(t) * sizeof(upb_tabent); if (bytes > 0) { t->entries = upb_malloc(a, bytes); if (!t->entries) return false; memset(mutable_entries(t), 0, bytes); } else { t->entries = NULL; } return true; } static void uninit(upb_table *t, upb_alloc *a) { upb_check_alloc(t, a); upb_free(a, mutable_entries(t)); } static upb_tabent *emptyent(upb_table *t) { upb_tabent *e = mutable_entries(t) + upb_table_size(t); while (1) { if (upb_tabent_isempty(--e)) return e; assert(e > t->entries); } } static upb_tabent *getentry_mutable(upb_table *t, uint32_t hash) { return (upb_tabent*)upb_getentry(t, hash); } static const upb_tabent *findentry(const upb_table *t, lookupkey_t key, uint32_t hash, eqlfunc_t *eql) { const upb_tabent *e; if (t->size_lg2 == 0) return NULL; e = upb_getentry(t, hash); if (upb_tabent_isempty(e)) return NULL; while (1) { if (eql(e->key, key)) return e; if ((e = e->next) == NULL) return NULL; } } static upb_tabent *findentry_mutable(upb_table *t, lookupkey_t key, uint32_t hash, eqlfunc_t *eql) { return (upb_tabent*)findentry(t, key, hash, eql); } static bool lookup(const upb_table *t, lookupkey_t key, upb_value *v, uint32_t hash, eqlfunc_t *eql) { const upb_tabent *e = findentry(t, key, hash, eql); if (e) { if (v) { _upb_value_setval(v, e->val.val, t->ctype); } return true; } else { return false; } } /* The given key must not already exist in the table. */ static void insert(upb_table *t, lookupkey_t key, upb_tabkey tabkey, upb_value val, uint32_t hash, hashfunc_t *hashfunc, eqlfunc_t *eql) { upb_tabent *mainpos_e; upb_tabent *our_e; UPB_UNUSED(eql); UPB_UNUSED(key); assert(findentry(t, key, hash, eql) == NULL); assert(val.ctype == t->ctype); t->count++; mainpos_e = getentry_mutable(t, hash); our_e = mainpos_e; if (upb_tabent_isempty(mainpos_e)) { /* Our main position is empty; use it. */ our_e->next = NULL; } else { /* Collision. */ upb_tabent *new_e = emptyent(t); /* Head of collider's chain. */ upb_tabent *chain = getentry_mutable(t, hashfunc(mainpos_e->key)); if (chain == mainpos_e) { /* Existing ent is in its main posisiton (it has the same hash as us, and * is the head of our chain). Insert to new ent and append to this chain. */ new_e->next = mainpos_e->next; mainpos_e->next = new_e; our_e = new_e; } else { /* Existing ent is not in its main position (it is a node in some other * chain). This implies that no existing ent in the table has our hash. * Evict it (updating its chain) and use its ent for head of our chain. */ *new_e = *mainpos_e; /* copies next. */ while (chain->next != mainpos_e) { chain = (upb_tabent*)chain->next; assert(chain); } chain->next = new_e; our_e = mainpos_e; our_e->next = NULL; } } our_e->key = tabkey; our_e->val.val = val.val; assert(findentry(t, key, hash, eql) == our_e); } static bool rm(upb_table *t, lookupkey_t key, upb_value *val, upb_tabkey *removed, uint32_t hash, eqlfunc_t *eql) { upb_tabent *chain = getentry_mutable(t, hash); if (upb_tabent_isempty(chain)) return false; if (eql(chain->key, key)) { /* Element to remove is at the head of its chain. */ t->count--; if (val) { _upb_value_setval(val, chain->val.val, t->ctype); } if (chain->next) { upb_tabent *move = (upb_tabent*)chain->next; *chain = *move; if (removed) *removed = move->key; move->key = 0; /* Make the slot empty. */ } else { if (removed) *removed = chain->key; chain->key = 0; /* Make the slot empty. */ } return true; } else { /* Element to remove is either in a non-head position or not in the * table. */ while (chain->next && !eql(chain->next->key, key)) chain = (upb_tabent*)chain->next; if (chain->next) { /* Found element to remove. */ upb_tabent *rm; if (val) { _upb_value_setval(val, chain->next->val.val, t->ctype); } rm = (upb_tabent*)chain->next; if (removed) *removed = rm->key; rm->key = 0; chain->next = rm->next; t->count--; return true; } else { return false; } } } static size_t next(const upb_table *t, size_t i) { do { if (++i >= upb_table_size(t)) return SIZE_MAX; } while(upb_tabent_isempty(&t->entries[i])); return i; } static size_t begin(const upb_table *t) { return next(t, -1); } /* upb_strtable ***************************************************************/ /* A simple "subclass" of upb_table that only adds a hash function for strings. */ static upb_tabkey strcopy(lookupkey_t k2, upb_alloc *a) { char *str = upb_malloc(a, k2.str.len + sizeof(uint32_t) + 1); if (str == NULL) return 0; memcpy(str, &k2.str.len, sizeof(uint32_t)); memcpy(str + sizeof(uint32_t), k2.str.str, k2.str.len + 1); return (uintptr_t)str; } static uint32_t strhash(upb_tabkey key) { uint32_t len; char *str = upb_tabstr(key, &len); return MurmurHash2(str, len, 0); } static bool streql(upb_tabkey k1, lookupkey_t k2) { uint32_t len; char *str = upb_tabstr(k1, &len); return len == k2.str.len && memcmp(str, k2.str.str, len) == 0; } bool upb_strtable_init2(upb_strtable *t, upb_ctype_t ctype, upb_alloc *a) { return init(&t->t, ctype, 2, a); } void upb_strtable_uninit2(upb_strtable *t, upb_alloc *a) { size_t i; for (i = 0; i < upb_table_size(&t->t); i++) upb_free(a, (void*)t->t.entries[i].key); uninit(&t->t, a); } bool upb_strtable_resize(upb_strtable *t, size_t size_lg2, upb_alloc *a) { upb_strtable new_table; upb_strtable_iter i; upb_check_alloc(&t->t, a); if (!init(&new_table.t, t->t.ctype, size_lg2, a)) return false; upb_strtable_begin(&i, t); for ( ; !upb_strtable_done(&i); upb_strtable_next(&i)) { upb_strtable_insert3( &new_table, upb_strtable_iter_key(&i), upb_strtable_iter_keylength(&i), upb_strtable_iter_value(&i), a); } upb_strtable_uninit2(t, a); *t = new_table; return true; } bool upb_strtable_insert3(upb_strtable *t, const char *k, size_t len, upb_value v, upb_alloc *a) { lookupkey_t key; upb_tabkey tabkey; uint32_t hash; upb_check_alloc(&t->t, a); if (isfull(&t->t)) { /* Need to resize. New table of double the size, add old elements to it. */ if (!upb_strtable_resize(t, t->t.size_lg2 + 1, a)) { return false; } } key = strkey2(k, len); tabkey = strcopy(key, a); if (tabkey == 0) return false; hash = MurmurHash2(key.str.str, key.str.len, 0); insert(&t->t, key, tabkey, v, hash, &strhash, &streql); return true; } bool upb_strtable_lookup2(const upb_strtable *t, const char *key, size_t len, upb_value *v) { uint32_t hash = MurmurHash2(key, len, 0); return lookup(&t->t, strkey2(key, len), v, hash, &streql); } bool upb_strtable_remove3(upb_strtable *t, const char *key, size_t len, upb_value *val, upb_alloc *alloc) { uint32_t hash = MurmurHash2(key, strlen(key), 0); upb_tabkey tabkey; if (rm(&t->t, strkey2(key, len), val, &tabkey, hash, &streql)) { upb_free(alloc, (void*)tabkey); return true; } else { return false; } } /* Iteration */ static const upb_tabent *str_tabent(const upb_strtable_iter *i) { return &i->t->t.entries[i->index]; } void upb_strtable_begin(upb_strtable_iter *i, const upb_strtable *t) { i->t = t; i->index = begin(&t->t); } void upb_strtable_next(upb_strtable_iter *i) { i->index = next(&i->t->t, i->index); } bool upb_strtable_done(const upb_strtable_iter *i) { return i->index >= upb_table_size(&i->t->t) || upb_tabent_isempty(str_tabent(i)); } const char *upb_strtable_iter_key(const upb_strtable_iter *i) { assert(!upb_strtable_done(i)); return upb_tabstr(str_tabent(i)->key, NULL); } size_t upb_strtable_iter_keylength(const upb_strtable_iter *i) { uint32_t len; assert(!upb_strtable_done(i)); upb_tabstr(str_tabent(i)->key, &len); return len; } upb_value upb_strtable_iter_value(const upb_strtable_iter *i) { assert(!upb_strtable_done(i)); return _upb_value_val(str_tabent(i)->val.val, i->t->t.ctype); } void upb_strtable_iter_setdone(upb_strtable_iter *i) { i->index = SIZE_MAX; } bool upb_strtable_iter_isequal(const upb_strtable_iter *i1, const upb_strtable_iter *i2) { if (upb_strtable_done(i1) && upb_strtable_done(i2)) return true; return i1->t == i2->t && i1->index == i2->index; } /* upb_inttable ***************************************************************/ /* For inttables we use a hybrid structure where small keys are kept in an * array and large keys are put in the hash table. */ static uint32_t inthash(upb_tabkey key) { return upb_inthash(key); } static bool inteql(upb_tabkey k1, lookupkey_t k2) { return k1 == k2.num; } static upb_tabval *mutable_array(upb_inttable *t) { return (upb_tabval*)t->array; } static upb_tabval *inttable_val(upb_inttable *t, uintptr_t key) { if (key < t->array_size) { return upb_arrhas(t->array[key]) ? &(mutable_array(t)[key]) : NULL; } else { upb_tabent *e = findentry_mutable(&t->t, intkey(key), upb_inthash(key), &inteql); return e ? &e->val : NULL; } } static const upb_tabval *inttable_val_const(const upb_inttable *t, uintptr_t key) { return inttable_val((upb_inttable*)t, key); } size_t upb_inttable_count(const upb_inttable *t) { return t->t.count + t->array_count; } static void check(upb_inttable *t) { UPB_UNUSED(t); #if defined(UPB_DEBUG_TABLE) && !defined(NDEBUG) { /* This check is very expensive (makes inserts/deletes O(N)). */ size_t count = 0; upb_inttable_iter i; upb_inttable_begin(&i, t); for(; !upb_inttable_done(&i); upb_inttable_next(&i), count++) { assert(upb_inttable_lookup(t, upb_inttable_iter_key(&i), NULL)); } assert(count == upb_inttable_count(t)); } #endif } bool upb_inttable_sizedinit(upb_inttable *t, upb_ctype_t ctype, size_t asize, int hsize_lg2, upb_alloc *a) { size_t array_bytes; if (!init(&t->t, ctype, hsize_lg2, a)) return false; /* Always make the array part at least 1 long, so that we know key 0 * won't be in the hash part, which simplifies things. */ t->array_size = UPB_MAX(1, asize); t->array_count = 0; array_bytes = t->array_size * sizeof(upb_value); t->array = upb_malloc(a, array_bytes); if (!t->array) { uninit(&t->t, a); return false; } memset(mutable_array(t), 0xff, array_bytes); check(t); return true; } bool upb_inttable_init2(upb_inttable *t, upb_ctype_t ctype, upb_alloc *a) { return upb_inttable_sizedinit(t, ctype, 0, 4, a); } void upb_inttable_uninit2(upb_inttable *t, upb_alloc *a) { uninit(&t->t, a); upb_free(a, mutable_array(t)); } bool upb_inttable_insert2(upb_inttable *t, uintptr_t key, upb_value val, upb_alloc *a) { upb_tabval tabval; tabval.val = val.val; UPB_UNUSED(tabval); assert(upb_arrhas(tabval)); /* This will reject (uint64_t)-1. Fix this. */ upb_check_alloc(&t->t, a); if (key < t->array_size) { assert(!upb_arrhas(t->array[key])); t->array_count++; mutable_array(t)[key].val = val.val; } else { if (isfull(&t->t)) { /* Need to resize the hash part, but we re-use the array part. */ size_t i; upb_table new_table; if (!init(&new_table, t->t.ctype, t->t.size_lg2 + 1, a)) { return false; } for (i = begin(&t->t); i < upb_table_size(&t->t); i = next(&t->t, i)) { const upb_tabent *e = &t->t.entries[i]; uint32_t hash; upb_value v; _upb_value_setval(&v, e->val.val, t->t.ctype); hash = upb_inthash(e->key); insert(&new_table, intkey(e->key), e->key, v, hash, &inthash, &inteql); } assert(t->t.count == new_table.count); uninit(&t->t, a); t->t = new_table; } insert(&t->t, intkey(key), key, val, upb_inthash(key), &inthash, &inteql); } check(t); return true; } bool upb_inttable_lookup(const upb_inttable *t, uintptr_t key, upb_value *v) { const upb_tabval *table_v = inttable_val_const(t, key); if (!table_v) return false; if (v) _upb_value_setval(v, table_v->val, t->t.ctype); return true; } bool upb_inttable_replace(upb_inttable *t, uintptr_t key, upb_value val) { upb_tabval *table_v = inttable_val(t, key); if (!table_v) return false; table_v->val = val.val; return true; } bool upb_inttable_remove(upb_inttable *t, uintptr_t key, upb_value *val) { bool success; if (key < t->array_size) { if (upb_arrhas(t->array[key])) { upb_tabval empty = UPB_TABVALUE_EMPTY_INIT; t->array_count--; if (val) { _upb_value_setval(val, t->array[key].val, t->t.ctype); } mutable_array(t)[key] = empty; success = true; } else { success = false; } } else { upb_tabkey removed; uint32_t hash = upb_inthash(key); success = rm(&t->t, intkey(key), val, &removed, hash, &inteql); } check(t); return success; } bool upb_inttable_push2(upb_inttable *t, upb_value val, upb_alloc *a) { upb_check_alloc(&t->t, a); return upb_inttable_insert2(t, upb_inttable_count(t), val, a); } upb_value upb_inttable_pop(upb_inttable *t) { upb_value val; bool ok = upb_inttable_remove(t, upb_inttable_count(t) - 1, &val); UPB_ASSERT_VAR(ok, ok); return val; } bool upb_inttable_insertptr2(upb_inttable *t, const void *key, upb_value val, upb_alloc *a) { upb_check_alloc(&t->t, a); return upb_inttable_insert2(t, (uintptr_t)key, val, a); } bool upb_inttable_lookupptr(const upb_inttable *t, const void *key, upb_value *v) { return upb_inttable_lookup(t, (uintptr_t)key, v); } bool upb_inttable_removeptr(upb_inttable *t, const void *key, upb_value *val) { return upb_inttable_remove(t, (uintptr_t)key, val); } void upb_inttable_compact2(upb_inttable *t, upb_alloc *a) { /* A power-of-two histogram of the table keys. */ size_t counts[UPB_MAXARRSIZE + 1] = {0}; /* The max key in each bucket. */ uintptr_t max[UPB_MAXARRSIZE + 1] = {0}; upb_inttable_iter i; size_t arr_count; int size_lg2; upb_inttable new_t; upb_check_alloc(&t->t, a); upb_inttable_begin(&i, t); for (; !upb_inttable_done(&i); upb_inttable_next(&i)) { uintptr_t key = upb_inttable_iter_key(&i); int bucket = log2ceil(key); max[bucket] = UPB_MAX(max[bucket], key); counts[bucket]++; } /* Find the largest power of two that satisfies the MIN_DENSITY * definition (while actually having some keys). */ arr_count = upb_inttable_count(t); for (size_lg2 = ARRAY_SIZE(counts) - 1; size_lg2 > 0; size_lg2--) { if (counts[size_lg2] == 0) { /* We can halve again without losing any entries. */ continue; } else if (arr_count >= (1 << size_lg2) * MIN_DENSITY) { break; } arr_count -= counts[size_lg2]; } assert(arr_count <= upb_inttable_count(t)); { /* Insert all elements into new, perfectly-sized table. */ size_t arr_size = max[size_lg2] + 1; /* +1 so arr[max] will fit. */ size_t hash_count = upb_inttable_count(t) - arr_count; size_t hash_size = hash_count ? (hash_count / MAX_LOAD) + 1 : 0; size_t hashsize_lg2 = log2ceil(hash_size); upb_inttable_sizedinit(&new_t, t->t.ctype, arr_size, hashsize_lg2, a); upb_inttable_begin(&i, t); for (; !upb_inttable_done(&i); upb_inttable_next(&i)) { uintptr_t k = upb_inttable_iter_key(&i); upb_inttable_insert2(&new_t, k, upb_inttable_iter_value(&i), a); } assert(new_t.array_size == arr_size); assert(new_t.t.size_lg2 == hashsize_lg2); } upb_inttable_uninit2(t, a); *t = new_t; } /* Iteration. */ static const upb_tabent *int_tabent(const upb_inttable_iter *i) { assert(!i->array_part); return &i->t->t.entries[i->index]; } static upb_tabval int_arrent(const upb_inttable_iter *i) { assert(i->array_part); return i->t->array[i->index]; } void upb_inttable_begin(upb_inttable_iter *i, const upb_inttable *t) { i->t = t; i->index = -1; i->array_part = true; upb_inttable_next(i); } void upb_inttable_next(upb_inttable_iter *iter) { const upb_inttable *t = iter->t; if (iter->array_part) { while (++iter->index < t->array_size) { if (upb_arrhas(int_arrent(iter))) { return; } } iter->array_part = false; iter->index = begin(&t->t); } else { iter->index = next(&t->t, iter->index); } } bool upb_inttable_done(const upb_inttable_iter *i) { if (i->array_part) { return i->index >= i->t->array_size || !upb_arrhas(int_arrent(i)); } else { return i->index >= upb_table_size(&i->t->t) || upb_tabent_isempty(int_tabent(i)); } } uintptr_t upb_inttable_iter_key(const upb_inttable_iter *i) { assert(!upb_inttable_done(i)); return i->array_part ? i->index : int_tabent(i)->key; } upb_value upb_inttable_iter_value(const upb_inttable_iter *i) { assert(!upb_inttable_done(i)); return _upb_value_val( i->array_part ? i->t->array[i->index].val : int_tabent(i)->val.val, i->t->t.ctype); } void upb_inttable_iter_setdone(upb_inttable_iter *i) { i->index = SIZE_MAX; i->array_part = false; } bool upb_inttable_iter_isequal(const upb_inttable_iter *i1, const upb_inttable_iter *i2) { if (upb_inttable_done(i1) && upb_inttable_done(i2)) return true; return i1->t == i2->t && i1->index == i2->index && i1->array_part == i2->array_part; } #ifdef UPB_UNALIGNED_READS_OK /* ----------------------------------------------------------------------------- * MurmurHash2, by Austin Appleby (released as public domain). * Reformatted and C99-ified by Joshua Haberman. * Note - This code makes a few assumptions about how your machine behaves - * 1. We can read a 4-byte value from any address without crashing * 2. sizeof(int) == 4 (in upb this limitation is removed by using uint32_t * And it has a few limitations - * 1. It will not work incrementally. * 2. It will not produce the same results on little-endian and big-endian * machines. */ uint32_t MurmurHash2(const void *key, size_t len, uint32_t seed) { /* 'm' and 'r' are mixing constants generated offline. * They're not really 'magic', they just happen to work well. */ const uint32_t m = 0x5bd1e995; const int32_t r = 24; /* Initialize the hash to a 'random' value */ uint32_t h = seed ^ len; /* Mix 4 bytes at a time into the hash */ const uint8_t * data = (const uint8_t *)key; while(len >= 4) { uint32_t k = *(uint32_t *)data; k *= m; k ^= k >> r; k *= m; h *= m; h ^= k; data += 4; len -= 4; } /* Handle the last few bytes of the input array */ switch(len) { case 3: h ^= data[2] << 16; case 2: h ^= data[1] << 8; case 1: h ^= data[0]; h *= m; }; /* Do a few final mixes of the hash to ensure the last few * bytes are well-incorporated. */ h ^= h >> 13; h *= m; h ^= h >> 15; return h; } #else /* !UPB_UNALIGNED_READS_OK */ /* ----------------------------------------------------------------------------- * MurmurHashAligned2, by Austin Appleby * Same algorithm as MurmurHash2, but only does aligned reads - should be safer * on certain platforms. * Performance will be lower than MurmurHash2 */ #define MIX(h,k,m) { k *= m; k ^= k >> r; k *= m; h *= m; h ^= k; } uint32_t MurmurHash2(const void * key, size_t len, uint32_t seed) { const uint32_t m = 0x5bd1e995; const int32_t r = 24; const uint8_t * data = (const uint8_t *)key; uint32_t h = seed ^ len; uint8_t align = (uintptr_t)data & 3; if(align && (len >= 4)) { /* Pre-load the temp registers */ uint32_t t = 0, d = 0; int32_t sl; int32_t sr; switch(align) { case 1: t |= data[2] << 16; case 2: t |= data[1] << 8; case 3: t |= data[0]; } t <<= (8 * align); data += 4-align; len -= 4-align; sl = 8 * (4-align); sr = 8 * align; /* Mix */ while(len >= 4) { uint32_t k; d = *(uint32_t *)data; t = (t >> sr) | (d << sl); k = t; MIX(h,k,m); t = d; data += 4; len -= 4; } /* Handle leftover data in temp registers */ d = 0; if(len >= align) { uint32_t k; switch(align) { case 3: d |= data[2] << 16; case 2: d |= data[1] << 8; case 1: d |= data[0]; } k = (t >> sr) | (d << sl); MIX(h,k,m); data += align; len -= align; /* ---------- * Handle tail bytes */ switch(len) { case 3: h ^= data[2] << 16; case 2: h ^= data[1] << 8; case 1: h ^= data[0]; h *= m; }; } else { switch(len) { case 3: d |= data[2] << 16; case 2: d |= data[1] << 8; case 1: d |= data[0]; case 0: h ^= (t >> sr) | (d << sl); h *= m; } } h ^= h >> 13; h *= m; h ^= h >> 15; return h; } else { while(len >= 4) { uint32_t k = *(uint32_t *)data; MIX(h,k,m); data += 4; len -= 4; } /* ---------- * Handle tail bytes */ switch(len) { case 3: h ^= data[2] << 16; case 2: h ^= data[1] << 8; case 1: h ^= data[0]; h *= m; }; h ^= h >> 13; h *= m; h ^= h >> 15; return h; } } #undef MIX #endif /* UPB_UNALIGNED_READS_OK */ #include <errno.h> #include <stdarg.h> #include <stddef.h> #include <stdint.h> #include <stdio.h> #include <stdlib.h> #include <string.h> bool upb_dumptostderr(void *closure, const upb_status* status) { UPB_UNUSED(closure); fprintf(stderr, "%s\n", upb_status_errmsg(status)); return false; } /* Guarantee null-termination and provide ellipsis truncation. * It may be tempting to "optimize" this by initializing these final * four bytes up-front and then being careful never to overwrite them, * this is safer and simpler. */ static void nullz(upb_status *status) { const char *ellipsis = "..."; size_t len = strlen(ellipsis); assert(sizeof(status->msg) > len); memcpy(status->msg + sizeof(status->msg) - len, ellipsis, len); } /* upb_upberr *****************************************************************/ upb_errorspace upb_upberr = {"upb error"}; void upb_upberr_setoom(upb_status *status) { status->error_space_ = &upb_upberr; upb_status_seterrmsg(status, "Out of memory"); } /* upb_status *****************************************************************/ void upb_status_clear(upb_status *status) { if (!status) return; status->ok_ = true; status->code_ = 0; status->msg[0] = '\0'; } bool upb_ok(const upb_status *status) { return status->ok_; } upb_errorspace *upb_status_errspace(const upb_status *status) { return status->error_space_; } int upb_status_errcode(const upb_status *status) { return status->code_; } const char *upb_status_errmsg(const upb_status *status) { return status->msg; } void upb_status_seterrmsg(upb_status *status, const char *msg) { if (!status) return; status->ok_ = false; strncpy(status->msg, msg, sizeof(status->msg)); nullz(status); } void upb_status_seterrf(upb_status *status, const char *fmt, ...) { va_list args; va_start(args, fmt); upb_status_vseterrf(status, fmt, args); va_end(args); } void upb_status_vseterrf(upb_status *status, const char *fmt, va_list args) { if (!status) return; status->ok_ = false; _upb_vsnprintf(status->msg, sizeof(status->msg), fmt, args); nullz(status); } void upb_status_copy(upb_status *to, const upb_status *from) { if (!to) return; *to = *from; } /* upb_alloc ******************************************************************/ static void *upb_global_allocfunc(upb_alloc *alloc, void *ptr, size_t oldsize, size_t size) { UPB_UNUSED(alloc); UPB_UNUSED(oldsize); if (size == 0) { free(ptr); return NULL; } else { return realloc(ptr, size); } } upb_alloc upb_alloc_global = {&upb_global_allocfunc}; /* upb_arena ******************************************************************/ /* Be conservative and choose 16 in case anyone is using SSE. */ static const size_t maxalign = 16; static size_t align_up(size_t size) { return ((size + maxalign - 1) / maxalign) * maxalign; } typedef struct mem_block { struct mem_block *next; size_t size; size_t used; bool owned; /* Data follows. */ } mem_block; typedef struct cleanup_ent { struct cleanup_ent *next; upb_cleanup_func *cleanup; void *ud; } cleanup_ent; static void upb_arena_addblock(upb_arena *a, void *ptr, size_t size, bool owned) { mem_block *block = ptr; block->next = a->block_head; block->size = size; block->used = align_up(sizeof(mem_block)); block->owned = owned; a->block_head = block; /* TODO(haberman): ASAN poison. */ } static mem_block *upb_arena_allocblock(upb_arena *a, size_t size) { size_t block_size = UPB_MAX(size, a->next_block_size) + sizeof(mem_block); mem_block *block = upb_malloc(a->block_alloc, block_size); if (!block) { return NULL; } upb_arena_addblock(a, block, block_size, true); a->next_block_size = UPB_MIN(block_size * 2, a->max_block_size); return block; } static void *upb_arena_doalloc(upb_alloc *alloc, void *ptr, size_t oldsize, size_t size) { upb_arena *a = (upb_arena*)alloc; /* upb_alloc is initial member. */ mem_block *block = a->block_head; void *ret; if (size == 0) { return NULL; /* We are an arena, don't need individual frees. */ } size = align_up(size); /* TODO(haberman): special-case if this is a realloc of the last alloc? */ if (!block || block->size - block->used < size) { /* Slow path: have to allocate a new block. */ block = upb_arena_allocblock(a, size); if (!block) { return NULL; /* Out of memory. */ } } ret = (char*)block + block->used; block->used += size; if (oldsize > 0) { memcpy(ret, ptr, oldsize); /* Preserve existing data. */ } /* TODO(haberman): ASAN unpoison. */ a->bytes_allocated += size; return ret; } /* Public Arena API ***********************************************************/ void upb_arena_init(upb_arena *a) { a->alloc.func = &upb_arena_doalloc; a->block_alloc = &upb_alloc_global; a->bytes_allocated = 0; a->next_block_size = 256; a->max_block_size = 16384; a->cleanup_head = NULL; a->block_head = NULL; } void upb_arena_init2(upb_arena *a, void *mem, size_t size, upb_alloc *alloc) { upb_arena_init(a); if (size > sizeof(mem_block)) { upb_arena_addblock(a, mem, size, false); } if (alloc) { a->block_alloc = alloc; } } void upb_arena_uninit(upb_arena *a) { cleanup_ent *ent = a->cleanup_head; mem_block *block = a->block_head; while (ent) { ent->cleanup(ent->ud); ent = ent->next; } /* Must do this after running cleanup functions, because this will delete * the memory we store our cleanup entries in! */ while (block) { mem_block *next = block->next; if (block->owned) { upb_free(a->block_alloc, block); } block = next; } } bool upb_arena_addcleanup(upb_arena *a, upb_cleanup_func *func, void *ud) { cleanup_ent *ent = upb_malloc(&a->alloc, sizeof(cleanup_ent)); if (!ent) { return false; /* Out of memory. */ } ent->cleanup = func; ent->ud = ud; ent->next = a->cleanup_head; a->cleanup_head = ent; return true; } size_t upb_arena_bytesallocated(const upb_arena *a) { return a->bytes_allocated; } /* Standard error functions ***************************************************/ static bool default_err(void *ud, const upb_status *status) { UPB_UNUSED(ud); UPB_UNUSED(status); return false; } static bool write_err_to(void *ud, const upb_status *status) { upb_status *copy_to = ud; upb_status_copy(copy_to, status); return false; } /* upb_env ********************************************************************/ void upb_env_initonly(upb_env *e) { e->ok_ = true; e->error_func_ = &default_err; e->error_ud_ = NULL; } void upb_env_init(upb_env *e) { upb_arena_init(&e->arena_); upb_env_initonly(e); } void upb_env_init2(upb_env *e, void *mem, size_t n, upb_alloc *alloc) { upb_arena_init2(&e->arena_, mem, n, alloc); upb_env_initonly(e); } void upb_env_uninit(upb_env *e) { upb_arena_uninit(&e->arena_); } void upb_env_seterrorfunc(upb_env *e, upb_error_func *func, void *ud) { e->error_func_ = func; e->error_ud_ = ud; } void upb_env_reporterrorsto(upb_env *e, upb_status *s) { e->error_func_ = &write_err_to; e->error_ud_ = s; } bool upb_env_reporterror(upb_env *e, const upb_status *status) { e->ok_ = false; return e->error_func_(e->error_ud_, status); } void *upb_env_malloc(upb_env *e, size_t size) { return upb_malloc(&e->arena_.alloc, size); } void *upb_env_realloc(upb_env *e, void *ptr, size_t oldsize, size_t size) { return upb_realloc(&e->arena_.alloc, ptr, oldsize, size); } void upb_env_free(upb_env *e, void *ptr) { upb_free(&e->arena_.alloc, ptr); } bool upb_env_addcleanup(upb_env *e, upb_cleanup_func *func, void *ud) { return upb_arena_addcleanup(&e->arena_, func, ud); } size_t upb_env_bytesallocated(const upb_env *e) { return upb_arena_bytesallocated(&e->arena_); } /* This file was generated by upbc (the upb compiler) from the input * file: * * upb/descriptor/descriptor.proto * * Do not edit -- your changes will be discarded when the file is * regenerated. */ #include <assert.h> static const upb_msgdef msgs[22]; static const upb_fielddef fields[105]; static const upb_enumdef enums[5]; static const upb_tabent strentries[236]; static const upb_tabent intentries[18]; static const upb_tabval arrays[184]; #ifdef UPB_DEBUG_REFS static upb_inttable reftables[264]; #endif static const upb_msgdef msgs[22] = { UPB_MSGDEF_INIT("google.protobuf.DescriptorProto", 40, 8, UPB_INTTABLE_INIT(0, 0, UPB_CTYPE_PTR, 0, NULL, &arrays[0], 11, 10), UPB_STRTABLE_INIT(10, 15, UPB_CTYPE_PTR, 4, &strentries[0]), false, UPB_SYNTAX_PROTO2, &reftables[0], &reftables[1]), UPB_MSGDEF_INIT("google.protobuf.DescriptorProto.ExtensionRange", 4, 0, UPB_INTTABLE_INIT(0, 0, UPB_CTYPE_PTR, 0, NULL, &arrays[11], 3, 2), UPB_STRTABLE_INIT(2, 3, UPB_CTYPE_PTR, 2, &strentries[16]), false, UPB_SYNTAX_PROTO2, &reftables[2], &reftables[3]), UPB_MSGDEF_INIT("google.protobuf.DescriptorProto.ReservedRange", 4, 0, UPB_INTTABLE_INIT(0, 0, UPB_CTYPE_PTR, 0, NULL, &arrays[14], 3, 2), UPB_STRTABLE_INIT(2, 3, UPB_CTYPE_PTR, 2, &strentries[20]), false, UPB_SYNTAX_PROTO2, &reftables[4], &reftables[5]), UPB_MSGDEF_INIT("google.protobuf.EnumDescriptorProto", 11, 2, UPB_INTTABLE_INIT(0, 0, UPB_CTYPE_PTR, 0, NULL, &arrays[17], 4, 3), UPB_STRTABLE_INIT(3, 3, UPB_CTYPE_PTR, 2, &strentries[24]), false, UPB_SYNTAX_PROTO2, &reftables[6], &reftables[7]), UPB_MSGDEF_INIT("google.protobuf.EnumOptions", 8, 1, UPB_INTTABLE_INIT(1, 1, UPB_CTYPE_PTR, 1, &intentries[0], &arrays[21], 4, 2), UPB_STRTABLE_INIT(3, 3, UPB_CTYPE_PTR, 2, &strentries[28]), false, UPB_SYNTAX_PROTO2, &reftables[8], &reftables[9]), UPB_MSGDEF_INIT("google.protobuf.EnumValueDescriptorProto", 8, 1, UPB_INTTABLE_INIT(0, 0, UPB_CTYPE_PTR, 0, NULL, &arrays[25], 4, 3), UPB_STRTABLE_INIT(3, 3, UPB_CTYPE_PTR, 2, &strentries[32]), false, UPB_SYNTAX_PROTO2, &reftables[10], &reftables[11]), UPB_MSGDEF_INIT("google.protobuf.EnumValueOptions", 7, 1, UPB_INTTABLE_INIT(1, 1, UPB_CTYPE_PTR, 1, &intentries[2], &arrays[29], 2, 1), UPB_STRTABLE_INIT(2, 3, UPB_CTYPE_PTR, 2, &strentries[36]), false, UPB_SYNTAX_PROTO2, &reftables[12], &reftables[13]), UPB_MSGDEF_INIT("google.protobuf.FieldDescriptorProto", 23, 1, UPB_INTTABLE_INIT(0, 0, UPB_CTYPE_PTR, 0, NULL, &arrays[31], 11, 10), UPB_STRTABLE_INIT(10, 15, UPB_CTYPE_PTR, 4, &strentries[40]), false, UPB_SYNTAX_PROTO2, &reftables[14], &reftables[15]), UPB_MSGDEF_INIT("google.protobuf.FieldOptions", 12, 1, UPB_INTTABLE_INIT(1, 1, UPB_CTYPE_PTR, 1, &intentries[4], &arrays[42], 11, 6), UPB_STRTABLE_INIT(7, 15, UPB_CTYPE_PTR, 4, &strentries[56]), false, UPB_SYNTAX_PROTO2, &reftables[16], &reftables[17]), UPB_MSGDEF_INIT("google.protobuf.FileDescriptorProto", 42, 6, UPB_INTTABLE_INIT(0, 0, UPB_CTYPE_PTR, 0, NULL, &arrays[53], 13, 12), UPB_STRTABLE_INIT(12, 15, UPB_CTYPE_PTR, 4, &strentries[72]), false, UPB_SYNTAX_PROTO2, &reftables[18], &reftables[19]), UPB_MSGDEF_INIT("google.protobuf.FileDescriptorSet", 6, 1, UPB_INTTABLE_INIT(0, 0, UPB_CTYPE_PTR, 0, NULL, &arrays[66], 2, 1), UPB_STRTABLE_INIT(1, 3, UPB_CTYPE_PTR, 2, &strentries[88]), false, UPB_SYNTAX_PROTO2, &reftables[20], &reftables[21]), UPB_MSGDEF_INIT("google.protobuf.FileOptions", 31, 1, UPB_INTTABLE_INIT(1, 1, UPB_CTYPE_PTR, 1, &intentries[6], &arrays[68], 39, 15), UPB_STRTABLE_INIT(16, 31, UPB_CTYPE_PTR, 5, &strentries[92]), false, UPB_SYNTAX_PROTO2, &reftables[22], &reftables[23]), UPB_MSGDEF_INIT("google.protobuf.MessageOptions", 10, 1, UPB_INTTABLE_INIT(1, 1, UPB_CTYPE_PTR, 1, &intentries[8], &arrays[107], 8, 4), UPB_STRTABLE_INIT(5, 7, UPB_CTYPE_PTR, 3, &strentries[124]), false, UPB_SYNTAX_PROTO2, &reftables[24], &reftables[25]), UPB_MSGDEF_INIT("google.protobuf.MethodDescriptorProto", 15, 1, UPB_INTTABLE_INIT(0, 0, UPB_CTYPE_PTR, 0, NULL, &arrays[115], 7, 6), UPB_STRTABLE_INIT(6, 7, UPB_CTYPE_PTR, 3, &strentries[132]), false, UPB_SYNTAX_PROTO2, &reftables[26], &reftables[27]), UPB_MSGDEF_INIT("google.protobuf.MethodOptions", 7, 1, UPB_INTTABLE_INIT(2, 3, UPB_CTYPE_PTR, 2, &intentries[10], &arrays[122], 1, 0), UPB_STRTABLE_INIT(2, 3, UPB_CTYPE_PTR, 2, &strentries[140]), false, UPB_SYNTAX_PROTO2, &reftables[28], &reftables[29]), UPB_MSGDEF_INIT("google.protobuf.OneofDescriptorProto", 5, 0, UPB_INTTABLE_INIT(0, 0, UPB_CTYPE_PTR, 0, NULL, &arrays[123], 2, 1), UPB_STRTABLE_INIT(1, 3, UPB_CTYPE_PTR, 2, &strentries[144]), false, UPB_SYNTAX_PROTO2, &reftables[30], &reftables[31]), UPB_MSGDEF_INIT("google.protobuf.ServiceDescriptorProto", 11, 2, UPB_INTTABLE_INIT(0, 0, UPB_CTYPE_PTR, 0, NULL, &arrays[125], 4, 3), UPB_STRTABLE_INIT(3, 3, UPB_CTYPE_PTR, 2, &strentries[148]), false, UPB_SYNTAX_PROTO2, &reftables[32], &reftables[33]), UPB_MSGDEF_INIT("google.protobuf.ServiceOptions", 7, 1, UPB_INTTABLE_INIT(2, 3, UPB_CTYPE_PTR, 2, &intentries[14], &arrays[129], 1, 0), UPB_STRTABLE_INIT(2, 3, UPB_CTYPE_PTR, 2, &strentries[152]), false, UPB_SYNTAX_PROTO2, &reftables[34], &reftables[35]), UPB_MSGDEF_INIT("google.protobuf.SourceCodeInfo", 6, 1, UPB_INTTABLE_INIT(0, 0, UPB_CTYPE_PTR, 0, NULL, &arrays[130], 2, 1), UPB_STRTABLE_INIT(1, 3, UPB_CTYPE_PTR, 2, &strentries[156]), false, UPB_SYNTAX_PROTO2, &reftables[36], &reftables[37]), UPB_MSGDEF_INIT("google.protobuf.SourceCodeInfo.Location", 19, 0, UPB_INTTABLE_INIT(0, 0, UPB_CTYPE_PTR, 0, NULL, &arrays[132], 7, 5), UPB_STRTABLE_INIT(5, 7, UPB_CTYPE_PTR, 3, &strentries[160]), false, UPB_SYNTAX_PROTO2, &reftables[38], &reftables[39]), UPB_MSGDEF_INIT("google.protobuf.UninterpretedOption", 18, 1, UPB_INTTABLE_INIT(0, 0, UPB_CTYPE_PTR, 0, NULL, &arrays[139], 9, 7), UPB_STRTABLE_INIT(7, 15, UPB_CTYPE_PTR, 4, &strentries[168]), false, UPB_SYNTAX_PROTO2, &reftables[40], &reftables[41]), UPB_MSGDEF_INIT("google.protobuf.UninterpretedOption.NamePart", 6, 0, UPB_INTTABLE_INIT(0, 0, UPB_CTYPE_PTR, 0, NULL, &arrays[148], 3, 2), UPB_STRTABLE_INIT(2, 3, UPB_CTYPE_PTR, 2, &strentries[184]), false, UPB_SYNTAX_PROTO2, &reftables[42], &reftables[43]), }; static const upb_fielddef fields[105] = { UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false, false, "aggregate_value", 8, &msgs[20], NULL, 15, 6, {0},&reftables[44], &reftables[45]), UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_BOOL, 0, false, false, false, false, "allow_alias", 2, &msgs[4], NULL, 6, 1, {0},&reftables[46], &reftables[47]), UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_BOOL, 0, false, false, false, false, "cc_enable_arenas", 31, &msgs[11], NULL, 23, 12, {0},&reftables[48], &reftables[49]), UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_BOOL, 0, false, false, false, false, "cc_generic_services", 16, &msgs[11], NULL, 17, 6, {0},&reftables[50], &reftables[51]), UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_BOOL, 0, false, false, false, false, "client_streaming", 5, &msgs[13], NULL, 13, 4, {0},&reftables[52], &reftables[53]), UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false, false, "csharp_namespace", 37, &msgs[11], NULL, 27, 14, {0},&reftables[54], &reftables[55]), UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_ENUM, 0, false, false, false, false, "ctype", 1, &msgs[8], (const upb_def*)(&enums[2]), 6, 1, {0},&reftables[56], &reftables[57]), UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false, false, "default_value", 7, &msgs[7], NULL, 16, 7, {0},&reftables[58], &reftables[59]), UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_STRING, 0, false, false, false, false, "dependency", 3, &msgs[9], NULL, 30, 8, {0},&reftables[60], &reftables[61]), UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_BOOL, 0, false, false, false, false, "deprecated", 3, &msgs[12], NULL, 8, 3, {0},&reftables[62], &reftables[63]), UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_BOOL, 0, false, false, false, false, "deprecated", 3, &msgs[8], NULL, 8, 3, {0},&reftables[64], &reftables[65]), UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_BOOL, 0, false, false, false, false, "deprecated", 33, &msgs[14], NULL, 6, 1, {0},&reftables[66], &reftables[67]), UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_BOOL, 0, false, false, false, false, "deprecated", 23, &msgs[11], NULL, 21, 10, {0},&reftables[68], &reftables[69]), UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_BOOL, 0, false, false, false, false, "deprecated", 3, &msgs[4], NULL, 7, 2, {0},&reftables[70], &reftables[71]), UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_BOOL, 0, false, false, false, false, "deprecated", 33, &msgs[17], NULL, 6, 1, {0},&reftables[72], &reftables[73]), UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_BOOL, 0, false, false, false, false, "deprecated", 1, &msgs[6], NULL, 6, 1, {0},&reftables[74], &reftables[75]), UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_DOUBLE, 0, false, false, false, false, "double_value", 6, &msgs[20], NULL, 11, 4, {0},&reftables[76], &reftables[77]), UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_INT32, UPB_INTFMT_VARIABLE, false, false, false, false, "end", 2, &msgs[2], NULL, 3, 1, {0},&reftables[78], &reftables[79]), UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_INT32, UPB_INTFMT_VARIABLE, false, false, false, false, "end", 2, &msgs[1], NULL, 3, 1, {0},&reftables[80], &reftables[81]), UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false, false, "enum_type", 4, &msgs[0], (const upb_def*)(&msgs[3]), 18, 2, {0},&reftables[82], &reftables[83]), UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false, false, "enum_type", 5, &msgs[9], (const upb_def*)(&msgs[3]), 13, 1, {0},&reftables[84], &reftables[85]), UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false, false, "extendee", 2, &msgs[7], NULL, 7, 2, {0},&reftables[86], &reftables[87]), UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false, false, "extension", 6, &msgs[0], (const upb_def*)(&msgs[7]), 24, 4, {0},&reftables[88], &reftables[89]), UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false, false, "extension", 7, &msgs[9], (const upb_def*)(&msgs[7]), 19, 3, {0},&reftables[90], &reftables[91]), UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false, false, "extension_range", 5, &msgs[0], (const upb_def*)(&msgs[1]), 21, 3, {0},&reftables[92], &reftables[93]), UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false, false, "field", 2, &msgs[0], (const upb_def*)(&msgs[7]), 12, 0, {0},&reftables[94], &reftables[95]), UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false, false, "file", 1, &msgs[10], (const upb_def*)(&msgs[9]), 5, 0, {0},&reftables[96], &reftables[97]), UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false, false, "go_package", 11, &msgs[11], NULL, 14, 5, {0},&reftables[98], &reftables[99]), UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false, false, "identifier_value", 3, &msgs[20], NULL, 6, 1, {0},&reftables[100], &reftables[101]), UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false, false, "input_type", 2, &msgs[13], NULL, 7, 2, {0},&reftables[102], &reftables[103]), UPB_FIELDDEF_INIT(UPB_LABEL_REQUIRED, UPB_TYPE_BOOL, 0, false, false, false, false, "is_extension", 2, &msgs[21], NULL, 5, 1, {0},&reftables[104], &reftables[105]), UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_BOOL, 0, false, false, false, false, "java_generate_equals_and_hash", 20, &msgs[11], NULL, 20, 9, {0},&reftables[106], &reftables[107]), UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_BOOL, 0, false, false, false, false, "java_generic_services", 17, &msgs[11], NULL, 18, 7, {0},&reftables[108], &reftables[109]), UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_BOOL, 0, false, false, false, false, "java_multiple_files", 10, &msgs[11], NULL, 13, 4, {0},&reftables[110], &reftables[111]), UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false, false, "java_outer_classname", 8, &msgs[11], NULL, 9, 2, {0},&reftables[112], &reftables[113]), UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false, false, "java_package", 1, &msgs[11], NULL, 6, 1, {0},&reftables[114], &reftables[115]), UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_BOOL, 0, false, false, false, false, "java_string_check_utf8", 27, &msgs[11], NULL, 22, 11, {0},&reftables[116], &reftables[117]), UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_BOOL, 0, false, false, false, false, "javanano_use_deprecated_package", 38, &msgs[11], NULL, 30, 15, {0},&reftables[118], &reftables[119]), UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false, false, "json_name", 10, &msgs[7], NULL, 20, 9, {0},&reftables[120], &reftables[121]), UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_ENUM, 0, false, false, false, false, "jstype", 6, &msgs[8], (const upb_def*)(&enums[3]), 10, 5, {0},&reftables[122], &reftables[123]), UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_ENUM, 0, false, false, false, false, "label", 4, &msgs[7], (const upb_def*)(&enums[0]), 11, 4, {0},&reftables[124], &reftables[125]), UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_BOOL, 0, false, false, false, false, "lazy", 5, &msgs[8], NULL, 9, 4, {0},&reftables[126], &reftables[127]), UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false, false, "leading_comments", 3, &msgs[19], NULL, 8, 2, {0},&reftables[128], &reftables[129]), UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_STRING, 0, false, false, false, false, "leading_detached_comments", 6, &msgs[19], NULL, 16, 4, {0},&reftables[130], &reftables[131]), UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false, false, "location", 1, &msgs[18], (const upb_def*)(&msgs[19]), 5, 0, {0},&reftables[132], &reftables[133]), UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_BOOL, 0, false, false, false, false, "map_entry", 7, &msgs[12], NULL, 9, 4, {0},&reftables[134], &reftables[135]), UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_BOOL, 0, false, false, false, false, "message_set_wire_format", 1, &msgs[12], NULL, 6, 1, {0},&reftables[136], &reftables[137]), UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false, false, "message_type", 4, &msgs[9], (const upb_def*)(&msgs[0]), 10, 0, {0},&reftables[138], &reftables[139]), UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false, false, "method", 2, &msgs[16], (const upb_def*)(&msgs[13]), 6, 0, {0},&reftables[140], &reftables[141]), UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false, false, "name", 1, &msgs[3], NULL, 8, 2, {0},&reftables[142], &reftables[143]), UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false, false, "name", 1, &msgs[15], NULL, 2, 0, {0},&reftables[144], &reftables[145]), UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false, false, "name", 2, &msgs[20], (const upb_def*)(&msgs[21]), 5, 0, {0},&reftables[146], &reftables[147]), UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false, false, "name", 1, &msgs[0], NULL, 32, 8, {0},&reftables[148], &reftables[149]), UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false, false, "name", 1, &msgs[5], NULL, 4, 1, {0},&reftables[150], &reftables[151]), UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false, false, "name", 1, &msgs[9], NULL, 22, 6, {0},&reftables[152], &reftables[153]), UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false, false, "name", 1, &msgs[7], NULL, 4, 1, {0},&reftables[154], &reftables[155]), UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false, false, "name", 1, &msgs[13], NULL, 4, 1, {0},&reftables[156], &reftables[157]), UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false, false, "name", 1, &msgs[16], NULL, 8, 2, {0},&reftables[158], &reftables[159]), UPB_FIELDDEF_INIT(UPB_LABEL_REQUIRED, UPB_TYPE_STRING, 0, false, false, false, false, "name_part", 1, &msgs[21], NULL, 2, 0, {0},&reftables[160], &reftables[161]), UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_INT64, UPB_INTFMT_VARIABLE, false, false, false, false, "negative_int_value", 5, &msgs[20], NULL, 10, 3, {0},&reftables[162], &reftables[163]), UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false, false, "nested_type", 3, &msgs[0], (const upb_def*)(&msgs[0]), 15, 1, {0},&reftables[164], &reftables[165]), UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_BOOL, 0, false, false, false, false, "no_standard_descriptor_accessor", 2, &msgs[12], NULL, 7, 2, {0},&reftables[166], &reftables[167]), UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_INT32, UPB_INTFMT_VARIABLE, false, false, false, false, "number", 2, &msgs[5], NULL, 7, 2, {0},&reftables[168], &reftables[169]), UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_INT32, UPB_INTFMT_VARIABLE, false, false, false, false, "number", 3, &msgs[7], NULL, 10, 3, {0},&reftables[170], &reftables[171]), UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false, false, "objc_class_prefix", 36, &msgs[11], NULL, 24, 13, {0},&reftables[172], &reftables[173]), UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false, false, "oneof_decl", 8, &msgs[0], (const upb_def*)(&msgs[15]), 28, 6, {0},&reftables[174], &reftables[175]), UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_INT32, UPB_INTFMT_VARIABLE, false, false, false, false, "oneof_index", 9, &msgs[7], NULL, 19, 8, {0},&reftables[176], &reftables[177]), UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_ENUM, 0, false, false, false, false, "optimize_for", 9, &msgs[11], (const upb_def*)(&enums[4]), 12, 3, {0},&reftables[178], &reftables[179]), UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_MESSAGE, 0, false, false, false, false, "options", 7, &msgs[0], (const upb_def*)(&msgs[12]), 25, 5, {0},&reftables[180], &reftables[181]), UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_MESSAGE, 0, false, false, false, false, "options", 8, &msgs[9], (const upb_def*)(&msgs[11]), 20, 4, {0},&reftables[182], &reftables[183]), UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_MESSAGE, 0, false, false, false, false, "options", 4, &msgs[13], (const upb_def*)(&msgs[14]), 3, 0, {0},&reftables[184], &reftables[185]), UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_MESSAGE, 0, false, false, false, false, "options", 8, &msgs[7], (const upb_def*)(&msgs[8]), 3, 0, {0},&reftables[186], &reftables[187]), UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_MESSAGE, 0, false, false, false, false, "options", 3, &msgs[16], (const upb_def*)(&msgs[17]), 7, 1, {0},&reftables[188], &reftables[189]), UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_MESSAGE, 0, false, false, false, false, "options", 3, &msgs[5], (const upb_def*)(&msgs[6]), 3, 0, {0},&reftables[190], &reftables[191]), UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_MESSAGE, 0, false, false, false, false, "options", 3, &msgs[3], (const upb_def*)(&msgs[4]), 7, 1, {0},&reftables[192], &reftables[193]), UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false, false, "output_type", 3, &msgs[13], NULL, 10, 3, {0},&reftables[194], &reftables[195]), UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false, false, "package", 2, &msgs[9], NULL, 25, 7, {0},&reftables[196], &reftables[197]), UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_BOOL, 0, false, false, false, false, "packed", 2, &msgs[8], NULL, 7, 2, {0},&reftables[198], &reftables[199]), UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_INT32, UPB_INTFMT_VARIABLE, false, false, false, true, "path", 1, &msgs[19], NULL, 4, 0, {0},&reftables[200], &reftables[201]), UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_UINT64, UPB_INTFMT_VARIABLE, false, false, false, false, "positive_int_value", 4, &msgs[20], NULL, 9, 2, {0},&reftables[202], &reftables[203]), UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_INT32, UPB_INTFMT_VARIABLE, false, false, false, false, "public_dependency", 10, &msgs[9], NULL, 35, 9, {0},&reftables[204], &reftables[205]), UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_BOOL, 0, false, false, false, false, "py_generic_services", 18, &msgs[11], NULL, 19, 8, {0},&reftables[206], &reftables[207]), UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_STRING, 0, false, false, false, false, "reserved_name", 10, &msgs[0], NULL, 37, 9, {0},&reftables[208], &reftables[209]), UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false, false, "reserved_range", 9, &msgs[0], (const upb_def*)(&msgs[2]), 31, 7, {0},&reftables[210], &reftables[211]), UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_BOOL, 0, false, false, false, false, "server_streaming", 6, &msgs[13], NULL, 14, 5, {0},&reftables[212], &reftables[213]), UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false, false, "service", 6, &msgs[9], (const upb_def*)(&msgs[16]), 16, 2, {0},&reftables[214], &reftables[215]), UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_MESSAGE, 0, false, false, false, false, "source_code_info", 9, &msgs[9], (const upb_def*)(&msgs[18]), 21, 5, {0},&reftables[216], &reftables[217]), UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_INT32, UPB_INTFMT_VARIABLE, false, false, false, true, "span", 2, &msgs[19], NULL, 7, 1, {0},&reftables[218], &reftables[219]), UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_INT32, UPB_INTFMT_VARIABLE, false, false, false, false, "start", 1, &msgs[2], NULL, 2, 0, {0},&reftables[220], &reftables[221]), UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_INT32, UPB_INTFMT_VARIABLE, false, false, false, false, "start", 1, &msgs[1], NULL, 2, 0, {0},&reftables[222], &reftables[223]), UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_BYTES, 0, false, false, false, false, "string_value", 7, &msgs[20], NULL, 12, 5, {0},&reftables[224], &reftables[225]), UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false, false, "syntax", 12, &msgs[9], NULL, 39, 11, {0},&reftables[226], &reftables[227]), UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false, false, "trailing_comments", 4, &msgs[19], NULL, 11, 3, {0},&reftables[228], &reftables[229]), UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_ENUM, 0, false, false, false, false, "type", 5, &msgs[7], (const upb_def*)(&enums[1]), 12, 5, {0},&reftables[230], &reftables[231]), UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_STRING, 0, false, false, false, false, "type_name", 6, &msgs[7], NULL, 13, 6, {0},&reftables[232], &reftables[233]), UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false, false, "uninterpreted_option", 999, &msgs[11], (const upb_def*)(&msgs[20]), 5, 0, {0},&reftables[234], &reftables[235]), UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false, false, "uninterpreted_option", 999, &msgs[12], (const upb_def*)(&msgs[20]), 5, 0, {0},&reftables[236], &reftables[237]), UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false, false, "uninterpreted_option", 999, &msgs[6], (const upb_def*)(&msgs[20]), 5, 0, {0},&reftables[238], &reftables[239]), UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false, false, "uninterpreted_option", 999, &msgs[4], (const upb_def*)(&msgs[20]), 5, 0, {0},&reftables[240], &reftables[241]), UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false, false, "uninterpreted_option", 999, &msgs[8], (const upb_def*)(&msgs[20]), 5, 0, {0},&reftables[242], &reftables[243]), UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false, false, "uninterpreted_option", 999, &msgs[14], (const upb_def*)(&msgs[20]), 5, 0, {0},&reftables[244], &reftables[245]), UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false, false, "uninterpreted_option", 999, &msgs[17], (const upb_def*)(&msgs[20]), 5, 0, {0},&reftables[246], &reftables[247]), UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_MESSAGE, 0, false, false, false, false, "value", 2, &msgs[3], (const upb_def*)(&msgs[5]), 6, 0, {0},&reftables[248], &reftables[249]), UPB_FIELDDEF_INIT(UPB_LABEL_OPTIONAL, UPB_TYPE_BOOL, 0, false, false, false, false, "weak", 10, &msgs[8], NULL, 11, 6, {0},&reftables[250], &reftables[251]), UPB_FIELDDEF_INIT(UPB_LABEL_REPEATED, UPB_TYPE_INT32, UPB_INTFMT_VARIABLE, false, false, false, false, "weak_dependency", 11, &msgs[9], NULL, 38, 10, {0},&reftables[252], &reftables[253]), }; static const upb_enumdef enums[5] = { UPB_ENUMDEF_INIT("google.protobuf.FieldDescriptorProto.Label", UPB_STRTABLE_INIT(3, 3, UPB_CTYPE_INT32, 2, &strentries[188]), UPB_INTTABLE_INIT(0, 0, UPB_CTYPE_CSTR, 0, NULL, &arrays[151], 4, 3), 0, &reftables[254], &reftables[255]), UPB_ENUMDEF_INIT("google.protobuf.FieldDescriptorProto.Type", UPB_STRTABLE_INIT(18, 31, UPB_CTYPE_INT32, 5, &strentries[192]), UPB_INTTABLE_INIT(0, 0, UPB_CTYPE_CSTR, 0, NULL, &arrays[155], 19, 18), 0, &reftables[256], &reftables[257]), UPB_ENUMDEF_INIT("google.protobuf.FieldOptions.CType", UPB_STRTABLE_INIT(3, 3, UPB_CTYPE_INT32, 2, &strentries[224]), UPB_INTTABLE_INIT(0, 0, UPB_CTYPE_CSTR, 0, NULL, &arrays[174], 3, 3), 0, &reftables[258], &reftables[259]), UPB_ENUMDEF_INIT("google.protobuf.FieldOptions.JSType", UPB_STRTABLE_INIT(3, 3, UPB_CTYPE_INT32, 2, &strentries[228]), UPB_INTTABLE_INIT(0, 0, UPB_CTYPE_CSTR, 0, NULL, &arrays[177], 3, 3), 0, &reftables[260], &reftables[261]), UPB_ENUMDEF_INIT("google.protobuf.FileOptions.OptimizeMode", UPB_STRTABLE_INIT(3, 3, UPB_CTYPE_INT32, 2, &strentries[232]), UPB_INTTABLE_INIT(0, 0, UPB_CTYPE_CSTR, 0, NULL, &arrays[180], 4, 3), 0, &reftables[262], &reftables[263]), }; static const upb_tabent strentries[236] = { {UPB_TABKEY_STR("\011", "\000", "\000", "\000", "extension"), UPB_TABVALUE_PTR_INIT(&fields[22]), NULL}, {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, {UPB_TABKEY_STR("\015", "\000", "\000", "\000", "reserved_name"), UPB_TABVALUE_PTR_INIT(&fields[82]), NULL}, {UPB_TABKEY_STR("\004", "\000", "\000", "\000", "name"), UPB_TABVALUE_PTR_INIT(&fields[52]), NULL}, {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, {UPB_TABKEY_STR("\005", "\000", "\000", "\000", "field"), UPB_TABVALUE_PTR_INIT(&fields[25]), &strentries[12]}, {UPB_TABKEY_STR("\017", "\000", "\000", "\000", "extension_range"), UPB_TABVALUE_PTR_INIT(&fields[24]), &strentries[14]}, {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, {UPB_TABKEY_STR("\013", "\000", "\000", "\000", "nested_type"), UPB_TABVALUE_PTR_INIT(&fields[60]), NULL}, {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, {UPB_TABKEY_STR("\016", "\000", "\000", "\000", "reserved_range"), UPB_TABVALUE_PTR_INIT(&fields[83]), NULL}, {UPB_TABKEY_STR("\007", "\000", "\000", "\000", "options"), UPB_TABVALUE_PTR_INIT(&fields[68]), NULL}, {UPB_TABKEY_STR("\012", "\000", "\000", "\000", "oneof_decl"), UPB_TABVALUE_PTR_INIT(&fields[65]), NULL}, {UPB_TABKEY_STR("\011", "\000", "\000", "\000", "enum_type"), UPB_TABVALUE_PTR_INIT(&fields[19]), &strentries[13]}, {UPB_TABKEY_STR("\005", "\000", "\000", "\000", "start"), UPB_TABVALUE_PTR_INIT(&fields[89]), NULL}, {UPB_TABKEY_STR("\003", "\000", "\000", "\000", "end"), UPB_TABVALUE_PTR_INIT(&fields[18]), NULL}, {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, {UPB_TABKEY_STR("\005", "\000", "\000", "\000", "start"), UPB_TABVALUE_PTR_INIT(&fields[88]), NULL}, {UPB_TABKEY_STR("\003", "\000", "\000", "\000", "end"), UPB_TABVALUE_PTR_INIT(&fields[17]), NULL}, {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, {UPB_TABKEY_STR("\005", "\000", "\000", "\000", "value"), UPB_TABVALUE_PTR_INIT(&fields[102]), NULL}, {UPB_TABKEY_STR("\007", "\000", "\000", "\000", "options"), UPB_TABVALUE_PTR_INIT(&fields[74]), NULL}, {UPB_TABKEY_STR("\004", "\000", "\000", "\000", "name"), UPB_TABVALUE_PTR_INIT(&fields[49]), &strentries[26]}, {UPB_TABKEY_STR("\024", "\000", "\000", "\000", "uninterpreted_option"), UPB_TABVALUE_PTR_INIT(&fields[98]), NULL}, {UPB_TABKEY_STR("\012", "\000", "\000", "\000", "deprecated"), UPB_TABVALUE_PTR_INIT(&fields[13]), NULL}, {UPB_TABKEY_STR("\013", "\000", "\000", "\000", "allow_alias"), UPB_TABVALUE_PTR_INIT(&fields[1]), NULL}, {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, {UPB_TABKEY_STR("\006", "\000", "\000", "\000", "number"), UPB_TABVALUE_PTR_INIT(&fields[62]), NULL}, {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, {UPB_TABKEY_STR("\007", "\000", "\000", "\000", "options"), UPB_TABVALUE_PTR_INIT(&fields[73]), NULL}, {UPB_TABKEY_STR("\004", "\000", "\000", "\000", "name"), UPB_TABVALUE_PTR_INIT(&fields[53]), &strentries[34]}, {UPB_TABKEY_STR("\024", "\000", "\000", "\000", "uninterpreted_option"), UPB_TABVALUE_PTR_INIT(&fields[97]), NULL}, {UPB_TABKEY_STR("\012", "\000", "\000", "\000", "deprecated"), UPB_TABVALUE_PTR_INIT(&fields[15]), NULL}, {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, {UPB_TABKEY_STR("\013", "\000", "\000", "\000", "oneof_index"), UPB_TABVALUE_PTR_INIT(&fields[66]), NULL}, {UPB_TABKEY_STR("\005", "\000", "\000", "\000", "label"), UPB_TABVALUE_PTR_INIT(&fields[40]), NULL}, {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, {UPB_TABKEY_STR("\004", "\000", "\000", "\000", "name"), UPB_TABVALUE_PTR_INIT(&fields[55]), NULL}, {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, {UPB_TABKEY_STR("\006", "\000", "\000", "\000", "number"), UPB_TABVALUE_PTR_INIT(&fields[63]), &strentries[53]}, {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, {UPB_TABKEY_STR("\010", "\000", "\000", "\000", "extendee"), UPB_TABVALUE_PTR_INIT(&fields[21]), NULL}, {UPB_TABKEY_STR("\011", "\000", "\000", "\000", "type_name"), UPB_TABVALUE_PTR_INIT(&fields[94]), NULL}, {UPB_TABKEY_STR("\011", "\000", "\000", "\000", "json_name"), UPB_TABVALUE_PTR_INIT(&fields[38]), NULL}, {UPB_TABKEY_STR("\004", "\000", "\000", "\000", "type"), UPB_TABVALUE_PTR_INIT(&fields[93]), &strentries[50]}, {UPB_TABKEY_STR("\015", "\000", "\000", "\000", "default_value"), UPB_TABVALUE_PTR_INIT(&fields[7]), NULL}, {UPB_TABKEY_STR("\007", "\000", "\000", "\000", "options"), UPB_TABVALUE_PTR_INIT(&fields[71]), NULL}, {UPB_TABKEY_STR("\024", "\000", "\000", "\000", "uninterpreted_option"), UPB_TABVALUE_PTR_INIT(&fields[99]), NULL}, {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, {UPB_TABKEY_STR("\004", "\000", "\000", "\000", "weak"), UPB_TABVALUE_PTR_INIT(&fields[103]), NULL}, {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, {UPB_TABKEY_STR("\006", "\000", "\000", "\000", "packed"), UPB_TABVALUE_PTR_INIT(&fields[77]), NULL}, {UPB_TABKEY_STR("\004", "\000", "\000", "\000", "lazy"), UPB_TABVALUE_PTR_INIT(&fields[41]), NULL}, {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, {UPB_TABKEY_STR("\005", "\000", "\000", "\000", "ctype"), UPB_TABVALUE_PTR_INIT(&fields[6]), NULL}, {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, {UPB_TABKEY_STR("\006", "\000", "\000", "\000", "jstype"), UPB_TABVALUE_PTR_INIT(&fields[39]), NULL}, {UPB_TABKEY_STR("\012", "\000", "\000", "\000", "deprecated"), UPB_TABVALUE_PTR_INIT(&fields[10]), NULL}, {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, {UPB_TABKEY_STR("\011", "\000", "\000", "\000", "extension"), UPB_TABVALUE_PTR_INIT(&fields[23]), NULL}, {UPB_TABKEY_STR("\017", "\000", "\000", "\000", "weak_dependency"), UPB_TABVALUE_PTR_INIT(&fields[104]), NULL}, {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, {UPB_TABKEY_STR("\004", "\000", "\000", "\000", "name"), UPB_TABVALUE_PTR_INIT(&fields[54]), NULL}, {UPB_TABKEY_STR("\007", "\000", "\000", "\000", "service"), UPB_TABVALUE_PTR_INIT(&fields[85]), NULL}, {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, {UPB_TABKEY_STR("\020", "\000", "\000", "\000", "source_code_info"), UPB_TABVALUE_PTR_INIT(&fields[86]), NULL}, {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, {UPB_TABKEY_STR("\006", "\000", "\000", "\000", "syntax"), UPB_TABVALUE_PTR_INIT(&fields[91]), NULL}, {UPB_TABKEY_STR("\012", "\000", "\000", "\000", "dependency"), UPB_TABVALUE_PTR_INIT(&fields[8]), NULL}, {UPB_TABKEY_STR("\014", "\000", "\000", "\000", "message_type"), UPB_TABVALUE_PTR_INIT(&fields[47]), NULL}, {UPB_TABKEY_STR("\007", "\000", "\000", "\000", "package"), UPB_TABVALUE_PTR_INIT(&fields[76]), NULL}, {UPB_TABKEY_STR("\007", "\000", "\000", "\000", "options"), UPB_TABVALUE_PTR_INIT(&fields[69]), &strentries[86]}, {UPB_TABKEY_STR("\011", "\000", "\000", "\000", "enum_type"), UPB_TABVALUE_PTR_INIT(&fields[20]), NULL}, {UPB_TABKEY_STR("\021", "\000", "\000", "\000", "public_dependency"), UPB_TABVALUE_PTR_INIT(&fields[80]), &strentries[85]}, {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, {UPB_TABKEY_STR("\004", "\000", "\000", "\000", "file"), UPB_TABVALUE_PTR_INIT(&fields[26]), NULL}, {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, {UPB_TABKEY_STR("\023", "\000", "\000", "\000", "cc_generic_services"), UPB_TABVALUE_PTR_INIT(&fields[3]), NULL}, {UPB_TABKEY_STR("\020", "\000", "\000", "\000", "csharp_namespace"), UPB_TABVALUE_PTR_INIT(&fields[5]), NULL}, {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, {UPB_TABKEY_STR("\012", "\000", "\000", "\000", "go_package"), UPB_TABVALUE_PTR_INIT(&fields[27]), NULL}, {UPB_TABKEY_STR("\014", "\000", "\000", "\000", "java_package"), UPB_TABVALUE_PTR_INIT(&fields[35]), &strentries[120]}, {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, {UPB_TABKEY_STR("\024", "\000", "\000", "\000", "java_outer_classname"), UPB_TABVALUE_PTR_INIT(&fields[34]), NULL}, {UPB_TABKEY_STR("\024", "\000", "\000", "\000", "uninterpreted_option"), UPB_TABVALUE_PTR_INIT(&fields[95]), NULL}, {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, {UPB_TABKEY_STR("\023", "\000", "\000", "\000", "java_multiple_files"), UPB_TABVALUE_PTR_INIT(&fields[33]), &strentries[117]}, {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, {UPB_TABKEY_STR("\025", "\000", "\000", "\000", "java_generic_services"), UPB_TABVALUE_PTR_INIT(&fields[32]), &strentries[118]}, {UPB_TABKEY_STR("\035", "\000", "\000", "\000", "java_generate_equals_and_hash"), UPB_TABVALUE_PTR_INIT(&fields[31]), NULL}, {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, {UPB_TABKEY_STR("\037", "\000", "\000", "\000", "javanano_use_deprecated_package"), UPB_TABVALUE_PTR_INIT(&fields[37]), &strentries[123]}, {UPB_TABKEY_STR("\023", "\000", "\000", "\000", "py_generic_services"), UPB_TABVALUE_PTR_INIT(&fields[81]), NULL}, {UPB_TABKEY_STR("\014", "\000", "\000", "\000", "optimize_for"), UPB_TABVALUE_PTR_INIT(&fields[67]), NULL}, {UPB_TABKEY_STR("\026", "\000", "\000", "\000", "java_string_check_utf8"), UPB_TABVALUE_PTR_INIT(&fields[36]), NULL}, {UPB_TABKEY_STR("\012", "\000", "\000", "\000", "deprecated"), UPB_TABVALUE_PTR_INIT(&fields[12]), &strentries[119]}, {UPB_TABKEY_STR("\021", "\000", "\000", "\000", "objc_class_prefix"), UPB_TABVALUE_PTR_INIT(&fields[64]), NULL}, {UPB_TABKEY_STR("\020", "\000", "\000", "\000", "cc_enable_arenas"), UPB_TABVALUE_PTR_INIT(&fields[2]), NULL}, {UPB_TABKEY_STR("\027", "\000", "\000", "\000", "message_set_wire_format"), UPB_TABVALUE_PTR_INIT(&fields[46]), &strentries[128]}, {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, {UPB_TABKEY_STR("\024", "\000", "\000", "\000", "uninterpreted_option"), UPB_TABVALUE_PTR_INIT(&fields[96]), NULL}, {UPB_TABKEY_STR("\012", "\000", "\000", "\000", "deprecated"), UPB_TABVALUE_PTR_INIT(&fields[9]), NULL}, {UPB_TABKEY_STR("\011", "\000", "\000", "\000", "map_entry"), UPB_TABVALUE_PTR_INIT(&fields[45]), NULL}, {UPB_TABKEY_STR("\037", "\000", "\000", "\000", "no_standard_descriptor_accessor"), UPB_TABVALUE_PTR_INIT(&fields[61]), NULL}, {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, {UPB_TABKEY_STR("\020", "\000", "\000", "\000", "client_streaming"), UPB_TABVALUE_PTR_INIT(&fields[4]), NULL}, {UPB_TABKEY_STR("\020", "\000", "\000", "\000", "server_streaming"), UPB_TABVALUE_PTR_INIT(&fields[84]), NULL}, {UPB_TABKEY_STR("\004", "\000", "\000", "\000", "name"), UPB_TABVALUE_PTR_INIT(&fields[56]), NULL}, {UPB_TABKEY_STR("\012", "\000", "\000", "\000", "input_type"), UPB_TABVALUE_PTR_INIT(&fields[29]), NULL}, {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, {UPB_TABKEY_STR("\013", "\000", "\000", "\000", "output_type"), UPB_TABVALUE_PTR_INIT(&fields[75]), NULL}, {UPB_TABKEY_STR("\007", "\000", "\000", "\000", "options"), UPB_TABVALUE_PTR_INIT(&fields[70]), NULL}, {UPB_TABKEY_STR("\024", "\000", "\000", "\000", "uninterpreted_option"), UPB_TABVALUE_PTR_INIT(&fields[100]), NULL}, {UPB_TABKEY_STR("\012", "\000", "\000", "\000", "deprecated"), UPB_TABVALUE_PTR_INIT(&fields[11]), NULL}, {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, {UPB_TABKEY_STR("\004", "\000", "\000", "\000", "name"), UPB_TABVALUE_PTR_INIT(&fields[50]), NULL}, {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, {UPB_TABKEY_STR("\007", "\000", "\000", "\000", "options"), UPB_TABVALUE_PTR_INIT(&fields[72]), &strentries[150]}, {UPB_TABKEY_STR("\006", "\000", "\000", "\000", "method"), UPB_TABVALUE_PTR_INIT(&fields[48]), NULL}, {UPB_TABKEY_STR("\004", "\000", "\000", "\000", "name"), UPB_TABVALUE_PTR_INIT(&fields[57]), &strentries[149]}, {UPB_TABKEY_STR("\024", "\000", "\000", "\000", "uninterpreted_option"), UPB_TABVALUE_PTR_INIT(&fields[101]), NULL}, {UPB_TABKEY_STR("\012", "\000", "\000", "\000", "deprecated"), UPB_TABVALUE_PTR_INIT(&fields[14]), NULL}, {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, {UPB_TABKEY_STR("\010", "\000", "\000", "\000", "location"), UPB_TABVALUE_PTR_INIT(&fields[44]), NULL}, {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, {UPB_TABKEY_STR("\004", "\000", "\000", "\000", "span"), UPB_TABVALUE_PTR_INIT(&fields[87]), &strentries[167]}, {UPB_TABKEY_STR("\031", "\000", "\000", "\000", "leading_detached_comments"), UPB_TABVALUE_PTR_INIT(&fields[43]), &strentries[165]}, {UPB_TABKEY_STR("\021", "\000", "\000", "\000", "trailing_comments"), UPB_TABVALUE_PTR_INIT(&fields[92]), NULL}, {UPB_TABKEY_STR("\020", "\000", "\000", "\000", "leading_comments"), UPB_TABVALUE_PTR_INIT(&fields[42]), &strentries[164]}, {UPB_TABKEY_STR("\004", "\000", "\000", "\000", "path"), UPB_TABVALUE_PTR_INIT(&fields[78]), NULL}, {UPB_TABKEY_STR("\014", "\000", "\000", "\000", "double_value"), UPB_TABVALUE_PTR_INIT(&fields[16]), NULL}, {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, {UPB_TABKEY_STR("\004", "\000", "\000", "\000", "name"), UPB_TABVALUE_PTR_INIT(&fields[51]), NULL}, {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, {UPB_TABKEY_STR("\022", "\000", "\000", "\000", "negative_int_value"), UPB_TABVALUE_PTR_INIT(&fields[59]), NULL}, {UPB_TABKEY_STR("\017", "\000", "\000", "\000", "aggregate_value"), UPB_TABVALUE_PTR_INIT(&fields[0]), NULL}, {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, {UPB_TABKEY_STR("\022", "\000", "\000", "\000", "positive_int_value"), UPB_TABVALUE_PTR_INIT(&fields[79]), NULL}, {UPB_TABKEY_STR("\020", "\000", "\000", "\000", "identifier_value"), UPB_TABVALUE_PTR_INIT(&fields[28]), NULL}, {UPB_TABKEY_STR("\014", "\000", "\000", "\000", "string_value"), UPB_TABVALUE_PTR_INIT(&fields[90]), &strentries[182]}, {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, {UPB_TABKEY_STR("\014", "\000", "\000", "\000", "is_extension"), UPB_TABVALUE_PTR_INIT(&fields[30]), NULL}, {UPB_TABKEY_STR("\011", "\000", "\000", "\000", "name_part"), UPB_TABVALUE_PTR_INIT(&fields[58]), NULL}, {UPB_TABKEY_STR("\016", "\000", "\000", "\000", "LABEL_REQUIRED"), UPB_TABVALUE_INT_INIT(2), &strentries[190]}, {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, {UPB_TABKEY_STR("\016", "\000", "\000", "\000", "LABEL_REPEATED"), UPB_TABVALUE_INT_INIT(3), NULL}, {UPB_TABKEY_STR("\016", "\000", "\000", "\000", "LABEL_OPTIONAL"), UPB_TABVALUE_INT_INIT(1), NULL}, {UPB_TABKEY_STR("\014", "\000", "\000", "\000", "TYPE_FIXED64"), UPB_TABVALUE_INT_INIT(6), NULL}, {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, {UPB_TABKEY_STR("\013", "\000", "\000", "\000", "TYPE_STRING"), UPB_TABVALUE_INT_INIT(9), NULL}, {UPB_TABKEY_STR("\012", "\000", "\000", "\000", "TYPE_FLOAT"), UPB_TABVALUE_INT_INIT(2), &strentries[221]}, {UPB_TABKEY_STR("\013", "\000", "\000", "\000", "TYPE_DOUBLE"), UPB_TABVALUE_INT_INIT(1), NULL}, {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, {UPB_TABKEY_STR("\012", "\000", "\000", "\000", "TYPE_INT32"), UPB_TABVALUE_INT_INIT(5), NULL}, {UPB_TABKEY_STR("\015", "\000", "\000", "\000", "TYPE_SFIXED32"), UPB_TABVALUE_INT_INIT(15), NULL}, {UPB_TABKEY_STR("\014", "\000", "\000", "\000", "TYPE_FIXED32"), UPB_TABVALUE_INT_INIT(7), NULL}, {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, {UPB_TABKEY_STR("\014", "\000", "\000", "\000", "TYPE_MESSAGE"), UPB_TABVALUE_INT_INIT(11), &strentries[222]}, {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, {UPB_TABKEY_STR("\012", "\000", "\000", "\000", "TYPE_INT64"), UPB_TABVALUE_INT_INIT(3), &strentries[219]}, {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, {UPB_TABKEY_STR("\011", "\000", "\000", "\000", "TYPE_ENUM"), UPB_TABVALUE_INT_INIT(14), NULL}, {UPB_TABKEY_STR("\013", "\000", "\000", "\000", "TYPE_UINT32"), UPB_TABVALUE_INT_INIT(13), NULL}, {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, {UPB_TABKEY_STR("\013", "\000", "\000", "\000", "TYPE_UINT64"), UPB_TABVALUE_INT_INIT(4), &strentries[218]}, {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, {UPB_TABKEY_STR("\015", "\000", "\000", "\000", "TYPE_SFIXED64"), UPB_TABVALUE_INT_INIT(16), NULL}, {UPB_TABKEY_STR("\012", "\000", "\000", "\000", "TYPE_BYTES"), UPB_TABVALUE_INT_INIT(12), NULL}, {UPB_TABKEY_STR("\013", "\000", "\000", "\000", "TYPE_SINT64"), UPB_TABVALUE_INT_INIT(18), NULL}, {UPB_TABKEY_STR("\011", "\000", "\000", "\000", "TYPE_BOOL"), UPB_TABVALUE_INT_INIT(8), NULL}, {UPB_TABKEY_STR("\012", "\000", "\000", "\000", "TYPE_GROUP"), UPB_TABVALUE_INT_INIT(10), NULL}, {UPB_TABKEY_STR("\013", "\000", "\000", "\000", "TYPE_SINT32"), UPB_TABVALUE_INT_INIT(17), NULL}, {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, {UPB_TABKEY_STR("\004", "\000", "\000", "\000", "CORD"), UPB_TABVALUE_INT_INIT(1), NULL}, {UPB_TABKEY_STR("\006", "\000", "\000", "\000", "STRING"), UPB_TABVALUE_INT_INIT(0), &strentries[225]}, {UPB_TABKEY_STR("\014", "\000", "\000", "\000", "STRING_PIECE"), UPB_TABVALUE_INT_INIT(2), NULL}, {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, {UPB_TABKEY_STR("\011", "\000", "\000", "\000", "JS_NORMAL"), UPB_TABVALUE_INT_INIT(0), NULL}, {UPB_TABKEY_STR("\011", "\000", "\000", "\000", "JS_NUMBER"), UPB_TABVALUE_INT_INIT(2), NULL}, {UPB_TABKEY_STR("\011", "\000", "\000", "\000", "JS_STRING"), UPB_TABVALUE_INT_INIT(1), NULL}, {UPB_TABKEY_STR("\011", "\000", "\000", "\000", "CODE_SIZE"), UPB_TABVALUE_INT_INIT(2), NULL}, {UPB_TABKEY_STR("\005", "\000", "\000", "\000", "SPEED"), UPB_TABVALUE_INT_INIT(1), &strentries[235]}, {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, {UPB_TABKEY_STR("\014", "\000", "\000", "\000", "LITE_RUNTIME"), UPB_TABVALUE_INT_INIT(3), NULL}, }; static const upb_tabent intentries[18] = { {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, {UPB_TABKEY_NUM(999), UPB_TABVALUE_PTR_INIT(&fields[98]), NULL}, {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, {UPB_TABKEY_NUM(999), UPB_TABVALUE_PTR_INIT(&fields[97]), NULL}, {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, {UPB_TABKEY_NUM(999), UPB_TABVALUE_PTR_INIT(&fields[99]), NULL}, {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, {UPB_TABKEY_NUM(999), UPB_TABVALUE_PTR_INIT(&fields[95]), NULL}, {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, {UPB_TABKEY_NUM(999), UPB_TABVALUE_PTR_INIT(&fields[96]), NULL}, {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, {UPB_TABKEY_NUM(33), UPB_TABVALUE_PTR_INIT(&fields[11]), NULL}, {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, {UPB_TABKEY_NUM(999), UPB_TABVALUE_PTR_INIT(&fields[100]), NULL}, {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, {UPB_TABKEY_NUM(33), UPB_TABVALUE_PTR_INIT(&fields[14]), NULL}, {UPB_TABKEY_NONE, UPB_TABVALUE_EMPTY_INIT, NULL}, {UPB_TABKEY_NUM(999), UPB_TABVALUE_PTR_INIT(&fields[101]), NULL}, }; static const upb_tabval arrays[184] = { UPB_TABVALUE_EMPTY_INIT, UPB_TABVALUE_PTR_INIT(&fields[52]), UPB_TABVALUE_PTR_INIT(&fields[25]), UPB_TABVALUE_PTR_INIT(&fields[60]), UPB_TABVALUE_PTR_INIT(&fields[19]), UPB_TABVALUE_PTR_INIT(&fields[24]), UPB_TABVALUE_PTR_INIT(&fields[22]), UPB_TABVALUE_PTR_INIT(&fields[68]), UPB_TABVALUE_PTR_INIT(&fields[65]), UPB_TABVALUE_PTR_INIT(&fields[83]), UPB_TABVALUE_PTR_INIT(&fields[82]), UPB_TABVALUE_EMPTY_INIT, UPB_TABVALUE_PTR_INIT(&fields[89]), UPB_TABVALUE_PTR_INIT(&fields[18]), UPB_TABVALUE_EMPTY_INIT, UPB_TABVALUE_PTR_INIT(&fields[88]), UPB_TABVALUE_PTR_INIT(&fields[17]), UPB_TABVALUE_EMPTY_INIT, UPB_TABVALUE_PTR_INIT(&fields[49]), UPB_TABVALUE_PTR_INIT(&fields[102]), UPB_TABVALUE_PTR_INIT(&fields[74]), UPB_TABVALUE_EMPTY_INIT, UPB_TABVALUE_EMPTY_INIT, UPB_TABVALUE_PTR_INIT(&fields[1]), UPB_TABVALUE_PTR_INIT(&fields[13]), UPB_TABVALUE_EMPTY_INIT, UPB_TABVALUE_PTR_INIT(&fields[53]), UPB_TABVALUE_PTR_INIT(&fields[62]), UPB_TABVALUE_PTR_INIT(&fields[73]), UPB_TABVALUE_EMPTY_INIT, UPB_TABVALUE_PTR_INIT(&fields[15]), UPB_TABVALUE_EMPTY_INIT, UPB_TABVALUE_PTR_INIT(&fields[55]), UPB_TABVALUE_PTR_INIT(&fields[21]), UPB_TABVALUE_PTR_INIT(&fields[63]), UPB_TABVALUE_PTR_INIT(&fields[40]), UPB_TABVALUE_PTR_INIT(&fields[93]), UPB_TABVALUE_PTR_INIT(&fields[94]), UPB_TABVALUE_PTR_INIT(&fields[7]), UPB_TABVALUE_PTR_INIT(&fields[71]), UPB_TABVALUE_PTR_INIT(&fields[66]), UPB_TABVALUE_PTR_INIT(&fields[38]), UPB_TABVALUE_EMPTY_INIT, UPB_TABVALUE_PTR_INIT(&fields[6]), UPB_TABVALUE_PTR_INIT(&fields[77]), UPB_TABVALUE_PTR_INIT(&fields[10]), UPB_TABVALUE_EMPTY_INIT, UPB_TABVALUE_PTR_INIT(&fields[41]), UPB_TABVALUE_PTR_INIT(&fields[39]), UPB_TABVALUE_EMPTY_INIT, UPB_TABVALUE_EMPTY_INIT, UPB_TABVALUE_EMPTY_INIT, UPB_TABVALUE_PTR_INIT(&fields[103]), UPB_TABVALUE_EMPTY_INIT, UPB_TABVALUE_PTR_INIT(&fields[54]), UPB_TABVALUE_PTR_INIT(&fields[76]), UPB_TABVALUE_PTR_INIT(&fields[8]), UPB_TABVALUE_PTR_INIT(&fields[47]), UPB_TABVALUE_PTR_INIT(&fields[20]), UPB_TABVALUE_PTR_INIT(&fields[85]), UPB_TABVALUE_PTR_INIT(&fields[23]), UPB_TABVALUE_PTR_INIT(&fields[69]), UPB_TABVALUE_PTR_INIT(&fields[86]), UPB_TABVALUE_PTR_INIT(&fields[80]), UPB_TABVALUE_PTR_INIT(&fields[104]), UPB_TABVALUE_PTR_INIT(&fields[91]), UPB_TABVALUE_EMPTY_INIT, UPB_TABVALUE_PTR_INIT(&fields[26]), UPB_TABVALUE_EMPTY_INIT, UPB_TABVALUE_PTR_INIT(&fields[35]), UPB_TABVALUE_EMPTY_INIT, UPB_TABVALUE_EMPTY_INIT, UPB_TABVALUE_EMPTY_INIT, UPB_TABVALUE_EMPTY_INIT, UPB_TABVALUE_EMPTY_INIT, UPB_TABVALUE_EMPTY_INIT, UPB_TABVALUE_PTR_INIT(&fields[34]), UPB_TABVALUE_PTR_INIT(&fields[67]), UPB_TABVALUE_PTR_INIT(&fields[33]), UPB_TABVALUE_PTR_INIT(&fields[27]), UPB_TABVALUE_EMPTY_INIT, UPB_TABVALUE_EMPTY_INIT, UPB_TABVALUE_EMPTY_INIT, UPB_TABVALUE_EMPTY_INIT, UPB_TABVALUE_PTR_INIT(&fields[3]), UPB_TABVALUE_PTR_INIT(&fields[32]), UPB_TABVALUE_PTR_INIT(&fields[81]), UPB_TABVALUE_EMPTY_INIT, UPB_TABVALUE_PTR_INIT(&fields[31]), UPB_TABVALUE_EMPTY_INIT, UPB_TABVALUE_EMPTY_INIT, UPB_TABVALUE_PTR_INIT(&fields[12]), UPB_TABVALUE_EMPTY_INIT, UPB_TABVALUE_EMPTY_INIT, UPB_TABVALUE_EMPTY_INIT, UPB_TABVALUE_PTR_INIT(&fields[36]), UPB_TABVALUE_EMPTY_INIT, UPB_TABVALUE_EMPTY_INIT, UPB_TABVALUE_EMPTY_INIT, UPB_TABVALUE_PTR_INIT(&fields[2]), UPB_TABVALUE_EMPTY_INIT, UPB_TABVALUE_EMPTY_INIT, UPB_TABVALUE_EMPTY_INIT, UPB_TABVALUE_EMPTY_INIT, UPB_TABVALUE_PTR_INIT(&fields[64]), UPB_TABVALUE_PTR_INIT(&fields[5]), UPB_TABVALUE_PTR_INIT(&fields[37]), UPB_TABVALUE_EMPTY_INIT, UPB_TABVALUE_PTR_INIT(&fields[46]), UPB_TABVALUE_PTR_INIT(&fields[61]), UPB_TABVALUE_PTR_INIT(&fields[9]), UPB_TABVALUE_EMPTY_INIT, UPB_TABVALUE_EMPTY_INIT, UPB_TABVALUE_EMPTY_INIT, UPB_TABVALUE_PTR_INIT(&fields[45]), UPB_TABVALUE_EMPTY_INIT, UPB_TABVALUE_PTR_INIT(&fields[56]), UPB_TABVALUE_PTR_INIT(&fields[29]), UPB_TABVALUE_PTR_INIT(&fields[75]), UPB_TABVALUE_PTR_INIT(&fields[70]), UPB_TABVALUE_PTR_INIT(&fields[4]), UPB_TABVALUE_PTR_INIT(&fields[84]), UPB_TABVALUE_EMPTY_INIT, UPB_TABVALUE_EMPTY_INIT, UPB_TABVALUE_PTR_INIT(&fields[50]), UPB_TABVALUE_EMPTY_INIT, UPB_TABVALUE_PTR_INIT(&fields[57]), UPB_TABVALUE_PTR_INIT(&fields[48]), UPB_TABVALUE_PTR_INIT(&fields[72]), UPB_TABVALUE_EMPTY_INIT, UPB_TABVALUE_EMPTY_INIT, UPB_TABVALUE_PTR_INIT(&fields[44]), UPB_TABVALUE_EMPTY_INIT, UPB_TABVALUE_PTR_INIT(&fields[78]), UPB_TABVALUE_PTR_INIT(&fields[87]), UPB_TABVALUE_PTR_INIT(&fields[42]), UPB_TABVALUE_PTR_INIT(&fields[92]), UPB_TABVALUE_EMPTY_INIT, UPB_TABVALUE_PTR_INIT(&fields[43]), UPB_TABVALUE_EMPTY_INIT, UPB_TABVALUE_EMPTY_INIT, UPB_TABVALUE_PTR_INIT(&fields[51]), UPB_TABVALUE_PTR_INIT(&fields[28]), UPB_TABVALUE_PTR_INIT(&fields[79]), UPB_TABVALUE_PTR_INIT(&fields[59]), UPB_TABVALUE_PTR_INIT(&fields[16]), UPB_TABVALUE_PTR_INIT(&fields[90]), UPB_TABVALUE_PTR_INIT(&fields[0]), UPB_TABVALUE_EMPTY_INIT, UPB_TABVALUE_PTR_INIT(&fields[58]), UPB_TABVALUE_PTR_INIT(&fields[30]), UPB_TABVALUE_EMPTY_INIT, UPB_TABVALUE_PTR_INIT("LABEL_OPTIONAL"), UPB_TABVALUE_PTR_INIT("LABEL_REQUIRED"), UPB_TABVALUE_PTR_INIT("LABEL_REPEATED"), UPB_TABVALUE_EMPTY_INIT, UPB_TABVALUE_PTR_INIT("TYPE_DOUBLE"), UPB_TABVALUE_PTR_INIT("TYPE_FLOAT"), UPB_TABVALUE_PTR_INIT("TYPE_INT64"), UPB_TABVALUE_PTR_INIT("TYPE_UINT64"), UPB_TABVALUE_PTR_INIT("TYPE_INT32"), UPB_TABVALUE_PTR_INIT("TYPE_FIXED64"), UPB_TABVALUE_PTR_INIT("TYPE_FIXED32"), UPB_TABVALUE_PTR_INIT("TYPE_BOOL"), UPB_TABVALUE_PTR_INIT("TYPE_STRING"), UPB_TABVALUE_PTR_INIT("TYPE_GROUP"), UPB_TABVALUE_PTR_INIT("TYPE_MESSAGE"), UPB_TABVALUE_PTR_INIT("TYPE_BYTES"), UPB_TABVALUE_PTR_INIT("TYPE_UINT32"), UPB_TABVALUE_PTR_INIT("TYPE_ENUM"), UPB_TABVALUE_PTR_INIT("TYPE_SFIXED32"), UPB_TABVALUE_PTR_INIT("TYPE_SFIXED64"), UPB_TABVALUE_PTR_INIT("TYPE_SINT32"), UPB_TABVALUE_PTR_INIT("TYPE_SINT64"), UPB_TABVALUE_PTR_INIT("STRING"), UPB_TABVALUE_PTR_INIT("CORD"), UPB_TABVALUE_PTR_INIT("STRING_PIECE"), UPB_TABVALUE_PTR_INIT("JS_NORMAL"), UPB_TABVALUE_PTR_INIT("JS_STRING"), UPB_TABVALUE_PTR_INIT("JS_NUMBER"), UPB_TABVALUE_EMPTY_INIT, UPB_TABVALUE_PTR_INIT("SPEED"), UPB_TABVALUE_PTR_INIT("CODE_SIZE"), UPB_TABVALUE_PTR_INIT("LITE_RUNTIME"), }; #ifdef UPB_DEBUG_REFS static upb_inttable reftables[264] = { UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), UPB_EMPTY_INTTABLE_INIT(UPB_CTYPE_PTR), }; #endif static const upb_msgdef *refm(const upb_msgdef *m, const void *owner) { upb_msgdef_ref(m, owner); return m; } static const upb_enumdef *refe(const upb_enumdef *e, const void *owner) { upb_enumdef_ref(e, owner); return e; } /* Public API. */ const upb_msgdef *upbdefs_google_protobuf_DescriptorProto_get(const void *owner) { return refm(&msgs[0], owner); } const upb_msgdef *upbdefs_google_protobuf_DescriptorProto_ExtensionRange_get(const void *owner) { return refm(&msgs[1], owner); } const upb_msgdef *upbdefs_google_protobuf_DescriptorProto_ReservedRange_get(const void *owner) { return refm(&msgs[2], owner); } const upb_msgdef *upbdefs_google_protobuf_EnumDescriptorProto_get(const void *owner) { return refm(&msgs[3], owner); } const upb_msgdef *upbdefs_google_protobuf_EnumOptions_get(const void *owner) { return refm(&msgs[4], owner); } const upb_msgdef *upbdefs_google_protobuf_EnumValueDescriptorProto_get(const void *owner) { return refm(&msgs[5], owner); } const upb_msgdef *upbdefs_google_protobuf_EnumValueOptions_get(const void *owner) { return refm(&msgs[6], owner); } const upb_msgdef *upbdefs_google_protobuf_FieldDescriptorProto_get(const void *owner) { return refm(&msgs[7], owner); } const upb_msgdef *upbdefs_google_protobuf_FieldOptions_get(const void *owner) { return refm(&msgs[8], owner); } const upb_msgdef *upbdefs_google_protobuf_FileDescriptorProto_get(const void *owner) { return refm(&msgs[9], owner); } const upb_msgdef *upbdefs_google_protobuf_FileDescriptorSet_get(const void *owner) { return refm(&msgs[10], owner); } const upb_msgdef *upbdefs_google_protobuf_FileOptions_get(const void *owner) { return refm(&msgs[11], owner); } const upb_msgdef *upbdefs_google_protobuf_MessageOptions_get(const void *owner) { return refm(&msgs[12], owner); } const upb_msgdef *upbdefs_google_protobuf_MethodDescriptorProto_get(const void *owner) { return refm(&msgs[13], owner); } const upb_msgdef *upbdefs_google_protobuf_MethodOptions_get(const void *owner) { return refm(&msgs[14], owner); } const upb_msgdef *upbdefs_google_protobuf_OneofDescriptorProto_get(const void *owner) { return refm(&msgs[15], owner); } const upb_msgdef *upbdefs_google_protobuf_ServiceDescriptorProto_get(const void *owner) { return refm(&msgs[16], owner); } const upb_msgdef *upbdefs_google_protobuf_ServiceOptions_get(const void *owner) { return refm(&msgs[17], owner); } const upb_msgdef *upbdefs_google_protobuf_SourceCodeInfo_get(const void *owner) { return refm(&msgs[18], owner); } const upb_msgdef *upbdefs_google_protobuf_SourceCodeInfo_Location_get(const void *owner) { return refm(&msgs[19], owner); } const upb_msgdef *upbdefs_google_protobuf_UninterpretedOption_get(const void *owner) { return refm(&msgs[20], owner); } const upb_msgdef *upbdefs_google_protobuf_UninterpretedOption_NamePart_get(const void *owner) { return refm(&msgs[21], owner); } const upb_enumdef *upbdefs_google_protobuf_FieldDescriptorProto_Label_get(const void *owner) { return refe(&enums[0], owner); } const upb_enumdef *upbdefs_google_protobuf_FieldDescriptorProto_Type_get(const void *owner) { return refe(&enums[1], owner); } const upb_enumdef *upbdefs_google_protobuf_FieldOptions_CType_get(const void *owner) { return refe(&enums[2], owner); } const upb_enumdef *upbdefs_google_protobuf_FieldOptions_JSType_get(const void *owner) { return refe(&enums[3], owner); } const upb_enumdef *upbdefs_google_protobuf_FileOptions_OptimizeMode_get(const void *owner) { return refe(&enums[4], owner); } /* ** XXX: The routines in this file that consume a string do not currently ** support having the string span buffers. In the future, as upb_sink and ** its buffering/sharing functionality evolve there should be an easy and ** idiomatic way of correctly handling this case. For now, we accept this ** limitation since we currently only parse descriptors from single strings. */ #include <errno.h> #include <stdlib.h> #include <string.h> /* Compares a NULL-terminated string with a non-NULL-terminated string. */ static bool upb_streq(const char *str, const char *buf, size_t n) { return strlen(str) == n && memcmp(str, buf, n) == 0; } /* We keep a stack of all the messages scopes we are currently in, as well as * the top-level file scope. This is necessary to correctly qualify the * definitions that are contained inside. "name" tracks the name of the * message or package (a bare name -- not qualified by any enclosing scopes). */ typedef struct { char *name; /* Index of the first def that is under this scope. For msgdefs, the * msgdef itself is at start-1. */ int start; } upb_descreader_frame; /* The maximum number of nested declarations that are allowed, ie. * message Foo { * message Bar { * message Baz { * } * } * } * * This is a resource limit that affects how big our runtime stack can grow. * TODO: make this a runtime-settable property of the Reader instance. */ #define UPB_MAX_MESSAGE_NESTING 64 struct upb_descreader { upb_sink sink; upb_inttable files; upb_filedef *file; /* The last file in files. */ upb_descreader_frame stack[UPB_MAX_MESSAGE_NESTING]; int stack_len; uint32_t number; char *name; bool saw_number; bool saw_name; char *default_string; upb_fielddef *f; }; static char *upb_strndup(const char *buf, size_t n) { char *ret = upb_gmalloc(n + 1); if (!ret) return NULL; memcpy(ret, buf, n); ret[n] = '\0'; return ret; } /* Returns a newly allocated string that joins input strings together, for * example: * join("Foo.Bar", "Baz") -> "Foo.Bar.Baz" * join("", "Baz") -> "Baz" * Caller owns a ref on the returned string. */ static char *upb_join(const char *base, const char *name) { if (!base || strlen(base) == 0) { return upb_gstrdup(name); } else { char *ret = upb_gmalloc(strlen(base) + strlen(name) + 2); if (!ret) { return NULL; } ret[0] = '\0'; strcat(ret, base); strcat(ret, "."); strcat(ret, name); return ret; } } /* Qualify the defname for all defs starting with offset "start" with "str". */ static bool upb_descreader_qualify(upb_filedef *f, char *str, int32_t start) { size_t i; for (i = start; i < upb_filedef_defcount(f); i++) { upb_def *def = upb_filedef_mutabledef(f, i); char *name = upb_join(str, upb_def_fullname(def)); if (!name) { /* Need better logic here; at this point we've qualified some names but * not others. */ return false; } upb_def_setfullname(def, name, NULL); upb_gfree(name); } return true; } /* upb_descreader ************************************************************/ static upb_msgdef *upb_descreader_top(upb_descreader *r) { int index; assert(r->stack_len > 1); index = r->stack[r->stack_len-1].start - 1; assert(index >= 0); return upb_downcast_msgdef_mutable(upb_filedef_mutabledef(r->file, index)); } static upb_def *upb_descreader_last(upb_descreader *r) { return upb_filedef_mutabledef(r->file, upb_filedef_defcount(r->file) - 1); } /* Start/end handlers for FileDescriptorProto and DescriptorProto (the two * entities that have names and can contain sub-definitions. */ void upb_descreader_startcontainer(upb_descreader *r) { upb_descreader_frame *f = &r->stack[r->stack_len++]; f->start = upb_filedef_defcount(r->file); f->name = NULL; } bool upb_descreader_endcontainer(upb_descreader *r) { upb_descreader_frame *f = &r->stack[--r->stack_len]; if (!upb_descreader_qualify(r->file, f->name, f->start)) { return false; } upb_gfree(f->name); f->name = NULL; return true; } void upb_descreader_setscopename(upb_descreader *r, char *str) { upb_descreader_frame *f = &r->stack[r->stack_len-1]; upb_gfree(f->name); f->name = str; } /** Handlers for google.protobuf.FileDescriptorSet. ***************************/ static void *fileset_startfile(void *closure, const void *hd) { upb_descreader *r = closure; UPB_UNUSED(hd); r->file = upb_filedef_new(&r->files); upb_inttable_push(&r->files, upb_value_ptr(r->file)); return r; } /** Handlers for google.protobuf.FileDescriptorProto. *************************/ static bool file_start(void *closure, const void *hd) { upb_descreader *r = closure; UPB_UNUSED(hd); upb_descreader_startcontainer(r); return true; } static bool file_end(void *closure, const void *hd, upb_status *status) { upb_descreader *r = closure; UPB_UNUSED(hd); UPB_UNUSED(status); return upb_descreader_endcontainer(r); } static size_t file_onname(void *closure, const void *hd, const char *buf, size_t n, const upb_bufhandle *handle) { upb_descreader *r = closure; char *name; bool ok; UPB_UNUSED(hd); UPB_UNUSED(handle); name = upb_strndup(buf, n); /* XXX: see comment at the top of the file. */ ok = upb_filedef_setname(r->file, name, NULL); upb_gfree(name); UPB_ASSERT_VAR(ok, ok); return n; } static size_t file_onpackage(void *closure, const void *hd, const char *buf, size_t n, const upb_bufhandle *handle) { upb_descreader *r = closure; char *package; bool ok; UPB_UNUSED(hd); UPB_UNUSED(handle); package = upb_strndup(buf, n); /* XXX: see comment at the top of the file. */ upb_descreader_setscopename(r, package); ok = upb_filedef_setpackage(r->file, package, NULL); UPB_ASSERT_VAR(ok, ok); return n; } static size_t file_onsyntax(void *closure, const void *hd, const char *buf, size_t n, const upb_bufhandle *handle) { upb_descreader *r = closure; bool ok; UPB_UNUSED(hd); UPB_UNUSED(handle); /* XXX: see comment at the top of the file. */ if (upb_streq("proto2", buf, n)) { ok = upb_filedef_setsyntax(r->file, UPB_SYNTAX_PROTO2, NULL); } else if (upb_streq("proto3", buf, n)) { ok = upb_filedef_setsyntax(r->file, UPB_SYNTAX_PROTO3, NULL); } else { ok = false; } UPB_ASSERT_VAR(ok, ok); return n; } static void *file_startmsg(void *closure, const void *hd) { upb_descreader *r = closure; upb_msgdef *m = upb_msgdef_new(&m); bool ok = upb_filedef_addmsg(r->file, m, &m, NULL); UPB_UNUSED(hd); UPB_ASSERT_VAR(ok, ok); return r; } static void *file_startenum(void *closure, const void *hd) { upb_descreader *r = closure; upb_enumdef *e = upb_enumdef_new(&e); bool ok = upb_filedef_addenum(r->file, e, &e, NULL); UPB_UNUSED(hd); UPB_ASSERT_VAR(ok, ok); return r; } static void *file_startext(void *closure, const void *hd) { upb_descreader *r = closure; bool ok; r->f = upb_fielddef_new(r); ok = upb_filedef_addext(r->file, r->f, r, NULL); UPB_UNUSED(hd); UPB_ASSERT_VAR(ok, ok); return r; } /** Handlers for google.protobuf.EnumValueDescriptorProto. *********************/ static bool enumval_startmsg(void *closure, const void *hd) { upb_descreader *r = closure; UPB_UNUSED(hd); r->saw_number = false; r->saw_name = false; return true; } static size_t enumval_onname(void *closure, const void *hd, const char *buf, size_t n, const upb_bufhandle *handle) { upb_descreader *r = closure; UPB_UNUSED(hd); UPB_UNUSED(handle); /* XXX: see comment at the top of the file. */ upb_gfree(r->name); r->name = upb_strndup(buf, n); r->saw_name = true; return n; } static bool enumval_onnumber(void *closure, const void *hd, int32_t val) { upb_descreader *r = closure; UPB_UNUSED(hd); r->number = val; r->saw_number = true; return true; } static bool enumval_endmsg(void *closure, const void *hd, upb_status *status) { upb_descreader *r = closure; upb_enumdef *e; UPB_UNUSED(hd); if(!r->saw_number || !r->saw_name) { upb_status_seterrmsg(status, "Enum value missing name or number."); return false; } e = upb_downcast_enumdef_mutable(upb_descreader_last(r)); upb_enumdef_addval(e, r->name, r->number, status); upb_gfree(r->name); r->name = NULL; return true; } /** Handlers for google.protobuf.EnumDescriptorProto. *************************/ static bool enum_endmsg(void *closure, const void *hd, upb_status *status) { upb_descreader *r = closure; upb_enumdef *e; UPB_UNUSED(hd); e = upb_downcast_enumdef_mutable(upb_descreader_last(r)); if (upb_def_fullname(upb_descreader_last(r)) == NULL) { upb_status_seterrmsg(status, "Enum had no name."); return false; } if (upb_enumdef_numvals(e) == 0) { upb_status_seterrmsg(status, "Enum had no values."); return false; } return true; } static size_t enum_onname(void *closure, const void *hd, const char *buf, size_t n, const upb_bufhandle *handle) { upb_descreader *r = closure; char *fullname = upb_strndup(buf, n); UPB_UNUSED(hd); UPB_UNUSED(handle); /* XXX: see comment at the top of the file. */ upb_def_setfullname(upb_descreader_last(r), fullname, NULL); upb_gfree(fullname); return n; } /** Handlers for google.protobuf.FieldDescriptorProto *************************/ static bool field_startmsg(void *closure, const void *hd) { upb_descreader *r = closure; UPB_UNUSED(hd); assert(r->f); upb_gfree(r->default_string); r->default_string = NULL; /* fielddefs default to packed, but descriptors default to non-packed. */ upb_fielddef_setpacked(r->f, false); return true; } /* Converts the default value in string "str" into "d". Passes a ref on str. * Returns true on success. */ static bool parse_default(char *str, upb_fielddef *f) { bool success = true; char *end; switch (upb_fielddef_type(f)) { case UPB_TYPE_INT32: { long val = strtol(str, &end, 0); if (val > INT32_MAX || val < INT32_MIN || errno == ERANGE || *end) success = false; else upb_fielddef_setdefaultint32(f, val); break; } case UPB_TYPE_INT64: { /* XXX: Need to write our own strtoll, since it's not available in c89. */ long long val = strtol(str, &end, 0); if (val > INT64_MAX || val < INT64_MIN || errno == ERANGE || *end) success = false; else upb_fielddef_setdefaultint64(f, val); break; } case UPB_TYPE_UINT32: { unsigned long val = strtoul(str, &end, 0); if (val > UINT32_MAX || errno == ERANGE || *end) success = false; else upb_fielddef_setdefaultuint32(f, val); break; } case UPB_TYPE_UINT64: { /* XXX: Need to write our own strtoull, since it's not available in c89. */ unsigned long long val = strtoul(str, &end, 0); if (val > UINT64_MAX || errno == ERANGE || *end) success = false; else upb_fielddef_setdefaultuint64(f, val); break; } case UPB_TYPE_DOUBLE: { double val = strtod(str, &end); if (errno == ERANGE || *end) success = false; else upb_fielddef_setdefaultdouble(f, val); break; } case UPB_TYPE_FLOAT: { /* XXX: Need to write our own strtof, since it's not available in c89. */ float val = strtod(str, &end); if (errno == ERANGE || *end) success = false; else upb_fielddef_setdefaultfloat(f, val); break; } case UPB_TYPE_BOOL: { if (strcmp(str, "false") == 0) upb_fielddef_setdefaultbool(f, false); else if (strcmp(str, "true") == 0) upb_fielddef_setdefaultbool(f, true); else success = false; break; } default: abort(); } return success; } static bool field_endmsg(void *closure, const void *hd, upb_status *status) { upb_descreader *r = closure; upb_fielddef *f = r->f; UPB_UNUSED(hd); /* TODO: verify that all required fields were present. */ assert(upb_fielddef_number(f) != 0); assert(upb_fielddef_name(f) != NULL); assert((upb_fielddef_subdefname(f) != NULL) == upb_fielddef_hassubdef(f)); if (r->default_string) { if (upb_fielddef_issubmsg(f)) { upb_status_seterrmsg(status, "Submessages cannot have defaults."); return false; } if (upb_fielddef_isstring(f) || upb_fielddef_type(f) == UPB_TYPE_ENUM) { upb_fielddef_setdefaultcstr(f, r->default_string, NULL); } else { if (r->default_string && !parse_default(r->default_string, f)) { /* We don't worry too much about giving a great error message since the * compiler should have ensured this was correct. */ upb_status_seterrmsg(status, "Error converting default value."); return false; } } } return true; } static bool field_onlazy(void *closure, const void *hd, bool val) { upb_descreader *r = closure; UPB_UNUSED(hd); upb_fielddef_setlazy(r->f, val); return true; } static bool field_onpacked(void *closure, const void *hd, bool val) { upb_descreader *r = closure; UPB_UNUSED(hd); upb_fielddef_setpacked(r->f, val); return true; } static bool field_ontype(void *closure, const void *hd, int32_t val) { upb_descreader *r = closure; UPB_UNUSED(hd); upb_fielddef_setdescriptortype(r->f, val); return true; } static bool field_onlabel(void *closure, const void *hd, int32_t val) { upb_descreader *r = closure; UPB_UNUSED(hd); upb_fielddef_setlabel(r->f, val); return true; } static bool field_onnumber(void *closure, const void *hd, int32_t val) { upb_descreader *r = closure; bool ok; UPB_UNUSED(hd); ok = upb_fielddef_setnumber(r->f, val, NULL); UPB_ASSERT_VAR(ok, ok); return true; } static size_t field_onname(void *closure, const void *hd, const char *buf, size_t n, const upb_bufhandle *handle) { upb_descreader *r = closure; char *name = upb_strndup(buf, n); UPB_UNUSED(hd); UPB_UNUSED(handle); /* XXX: see comment at the top of the file. */ upb_fielddef_setname(r->f, name, NULL); upb_gfree(name); return n; } static size_t field_ontypename(void *closure, const void *hd, const char *buf, size_t n, const upb_bufhandle *handle) { upb_descreader *r = closure; char *name = upb_strndup(buf, n); UPB_UNUSED(hd); UPB_UNUSED(handle); /* XXX: see comment at the top of the file. */ upb_fielddef_setsubdefname(r->f, name, NULL); upb_gfree(name); return n; } static size_t field_onextendee(void *closure, const void *hd, const char *buf, size_t n, const upb_bufhandle *handle) { upb_descreader *r = closure; char *name = upb_strndup(buf, n); UPB_UNUSED(hd); UPB_UNUSED(handle); /* XXX: see comment at the top of the file. */ upb_fielddef_setcontainingtypename(r->f, name, NULL); upb_gfree(name); return n; } static size_t field_ondefaultval(void *closure, const void *hd, const char *buf, size_t n, const upb_bufhandle *handle) { upb_descreader *r = closure; UPB_UNUSED(hd); UPB_UNUSED(handle); /* Have to convert from string to the correct type, but we might not know the * type yet, so we save it as a string until the end of the field. * XXX: see comment at the top of the file. */ upb_gfree(r->default_string); r->default_string = upb_strndup(buf, n); return n; } /** Handlers for google.protobuf.DescriptorProto ******************************/ static bool msg_start(void *closure, const void *hd) { upb_descreader *r = closure; UPB_UNUSED(hd); upb_descreader_startcontainer(r); return true; } static bool msg_end(void *closure, const void *hd, upb_status *status) { upb_descreader *r = closure; upb_msgdef *m = upb_descreader_top(r); UPB_UNUSED(hd); if(!upb_def_fullname(upb_msgdef_upcast_mutable(m))) { upb_status_seterrmsg(status, "Encountered message with no name."); return false; } return upb_descreader_endcontainer(r); } static size_t msg_name(void *closure, const void *hd, const char *buf, size_t n, const upb_bufhandle *handle) { upb_descreader *r = closure; upb_msgdef *m = upb_descreader_top(r); /* XXX: see comment at the top of the file. */ char *name = upb_strndup(buf, n); UPB_UNUSED(hd); UPB_UNUSED(handle); upb_def_setfullname(upb_msgdef_upcast_mutable(m), name, NULL); upb_descreader_setscopename(r, name); /* Passes ownership of name. */ return n; } static void *msg_startmsg(void *closure, const void *hd) { upb_descreader *r = closure; upb_msgdef *m = upb_msgdef_new(&m); bool ok = upb_filedef_addmsg(r->file, m, &m, NULL); UPB_UNUSED(hd); UPB_ASSERT_VAR(ok, ok); return r; } static void *msg_startext(void *closure, const void *hd) { upb_descreader *r = closure; upb_fielddef *f = upb_fielddef_new(&f); bool ok = upb_filedef_addext(r->file, f, &f, NULL); UPB_UNUSED(hd); UPB_ASSERT_VAR(ok, ok); return r; } static void *msg_startfield(void *closure, const void *hd) { upb_descreader *r = closure; r->f = upb_fielddef_new(&r->f); /* We can't add the new field to the message until its name/number are * filled in. */ UPB_UNUSED(hd); return r; } static bool msg_endfield(void *closure, const void *hd) { upb_descreader *r = closure; upb_msgdef *m = upb_descreader_top(r); UPB_UNUSED(hd); upb_msgdef_addfield(m, r->f, &r->f, NULL); r->f = NULL; return true; } static bool msg_onmapentry(void *closure, const void *hd, bool mapentry) { upb_descreader *r = closure; upb_msgdef *m = upb_descreader_top(r); UPB_UNUSED(hd); upb_msgdef_setmapentry(m, mapentry); r->f = NULL; return true; } /** Code to register handlers *************************************************/ #define F(msg, field) upbdefs_google_protobuf_ ## msg ## _f_ ## field(m) static void reghandlers(const void *closure, upb_handlers *h) { const upb_msgdef *m = upb_handlers_msgdef(h); UPB_UNUSED(closure); if (upbdefs_google_protobuf_FileDescriptorSet_is(m)) { upb_handlers_setstartsubmsg(h, F(FileDescriptorSet, file), &fileset_startfile, NULL); } else if (upbdefs_google_protobuf_DescriptorProto_is(m)) { upb_handlers_setstartmsg(h, &msg_start, NULL); upb_handlers_setendmsg(h, &msg_end, NULL); upb_handlers_setstring(h, F(DescriptorProto, name), &msg_name, NULL); upb_handlers_setstartsubmsg(h, F(DescriptorProto, extension), &msg_startext, NULL); upb_handlers_setstartsubmsg(h, F(DescriptorProto, nested_type), &msg_startmsg, NULL); upb_handlers_setstartsubmsg(h, F(DescriptorProto, field), &msg_startfield, NULL); upb_handlers_setendsubmsg(h, F(DescriptorProto, field), &msg_endfield, NULL); upb_handlers_setstartsubmsg(h, F(DescriptorProto, enum_type), &file_startenum, NULL); } else if (upbdefs_google_protobuf_FileDescriptorProto_is(m)) { upb_handlers_setstartmsg(h, &file_start, NULL); upb_handlers_setendmsg(h, &file_end, NULL); upb_handlers_setstring(h, F(FileDescriptorProto, name), &file_onname, NULL); upb_handlers_setstring(h, F(FileDescriptorProto, package), &file_onpackage, NULL); upb_handlers_setstring(h, F(FileDescriptorProto, syntax), &file_onsyntax, NULL); upb_handlers_setstartsubmsg(h, F(FileDescriptorProto, message_type), &file_startmsg, NULL); upb_handlers_setstartsubmsg(h, F(FileDescriptorProto, enum_type), &file_startenum, NULL); upb_handlers_setstartsubmsg(h, F(FileDescriptorProto, extension), &file_startext, NULL); } else if (upbdefs_google_protobuf_EnumValueDescriptorProto_is(m)) { upb_handlers_setstartmsg(h, &enumval_startmsg, NULL); upb_handlers_setendmsg(h, &enumval_endmsg, NULL); upb_handlers_setstring(h, F(EnumValueDescriptorProto, name), &enumval_onname, NULL); upb_handlers_setint32(h, F(EnumValueDescriptorProto, number), &enumval_onnumber, NULL); } else if (upbdefs_google_protobuf_EnumDescriptorProto_is(m)) { upb_handlers_setendmsg(h, &enum_endmsg, NULL); upb_handlers_setstring(h, F(EnumDescriptorProto, name), &enum_onname, NULL); } else if (upbdefs_google_protobuf_FieldDescriptorProto_is(m)) { upb_handlers_setstartmsg(h, &field_startmsg, NULL); upb_handlers_setendmsg(h, &field_endmsg, NULL); upb_handlers_setint32(h, F(FieldDescriptorProto, type), &field_ontype, NULL); upb_handlers_setint32(h, F(FieldDescriptorProto, label), &field_onlabel, NULL); upb_handlers_setint32(h, F(FieldDescriptorProto, number), &field_onnumber, NULL); upb_handlers_setstring(h, F(FieldDescriptorProto, name), &field_onname, NULL); upb_handlers_setstring(h, F(FieldDescriptorProto, type_name), &field_ontypename, NULL); upb_handlers_setstring(h, F(FieldDescriptorProto, extendee), &field_onextendee, NULL); upb_handlers_setstring(h, F(FieldDescriptorProto, default_value), &field_ondefaultval, NULL); } else if (upbdefs_google_protobuf_FieldOptions_is(m)) { upb_handlers_setbool(h, F(FieldOptions, lazy), &field_onlazy, NULL); upb_handlers_setbool(h, F(FieldOptions, packed), &field_onpacked, NULL); } else if (upbdefs_google_protobuf_MessageOptions_is(m)) { upb_handlers_setbool(h, F(MessageOptions, map_entry), &msg_onmapentry, NULL); } assert(upb_ok(upb_handlers_status(h))); } #undef F void descreader_cleanup(void *_r) { upb_descreader *r = _r; size_t i; for (i = 0; i < upb_descreader_filecount(r); i++) { upb_filedef_unref(upb_descreader_file(r, i), &r->files); } upb_gfree(r->name); upb_inttable_uninit(&r->files); upb_gfree(r->default_string); while (r->stack_len > 0) { upb_descreader_frame *f = &r->stack[--r->stack_len]; upb_gfree(f->name); } } /* Public API ****************************************************************/ upb_descreader *upb_descreader_create(upb_env *e, const upb_handlers *h) { upb_descreader *r = upb_env_malloc(e, sizeof(upb_descreader)); if (!r || !upb_env_addcleanup(e, descreader_cleanup, r)) { return NULL; } upb_inttable_init(&r->files, UPB_CTYPE_PTR); upb_sink_reset(upb_descreader_input(r), h, r); r->stack_len = 0; r->name = NULL; r->default_string = NULL; return r; } size_t upb_descreader_filecount(const upb_descreader *r) { return upb_inttable_count(&r->files); } upb_filedef *upb_descreader_file(const upb_descreader *r, size_t i) { upb_value v; if (upb_inttable_lookup(&r->files, i, &v)) { return upb_value_getptr(v); } else { return NULL; } } upb_sink *upb_descreader_input(upb_descreader *r) { return &r->sink; } const upb_handlers *upb_descreader_newhandlers(const void *owner) { const upb_msgdef *m = upbdefs_google_protobuf_FileDescriptorSet_get(&m); const upb_handlers *h = upb_handlers_newfrozen(m, owner, reghandlers, NULL); upb_msgdef_unref(m, &m); return h; } /* ** protobuf decoder bytecode compiler ** ** Code to compile a upb::Handlers into bytecode for decoding a protobuf ** according to that specific schema and destination handlers. ** ** Compiling to bytecode is always the first step. If we are using the ** interpreted decoder we leave it as bytecode and interpret that. If we are ** using a JIT decoder we use a code generator to turn the bytecode into native ** code, LLVM IR, etc. ** ** Bytecode definition is in decoder.int.h. */ #include <stdarg.h> #ifdef UPB_DUMP_BYTECODE #include <stdio.h> #endif #define MAXLABEL 5 #define EMPTYLABEL -1 /* mgroup *********************************************************************/ static void freegroup(upb_refcounted *r) { mgroup *g = (mgroup*)r; upb_inttable_uninit(&g->methods); #ifdef UPB_USE_JIT_X64 upb_pbdecoder_freejit(g); #endif upb_gfree(g->bytecode); upb_gfree(g); } static void visitgroup(const upb_refcounted *r, upb_refcounted_visit *visit, void *closure) { const mgroup *g = (const mgroup*)r; upb_inttable_iter i; upb_inttable_begin(&i, &g->methods); for(; !upb_inttable_done(&i); upb_inttable_next(&i)) { upb_pbdecodermethod *method = upb_value_getptr(upb_inttable_iter_value(&i)); visit(r, upb_pbdecodermethod_upcast(method), closure); } } mgroup *newgroup(const void *owner) { mgroup *g = upb_gmalloc(sizeof(*g)); static const struct upb_refcounted_vtbl vtbl = {visitgroup, freegroup}; upb_refcounted_init(mgroup_upcast_mutable(g), &vtbl, owner); upb_inttable_init(&g->methods, UPB_CTYPE_PTR); g->bytecode = NULL; g->bytecode_end = NULL; return g; } /* upb_pbdecodermethod ********************************************************/ static void freemethod(upb_refcounted *r) { upb_pbdecodermethod *method = (upb_pbdecodermethod*)r; if (method->dest_handlers_) { upb_handlers_unref(method->dest_handlers_, method); } upb_inttable_uninit(&method->dispatch); upb_gfree(method); } static void visitmethod(const upb_refcounted *r, upb_refcounted_visit *visit, void *closure) { const upb_pbdecodermethod *m = (const upb_pbdecodermethod*)r; visit(r, m->group, closure); } static upb_pbdecodermethod *newmethod(const upb_handlers *dest_handlers, mgroup *group) { static const struct upb_refcounted_vtbl vtbl = {visitmethod, freemethod}; upb_pbdecodermethod *ret = upb_gmalloc(sizeof(*ret)); upb_refcounted_init(upb_pbdecodermethod_upcast_mutable(ret), &vtbl, &ret); upb_byteshandler_init(&ret->input_handler_); /* The method references the group and vice-versa, in a circular reference. */ upb_ref2(ret, group); upb_ref2(group, ret); upb_inttable_insertptr(&group->methods, dest_handlers, upb_value_ptr(ret)); upb_pbdecodermethod_unref(ret, &ret); ret->group = mgroup_upcast_mutable(group); ret->dest_handlers_ = dest_handlers; ret->is_native_ = false; /* If we JIT, it will update this later. */ upb_inttable_init(&ret->dispatch, UPB_CTYPE_UINT64); if (ret->dest_handlers_) { upb_handlers_ref(ret->dest_handlers_, ret); } return ret; } const upb_handlers *upb_pbdecodermethod_desthandlers( const upb_pbdecodermethod *m) { return m->dest_handlers_; } const upb_byteshandler *upb_pbdecodermethod_inputhandler( const upb_pbdecodermethod *m) { return &m->input_handler_; } bool upb_pbdecodermethod_isnative(const upb_pbdecodermethod *m) { return m->is_native_; } const upb_pbdecodermethod *upb_pbdecodermethod_new( const upb_pbdecodermethodopts *opts, const void *owner) { const upb_pbdecodermethod *ret; upb_pbcodecache cache; upb_pbcodecache_init(&cache); ret = upb_pbcodecache_getdecodermethod(&cache, opts); upb_pbdecodermethod_ref(ret, owner); upb_pbcodecache_uninit(&cache); return ret; } /* bytecode compiler **********************************************************/ /* Data used only at compilation time. */ typedef struct { mgroup *group; uint32_t *pc; int fwd_labels[MAXLABEL]; int back_labels[MAXLABEL]; /* For fields marked "lazy", parse them lazily or eagerly? */ bool lazy; } compiler; static compiler *newcompiler(mgroup *group, bool lazy) { compiler *ret = upb_gmalloc(sizeof(*ret)); int i; ret->group = group; ret->lazy = lazy; for (i = 0; i < MAXLABEL; i++) { ret->fwd_labels[i] = EMPTYLABEL; ret->back_labels[i] = EMPTYLABEL; } return ret; } static void freecompiler(compiler *c) { upb_gfree(c); } const size_t ptr_words = sizeof(void*) / sizeof(uint32_t); /* How many words an instruction is. */ static int instruction_len(uint32_t instr) { switch (getop(instr)) { case OP_SETDISPATCH: return 1 + ptr_words; case OP_TAGN: return 3; case OP_SETBIGGROUPNUM: return 2; default: return 1; } } bool op_has_longofs(int32_t instruction) { switch (getop(instruction)) { case OP_CALL: case OP_BRANCH: case OP_CHECKDELIM: return true; /* The "tag" instructions only have 8 bytes available for the jump target, * but that is ok because these opcodes only require short jumps. */ case OP_TAG1: case OP_TAG2: case OP_TAGN: return false; default: assert(false); return false; } } static int32_t getofs(uint32_t instruction) { if (op_has_longofs(instruction)) { return (int32_t)instruction >> 8; } else { return (int8_t)(instruction >> 8); } } static void setofs(uint32_t *instruction, int32_t ofs) { if (op_has_longofs(*instruction)) { *instruction = getop(*instruction) | ofs << 8; } else { *instruction = (*instruction & ~0xff00) | ((ofs & 0xff) << 8); } assert(getofs(*instruction) == ofs); /* Would fail in cases of overflow. */ } static uint32_t pcofs(compiler *c) { return c->pc - c->group->bytecode; } /* Defines a local label at the current PC location. All previous forward * references are updated to point to this location. The location is noted * for any future backward references. */ static void label(compiler *c, unsigned int label) { int val; uint32_t *codep; assert(label < MAXLABEL); val = c->fwd_labels[label]; codep = (val == EMPTYLABEL) ? NULL : c->group->bytecode + val; while (codep) { int ofs = getofs(*codep); setofs(codep, c->pc - codep - instruction_len(*codep)); codep = ofs ? codep + ofs : NULL; } c->fwd_labels[label] = EMPTYLABEL; c->back_labels[label] = pcofs(c); } /* Creates a reference to a numbered label; either a forward reference * (positive arg) or backward reference (negative arg). For forward references * the value returned now is actually a "next" pointer into a linked list of all * instructions that use this label and will be patched later when the label is * defined with label(). * * The returned value is the offset that should be written into the instruction. */ static int32_t labelref(compiler *c, int label) { assert(label < MAXLABEL); if (label == LABEL_DISPATCH) { /* No resolving required. */ return 0; } else if (label < 0) { /* Backward local label. Relative to the next instruction. */ uint32_t from = (c->pc + 1) - c->group->bytecode; return c->back_labels[-label] - from; } else { /* Forward local label: prepend to (possibly-empty) linked list. */ int *lptr = &c->fwd_labels[label]; int32_t ret = (*lptr == EMPTYLABEL) ? 0 : *lptr - pcofs(c); *lptr = pcofs(c); return ret; } } static void put32(compiler *c, uint32_t v) { mgroup *g = c->group; if (c->pc == g->bytecode_end) { int ofs = pcofs(c); size_t oldsize = g->bytecode_end - g->bytecode; size_t newsize = UPB_MAX(oldsize * 2, 64); /* TODO(haberman): handle OOM. */ g->bytecode = upb_grealloc(g->bytecode, oldsize * sizeof(uint32_t), newsize * sizeof(uint32_t)); g->bytecode_end = g->bytecode + newsize; c->pc = g->bytecode + ofs; } *c->pc++ = v; } static void putop(compiler *c, opcode op, ...) { va_list ap; va_start(ap, op); switch (op) { case OP_SETDISPATCH: { uintptr_t ptr = (uintptr_t)va_arg(ap, void*); put32(c, OP_SETDISPATCH); put32(c, ptr); if (sizeof(uintptr_t) > sizeof(uint32_t)) put32(c, (uint64_t)ptr >> 32); break; } case OP_STARTMSG: case OP_ENDMSG: case OP_PUSHLENDELIM: case OP_POP: case OP_SETDELIM: case OP_HALT: case OP_RET: case OP_DISPATCH: put32(c, op); break; case OP_PARSE_DOUBLE: case OP_PARSE_FLOAT: case OP_PARSE_INT64: case OP_PARSE_UINT64: case OP_PARSE_INT32: case OP_PARSE_FIXED64: case OP_PARSE_FIXED32: case OP_PARSE_BOOL: case OP_PARSE_UINT32: case OP_PARSE_SFIXED32: case OP_PARSE_SFIXED64: case OP_PARSE_SINT32: case OP_PARSE_SINT64: case OP_STARTSEQ: case OP_ENDSEQ: case OP_STARTSUBMSG: case OP_ENDSUBMSG: case OP_STARTSTR: case OP_STRING: case OP_ENDSTR: case OP_PUSHTAGDELIM: put32(c, op | va_arg(ap, upb_selector_t) << 8); break; case OP_SETBIGGROUPNUM: put32(c, op); put32(c, va_arg(ap, int)); break; case OP_CALL: { const upb_pbdecodermethod *method = va_arg(ap, upb_pbdecodermethod *); put32(c, op | (method->code_base.ofs - (pcofs(c) + 1)) << 8); break; } case OP_CHECKDELIM: case OP_BRANCH: { uint32_t instruction = op; int label = va_arg(ap, int); setofs(&instruction, labelref(c, label)); put32(c, instruction); break; } case OP_TAG1: case OP_TAG2: { int label = va_arg(ap, int); uint64_t tag = va_arg(ap, uint64_t); uint32_t instruction = op | (tag << 16); assert(tag <= 0xffff); setofs(&instruction, labelref(c, label)); put32(c, instruction); break; } case OP_TAGN: { int label = va_arg(ap, int); uint64_t tag = va_arg(ap, uint64_t); uint32_t instruction = op | (upb_value_size(tag) << 16); setofs(&instruction, labelref(c, label)); put32(c, instruction); put32(c, tag); put32(c, tag >> 32); break; } } va_end(ap); } #if defined(UPB_USE_JIT_X64) || defined(UPB_DUMP_BYTECODE) const char *upb_pbdecoder_getopname(unsigned int op) { #define QUOTE(x) #x #define EXPAND_AND_QUOTE(x) QUOTE(x) #define OPNAME(x) OP_##x #define OP(x) case OPNAME(x): return EXPAND_AND_QUOTE(OPNAME(x)); #define T(x) OP(PARSE_##x) /* Keep in sync with list in decoder.int.h. */ switch ((opcode)op) { T(DOUBLE) T(FLOAT) T(INT64) T(UINT64) T(INT32) T(FIXED64) T(FIXED32) T(BOOL) T(UINT32) T(SFIXED32) T(SFIXED64) T(SINT32) T(SINT64) OP(STARTMSG) OP(ENDMSG) OP(STARTSEQ) OP(ENDSEQ) OP(STARTSUBMSG) OP(ENDSUBMSG) OP(STARTSTR) OP(STRING) OP(ENDSTR) OP(CALL) OP(RET) OP(PUSHLENDELIM) OP(PUSHTAGDELIM) OP(SETDELIM) OP(CHECKDELIM) OP(BRANCH) OP(TAG1) OP(TAG2) OP(TAGN) OP(SETDISPATCH) OP(POP) OP(SETBIGGROUPNUM) OP(DISPATCH) OP(HALT) } return "<unknown op>"; #undef OP #undef T } #endif #ifdef UPB_DUMP_BYTECODE static void dumpbc(uint32_t *p, uint32_t *end, FILE *f) { uint32_t *begin = p; while (p < end) { fprintf(f, "%p %8tx", p, p - begin); uint32_t instr = *p++; uint8_t op = getop(instr); fprintf(f, " %s", upb_pbdecoder_getopname(op)); switch ((opcode)op) { case OP_SETDISPATCH: { const upb_inttable *dispatch; memcpy(&dispatch, p, sizeof(void*)); p += ptr_words; const upb_pbdecodermethod *method = (void *)((char *)dispatch - offsetof(upb_pbdecodermethod, dispatch)); fprintf(f, " %s", upb_msgdef_fullname( upb_handlers_msgdef(method->dest_handlers_))); break; } case OP_DISPATCH: case OP_STARTMSG: case OP_ENDMSG: case OP_PUSHLENDELIM: case OP_POP: case OP_SETDELIM: case OP_HALT: case OP_RET: break; case OP_PARSE_DOUBLE: case OP_PARSE_FLOAT: case OP_PARSE_INT64: case OP_PARSE_UINT64: case OP_PARSE_INT32: case OP_PARSE_FIXED64: case OP_PARSE_FIXED32: case OP_PARSE_BOOL: case OP_PARSE_UINT32: case OP_PARSE_SFIXED32: case OP_PARSE_SFIXED64: case OP_PARSE_SINT32: case OP_PARSE_SINT64: case OP_STARTSEQ: case OP_ENDSEQ: case OP_STARTSUBMSG: case OP_ENDSUBMSG: case OP_STARTSTR: case OP_STRING: case OP_ENDSTR: case OP_PUSHTAGDELIM: fprintf(f, " %d", instr >> 8); break; case OP_SETBIGGROUPNUM: fprintf(f, " %d", *p++); break; case OP_CHECKDELIM: case OP_CALL: case OP_BRANCH: fprintf(f, " =>0x%tx", p + getofs(instr) - begin); break; case OP_TAG1: case OP_TAG2: { fprintf(f, " tag:0x%x", instr >> 16); if (getofs(instr)) { fprintf(f, " =>0x%tx", p + getofs(instr) - begin); } break; } case OP_TAGN: { uint64_t tag = *p++; tag |= (uint64_t)*p++ << 32; fprintf(f, " tag:0x%llx", (long long)tag); fprintf(f, " n:%d", instr >> 16); if (getofs(instr)) { fprintf(f, " =>0x%tx", p + getofs(instr) - begin); } break; } } fputs("\n", f); } } #endif static uint64_t get_encoded_tag(const upb_fielddef *f, int wire_type) { uint32_t tag = (upb_fielddef_number(f) << 3) | wire_type; uint64_t encoded_tag = upb_vencode32(tag); /* No tag should be greater than 5 bytes. */ assert(encoded_tag <= 0xffffffffff); return encoded_tag; } static void putchecktag(compiler *c, const upb_fielddef *f, int wire_type, int dest) { uint64_t tag = get_encoded_tag(f, wire_type); switch (upb_value_size(tag)) { case 1: putop(c, OP_TAG1, dest, tag); break; case 2: putop(c, OP_TAG2, dest, tag); break; default: putop(c, OP_TAGN, dest, tag); break; } } static upb_selector_t getsel(const upb_fielddef *f, upb_handlertype_t type) { upb_selector_t selector; bool ok = upb_handlers_getselector(f, type, &selector); UPB_ASSERT_VAR(ok, ok); return selector; } /* Takes an existing, primary dispatch table entry and repacks it with a * different alternate wire type. Called when we are inserting a secondary * dispatch table entry for an alternate wire type. */ static uint64_t repack(uint64_t dispatch, int new_wt2) { uint64_t ofs; uint8_t wt1; uint8_t old_wt2; upb_pbdecoder_unpackdispatch(dispatch, &ofs, &wt1, &old_wt2); assert(old_wt2 == NO_WIRE_TYPE); /* wt2 should not be set yet. */ return upb_pbdecoder_packdispatch(ofs, wt1, new_wt2); } /* Marks the current bytecode position as the dispatch target for this message, * field, and wire type. */ static void dispatchtarget(compiler *c, upb_pbdecodermethod *method, const upb_fielddef *f, int wire_type) { /* Offset is relative to msg base. */ uint64_t ofs = pcofs(c) - method->code_base.ofs; uint32_t fn = upb_fielddef_number(f); upb_inttable *d = &method->dispatch; upb_value v; if (upb_inttable_remove(d, fn, &v)) { /* TODO: prioritize based on packed setting in .proto file. */ uint64_t repacked = repack(upb_value_getuint64(v), wire_type); upb_inttable_insert(d, fn, upb_value_uint64(repacked)); upb_inttable_insert(d, fn + UPB_MAX_FIELDNUMBER, upb_value_uint64(ofs)); } else { uint64_t val = upb_pbdecoder_packdispatch(ofs, wire_type, NO_WIRE_TYPE); upb_inttable_insert(d, fn, upb_value_uint64(val)); } } static void putpush(compiler *c, const upb_fielddef *f) { if (upb_fielddef_descriptortype(f) == UPB_DESCRIPTOR_TYPE_MESSAGE) { putop(c, OP_PUSHLENDELIM); } else { uint32_t fn = upb_fielddef_number(f); if (fn >= 1 << 24) { putop(c, OP_PUSHTAGDELIM, 0); putop(c, OP_SETBIGGROUPNUM, fn); } else { putop(c, OP_PUSHTAGDELIM, fn); } } } static upb_pbdecodermethod *find_submethod(const compiler *c, const upb_pbdecodermethod *method, const upb_fielddef *f) { const upb_handlers *sub = upb_handlers_getsubhandlers(method->dest_handlers_, f); upb_value v; return upb_inttable_lookupptr(&c->group->methods, sub, &v) ? upb_value_getptr(v) : NULL; } static void putsel(compiler *c, opcode op, upb_selector_t sel, const upb_handlers *h) { if (upb_handlers_gethandler(h, sel)) { putop(c, op, sel); } } /* Puts an opcode to call a callback, but only if a callback actually exists for * this field and handler type. */ static void maybeput(compiler *c, opcode op, const upb_handlers *h, const upb_fielddef *f, upb_handlertype_t type) { putsel(c, op, getsel(f, type), h); } static bool haslazyhandlers(const upb_handlers *h, const upb_fielddef *f) { if (!upb_fielddef_lazy(f)) return false; return upb_handlers_gethandler(h, getsel(f, UPB_HANDLER_STARTSTR)) || upb_handlers_gethandler(h, getsel(f, UPB_HANDLER_STRING)) || upb_handlers_gethandler(h, getsel(f, UPB_HANDLER_ENDSTR)); } /* bytecode compiler code generation ******************************************/ /* Symbolic names for our local labels. */ #define LABEL_LOOPSTART 1 /* Top of a repeated field loop. */ #define LABEL_LOOPBREAK 2 /* To jump out of a repeated loop */ #define LABEL_FIELD 3 /* Jump backward to find the most recent field. */ #define LABEL_ENDMSG 4 /* To reach the OP_ENDMSG instr for this msg. */ /* Generates bytecode to parse a single non-lazy message field. */ static void generate_msgfield(compiler *c, const upb_fielddef *f, upb_pbdecodermethod *method) { const upb_handlers *h = upb_pbdecodermethod_desthandlers(method); const upb_pbdecodermethod *sub_m = find_submethod(c, method, f); int wire_type; if (!sub_m) { /* Don't emit any code for this field at all; it will be parsed as an * unknown field. * * TODO(haberman): we should change this to parse it as a string field * instead. It will probably be faster, but more importantly, once we * start vending unknown fields, a field shouldn't be treated as unknown * just because it doesn't have subhandlers registered. */ return; } label(c, LABEL_FIELD); wire_type = (upb_fielddef_descriptortype(f) == UPB_DESCRIPTOR_TYPE_MESSAGE) ? UPB_WIRE_TYPE_DELIMITED : UPB_WIRE_TYPE_START_GROUP; if (upb_fielddef_isseq(f)) { putop(c, OP_CHECKDELIM, LABEL_ENDMSG); putchecktag(c, f, wire_type, LABEL_DISPATCH); dispatchtarget(c, method, f, wire_type); putop(c, OP_PUSHTAGDELIM, 0); putop(c, OP_STARTSEQ, getsel(f, UPB_HANDLER_STARTSEQ)); label(c, LABEL_LOOPSTART); putpush(c, f); putop(c, OP_STARTSUBMSG, getsel(f, UPB_HANDLER_STARTSUBMSG)); putop(c, OP_CALL, sub_m); putop(c, OP_POP); maybeput(c, OP_ENDSUBMSG, h, f, UPB_HANDLER_ENDSUBMSG); if (wire_type == UPB_WIRE_TYPE_DELIMITED) { putop(c, OP_SETDELIM); } putop(c, OP_CHECKDELIM, LABEL_LOOPBREAK); putchecktag(c, f, wire_type, LABEL_LOOPBREAK); putop(c, OP_BRANCH, -LABEL_LOOPSTART); label(c, LABEL_LOOPBREAK); putop(c, OP_POP); maybeput(c, OP_ENDSEQ, h, f, UPB_HANDLER_ENDSEQ); } else { putop(c, OP_CHECKDELIM, LABEL_ENDMSG); putchecktag(c, f, wire_type, LABEL_DISPATCH); dispatchtarget(c, method, f, wire_type); putpush(c, f); putop(c, OP_STARTSUBMSG, getsel(f, UPB_HANDLER_STARTSUBMSG)); putop(c, OP_CALL, sub_m); putop(c, OP_POP); maybeput(c, OP_ENDSUBMSG, h, f, UPB_HANDLER_ENDSUBMSG); if (wire_type == UPB_WIRE_TYPE_DELIMITED) { putop(c, OP_SETDELIM); } } } /* Generates bytecode to parse a single string or lazy submessage field. */ static void generate_delimfield(compiler *c, const upb_fielddef *f, upb_pbdecodermethod *method) { const upb_handlers *h = upb_pbdecodermethod_desthandlers(method); label(c, LABEL_FIELD); if (upb_fielddef_isseq(f)) { putop(c, OP_CHECKDELIM, LABEL_ENDMSG); putchecktag(c, f, UPB_WIRE_TYPE_DELIMITED, LABEL_DISPATCH); dispatchtarget(c, method, f, UPB_WIRE_TYPE_DELIMITED); putop(c, OP_PUSHTAGDELIM, 0); putop(c, OP_STARTSEQ, getsel(f, UPB_HANDLER_STARTSEQ)); label(c, LABEL_LOOPSTART); putop(c, OP_PUSHLENDELIM); putop(c, OP_STARTSTR, getsel(f, UPB_HANDLER_STARTSTR)); /* Need to emit even if no handler to skip past the string. */ putop(c, OP_STRING, getsel(f, UPB_HANDLER_STRING)); putop(c, OP_POP); maybeput(c, OP_ENDSTR, h, f, UPB_HANDLER_ENDSTR); putop(c, OP_SETDELIM); putop(c, OP_CHECKDELIM, LABEL_LOOPBREAK); putchecktag(c, f, UPB_WIRE_TYPE_DELIMITED, LABEL_LOOPBREAK); putop(c, OP_BRANCH, -LABEL_LOOPSTART); label(c, LABEL_LOOPBREAK); putop(c, OP_POP); maybeput(c, OP_ENDSEQ, h, f, UPB_HANDLER_ENDSEQ); } else { putop(c, OP_CHECKDELIM, LABEL_ENDMSG); putchecktag(c, f, UPB_WIRE_TYPE_DELIMITED, LABEL_DISPATCH); dispatchtarget(c, method, f, UPB_WIRE_TYPE_DELIMITED); putop(c, OP_PUSHLENDELIM); putop(c, OP_STARTSTR, getsel(f, UPB_HANDLER_STARTSTR)); putop(c, OP_STRING, getsel(f, UPB_HANDLER_STRING)); putop(c, OP_POP); maybeput(c, OP_ENDSTR, h, f, UPB_HANDLER_ENDSTR); putop(c, OP_SETDELIM); } } /* Generates bytecode to parse a single primitive field. */ static void generate_primitivefield(compiler *c, const upb_fielddef *f, upb_pbdecodermethod *method) { const upb_handlers *h = upb_pbdecodermethod_desthandlers(method); upb_descriptortype_t descriptor_type = upb_fielddef_descriptortype(f); opcode parse_type; upb_selector_t sel; int wire_type; label(c, LABEL_FIELD); /* From a decoding perspective, ENUM is the same as INT32. */ if (descriptor_type == UPB_DESCRIPTOR_TYPE_ENUM) descriptor_type = UPB_DESCRIPTOR_TYPE_INT32; parse_type = (opcode)descriptor_type; /* TODO(haberman): generate packed or non-packed first depending on "packed" * setting in the fielddef. This will favor (in speed) whichever was * specified. */ assert((int)parse_type >= 0 && parse_type <= OP_MAX); sel = getsel(f, upb_handlers_getprimitivehandlertype(f)); wire_type = upb_pb_native_wire_types[upb_fielddef_descriptortype(f)]; if (upb_fielddef_isseq(f)) { putop(c, OP_CHECKDELIM, LABEL_ENDMSG); putchecktag(c, f, UPB_WIRE_TYPE_DELIMITED, LABEL_DISPATCH); dispatchtarget(c, method, f, UPB_WIRE_TYPE_DELIMITED); putop(c, OP_PUSHLENDELIM); putop(c, OP_STARTSEQ, getsel(f, UPB_HANDLER_STARTSEQ)); /* Packed */ label(c, LABEL_LOOPSTART); putop(c, parse_type, sel); putop(c, OP_CHECKDELIM, LABEL_LOOPBREAK); putop(c, OP_BRANCH, -LABEL_LOOPSTART); dispatchtarget(c, method, f, wire_type); putop(c, OP_PUSHTAGDELIM, 0); putop(c, OP_STARTSEQ, getsel(f, UPB_HANDLER_STARTSEQ)); /* Non-packed */ label(c, LABEL_LOOPSTART); putop(c, parse_type, sel); putop(c, OP_CHECKDELIM, LABEL_LOOPBREAK); putchecktag(c, f, wire_type, LABEL_LOOPBREAK); putop(c, OP_BRANCH, -LABEL_LOOPSTART); label(c, LABEL_LOOPBREAK); putop(c, OP_POP); /* Packed and non-packed join. */ maybeput(c, OP_ENDSEQ, h, f, UPB_HANDLER_ENDSEQ); putop(c, OP_SETDELIM); /* Could remove for non-packed by dup ENDSEQ. */ } else { putop(c, OP_CHECKDELIM, LABEL_ENDMSG); putchecktag(c, f, wire_type, LABEL_DISPATCH); dispatchtarget(c, method, f, wire_type); putop(c, parse_type, sel); } } /* Adds bytecode for parsing the given message to the given decoderplan, * while adding all dispatch targets to this message's dispatch table. */ static void compile_method(compiler *c, upb_pbdecodermethod *method) { const upb_handlers *h; const upb_msgdef *md; uint32_t* start_pc; upb_msg_field_iter i; upb_value val; assert(method); /* Clear all entries in the dispatch table. */ upb_inttable_uninit(&method->dispatch); upb_inttable_init(&method->dispatch, UPB_CTYPE_UINT64); h = upb_pbdecodermethod_desthandlers(method); md = upb_handlers_msgdef(h); method->code_base.ofs = pcofs(c); putop(c, OP_SETDISPATCH, &method->dispatch); putsel(c, OP_STARTMSG, UPB_STARTMSG_SELECTOR, h); label(c, LABEL_FIELD); start_pc = c->pc; for(upb_msg_field_begin(&i, md); !upb_msg_field_done(&i); upb_msg_field_next(&i)) { const upb_fielddef *f = upb_msg_iter_field(&i); upb_fieldtype_t type = upb_fielddef_type(f); if (type == UPB_TYPE_MESSAGE && !(haslazyhandlers(h, f) && c->lazy)) { generate_msgfield(c, f, method); } else if (type == UPB_TYPE_STRING || type == UPB_TYPE_BYTES || type == UPB_TYPE_MESSAGE) { generate_delimfield(c, f, method); } else { generate_primitivefield(c, f, method); } } /* If there were no fields, or if no handlers were defined, we need to * generate a non-empty loop body so that we can at least dispatch for unknown * fields and check for the end of the message. */ if (c->pc == start_pc) { /* Check for end-of-message. */ putop(c, OP_CHECKDELIM, LABEL_ENDMSG); /* Unconditionally dispatch. */ putop(c, OP_DISPATCH, 0); } /* For now we just loop back to the last field of the message (or if none, * the DISPATCH opcode for the message). */ putop(c, OP_BRANCH, -LABEL_FIELD); /* Insert both a label and a dispatch table entry for this end-of-msg. */ label(c, LABEL_ENDMSG); val = upb_value_uint64(pcofs(c) - method->code_base.ofs); upb_inttable_insert(&method->dispatch, DISPATCH_ENDMSG, val); putsel(c, OP_ENDMSG, UPB_ENDMSG_SELECTOR, h); putop(c, OP_RET); upb_inttable_compact(&method->dispatch); } /* Populate "methods" with new upb_pbdecodermethod objects reachable from "h". * Returns the method for these handlers. * * Generates a new method for every destination handlers reachable from "h". */ static void find_methods(compiler *c, const upb_handlers *h) { upb_value v; upb_msg_field_iter i; const upb_msgdef *md; if (upb_inttable_lookupptr(&c->group->methods, h, &v)) return; newmethod(h, c->group); /* Find submethods. */ md = upb_handlers_msgdef(h); for(upb_msg_field_begin(&i, md); !upb_msg_field_done(&i); upb_msg_field_next(&i)) { const upb_fielddef *f = upb_msg_iter_field(&i); const upb_handlers *sub_h; if (upb_fielddef_type(f) == UPB_TYPE_MESSAGE && (sub_h = upb_handlers_getsubhandlers(h, f)) != NULL) { /* We only generate a decoder method for submessages with handlers. * Others will be parsed as unknown fields. */ find_methods(c, sub_h); } } } /* (Re-)compile bytecode for all messages in "msgs." * Overwrites any existing bytecode in "c". */ static void compile_methods(compiler *c) { upb_inttable_iter i; /* Start over at the beginning of the bytecode. */ c->pc = c->group->bytecode; upb_inttable_begin(&i, &c->group->methods); for(; !upb_inttable_done(&i); upb_inttable_next(&i)) { upb_pbdecodermethod *method = upb_value_getptr(upb_inttable_iter_value(&i)); compile_method(c, method); } } static void set_bytecode_handlers(mgroup *g) { upb_inttable_iter i; upb_inttable_begin(&i, &g->methods); for(; !upb_inttable_done(&i); upb_inttable_next(&i)) { upb_pbdecodermethod *m = upb_value_getptr(upb_inttable_iter_value(&i)); upb_byteshandler *h = &m->input_handler_; m->code_base.ptr = g->bytecode + m->code_base.ofs; upb_byteshandler_setstartstr(h, upb_pbdecoder_startbc, m->code_base.ptr); upb_byteshandler_setstring(h, upb_pbdecoder_decode, g); upb_byteshandler_setendstr(h, upb_pbdecoder_end, m); } } /* JIT setup. *****************************************************************/ #ifdef UPB_USE_JIT_X64 static void sethandlers(mgroup *g, bool allowjit) { g->jit_code = NULL; if (allowjit) { /* Compile byte-code into machine code, create handlers. */ upb_pbdecoder_jit(g); } else { set_bytecode_handlers(g); } } #else /* UPB_USE_JIT_X64 */ static void sethandlers(mgroup *g, bool allowjit) { /* No JIT compiled in; use bytecode handlers unconditionally. */ UPB_UNUSED(allowjit); set_bytecode_handlers(g); } #endif /* UPB_USE_JIT_X64 */ /* TODO(haberman): allow this to be constructed for an arbitrary set of dest * handlers and other mgroups (but verify we have a transitive closure). */ const mgroup *mgroup_new(const upb_handlers *dest, bool allowjit, bool lazy, const void *owner) { mgroup *g; compiler *c; UPB_UNUSED(allowjit); assert(upb_handlers_isfrozen(dest)); g = newgroup(owner); c = newcompiler(g, lazy); find_methods(c, dest); /* We compile in two passes: * 1. all messages are assigned relative offsets from the beginning of the * bytecode (saved in method->code_base). * 2. forwards OP_CALL instructions can be correctly linked since message * offsets have been previously assigned. * * Could avoid the second pass by linking OP_CALL instructions somehow. */ compile_methods(c); compile_methods(c); g->bytecode_end = c->pc; freecompiler(c); #ifdef UPB_DUMP_BYTECODE { FILE *f = fopen("/tmp/upb-bytecode", "w"); assert(f); dumpbc(g->bytecode, g->bytecode_end, stderr); dumpbc(g->bytecode, g->bytecode_end, f); fclose(f); f = fopen("/tmp/upb-bytecode.bin", "wb"); assert(f); fwrite(g->bytecode, 1, g->bytecode_end - g->bytecode, f); fclose(f); } #endif sethandlers(g, allowjit); return g; } /* upb_pbcodecache ************************************************************/ void upb_pbcodecache_init(upb_pbcodecache *c) { upb_inttable_init(&c->groups, UPB_CTYPE_CONSTPTR); c->allow_jit_ = true; } void upb_pbcodecache_uninit(upb_pbcodecache *c) { upb_inttable_iter i; upb_inttable_begin(&i, &c->groups); for(; !upb_inttable_done(&i); upb_inttable_next(&i)) { const mgroup *group = upb_value_getconstptr(upb_inttable_iter_value(&i)); mgroup_unref(group, c); } upb_inttable_uninit(&c->groups); } bool upb_pbcodecache_allowjit(const upb_pbcodecache *c) { return c->allow_jit_; } bool upb_pbcodecache_setallowjit(upb_pbcodecache *c, bool allow) { if (upb_inttable_count(&c->groups) > 0) return false; c->allow_jit_ = allow; return true; } const upb_pbdecodermethod *upb_pbcodecache_getdecodermethod( upb_pbcodecache *c, const upb_pbdecodermethodopts *opts) { upb_value v; bool ok; /* Right now we build a new DecoderMethod every time. * TODO(haberman): properly cache methods by their true key. */ const mgroup *g = mgroup_new(opts->handlers, c->allow_jit_, opts->lazy, c); upb_inttable_push(&c->groups, upb_value_constptr(g)); ok = upb_inttable_lookupptr(&g->methods, opts->handlers, &v); UPB_ASSERT_VAR(ok, ok); return upb_value_getptr(v); } /* upb_pbdecodermethodopts ****************************************************/ void upb_pbdecodermethodopts_init(upb_pbdecodermethodopts *opts, const upb_handlers *h) { opts->handlers = h; opts->lazy = false; } void upb_pbdecodermethodopts_setlazy(upb_pbdecodermethodopts *opts, bool lazy) { opts->lazy = lazy; } /* ** upb::Decoder (Bytecode Decoder VM) ** ** Bytecode must previously have been generated using the bytecode compiler in ** compile_decoder.c. This decoder then walks through the bytecode op-by-op to ** parse the input. ** ** Decoding is fully resumable; we just keep a pointer to the current bytecode ** instruction and resume from there. A fair amount of the logic here is to ** handle the fact that values can span buffer seams and we have to be able to ** be capable of suspending/resuming from any byte in the stream. This ** sometimes requires keeping a few trailing bytes from the last buffer around ** in the "residual" buffer. */ #include <inttypes.h> #include <stddef.h> #ifdef UPB_DUMP_BYTECODE #include <stdio.h> #endif #define CHECK_SUSPEND(x) if (!(x)) return upb_pbdecoder_suspend(d); /* Error messages that are shared between the bytecode and JIT decoders. */ const char *kPbDecoderStackOverflow = "Nesting too deep."; const char *kPbDecoderSubmessageTooLong = "Submessage end extends past enclosing submessage."; /* Error messages shared within this file. */ static const char *kUnterminatedVarint = "Unterminated varint."; /* upb_pbdecoder **************************************************************/ static opcode halt = OP_HALT; /* A dummy character we can point to when the user passes us a NULL buffer. * We need this because in C (NULL + 0) and (NULL - NULL) are undefined * behavior, which would invalidate functions like curbufleft(). */ static const char dummy_char; /* Whether an op consumes any of the input buffer. */ static bool consumes_input(opcode op) { switch (op) { case OP_SETDISPATCH: case OP_STARTMSG: case OP_ENDMSG: case OP_STARTSEQ: case OP_ENDSEQ: case OP_STARTSUBMSG: case OP_ENDSUBMSG: case OP_STARTSTR: case OP_ENDSTR: case OP_PUSHTAGDELIM: case OP_POP: case OP_SETDELIM: case OP_SETBIGGROUPNUM: case OP_CHECKDELIM: case OP_CALL: case OP_RET: case OP_BRANCH: return false; default: return true; } } static size_t stacksize(upb_pbdecoder *d, size_t entries) { UPB_UNUSED(d); return entries * sizeof(upb_pbdecoder_frame); } static size_t callstacksize(upb_pbdecoder *d, size_t entries) { UPB_UNUSED(d); #ifdef UPB_USE_JIT_X64 if (d->method_->is_native_) { /* Each native stack frame needs two pointers, plus we need a few frames for * the enter/exit trampolines. */ size_t ret = entries * sizeof(void*) * 2; ret += sizeof(void*) * 10; return ret; } #endif return entries * sizeof(uint32_t*); } static bool in_residual_buf(const upb_pbdecoder *d, const char *p); /* It's unfortunate that we have to micro-manage the compiler with * UPB_FORCEINLINE and UPB_NOINLINE, especially since this tuning is necessarily * specific to one hardware configuration. But empirically on a Core i7, * performance increases 30-50% with these annotations. Every instance where * these appear, gcc 4.2.1 made the wrong decision and degraded performance in * benchmarks. */ static void seterr(upb_pbdecoder *d, const char *msg) { upb_status status = UPB_STATUS_INIT; upb_status_seterrmsg(&status, msg); upb_env_reporterror(d->env, &status); } void upb_pbdecoder_seterr(upb_pbdecoder *d, const char *msg) { seterr(d, msg); } /* Buffering ******************************************************************/ /* We operate on one buffer at a time, which is either the user's buffer passed * to our "decode" callback or some residual bytes from the previous buffer. */ /* How many bytes can be safely read from d->ptr without reading past end-of-buf * or past the current delimited end. */ static size_t curbufleft(const upb_pbdecoder *d) { assert(d->data_end >= d->ptr); return d->data_end - d->ptr; } /* How many bytes are available before end-of-buffer. */ static size_t bufleft(const upb_pbdecoder *d) { return d->end - d->ptr; } /* Overall stream offset of d->ptr. */ uint64_t offset(const upb_pbdecoder *d) { return d->bufstart_ofs + (d->ptr - d->buf); } /* How many bytes are available before the end of this delimited region. */ size_t delim_remaining(const upb_pbdecoder *d) { return d->top->end_ofs - offset(d); } /* Advances d->ptr. */ static void advance(upb_pbdecoder *d, size_t len) { assert(curbufleft(d) >= len); d->ptr += len; } static bool in_buf(const char *p, const char *buf, const char *end) { return p >= buf && p <= end; } static bool in_residual_buf(const upb_pbdecoder *d, const char *p) { return in_buf(p, d->residual, d->residual_end); } /* Calculates the delim_end value, which is affected by both the current buffer * and the parsing stack, so must be called whenever either is updated. */ static void set_delim_end(upb_pbdecoder *d) { size_t delim_ofs = d->top->end_ofs - d->bufstart_ofs; if (delim_ofs <= (size_t)(d->end - d->buf)) { d->delim_end = d->buf + delim_ofs; d->data_end = d->delim_end; } else { d->data_end = d->end; d->delim_end = NULL; } } static void switchtobuf(upb_pbdecoder *d, const char *buf, const char *end) { d->ptr = buf; d->buf = buf; d->end = end; set_delim_end(d); } static void advancetobuf(upb_pbdecoder *d, const char *buf, size_t len) { assert(curbufleft(d) == 0); d->bufstart_ofs += (d->end - d->buf); switchtobuf(d, buf, buf + len); } static void checkpoint(upb_pbdecoder *d) { /* The assertion here is in the interests of efficiency, not correctness. * We are trying to ensure that we don't checkpoint() more often than * necessary. */ assert(d->checkpoint != d->ptr); d->checkpoint = d->ptr; } /* Skips "bytes" bytes in the stream, which may be more than available. If we * skip more bytes than are available, we return a long read count to the caller * indicating how many bytes can be skipped over before passing actual data * again. Skipped bytes can pass a NULL buffer and the decoder guarantees they * won't actually be read. */ static int32_t skip(upb_pbdecoder *d, size_t bytes) { assert(!in_residual_buf(d, d->ptr) || d->size_param == 0); assert(d->skip == 0); if (bytes > delim_remaining(d)) { seterr(d, "Skipped value extended beyond enclosing submessage."); return upb_pbdecoder_suspend(d); } else if (bufleft(d) >= bytes) { /* Skipped data is all in current buffer, and more is still available. */ advance(d, bytes); d->skip = 0; return DECODE_OK; } else { /* Skipped data extends beyond currently available buffers. */ d->pc = d->last; d->skip = bytes - curbufleft(d); d->bufstart_ofs += (d->end - d->buf); d->residual_end = d->residual; switchtobuf(d, d->residual, d->residual_end); return d->size_param + d->skip; } } /* Resumes the decoder from an initial state or from a previous suspend. */ int32_t upb_pbdecoder_resume(upb_pbdecoder *d, void *p, const char *buf, size_t size, const upb_bufhandle *handle) { UPB_UNUSED(p); /* Useless; just for the benefit of the JIT. */ /* d->skip and d->residual_end could probably elegantly be represented * as a single variable, to more easily represent this invariant. */ assert(!(d->skip && d->residual_end > d->residual)); /* We need to remember the original size_param, so that the value we return * is relative to it, even if we do some skipping first. */ d->size_param = size; d->handle = handle; /* Have to handle this case specially (ie. not with skip()) because the user * is allowed to pass a NULL buffer here, which won't allow us to safely * calculate a d->end or use our normal functions like curbufleft(). */ if (d->skip && d->skip >= size) { d->skip -= size; d->bufstart_ofs += size; buf = &dummy_char; size = 0; /* We can't just return now, because we might need to execute some ops * like CHECKDELIM, which could call some callbacks and pop the stack. */ } /* We need to pretend that this was the actual buffer param, since some of the * calculations assume that d->ptr/d->buf is relative to this. */ d->buf_param = buf; if (!buf) { /* NULL buf is ok if its entire span is covered by the "skip" above, but * by this point we know that "skip" doesn't cover the buffer. */ seterr(d, "Passed NULL buffer over non-skippable region."); return upb_pbdecoder_suspend(d); } if (d->residual_end > d->residual) { /* We have residual bytes from the last buffer. */ assert(d->ptr == d->residual); } else { switchtobuf(d, buf, buf + size); } d->checkpoint = d->ptr; /* Handle skips that don't cover the whole buffer (as above). */ if (d->skip) { size_t skip_bytes = d->skip; d->skip = 0; CHECK_RETURN(skip(d, skip_bytes)); checkpoint(d); } /* If we're inside an unknown group, continue to parse unknown values. */ if (d->top->groupnum < 0) { CHECK_RETURN(upb_pbdecoder_skipunknown(d, -1, 0)); checkpoint(d); } return DECODE_OK; } /* Suspends the decoder at the last checkpoint, without saving any residual * bytes. If there are any unconsumed bytes, returns a short byte count. */ size_t upb_pbdecoder_suspend(upb_pbdecoder *d) { d->pc = d->last; if (d->checkpoint == d->residual) { /* Checkpoint was in residual buf; no user bytes were consumed. */ d->ptr = d->residual; return 0; } else { size_t ret = d->size_param - (d->end - d->checkpoint); assert(!in_residual_buf(d, d->checkpoint)); assert(d->buf == d->buf_param || d->buf == &dummy_char); d->bufstart_ofs += (d->checkpoint - d->buf); d->residual_end = d->residual; switchtobuf(d, d->residual, d->residual_end); return ret; } } /* Suspends the decoder at the last checkpoint, and saves any unconsumed * bytes in our residual buffer. This is necessary if we need more user * bytes to form a complete value, which might not be contiguous in the * user's buffers. Always consumes all user bytes. */ static size_t suspend_save(upb_pbdecoder *d) { /* We hit end-of-buffer before we could parse a full value. * Save any unconsumed bytes (if any) to the residual buffer. */ d->pc = d->last; if (d->checkpoint == d->residual) { /* Checkpoint was in residual buf; append user byte(s) to residual buf. */ assert((d->residual_end - d->residual) + d->size_param <= sizeof(d->residual)); if (!in_residual_buf(d, d->ptr)) { d->bufstart_ofs -= (d->residual_end - d->residual); } memcpy(d->residual_end, d->buf_param, d->size_param); d->residual_end += d->size_param; } else { /* Checkpoint was in user buf; old residual bytes not needed. */ size_t save; assert(!in_residual_buf(d, d->checkpoint)); d->ptr = d->checkpoint; save = curbufleft(d); assert(save <= sizeof(d->residual)); memcpy(d->residual, d->ptr, save); d->residual_end = d->residual + save; d->bufstart_ofs = offset(d); } switchtobuf(d, d->residual, d->residual_end); return d->size_param; } /* Copies the next "bytes" bytes into "buf" and advances the stream. * Requires that this many bytes are available in the current buffer. */ UPB_FORCEINLINE static void consumebytes(upb_pbdecoder *d, void *buf, size_t bytes) { assert(bytes <= curbufleft(d)); memcpy(buf, d->ptr, bytes); advance(d, bytes); } /* Slow path for getting the next "bytes" bytes, regardless of whether they are * available in the current buffer or not. Returns a status code as described * in decoder.int.h. */ UPB_NOINLINE static int32_t getbytes_slow(upb_pbdecoder *d, void *buf, size_t bytes) { const size_t avail = curbufleft(d); consumebytes(d, buf, avail); bytes -= avail; assert(bytes > 0); if (in_residual_buf(d, d->ptr)) { advancetobuf(d, d->buf_param, d->size_param); } if (curbufleft(d) >= bytes) { consumebytes(d, (char *)buf + avail, bytes); return DECODE_OK; } else if (d->data_end == d->delim_end) { seterr(d, "Submessage ended in the middle of a value or group"); return upb_pbdecoder_suspend(d); } else { return suspend_save(d); } } /* Gets the next "bytes" bytes, regardless of whether they are available in the * current buffer or not. Returns a status code as described in decoder.int.h. */ UPB_FORCEINLINE static int32_t getbytes(upb_pbdecoder *d, void *buf, size_t bytes) { if (curbufleft(d) >= bytes) { /* Buffer has enough data to satisfy. */ consumebytes(d, buf, bytes); return DECODE_OK; } else { return getbytes_slow(d, buf, bytes); } } UPB_NOINLINE static size_t peekbytes_slow(upb_pbdecoder *d, void *buf, size_t bytes) { size_t ret = curbufleft(d); memcpy(buf, d->ptr, ret); if (in_residual_buf(d, d->ptr)) { size_t copy = UPB_MIN(bytes - ret, d->size_param); memcpy((char *)buf + ret, d->buf_param, copy); ret += copy; } return ret; } UPB_FORCEINLINE static size_t peekbytes(upb_pbdecoder *d, void *buf, size_t bytes) { if (curbufleft(d) >= bytes) { memcpy(buf, d->ptr, bytes); return bytes; } else { return peekbytes_slow(d, buf, bytes); } } /* Decoding of wire types *****************************************************/ /* Slow path for decoding a varint from the current buffer position. * Returns a status code as described in decoder.int.h. */ UPB_NOINLINE int32_t upb_pbdecoder_decode_varint_slow(upb_pbdecoder *d, uint64_t *u64) { uint8_t byte = 0x80; int bitpos; *u64 = 0; for(bitpos = 0; bitpos < 70 && (byte & 0x80); bitpos += 7) { CHECK_RETURN(getbytes(d, &byte, 1)); *u64 |= (uint64_t)(byte & 0x7F) << bitpos; } if(bitpos == 70 && (byte & 0x80)) { seterr(d, kUnterminatedVarint); return upb_pbdecoder_suspend(d); } return DECODE_OK; } /* Decodes a varint from the current buffer position. * Returns a status code as described in decoder.int.h. */ UPB_FORCEINLINE static int32_t decode_varint(upb_pbdecoder *d, uint64_t *u64) { if (curbufleft(d) > 0 && !(*d->ptr & 0x80)) { *u64 = *d->ptr; advance(d, 1); return DECODE_OK; } else if (curbufleft(d) >= 10) { /* Fast case. */ upb_decoderet r = upb_vdecode_fast(d->ptr); if (r.p == NULL) { seterr(d, kUnterminatedVarint); return upb_pbdecoder_suspend(d); } advance(d, r.p - d->ptr); *u64 = r.val; return DECODE_OK; } else { /* Slow case -- varint spans buffer seam. */ return upb_pbdecoder_decode_varint_slow(d, u64); } } /* Decodes a 32-bit varint from the current buffer position. * Returns a status code as described in decoder.int.h. */ UPB_FORCEINLINE static int32_t decode_v32(upb_pbdecoder *d, uint32_t *u32) { uint64_t u64; int32_t ret = decode_varint(d, &u64); if (ret >= 0) return ret; if (u64 > UINT32_MAX) { seterr(d, "Unterminated 32-bit varint"); /* TODO(haberman) guarantee that this function return is >= 0 somehow, * so we know this path will always be treated as error by our caller. * Right now the size_t -> int32_t can overflow and produce negative values. */ *u32 = 0; return upb_pbdecoder_suspend(d); } *u32 = u64; return DECODE_OK; } /* Decodes a fixed32 from the current buffer position. * Returns a status code as described in decoder.int.h. * TODO: proper byte swapping for big-endian machines. */ UPB_FORCEINLINE static int32_t decode_fixed32(upb_pbdecoder *d, uint32_t *u32) { return getbytes(d, u32, 4); } /* Decodes a fixed64 from the current buffer position. * Returns a status code as described in decoder.int.h. * TODO: proper byte swapping for big-endian machines. */ UPB_FORCEINLINE static int32_t decode_fixed64(upb_pbdecoder *d, uint64_t *u64) { return getbytes(d, u64, 8); } /* Non-static versions of the above functions. * These are called by the JIT for fallback paths. */ int32_t upb_pbdecoder_decode_f32(upb_pbdecoder *d, uint32_t *u32) { return decode_fixed32(d, u32); } int32_t upb_pbdecoder_decode_f64(upb_pbdecoder *d, uint64_t *u64) { return decode_fixed64(d, u64); } static double as_double(uint64_t n) { double d; memcpy(&d, &n, 8); return d; } static float as_float(uint32_t n) { float f; memcpy(&f, &n, 4); return f; } /* Pushes a frame onto the decoder stack. */ static bool decoder_push(upb_pbdecoder *d, uint64_t end) { upb_pbdecoder_frame *fr = d->top; if (end > fr->end_ofs) { seterr(d, kPbDecoderSubmessageTooLong); return false; } else if (fr == d->limit) { seterr(d, kPbDecoderStackOverflow); return false; } fr++; fr->end_ofs = end; fr->dispatch = NULL; fr->groupnum = 0; d->top = fr; return true; } static bool pushtagdelim(upb_pbdecoder *d, uint32_t arg) { /* While we expect to see an "end" tag (either ENDGROUP or a non-sequence * field number) prior to hitting any enclosing submessage end, pushing our * existing delim end prevents us from continuing to parse values from a * corrupt proto that doesn't give us an END tag in time. */ if (!decoder_push(d, d->top->end_ofs)) return false; d->top->groupnum = arg; return true; } /* Pops a frame from the decoder stack. */ static void decoder_pop(upb_pbdecoder *d) { d->top--; } UPB_NOINLINE int32_t upb_pbdecoder_checktag_slow(upb_pbdecoder *d, uint64_t expected) { uint64_t data = 0; size_t bytes = upb_value_size(expected); size_t read = peekbytes(d, &data, bytes); if (read == bytes && data == expected) { /* Advance past matched bytes. */ int32_t ok = getbytes(d, &data, read); UPB_ASSERT_VAR(ok, ok < 0); return DECODE_OK; } else if (read < bytes && memcmp(&data, &expected, read) == 0) { return suspend_save(d); } else { return DECODE_MISMATCH; } } int32_t upb_pbdecoder_skipunknown(upb_pbdecoder *d, int32_t fieldnum, uint8_t wire_type) { if (fieldnum >= 0) goto have_tag; while (true) { uint32_t tag; CHECK_RETURN(decode_v32(d, &tag)); wire_type = tag & 0x7; fieldnum = tag >> 3; have_tag: if (fieldnum == 0) { seterr(d, "Saw invalid field number (0)"); return upb_pbdecoder_suspend(d); } /* TODO: deliver to unknown field callback. */ switch (wire_type) { case UPB_WIRE_TYPE_32BIT: CHECK_RETURN(skip(d, 4)); break; case UPB_WIRE_TYPE_64BIT: CHECK_RETURN(skip(d, 8)); break; case UPB_WIRE_TYPE_VARINT: { uint64_t u64; CHECK_RETURN(decode_varint(d, &u64)); break; } case UPB_WIRE_TYPE_DELIMITED: { uint32_t len; CHECK_RETURN(decode_v32(d, &len)); CHECK_RETURN(skip(d, len)); break; } case UPB_WIRE_TYPE_START_GROUP: CHECK_SUSPEND(pushtagdelim(d, -fieldnum)); break; case UPB_WIRE_TYPE_END_GROUP: if (fieldnum == -d->top->groupnum) { decoder_pop(d); } else if (fieldnum == d->top->groupnum) { return DECODE_ENDGROUP; } else { seterr(d, "Unmatched ENDGROUP tag."); return upb_pbdecoder_suspend(d); } break; default: seterr(d, "Invalid wire type"); return upb_pbdecoder_suspend(d); } if (d->top->groupnum >= 0) { return DECODE_OK; } /* Unknown group -- continue looping over unknown fields. */ checkpoint(d); } } static void goto_endmsg(upb_pbdecoder *d) { upb_value v; bool found = upb_inttable_lookup32(d->top->dispatch, DISPATCH_ENDMSG, &v); UPB_ASSERT_VAR(found, found); d->pc = d->top->base + upb_value_getuint64(v); } /* Parses a tag and jumps to the corresponding bytecode instruction for this * field. * * If the tag is unknown (or the wire type doesn't match), parses the field as * unknown. If the tag is a valid ENDGROUP tag, jumps to the bytecode * instruction for the end of message. */ static int32_t dispatch(upb_pbdecoder *d) { upb_inttable *dispatch = d->top->dispatch; uint32_t tag; uint8_t wire_type; uint32_t fieldnum; upb_value val; int32_t retval; /* Decode tag. */ CHECK_RETURN(decode_v32(d, &tag)); wire_type = tag & 0x7; fieldnum = tag >> 3; /* Lookup tag. Because of packed/non-packed compatibility, we have to * check the wire type against two possibilities. */ if (fieldnum != DISPATCH_ENDMSG && upb_inttable_lookup32(dispatch, fieldnum, &val)) { uint64_t v = upb_value_getuint64(val); if (wire_type == (v & 0xff)) { d->pc = d->top->base + (v >> 16); return DECODE_OK; } else if (wire_type == ((v >> 8) & 0xff)) { bool found = upb_inttable_lookup(dispatch, fieldnum + UPB_MAX_FIELDNUMBER, &val); UPB_ASSERT_VAR(found, found); d->pc = d->top->base + upb_value_getuint64(val); return DECODE_OK; } } /* We have some unknown fields (or ENDGROUP) to parse. The DISPATCH or TAG * bytecode that triggered this is preceded by a CHECKDELIM bytecode which * we need to back up to, so that when we're done skipping unknown data we * can re-check the delimited end. */ d->last--; /* Necessary if we get suspended */ d->pc = d->last; assert(getop(*d->last) == OP_CHECKDELIM); /* Unknown field or ENDGROUP. */ retval = upb_pbdecoder_skipunknown(d, fieldnum, wire_type); CHECK_RETURN(retval); if (retval == DECODE_ENDGROUP) { goto_endmsg(d); return DECODE_OK; } return DECODE_OK; } /* Callers know that the stack is more than one deep because the opcodes that * call this only occur after PUSH operations. */ upb_pbdecoder_frame *outer_frame(upb_pbdecoder *d) { assert(d->top != d->stack); return d->top - 1; } /* The main decoding loop *****************************************************/ /* The main decoder VM function. Uses traditional bytecode dispatch loop with a * switch() statement. */ size_t run_decoder_vm(upb_pbdecoder *d, const mgroup *group, const upb_bufhandle* handle) { #define VMCASE(op, code) \ case op: { code; if (consumes_input(op)) checkpoint(d); break; } #define PRIMITIVE_OP(type, wt, name, convfunc, ctype) \ VMCASE(OP_PARSE_ ## type, { \ ctype val; \ CHECK_RETURN(decode_ ## wt(d, &val)); \ upb_sink_put ## name(&d->top->sink, arg, (convfunc)(val)); \ }) while(1) { int32_t instruction; opcode op; uint32_t arg; int32_t longofs; d->last = d->pc; instruction = *d->pc++; op = getop(instruction); arg = instruction >> 8; longofs = arg; assert(d->ptr != d->residual_end); UPB_UNUSED(group); #ifdef UPB_DUMP_BYTECODE fprintf(stderr, "s_ofs=%d buf_ofs=%d data_rem=%d buf_rem=%d delim_rem=%d " "%x %s (%d)\n", (int)offset(d), (int)(d->ptr - d->buf), (int)(d->data_end - d->ptr), (int)(d->end - d->ptr), (int)((d->top->end_ofs - d->bufstart_ofs) - (d->ptr - d->buf)), (int)(d->pc - 1 - group->bytecode), upb_pbdecoder_getopname(op), arg); #endif switch (op) { /* Technically, we are losing data if we see a 32-bit varint that is not * properly sign-extended. We could detect this and error about the data * loss, but proto2 does not do this, so we pass. */ PRIMITIVE_OP(INT32, varint, int32, int32_t, uint64_t) PRIMITIVE_OP(INT64, varint, int64, int64_t, uint64_t) PRIMITIVE_OP(UINT32, varint, uint32, uint32_t, uint64_t) PRIMITIVE_OP(UINT64, varint, uint64, uint64_t, uint64_t) PRIMITIVE_OP(FIXED32, fixed32, uint32, uint32_t, uint32_t) PRIMITIVE_OP(FIXED64, fixed64, uint64, uint64_t, uint64_t) PRIMITIVE_OP(SFIXED32, fixed32, int32, int32_t, uint32_t) PRIMITIVE_OP(SFIXED64, fixed64, int64, int64_t, uint64_t) PRIMITIVE_OP(BOOL, varint, bool, bool, uint64_t) PRIMITIVE_OP(DOUBLE, fixed64, double, as_double, uint64_t) PRIMITIVE_OP(FLOAT, fixed32, float, as_float, uint32_t) PRIMITIVE_OP(SINT32, varint, int32, upb_zzdec_32, uint64_t) PRIMITIVE_OP(SINT64, varint, int64, upb_zzdec_64, uint64_t) VMCASE(OP_SETDISPATCH, d->top->base = d->pc - 1; memcpy(&d->top->dispatch, d->pc, sizeof(void*)); d->pc += sizeof(void*) / sizeof(uint32_t); ) VMCASE(OP_STARTMSG, CHECK_SUSPEND(upb_sink_startmsg(&d->top->sink)); ) VMCASE(OP_ENDMSG, CHECK_SUSPEND(upb_sink_endmsg(&d->top->sink, d->status)); ) VMCASE(OP_STARTSEQ, upb_pbdecoder_frame *outer = outer_frame(d); CHECK_SUSPEND(upb_sink_startseq(&outer->sink, arg, &d->top->sink)); ) VMCASE(OP_ENDSEQ, CHECK_SUSPEND(upb_sink_endseq(&d->top->sink, arg)); ) VMCASE(OP_STARTSUBMSG, upb_pbdecoder_frame *outer = outer_frame(d); CHECK_SUSPEND(upb_sink_startsubmsg(&outer->sink, arg, &d->top->sink)); ) VMCASE(OP_ENDSUBMSG, CHECK_SUSPEND(upb_sink_endsubmsg(&d->top->sink, arg)); ) VMCASE(OP_STARTSTR, uint32_t len = delim_remaining(d); upb_pbdecoder_frame *outer = outer_frame(d); CHECK_SUSPEND(upb_sink_startstr(&outer->sink, arg, len, &d->top->sink)); if (len == 0) { d->pc++; /* Skip OP_STRING. */ } ) VMCASE(OP_STRING, uint32_t len = curbufleft(d); size_t n = upb_sink_putstring(&d->top->sink, arg, d->ptr, len, handle); if (n > len) { if (n > delim_remaining(d)) { seterr(d, "Tried to skip past end of string."); return upb_pbdecoder_suspend(d); } else { int32_t ret = skip(d, n); /* This shouldn't return DECODE_OK, because n > len. */ assert(ret >= 0); return ret; } } advance(d, n); if (n < len || d->delim_end == NULL) { /* We aren't finished with this string yet. */ d->pc--; /* Repeat OP_STRING. */ if (n > 0) checkpoint(d); return upb_pbdecoder_suspend(d); } ) VMCASE(OP_ENDSTR, CHECK_SUSPEND(upb_sink_endstr(&d->top->sink, arg)); ) VMCASE(OP_PUSHTAGDELIM, CHECK_SUSPEND(pushtagdelim(d, arg)); ) VMCASE(OP_SETBIGGROUPNUM, d->top->groupnum = *d->pc++; ) VMCASE(OP_POP, assert(d->top > d->stack); decoder_pop(d); ) VMCASE(OP_PUSHLENDELIM, uint32_t len; CHECK_RETURN(decode_v32(d, &len)); CHECK_SUSPEND(decoder_push(d, offset(d) + len)); set_delim_end(d); ) VMCASE(OP_SETDELIM, set_delim_end(d); ) VMCASE(OP_CHECKDELIM, /* We are guaranteed of this assert because we never allow ourselves to * consume bytes beyond data_end, which covers delim_end when non-NULL. */ assert(!(d->delim_end && d->ptr > d->delim_end)); if (d->ptr == d->delim_end) d->pc += longofs; ) VMCASE(OP_CALL, d->callstack[d->call_len++] = d->pc; d->pc += longofs; ) VMCASE(OP_RET, assert(d->call_len > 0); d->pc = d->callstack[--d->call_len]; ) VMCASE(OP_BRANCH, d->pc += longofs; ) VMCASE(OP_TAG1, uint8_t expected; CHECK_SUSPEND(curbufleft(d) > 0); expected = (arg >> 8) & 0xff; if (*d->ptr == expected) { advance(d, 1); } else { int8_t shortofs; badtag: shortofs = arg; if (shortofs == LABEL_DISPATCH) { CHECK_RETURN(dispatch(d)); } else { d->pc += shortofs; break; /* Avoid checkpoint(). */ } } ) VMCASE(OP_TAG2, uint16_t expected; CHECK_SUSPEND(curbufleft(d) > 0); expected = (arg >> 8) & 0xffff; if (curbufleft(d) >= 2) { uint16_t actual; memcpy(&actual, d->ptr, 2); if (expected == actual) { advance(d, 2); } else { goto badtag; } } else { int32_t result = upb_pbdecoder_checktag_slow(d, expected); if (result == DECODE_MISMATCH) goto badtag; if (result >= 0) return result; } ) VMCASE(OP_TAGN, { uint64_t expected; int32_t result; memcpy(&expected, d->pc, 8); d->pc += 2; result = upb_pbdecoder_checktag_slow(d, expected); if (result == DECODE_MISMATCH) goto badtag; if (result >= 0) return result; }) VMCASE(OP_DISPATCH, { CHECK_RETURN(dispatch(d)); }) VMCASE(OP_HALT, { return d->size_param; }) } } } /* BytesHandler handlers ******************************************************/ void *upb_pbdecoder_startbc(void *closure, const void *pc, size_t size_hint) { upb_pbdecoder *d = closure; UPB_UNUSED(size_hint); d->top->end_ofs = UINT64_MAX; d->bufstart_ofs = 0; d->call_len = 1; d->callstack[0] = &halt; d->pc = pc; d->skip = 0; return d; } void *upb_pbdecoder_startjit(void *closure, const void *hd, size_t size_hint) { upb_pbdecoder *d = closure; UPB_UNUSED(hd); UPB_UNUSED(size_hint); d->top->end_ofs = UINT64_MAX; d->bufstart_ofs = 0; d->call_len = 0; d->skip = 0; return d; } bool upb_pbdecoder_end(void *closure, const void *handler_data) { upb_pbdecoder *d = closure; const upb_pbdecodermethod *method = handler_data; uint64_t end; char dummy; if (d->residual_end > d->residual) { seterr(d, "Unexpected EOF: decoder still has buffered unparsed data"); return false; } if (d->skip) { seterr(d, "Unexpected EOF inside skipped data"); return false; } if (d->top->end_ofs != UINT64_MAX) { seterr(d, "Unexpected EOF inside delimited string"); return false; } /* The user's end() call indicates that the message ends here. */ end = offset(d); d->top->end_ofs = end; #ifdef UPB_USE_JIT_X64 if (method->is_native_) { const mgroup *group = (const mgroup*)method->group; if (d->top != d->stack) d->stack->end_ofs = 0; group->jit_code(closure, method->code_base.ptr, &dummy, 0, NULL); } else #endif { const uint32_t *p = d->pc; d->stack->end_ofs = end; /* Check the previous bytecode, but guard against beginning. */ if (p != method->code_base.ptr) p--; if (getop(*p) == OP_CHECKDELIM) { /* Rewind from OP_TAG* to OP_CHECKDELIM. */ assert(getop(*d->pc) == OP_TAG1 || getop(*d->pc) == OP_TAG2 || getop(*d->pc) == OP_TAGN || getop(*d->pc) == OP_DISPATCH); d->pc = p; } upb_pbdecoder_decode(closure, handler_data, &dummy, 0, NULL); } if (d->call_len != 0) { seterr(d, "Unexpected EOF inside submessage or group"); return false; } return true; } size_t upb_pbdecoder_decode(void *decoder, const void *group, const char *buf, size_t size, const upb_bufhandle *handle) { int32_t result = upb_pbdecoder_resume(decoder, NULL, buf, size, handle); if (result == DECODE_ENDGROUP) goto_endmsg(decoder); CHECK_RETURN(result); return run_decoder_vm(decoder, group, handle); } /* Public API *****************************************************************/ void upb_pbdecoder_reset(upb_pbdecoder *d) { d->top = d->stack; d->top->groupnum = 0; d->ptr = d->residual; d->buf = d->residual; d->end = d->residual; d->residual_end = d->residual; } upb_pbdecoder *upb_pbdecoder_create(upb_env *e, const upb_pbdecodermethod *m, upb_sink *sink) { const size_t default_max_nesting = 64; #ifndef NDEBUG size_t size_before = upb_env_bytesallocated(e); #endif upb_pbdecoder *d = upb_env_malloc(e, sizeof(upb_pbdecoder)); if (!d) return NULL; d->method_ = m; d->callstack = upb_env_malloc(e, callstacksize(d, default_max_nesting)); d->stack = upb_env_malloc(e, stacksize(d, default_max_nesting)); if (!d->stack || !d->callstack) { return NULL; } d->env = e; d->limit = d->stack + default_max_nesting - 1; d->stack_size = default_max_nesting; d->status = NULL; upb_pbdecoder_reset(d); upb_bytessink_reset(&d->input_, &m->input_handler_, d); assert(sink); if (d->method_->dest_handlers_) { if (sink->handlers != d->method_->dest_handlers_) return NULL; } upb_sink_reset(&d->top->sink, sink->handlers, sink->closure); /* If this fails, increase the value in decoder.h. */ assert(upb_env_bytesallocated(e) - size_before <= UPB_PB_DECODER_SIZE); return d; } uint64_t upb_pbdecoder_bytesparsed(const upb_pbdecoder *d) { return offset(d); } const upb_pbdecodermethod *upb_pbdecoder_method(const upb_pbdecoder *d) { return d->method_; } upb_bytessink *upb_pbdecoder_input(upb_pbdecoder *d) { return &d->input_; } size_t upb_pbdecoder_maxnesting(const upb_pbdecoder *d) { return d->stack_size; } bool upb_pbdecoder_setmaxnesting(upb_pbdecoder *d, size_t max) { assert(d->top >= d->stack); if (max < (size_t)(d->top - d->stack)) { /* Can't set a limit smaller than what we are currently at. */ return false; } if (max > d->stack_size) { /* Need to reallocate stack and callstack to accommodate. */ size_t old_size = stacksize(d, d->stack_size); size_t new_size = stacksize(d, max); void *p = upb_env_realloc(d->env, d->stack, old_size, new_size); if (!p) { return false; } d->stack = p; old_size = callstacksize(d, d->stack_size); new_size = callstacksize(d, max); p = upb_env_realloc(d->env, d->callstack, old_size, new_size); if (!p) { return false; } d->callstack = p; d->stack_size = max; } d->limit = d->stack + max - 1; return true; } /* ** upb::Encoder ** ** Since we are implementing pure handlers (ie. without any out-of-band access ** to pre-computed lengths), we have to buffer all submessages before we can ** emit even their first byte. ** ** Not knowing the size of submessages also means we can't write a perfect ** zero-copy implementation, even with buffering. Lengths are stored as ** varints, which means that we don't know how many bytes to reserve for the ** length until we know what the length is. ** ** This leaves us with three main choices: ** ** 1. buffer all submessage data in a temporary buffer, then copy it exactly ** once into the output buffer. ** ** 2. attempt to buffer data directly into the output buffer, estimating how ** many bytes each length will take. When our guesses are wrong, use ** memmove() to grow or shrink the allotted space. ** ** 3. buffer directly into the output buffer, allocating a max length ** ahead-of-time for each submessage length. If we overallocated, we waste ** space, but no memcpy() or memmove() is required. This approach requires ** defining a maximum size for submessages and rejecting submessages that ** exceed that size. ** ** (2) and (3) have the potential to have better performance, but they are more ** complicated and subtle to implement: ** ** (3) requires making an arbitrary choice of the maximum message size; it ** wastes space when submessages are shorter than this and fails ** completely when they are longer. This makes it more finicky and ** requires configuration based on the input. It also makes it impossible ** to perfectly match the output of reference encoders that always use the ** optimal amount of space for each length. ** ** (2) requires guessing the the size upfront, and if multiple lengths are ** guessed wrong the minimum required number of memmove() operations may ** be complicated to compute correctly. Implemented properly, it may have ** a useful amortized or average cost, but more investigation is required ** to determine this and what the optimal algorithm is to achieve it. ** ** (1) makes you always pay for exactly one copy, but its implementation is ** the simplest and its performance is predictable. ** ** So for now, we implement (1) only. If we wish to optimize later, we should ** be able to do it without affecting users. ** ** The strategy is to buffer the segments of data that do *not* depend on ** unknown lengths in one buffer, and keep a separate buffer of segment pointers ** and lengths. When the top-level submessage ends, we can go beginning to end, ** alternating the writing of lengths with memcpy() of the rest of the data. ** At the top level though, no buffering is required. */ /* The output buffer is divided into segments; a segment is a string of data * that is "ready to go" -- it does not need any varint lengths inserted into * the middle. The seams between segments are where varints will be inserted * once they are known. * * We also use the concept of a "run", which is a range of encoded bytes that * occur at a single submessage level. Every segment contains one or more runs. * * A segment can span messages. Consider: * * .--Submessage lengths---------. * | | | * | V V * V | |--------------- | |----------------- * Submessages: | |----------------------------------------------- * Top-level msg: ------------------------------------------------------------ * * Segments: ----- ------------------- ----------------- * Runs: *---- *--------------*--- *---------------- * (* marks the start) * * Note that the top-level menssage is not in any segment because it does not * have any length preceding it. * * A segment is only interrupted when another length needs to be inserted. So * observe how the second segment spans both the inner submessage and part of * the next enclosing message. */ typedef struct { uint32_t msglen; /* The length to varint-encode before this segment. */ uint32_t seglen; /* Length of the segment. */ } upb_pb_encoder_segment; struct upb_pb_encoder { upb_env *env; /* Our input and output. */ upb_sink input_; upb_bytessink *output_; /* The "subclosure" -- used as the inner closure as part of the bytessink * protocol. */ void *subc; /* The output buffer and limit, and our current write position. "buf" * initially points to "initbuf", but is dynamically allocated if we need to * grow beyond the initial size. */ char *buf, *ptr, *limit; /* The beginning of the current run, or undefined if we are at the top * level. */ char *runbegin; /* The list of segments we are accumulating. */ upb_pb_encoder_segment *segbuf, *segptr, *seglimit; /* The stack of enclosing submessages. Each entry in the stack points to the * segment where this submessage's length is being accumulated. */ int *stack, *top, *stacklimit; /* Depth of startmsg/endmsg calls. */ int depth; }; /* low-level buffering ********************************************************/ /* Low-level functions for interacting with the output buffer. */ /* TODO(haberman): handle pushback */ static void putbuf(upb_pb_encoder *e, const char *buf, size_t len) { size_t n = upb_bytessink_putbuf(e->output_, e->subc, buf, len, NULL); UPB_ASSERT_VAR(n, n == len); } static upb_pb_encoder_segment *top(upb_pb_encoder *e) { return &e->segbuf[*e->top]; } /* Call to ensure that at least "bytes" bytes are available for writing at * e->ptr. Returns false if the bytes could not be allocated. */ static bool reserve(upb_pb_encoder *e, size_t bytes) { if ((size_t)(e->limit - e->ptr) < bytes) { /* Grow buffer. */ char *new_buf; size_t needed = bytes + (e->ptr - e->buf); size_t old_size = e->limit - e->buf; size_t new_size = old_size; while (new_size < needed) { new_size *= 2; } new_buf = upb_env_realloc(e->env, e->buf, old_size, new_size); if (new_buf == NULL) { return false; } e->ptr = new_buf + (e->ptr - e->buf); e->runbegin = new_buf + (e->runbegin - e->buf); e->limit = new_buf + new_size; e->buf = new_buf; } return true; } /* Call when "bytes" bytes have been writte at e->ptr. The caller *must* have * previously called reserve() with at least this many bytes. */ static void encoder_advance(upb_pb_encoder *e, size_t bytes) { assert((size_t)(e->limit - e->ptr) >= bytes); e->ptr += bytes; } /* Call when all of the bytes for a handler have been written. Flushes the * bytes if possible and necessary, returning false if this failed. */ static bool commit(upb_pb_encoder *e) { if (!e->top) { /* We aren't inside a delimited region. Flush our accumulated bytes to * the output. * * TODO(haberman): in the future we may want to delay flushing for * efficiency reasons. */ putbuf(e, e->buf, e->ptr - e->buf); e->ptr = e->buf; } return true; } /* Writes the given bytes to the buffer, handling reserve/advance. */ static bool encode_bytes(upb_pb_encoder *e, const void *data, size_t len) { if (!reserve(e, len)) { return false; } memcpy(e->ptr, data, len); encoder_advance(e, len); return true; } /* Finish the current run by adding the run totals to the segment and message * length. */ static void accumulate(upb_pb_encoder *e) { size_t run_len; assert(e->ptr >= e->runbegin); run_len = e->ptr - e->runbegin; e->segptr->seglen += run_len; top(e)->msglen += run_len; e->runbegin = e->ptr; } /* Call to indicate the start of delimited region for which the full length is * not yet known. All data will be buffered until the length is known. * Delimited regions may be nested; their lengths will all be tracked properly. */ static bool start_delim(upb_pb_encoder *e) { if (e->top) { /* We are already buffering, advance to the next segment and push it on the * stack. */ accumulate(e); if (++e->top == e->stacklimit) { /* TODO(haberman): grow stack? */ return false; } if (++e->segptr == e->seglimit) { /* Grow segment buffer. */ size_t old_size = (e->seglimit - e->segbuf) * sizeof(upb_pb_encoder_segment); size_t new_size = old_size * 2; upb_pb_encoder_segment *new_buf = upb_env_realloc(e->env, e->segbuf, old_size, new_size); if (new_buf == NULL) { return false; } e->segptr = new_buf + (e->segptr - e->segbuf); e->seglimit = new_buf + (new_size / sizeof(upb_pb_encoder_segment)); e->segbuf = new_buf; } } else { /* We were previously at the top level, start buffering. */ e->segptr = e->segbuf; e->top = e->stack; e->runbegin = e->ptr; } *e->top = e->segptr - e->segbuf; e->segptr->seglen = 0; e->segptr->msglen = 0; return true; } /* Call to indicate the end of a delimited region. We now know the length of * the delimited region. If we are not nested inside any other delimited * regions, we can now emit all of the buffered data we accumulated. */ static bool end_delim(upb_pb_encoder *e) { size_t msglen; accumulate(e); msglen = top(e)->msglen; if (e->top == e->stack) { /* All lengths are now available, emit all buffered data. */ char buf[UPB_PB_VARINT_MAX_LEN]; upb_pb_encoder_segment *s; const char *ptr = e->buf; for (s = e->segbuf; s <= e->segptr; s++) { size_t lenbytes = upb_vencode64(s->msglen, buf); putbuf(e, buf, lenbytes); putbuf(e, ptr, s->seglen); ptr += s->seglen; } e->ptr = e->buf; e->top = NULL; } else { /* Need to keep buffering; propagate length info into enclosing * submessages. */ --e->top; top(e)->msglen += msglen + upb_varint_size(msglen); } return true; } /* tag_t **********************************************************************/ /* A precomputed (pre-encoded) tag and length. */ typedef struct { uint8_t bytes; char tag[7]; } tag_t; /* Allocates a new tag for this field, and sets it in these handlerattr. */ static void new_tag(upb_handlers *h, const upb_fielddef *f, upb_wiretype_t wt, upb_handlerattr *attr) { uint32_t n = upb_fielddef_number(f); tag_t *tag = upb_gmalloc(sizeof(tag_t)); tag->bytes = upb_vencode64((n << 3) | wt, tag->tag); upb_handlerattr_init(attr); upb_handlerattr_sethandlerdata(attr, tag); upb_handlers_addcleanup(h, tag, upb_gfree); } static bool encode_tag(upb_pb_encoder *e, const tag_t *tag) { return encode_bytes(e, tag->tag, tag->bytes); } /* encoding of wire types *****************************************************/ static bool encode_fixed64(upb_pb_encoder *e, uint64_t val) { /* TODO(haberman): byte-swap for big endian. */ return encode_bytes(e, &val, sizeof(uint64_t)); } static bool encode_fixed32(upb_pb_encoder *e, uint32_t val) { /* TODO(haberman): byte-swap for big endian. */ return encode_bytes(e, &val, sizeof(uint32_t)); } static bool encode_varint(upb_pb_encoder *e, uint64_t val) { if (!reserve(e, UPB_PB_VARINT_MAX_LEN)) { return false; } encoder_advance(e, upb_vencode64(val, e->ptr)); return true; } static uint64_t dbl2uint64(double d) { uint64_t ret; memcpy(&ret, &d, sizeof(uint64_t)); return ret; } static uint32_t flt2uint32(float d) { uint32_t ret; memcpy(&ret, &d, sizeof(uint32_t)); return ret; } /* encoding of proto types ****************************************************/ static bool startmsg(void *c, const void *hd) { upb_pb_encoder *e = c; UPB_UNUSED(hd); if (e->depth++ == 0) { upb_bytessink_start(e->output_, 0, &e->subc); } return true; } static bool endmsg(void *c, const void *hd, upb_status *status) { upb_pb_encoder *e = c; UPB_UNUSED(hd); UPB_UNUSED(status); if (--e->depth == 0) { upb_bytessink_end(e->output_); } return true; } static void *encode_startdelimfield(void *c, const void *hd) { bool ok = encode_tag(c, hd) && commit(c) && start_delim(c); return ok ? c : UPB_BREAK; } static bool encode_enddelimfield(void *c, const void *hd) { UPB_UNUSED(hd); return end_delim(c); } static void *encode_startgroup(void *c, const void *hd) { return (encode_tag(c, hd) && commit(c)) ? c : UPB_BREAK; } static bool encode_endgroup(void *c, const void *hd) { return encode_tag(c, hd) && commit(c); } static void *encode_startstr(void *c, const void *hd, size_t size_hint) { UPB_UNUSED(size_hint); return encode_startdelimfield(c, hd); } static size_t encode_strbuf(void *c, const void *hd, const char *buf, size_t len, const upb_bufhandle *h) { UPB_UNUSED(hd); UPB_UNUSED(h); return encode_bytes(c, buf, len) ? len : 0; } #define T(type, ctype, convert, encode) \ static bool encode_scalar_##type(void *e, const void *hd, ctype val) { \ return encode_tag(e, hd) && encode(e, (convert)(val)) && commit(e); \ } \ static bool encode_packed_##type(void *e, const void *hd, ctype val) { \ UPB_UNUSED(hd); \ return encode(e, (convert)(val)); \ } T(double, double, dbl2uint64, encode_fixed64) T(float, float, flt2uint32, encode_fixed32) T(int64, int64_t, uint64_t, encode_varint) T(int32, int32_t, uint32_t, encode_varint) T(fixed64, uint64_t, uint64_t, encode_fixed64) T(fixed32, uint32_t, uint32_t, encode_fixed32) T(bool, bool, bool, encode_varint) T(uint32, uint32_t, uint32_t, encode_varint) T(uint64, uint64_t, uint64_t, encode_varint) T(enum, int32_t, uint32_t, encode_varint) T(sfixed32, int32_t, uint32_t, encode_fixed32) T(sfixed64, int64_t, uint64_t, encode_fixed64) T(sint32, int32_t, upb_zzenc_32, encode_varint) T(sint64, int64_t, upb_zzenc_64, encode_varint) #undef T /* code to build the handlers *************************************************/ static void newhandlers_callback(const void *closure, upb_handlers *h) { const upb_msgdef *m; upb_msg_field_iter i; UPB_UNUSED(closure); upb_handlers_setstartmsg(h, startmsg, NULL); upb_handlers_setendmsg(h, endmsg, NULL); m = upb_handlers_msgdef(h); for(upb_msg_field_begin(&i, m); !upb_msg_field_done(&i); upb_msg_field_next(&i)) { const upb_fielddef *f = upb_msg_iter_field(&i); bool packed = upb_fielddef_isseq(f) && upb_fielddef_isprimitive(f) && upb_fielddef_packed(f); upb_handlerattr attr; upb_wiretype_t wt = packed ? UPB_WIRE_TYPE_DELIMITED : upb_pb_native_wire_types[upb_fielddef_descriptortype(f)]; /* Pre-encode the tag for this field. */ new_tag(h, f, wt, &attr); if (packed) { upb_handlers_setstartseq(h, f, encode_startdelimfield, &attr); upb_handlers_setendseq(h, f, encode_enddelimfield, &attr); } #define T(upper, lower, upbtype) \ case UPB_DESCRIPTOR_TYPE_##upper: \ if (packed) { \ upb_handlers_set##upbtype(h, f, encode_packed_##lower, &attr); \ } else { \ upb_handlers_set##upbtype(h, f, encode_scalar_##lower, &attr); \ } \ break; switch (upb_fielddef_descriptortype(f)) { T(DOUBLE, double, double); T(FLOAT, float, float); T(INT64, int64, int64); T(INT32, int32, int32); T(FIXED64, fixed64, uint64); T(FIXED32, fixed32, uint32); T(BOOL, bool, bool); T(UINT32, uint32, uint32); T(UINT64, uint64, uint64); T(ENUM, enum, int32); T(SFIXED32, sfixed32, int32); T(SFIXED64, sfixed64, int64); T(SINT32, sint32, int32); T(SINT64, sint64, int64); case UPB_DESCRIPTOR_TYPE_STRING: case UPB_DESCRIPTOR_TYPE_BYTES: upb_handlers_setstartstr(h, f, encode_startstr, &attr); upb_handlers_setendstr(h, f, encode_enddelimfield, &attr); upb_handlers_setstring(h, f, encode_strbuf, &attr); break; case UPB_DESCRIPTOR_TYPE_MESSAGE: upb_handlers_setstartsubmsg(h, f, encode_startdelimfield, &attr); upb_handlers_setendsubmsg(h, f, encode_enddelimfield, &attr); break; case UPB_DESCRIPTOR_TYPE_GROUP: { /* Endgroup takes a different tag (wire_type = END_GROUP). */ upb_handlerattr attr2; new_tag(h, f, UPB_WIRE_TYPE_END_GROUP, &attr2); upb_handlers_setstartsubmsg(h, f, encode_startgroup, &attr); upb_handlers_setendsubmsg(h, f, encode_endgroup, &attr2); upb_handlerattr_uninit(&attr2); break; } } #undef T upb_handlerattr_uninit(&attr); } } void upb_pb_encoder_reset(upb_pb_encoder *e) { e->segptr = NULL; e->top = NULL; e->depth = 0; } /* public API *****************************************************************/ const upb_handlers *upb_pb_encoder_newhandlers(const upb_msgdef *m, const void *owner) { return upb_handlers_newfrozen(m, owner, newhandlers_callback, NULL); } upb_pb_encoder *upb_pb_encoder_create(upb_env *env, const upb_handlers *h, upb_bytessink *output) { const size_t initial_bufsize = 256; const size_t initial_segbufsize = 16; /* TODO(haberman): make this configurable. */ const size_t stack_size = 64; #ifndef NDEBUG const size_t size_before = upb_env_bytesallocated(env); #endif upb_pb_encoder *e = upb_env_malloc(env, sizeof(upb_pb_encoder)); if (!e) return NULL; e->buf = upb_env_malloc(env, initial_bufsize); e->segbuf = upb_env_malloc(env, initial_segbufsize * sizeof(*e->segbuf)); e->stack = upb_env_malloc(env, stack_size * sizeof(*e->stack)); if (!e->buf || !e->segbuf || !e->stack) { return NULL; } e->limit = e->buf + initial_bufsize; e->seglimit = e->segbuf + initial_segbufsize; e->stacklimit = e->stack + stack_size; upb_pb_encoder_reset(e); upb_sink_reset(&e->input_, h, e); e->env = env; e->output_ = output; e->subc = output->closure; e->ptr = e->buf; /* If this fails, increase the value in encoder.h. */ assert(upb_env_bytesallocated(env) - size_before <= UPB_PB_ENCODER_SIZE); return e; } upb_sink *upb_pb_encoder_input(upb_pb_encoder *e) { return &e->input_; } upb_filedef **upb_loaddescriptor(const char *buf, size_t n, const void *owner, upb_status *status) { /* Create handlers. */ const upb_pbdecodermethod *decoder_m; const upb_handlers *reader_h = upb_descreader_newhandlers(&reader_h); upb_env env; upb_pbdecodermethodopts opts; upb_pbdecoder *decoder; upb_descreader *reader; bool ok; size_t i; upb_filedef **ret = NULL; upb_pbdecodermethodopts_init(&opts, reader_h); decoder_m = upb_pbdecodermethod_new(&opts, &decoder_m); upb_env_init(&env); upb_env_reporterrorsto(&env, status); reader = upb_descreader_create(&env, reader_h); decoder = upb_pbdecoder_create(&env, decoder_m, upb_descreader_input(reader)); /* Push input data. */ ok = upb_bufsrc_putbuf(buf, n, upb_pbdecoder_input(decoder)); if (!ok) { goto cleanup; } ret = upb_gmalloc(sizeof (*ret) * (upb_descreader_filecount(reader) + 1)); if (!ret) { goto cleanup; } for (i = 0; i < upb_descreader_filecount(reader); i++) { ret[i] = upb_descreader_file(reader, i); upb_filedef_ref(ret[i], owner); } ret[i] = NULL; cleanup: upb_env_uninit(&env); upb_handlers_unref(reader_h, &reader_h); upb_pbdecodermethod_unref(decoder_m, &decoder_m); return ret; } /* * upb::pb::TextPrinter * * OPT: This is not optimized at all. It uses printf() which parses the format * string every time, and it allocates memory for every put. */ #include <ctype.h> #include <float.h> #include <inttypes.h> #include <stdarg.h> #include <stdio.h> #include <string.h> struct upb_textprinter { upb_sink input_; upb_bytessink *output_; int indent_depth_; bool single_line_; void *subc; }; #define CHECK(x) if ((x) < 0) goto err; static const char *shortname(const char *longname) { const char *last = strrchr(longname, '.'); return last ? last + 1 : longname; } static int indent(upb_textprinter *p) { int i; if (!p->single_line_) for (i = 0; i < p->indent_depth_; i++) upb_bytessink_putbuf(p->output_, p->subc, " ", 2, NULL); return 0; } static int endfield(upb_textprinter *p) { const char ch = (p->single_line_ ? ' ' : '\n'); upb_bytessink_putbuf(p->output_, p->subc, &ch, 1, NULL); return 0; } static int putescaped(upb_textprinter *p, const char *buf, size_t len, bool preserve_utf8) { /* Based on CEscapeInternal() from Google's protobuf release. */ char dstbuf[4096], *dst = dstbuf, *dstend = dstbuf + sizeof(dstbuf); const char *end = buf + len; /* I think hex is prettier and more useful, but proto2 uses octal; should * investigate whether it can parse hex also. */ const bool use_hex = false; bool last_hex_escape = false; /* true if last output char was \xNN */ for (; buf < end; buf++) { bool is_hex_escape; if (dstend - dst < 4) { upb_bytessink_putbuf(p->output_, p->subc, dstbuf, dst - dstbuf, NULL); dst = dstbuf; } is_hex_escape = false; switch (*buf) { case '\n': *(dst++) = '\\'; *(dst++) = 'n'; break; case '\r': *(dst++) = '\\'; *(dst++) = 'r'; break; case '\t': *(dst++) = '\\'; *(dst++) = 't'; break; case '\"': *(dst++) = '\\'; *(dst++) = '\"'; break; case '\'': *(dst++) = '\\'; *(dst++) = '\''; break; case '\\': *(dst++) = '\\'; *(dst++) = '\\'; break; default: /* Note that if we emit \xNN and the buf character after that is a hex * digit then that digit must be escaped too to prevent it being * interpreted as part of the character code by C. */ if ((!preserve_utf8 || (uint8_t)*buf < 0x80) && (!isprint(*buf) || (last_hex_escape && isxdigit(*buf)))) { sprintf(dst, (use_hex ? "\\x%02x" : "\\%03o"), (uint8_t)*buf); is_hex_escape = use_hex; dst += 4; } else { *(dst++) = *buf; break; } } last_hex_escape = is_hex_escape; } /* Flush remaining data. */ upb_bytessink_putbuf(p->output_, p->subc, dstbuf, dst - dstbuf, NULL); return 0; } bool putf(upb_textprinter *p, const char *fmt, ...) { va_list args; va_list args_copy; char *str; int written; int len; bool ok; va_start(args, fmt); /* Run once to get the length of the string. */ _upb_va_copy(args_copy, args); len = _upb_vsnprintf(NULL, 0, fmt, args_copy); va_end(args_copy); /* + 1 for NULL terminator (vsprintf() requires it even if we don't). */ str = upb_gmalloc(len + 1); if (!str) return false; written = vsprintf(str, fmt, args); va_end(args); UPB_ASSERT_VAR(written, written == len); ok = upb_bytessink_putbuf(p->output_, p->subc, str, len, NULL); upb_gfree(str); return ok; } /* handlers *******************************************************************/ static bool textprinter_startmsg(void *c, const void *hd) { upb_textprinter *p = c; UPB_UNUSED(hd); if (p->indent_depth_ == 0) { upb_bytessink_start(p->output_, 0, &p->subc); } return true; } static bool textprinter_endmsg(void *c, const void *hd, upb_status *s) { upb_textprinter *p = c; UPB_UNUSED(hd); UPB_UNUSED(s); if (p->indent_depth_ == 0) { upb_bytessink_end(p->output_); } return true; } #define TYPE(name, ctype, fmt) \ static bool textprinter_put ## name(void *closure, const void *handler_data, \ ctype val) { \ upb_textprinter *p = closure; \ const upb_fielddef *f = handler_data; \ CHECK(indent(p)); \ putf(p, "%s: " fmt, upb_fielddef_name(f), val); \ CHECK(endfield(p)); \ return true; \ err: \ return false; \ } static bool textprinter_putbool(void *closure, const void *handler_data, bool val) { upb_textprinter *p = closure; const upb_fielddef *f = handler_data; CHECK(indent(p)); putf(p, "%s: %s", upb_fielddef_name(f), val ? "true" : "false"); CHECK(endfield(p)); return true; err: return false; } #define STRINGIFY_HELPER(x) #x #define STRINGIFY_MACROVAL(x) STRINGIFY_HELPER(x) TYPE(int32, int32_t, "%" PRId32) TYPE(int64, int64_t, "%" PRId64) TYPE(uint32, uint32_t, "%" PRIu32) TYPE(uint64, uint64_t, "%" PRIu64) TYPE(float, float, "%." STRINGIFY_MACROVAL(FLT_DIG) "g") TYPE(double, double, "%." STRINGIFY_MACROVAL(DBL_DIG) "g") #undef TYPE /* Output a symbolic value from the enum if found, else just print as int32. */ static bool textprinter_putenum(void *closure, const void *handler_data, int32_t val) { upb_textprinter *p = closure; const upb_fielddef *f = handler_data; const upb_enumdef *enum_def = upb_downcast_enumdef(upb_fielddef_subdef(f)); const char *label = upb_enumdef_iton(enum_def, val); if (label) { indent(p); putf(p, "%s: %s", upb_fielddef_name(f), label); endfield(p); } else { if (!textprinter_putint32(closure, handler_data, val)) return false; } return true; } static void *textprinter_startstr(void *closure, const void *handler_data, size_t size_hint) { upb_textprinter *p = closure; const upb_fielddef *f = handler_data; UPB_UNUSED(size_hint); indent(p); putf(p, "%s: \"", upb_fielddef_name(f)); return p; } static bool textprinter_endstr(void *closure, const void *handler_data) { upb_textprinter *p = closure; UPB_UNUSED(handler_data); putf(p, "\""); endfield(p); return true; } static size_t textprinter_putstr(void *closure, const void *hd, const char *buf, size_t len, const upb_bufhandle *handle) { upb_textprinter *p = closure; const upb_fielddef *f = hd; UPB_UNUSED(handle); CHECK(putescaped(p, buf, len, upb_fielddef_type(f) == UPB_TYPE_STRING)); return len; err: return 0; } static void *textprinter_startsubmsg(void *closure, const void *handler_data) { upb_textprinter *p = closure; const char *name = handler_data; CHECK(indent(p)); putf(p, "%s {%c", name, p->single_line_ ? ' ' : '\n'); p->indent_depth_++; return p; err: return UPB_BREAK; } static bool textprinter_endsubmsg(void *closure, const void *handler_data) { upb_textprinter *p = closure; UPB_UNUSED(handler_data); p->indent_depth_--; CHECK(indent(p)); upb_bytessink_putbuf(p->output_, p->subc, "}", 1, NULL); CHECK(endfield(p)); return true; err: return false; } static void onmreg(const void *c, upb_handlers *h) { const upb_msgdef *m = upb_handlers_msgdef(h); upb_msg_field_iter i; UPB_UNUSED(c); upb_handlers_setstartmsg(h, textprinter_startmsg, NULL); upb_handlers_setendmsg(h, textprinter_endmsg, NULL); for(upb_msg_field_begin(&i, m); !upb_msg_field_done(&i); upb_msg_field_next(&i)) { upb_fielddef *f = upb_msg_iter_field(&i); upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER; upb_handlerattr_sethandlerdata(&attr, f); switch (upb_fielddef_type(f)) { case UPB_TYPE_INT32: upb_handlers_setint32(h, f, textprinter_putint32, &attr); break; case UPB_TYPE_INT64: upb_handlers_setint64(h, f, textprinter_putint64, &attr); break; case UPB_TYPE_UINT32: upb_handlers_setuint32(h, f, textprinter_putuint32, &attr); break; case UPB_TYPE_UINT64: upb_handlers_setuint64(h, f, textprinter_putuint64, &attr); break; case UPB_TYPE_FLOAT: upb_handlers_setfloat(h, f, textprinter_putfloat, &attr); break; case UPB_TYPE_DOUBLE: upb_handlers_setdouble(h, f, textprinter_putdouble, &attr); break; case UPB_TYPE_BOOL: upb_handlers_setbool(h, f, textprinter_putbool, &attr); break; case UPB_TYPE_STRING: case UPB_TYPE_BYTES: upb_handlers_setstartstr(h, f, textprinter_startstr, &attr); upb_handlers_setstring(h, f, textprinter_putstr, &attr); upb_handlers_setendstr(h, f, textprinter_endstr, &attr); break; case UPB_TYPE_MESSAGE: { const char *name = upb_fielddef_istagdelim(f) ? shortname(upb_msgdef_fullname(upb_fielddef_msgsubdef(f))) : upb_fielddef_name(f); upb_handlerattr_sethandlerdata(&attr, name); upb_handlers_setstartsubmsg(h, f, textprinter_startsubmsg, &attr); upb_handlers_setendsubmsg(h, f, textprinter_endsubmsg, &attr); break; } case UPB_TYPE_ENUM: upb_handlers_setint32(h, f, textprinter_putenum, &attr); break; } } } static void textprinter_reset(upb_textprinter *p, bool single_line) { p->single_line_ = single_line; p->indent_depth_ = 0; } /* Public API *****************************************************************/ upb_textprinter *upb_textprinter_create(upb_env *env, const upb_handlers *h, upb_bytessink *output) { upb_textprinter *p = upb_env_malloc(env, sizeof(upb_textprinter)); if (!p) return NULL; p->output_ = output; upb_sink_reset(&p->input_, h, p); textprinter_reset(p, false); return p; } const upb_handlers *upb_textprinter_newhandlers(const upb_msgdef *m, const void *owner) { return upb_handlers_newfrozen(m, owner, &onmreg, NULL); } upb_sink *upb_textprinter_input(upb_textprinter *p) { return &p->input_; } void upb_textprinter_setsingleline(upb_textprinter *p, bool single_line) { p->single_line_ = single_line; } /* Index is descriptor type. */ const uint8_t upb_pb_native_wire_types[] = { UPB_WIRE_TYPE_END_GROUP, /* ENDGROUP */ UPB_WIRE_TYPE_64BIT, /* DOUBLE */ UPB_WIRE_TYPE_32BIT, /* FLOAT */ UPB_WIRE_TYPE_VARINT, /* INT64 */ UPB_WIRE_TYPE_VARINT, /* UINT64 */ UPB_WIRE_TYPE_VARINT, /* INT32 */ UPB_WIRE_TYPE_64BIT, /* FIXED64 */ UPB_WIRE_TYPE_32BIT, /* FIXED32 */ UPB_WIRE_TYPE_VARINT, /* BOOL */ UPB_WIRE_TYPE_DELIMITED, /* STRING */ UPB_WIRE_TYPE_START_GROUP, /* GROUP */ UPB_WIRE_TYPE_DELIMITED, /* MESSAGE */ UPB_WIRE_TYPE_DELIMITED, /* BYTES */ UPB_WIRE_TYPE_VARINT, /* UINT32 */ UPB_WIRE_TYPE_VARINT, /* ENUM */ UPB_WIRE_TYPE_32BIT, /* SFIXED32 */ UPB_WIRE_TYPE_64BIT, /* SFIXED64 */ UPB_WIRE_TYPE_VARINT, /* SINT32 */ UPB_WIRE_TYPE_VARINT, /* SINT64 */ }; /* A basic branch-based decoder, uses 32-bit values to get good performance * on 32-bit architectures (but performs well on 64-bits also). * This scheme comes from the original Google Protobuf implementation * (proto2). */ upb_decoderet upb_vdecode_max8_branch32(upb_decoderet r) { upb_decoderet err = {NULL, 0}; const char *p = r.p; uint32_t low = (uint32_t)r.val; uint32_t high = 0; uint32_t b; b = *(p++); low |= (b & 0x7fU) << 14; if (!(b & 0x80)) goto done; b = *(p++); low |= (b & 0x7fU) << 21; if (!(b & 0x80)) goto done; b = *(p++); low |= (b & 0x7fU) << 28; high = (b & 0x7fU) >> 4; if (!(b & 0x80)) goto done; b = *(p++); high |= (b & 0x7fU) << 3; if (!(b & 0x80)) goto done; b = *(p++); high |= (b & 0x7fU) << 10; if (!(b & 0x80)) goto done; b = *(p++); high |= (b & 0x7fU) << 17; if (!(b & 0x80)) goto done; b = *(p++); high |= (b & 0x7fU) << 24; if (!(b & 0x80)) goto done; b = *(p++); high |= (b & 0x7fU) << 31; if (!(b & 0x80)) goto done; return err; done: r.val = ((uint64_t)high << 32) | low; r.p = p; return r; } /* Like the previous, but uses 64-bit values. */ upb_decoderet upb_vdecode_max8_branch64(upb_decoderet r) { const char *p = r.p; uint64_t val = r.val; uint64_t b; upb_decoderet err = {NULL, 0}; b = *(p++); val |= (b & 0x7fU) << 14; if (!(b & 0x80)) goto done; b = *(p++); val |= (b & 0x7fU) << 21; if (!(b & 0x80)) goto done; b = *(p++); val |= (b & 0x7fU) << 28; if (!(b & 0x80)) goto done; b = *(p++); val |= (b & 0x7fU) << 35; if (!(b & 0x80)) goto done; b = *(p++); val |= (b & 0x7fU) << 42; if (!(b & 0x80)) goto done; b = *(p++); val |= (b & 0x7fU) << 49; if (!(b & 0x80)) goto done; b = *(p++); val |= (b & 0x7fU) << 56; if (!(b & 0x80)) goto done; b = *(p++); val |= (b & 0x7fU) << 63; if (!(b & 0x80)) goto done; return err; done: r.val = val; r.p = p; return r; } /* Given an encoded varint v, returns an integer with a single bit set that * indicates the end of the varint. Subtracting one from this value will * yield a mask that leaves only bits that are part of the varint. Returns * 0 if the varint is unterminated. */ static uint64_t upb_get_vstopbit(uint64_t v) { uint64_t cbits = v | 0x7f7f7f7f7f7f7f7fULL; return ~cbits & (cbits+1); } /* A branchless decoder. Credit to Pascal Massimino for the bit-twiddling. */ upb_decoderet upb_vdecode_max8_massimino(upb_decoderet r) { uint64_t b; uint64_t stop_bit; upb_decoderet my_r; memcpy(&b, r.p, sizeof(b)); stop_bit = upb_get_vstopbit(b); b = (b & 0x7f7f7f7f7f7f7f7fULL) & (stop_bit - 1); b += b & 0x007f007f007f007fULL; b += 3 * (b & 0x0000ffff0000ffffULL); b += 15 * (b & 0x00000000ffffffffULL); if (stop_bit == 0) { /* Error: unterminated varint. */ upb_decoderet err_r = {(void*)0, 0}; return err_r; } my_r = upb_decoderet_make(r.p + ((__builtin_ctzll(stop_bit) + 1) / 8), r.val | (b << 7)); return my_r; } /* A branchless decoder. Credit to Daniel Wright for the bit-twiddling. */ upb_decoderet upb_vdecode_max8_wright(upb_decoderet r) { uint64_t b; uint64_t stop_bit; upb_decoderet my_r; memcpy(&b, r.p, sizeof(b)); stop_bit = upb_get_vstopbit(b); b &= (stop_bit - 1); b = ((b & 0x7f007f007f007f00ULL) >> 1) | (b & 0x007f007f007f007fULL); b = ((b & 0xffff0000ffff0000ULL) >> 2) | (b & 0x0000ffff0000ffffULL); b = ((b & 0xffffffff00000000ULL) >> 4) | (b & 0x00000000ffffffffULL); if (stop_bit == 0) { /* Error: unterminated varint. */ upb_decoderet err_r = {(void*)0, 0}; return err_r; } my_r = upb_decoderet_make(r.p + ((__builtin_ctzll(stop_bit) + 1) / 8), r.val | (b << 14)); return my_r; } #line 1 "upb/json/parser.rl" /* ** upb::json::Parser (upb_json_parser) ** ** A parser that uses the Ragel State Machine Compiler to generate ** the finite automata. ** ** Ragel only natively handles regular languages, but we can manually ** program it a bit to handle context-free languages like JSON, by using ** the "fcall" and "fret" constructs. ** ** This parser can handle the basics, but needs several things to be fleshed ** out: ** ** - handling of unicode escape sequences (including high surrogate pairs). ** - properly check and report errors for unknown fields, stack overflow, ** improper array nesting (or lack of nesting). ** - handling of base64 sequences with padding characters. ** - handling of push-back (non-success returns from sink functions). ** - handling of keys/escape-sequences/etc that span input buffers. */ #include <assert.h> #include <errno.h> #include <stdint.h> #include <stdlib.h> #include <string.h> #define UPB_JSON_MAX_DEPTH 64 typedef struct { upb_sink sink; /* The current message in which we're parsing, and the field whose value we're * expecting next. */ const upb_msgdef *m; const upb_fielddef *f; /* The table mapping json name to fielddef for this message. */ upb_strtable *name_table; /* We are in a repeated-field context, ready to emit mapentries as * submessages. This flag alters the start-of-object (open-brace) behavior to * begin a sequence of mapentry messages rather than a single submessage. */ bool is_map; /* We are in a map-entry message context. This flag is set when parsing the * value field of a single map entry and indicates to all value-field parsers * (subobjects, strings, numbers, and bools) that the map-entry submessage * should end as soon as the value is parsed. */ bool is_mapentry; /* If |is_map| or |is_mapentry| is true, |mapfield| refers to the parent * message's map field that we're currently parsing. This differs from |f| * because |f| is the field in the *current* message (i.e., the map-entry * message itself), not the parent's field that leads to this map. */ const upb_fielddef *mapfield; } upb_jsonparser_frame; struct upb_json_parser { upb_env *env; const upb_json_parsermethod *method; upb_bytessink input_; /* Stack to track the JSON scopes we are in. */ upb_jsonparser_frame stack[UPB_JSON_MAX_DEPTH]; upb_jsonparser_frame *top; upb_jsonparser_frame *limit; upb_status status; /* Ragel's internal parsing stack for the parsing state machine. */ int current_state; int parser_stack[UPB_JSON_MAX_DEPTH]; int parser_top; /* The handle for the current buffer. */ const upb_bufhandle *handle; /* Accumulate buffer. See details in parser.rl. */ const char *accumulated; size_t accumulated_len; char *accumulate_buf; size_t accumulate_buf_size; /* Multi-part text data. See details in parser.rl. */ int multipart_state; upb_selector_t string_selector; /* Input capture. See details in parser.rl. */ const char *capture; /* Intermediate result of parsing a unicode escape sequence. */ uint32_t digit; }; struct upb_json_parsermethod { upb_refcounted base; upb_byteshandler input_handler_; /* Mainly for the purposes of refcounting, so all the fielddefs we point * to stay alive. */ const upb_msgdef *msg; /* Keys are upb_msgdef*, values are upb_strtable (json_name -> fielddef) */ upb_inttable name_tables; }; #define PARSER_CHECK_RETURN(x) if (!(x)) return false /* Used to signal that a capture has been suspended. */ static char suspend_capture; static upb_selector_t getsel_for_handlertype(upb_json_parser *p, upb_handlertype_t type) { upb_selector_t sel; bool ok = upb_handlers_getselector(p->top->f, type, &sel); UPB_ASSERT_VAR(ok, ok); return sel; } static upb_selector_t parser_getsel(upb_json_parser *p) { return getsel_for_handlertype( p, upb_handlers_getprimitivehandlertype(p->top->f)); } static bool check_stack(upb_json_parser *p) { if ((p->top + 1) == p->limit) { upb_status_seterrmsg(&p->status, "Nesting too deep"); upb_env_reporterror(p->env, &p->status); return false; } return true; } static void set_name_table(upb_json_parser *p, upb_jsonparser_frame *frame) { upb_value v; bool ok = upb_inttable_lookupptr(&p->method->name_tables, frame->m, &v); UPB_ASSERT_VAR(ok, ok); frame->name_table = upb_value_getptr(v); } /* There are GCC/Clang built-ins for overflow checking which we could start * using if there was any performance benefit to it. */ static bool checked_add(size_t a, size_t b, size_t *c) { if (SIZE_MAX - a < b) return false; *c = a + b; return true; } static size_t saturating_multiply(size_t a, size_t b) { /* size_t is unsigned, so this is defined behavior even on overflow. */ size_t ret = a * b; if (b != 0 && ret / b != a) { ret = SIZE_MAX; } return ret; } /* Base64 decoding ************************************************************/ /* TODO(haberman): make this streaming. */ static const signed char b64table[] = { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 62/*+*/, -1, -1, -1, 63/*/ */, 52/*0*/, 53/*1*/, 54/*2*/, 55/*3*/, 56/*4*/, 57/*5*/, 58/*6*/, 59/*7*/, 60/*8*/, 61/*9*/, -1, -1, -1, -1, -1, -1, -1, 0/*A*/, 1/*B*/, 2/*C*/, 3/*D*/, 4/*E*/, 5/*F*/, 6/*G*/, 07/*H*/, 8/*I*/, 9/*J*/, 10/*K*/, 11/*L*/, 12/*M*/, 13/*N*/, 14/*O*/, 15/*P*/, 16/*Q*/, 17/*R*/, 18/*S*/, 19/*T*/, 20/*U*/, 21/*V*/, 22/*W*/, 23/*X*/, 24/*Y*/, 25/*Z*/, -1, -1, -1, -1, -1, -1, 26/*a*/, 27/*b*/, 28/*c*/, 29/*d*/, 30/*e*/, 31/*f*/, 32/*g*/, 33/*h*/, 34/*i*/, 35/*j*/, 36/*k*/, 37/*l*/, 38/*m*/, 39/*n*/, 40/*o*/, 41/*p*/, 42/*q*/, 43/*r*/, 44/*s*/, 45/*t*/, 46/*u*/, 47/*v*/, 48/*w*/, 49/*x*/, 50/*y*/, 51/*z*/, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }; /* Returns the table value sign-extended to 32 bits. Knowing that the upper * bits will be 1 for unrecognized characters makes it easier to check for * this error condition later (see below). */ int32_t b64lookup(unsigned char ch) { return b64table[ch]; } /* Returns true if the given character is not a valid base64 character or * padding. */ bool nonbase64(unsigned char ch) { return b64lookup(ch) == -1 && ch != '='; } static bool base64_push(upb_json_parser *p, upb_selector_t sel, const char *ptr, size_t len) { const char *limit = ptr + len; for (; ptr < limit; ptr += 4) { uint32_t val; char output[3]; if (limit - ptr < 4) { upb_status_seterrf(&p->status, "Base64 input for bytes field not a multiple of 4: %s", upb_fielddef_name(p->top->f)); upb_env_reporterror(p->env, &p->status); return false; } val = b64lookup(ptr[0]) << 18 | b64lookup(ptr[1]) << 12 | b64lookup(ptr[2]) << 6 | b64lookup(ptr[3]); /* Test the upper bit; returns true if any of the characters returned -1. */ if (val & 0x80000000) { goto otherchar; } output[0] = val >> 16; output[1] = (val >> 8) & 0xff; output[2] = val & 0xff; upb_sink_putstring(&p->top->sink, sel, output, 3, NULL); } return true; otherchar: if (nonbase64(ptr[0]) || nonbase64(ptr[1]) || nonbase64(ptr[2]) || nonbase64(ptr[3]) ) { upb_status_seterrf(&p->status, "Non-base64 characters in bytes field: %s", upb_fielddef_name(p->top->f)); upb_env_reporterror(p->env, &p->status); return false; } if (ptr[2] == '=') { uint32_t val; char output; /* Last group contains only two input bytes, one output byte. */ if (ptr[0] == '=' || ptr[1] == '=' || ptr[3] != '=') { goto badpadding; } val = b64lookup(ptr[0]) << 18 | b64lookup(ptr[1]) << 12; assert(!(val & 0x80000000)); output = val >> 16; upb_sink_putstring(&p->top->sink, sel, &output, 1, NULL); return true; } else { uint32_t val; char output[2]; /* Last group contains only three input bytes, two output bytes. */ if (ptr[0] == '=' || ptr[1] == '=' || ptr[2] == '=') { goto badpadding; } val = b64lookup(ptr[0]) << 18 | b64lookup(ptr[1]) << 12 | b64lookup(ptr[2]) << 6; output[0] = val >> 16; output[1] = (val >> 8) & 0xff; upb_sink_putstring(&p->top->sink, sel, output, 2, NULL); return true; } badpadding: upb_status_seterrf(&p->status, "Incorrect base64 padding for field: %s (%.*s)", upb_fielddef_name(p->top->f), 4, ptr); upb_env_reporterror(p->env, &p->status); return false; } /* Accumulate buffer **********************************************************/ /* Functionality for accumulating a buffer. * * Some parts of the parser need an entire value as a contiguous string. For * example, to look up a member name in a hash table, or to turn a string into * a number, the relevant library routines need the input string to be in * contiguous memory, even if the value spanned two or more buffers in the * input. These routines handle that. * * In the common case we can just point to the input buffer to get this * contiguous string and avoid any actual copy. So we optimistically begin * this way. But there are a few cases where we must instead copy into a * separate buffer: * * 1. The string was not contiguous in the input (it spanned buffers). * * 2. The string included escape sequences that need to be interpreted to get * the true value in a contiguous buffer. */ static void assert_accumulate_empty(upb_json_parser *p) { UPB_UNUSED(p); assert(p->accumulated == NULL); assert(p->accumulated_len == 0); } static void accumulate_clear(upb_json_parser *p) { p->accumulated = NULL; p->accumulated_len = 0; } /* Used internally by accumulate_append(). */ static bool accumulate_realloc(upb_json_parser *p, size_t need) { void *mem; size_t old_size = p->accumulate_buf_size; size_t new_size = UPB_MAX(old_size, 128); while (new_size < need) { new_size = saturating_multiply(new_size, 2); } mem = upb_env_realloc(p->env, p->accumulate_buf, old_size, new_size); if (!mem) { upb_status_seterrmsg(&p->status, "Out of memory allocating buffer."); upb_env_reporterror(p->env, &p->status); return false; } p->accumulate_buf = mem; p->accumulate_buf_size = new_size; return true; } /* Logically appends the given data to the append buffer. * If "can_alias" is true, we will try to avoid actually copying, but the buffer * must be valid until the next accumulate_append() call (if any). */ static bool accumulate_append(upb_json_parser *p, const char *buf, size_t len, bool can_alias) { size_t need; if (!p->accumulated && can_alias) { p->accumulated = buf; p->accumulated_len = len; return true; } if (!checked_add(p->accumulated_len, len, &need)) { upb_status_seterrmsg(&p->status, "Integer overflow."); upb_env_reporterror(p->env, &p->status); return false; } if (need > p->accumulate_buf_size && !accumulate_realloc(p, need)) { return false; } if (p->accumulated != p->accumulate_buf) { memcpy(p->accumulate_buf, p->accumulated, p->accumulated_len); p->accumulated = p->accumulate_buf; } memcpy(p->accumulate_buf + p->accumulated_len, buf, len); p->accumulated_len += len; return true; } /* Returns a pointer to the data accumulated since the last accumulate_clear() * call, and writes the length to *len. This with point either to the input * buffer or a temporary accumulate buffer. */ static const char *accumulate_getptr(upb_json_parser *p, size_t *len) { assert(p->accumulated); *len = p->accumulated_len; return p->accumulated; } /* Mult-part text data ********************************************************/ /* When we have text data in the input, it can often come in multiple segments. * For example, there may be some raw string data followed by an escape * sequence. The two segments are processed with different logic. Also buffer * seams in the input can cause multiple segments. * * As we see segments, there are two main cases for how we want to process them: * * 1. we want to push the captured input directly to string handlers. * * 2. we need to accumulate all the parts into a contiguous buffer for further * processing (field name lookup, string->number conversion, etc). */ /* This is the set of states for p->multipart_state. */ enum { /* We are not currently processing multipart data. */ MULTIPART_INACTIVE = 0, /* We are processing multipart data by accumulating it into a contiguous * buffer. */ MULTIPART_ACCUMULATE = 1, /* We are processing multipart data by pushing each part directly to the * current string handlers. */ MULTIPART_PUSHEAGERLY = 2 }; /* Start a multi-part text value where we accumulate the data for processing at * the end. */ static void multipart_startaccum(upb_json_parser *p) { assert_accumulate_empty(p); assert(p->multipart_state == MULTIPART_INACTIVE); p->multipart_state = MULTIPART_ACCUMULATE; } /* Start a multi-part text value where we immediately push text data to a string * value with the given selector. */ static void multipart_start(upb_json_parser *p, upb_selector_t sel) { assert_accumulate_empty(p); assert(p->multipart_state == MULTIPART_INACTIVE); p->multipart_state = MULTIPART_PUSHEAGERLY; p->string_selector = sel; } static bool multipart_text(upb_json_parser *p, const char *buf, size_t len, bool can_alias) { switch (p->multipart_state) { case MULTIPART_INACTIVE: upb_status_seterrmsg( &p->status, "Internal error: unexpected state MULTIPART_INACTIVE"); upb_env_reporterror(p->env, &p->status); return false; case MULTIPART_ACCUMULATE: if (!accumulate_append(p, buf, len, can_alias)) { return false; } break; case MULTIPART_PUSHEAGERLY: { const upb_bufhandle *handle = can_alias ? p->handle : NULL; upb_sink_putstring(&p->top->sink, p->string_selector, buf, len, handle); break; } } return true; } /* Note: this invalidates the accumulate buffer! Call only after reading its * contents. */ static void multipart_end(upb_json_parser *p) { assert(p->multipart_state != MULTIPART_INACTIVE); p->multipart_state = MULTIPART_INACTIVE; accumulate_clear(p); } /* Input capture **************************************************************/ /* Functionality for capturing a region of the input as text. Gracefully * handles the case where a buffer seam occurs in the middle of the captured * region. */ static void capture_begin(upb_json_parser *p, const char *ptr) { assert(p->multipart_state != MULTIPART_INACTIVE); assert(p->capture == NULL); p->capture = ptr; } static bool capture_end(upb_json_parser *p, const char *ptr) { assert(p->capture); if (multipart_text(p, p->capture, ptr - p->capture, true)) { p->capture = NULL; return true; } else { return false; } } /* This is called at the end of each input buffer (ie. when we have hit a * buffer seam). If we are in the middle of capturing the input, this * processes the unprocessed capture region. */ static void capture_suspend(upb_json_parser *p, const char **ptr) { if (!p->capture) return; if (multipart_text(p, p->capture, *ptr - p->capture, false)) { /* We use this as a signal that we were in the middle of capturing, and * that capturing should resume at the beginning of the next buffer. * * We can't use *ptr here, because we have no guarantee that this pointer * will be valid when we resume (if the underlying memory is freed, then * using the pointer at all, even to compare to NULL, is likely undefined * behavior). */ p->capture = &suspend_capture; } else { /* Need to back up the pointer to the beginning of the capture, since * we were not able to actually preserve it. */ *ptr = p->capture; } } static void capture_resume(upb_json_parser *p, const char *ptr) { if (p->capture) { assert(p->capture == &suspend_capture); p->capture = ptr; } } /* Callbacks from the parser **************************************************/ /* These are the functions called directly from the parser itself. * We define these in the same order as their declarations in the parser. */ static char escape_char(char in) { switch (in) { case 'r': return '\r'; case 't': return '\t'; case 'n': return '\n'; case 'f': return '\f'; case 'b': return '\b'; case '/': return '/'; case '"': return '"'; case '\\': return '\\'; default: assert(0); return 'x'; } } static bool escape(upb_json_parser *p, const char *ptr) { char ch = escape_char(*ptr); return multipart_text(p, &ch, 1, false); } static void start_hex(upb_json_parser *p) { p->digit = 0; } static void hexdigit(upb_json_parser *p, const char *ptr) { char ch = *ptr; p->digit <<= 4; if (ch >= '0' && ch <= '9') { p->digit += (ch - '0'); } else if (ch >= 'a' && ch <= 'f') { p->digit += ((ch - 'a') + 10); } else { assert(ch >= 'A' && ch <= 'F'); p->digit += ((ch - 'A') + 10); } } static bool end_hex(upb_json_parser *p) { uint32_t codepoint = p->digit; /* emit the codepoint as UTF-8. */ char utf8[3]; /* support \u0000 -- \uFFFF -- need only three bytes. */ int length = 0; if (codepoint <= 0x7F) { utf8[0] = codepoint; length = 1; } else if (codepoint <= 0x07FF) { utf8[1] = (codepoint & 0x3F) | 0x80; codepoint >>= 6; utf8[0] = (codepoint & 0x1F) | 0xC0; length = 2; } else /* codepoint <= 0xFFFF */ { utf8[2] = (codepoint & 0x3F) | 0x80; codepoint >>= 6; utf8[1] = (codepoint & 0x3F) | 0x80; codepoint >>= 6; utf8[0] = (codepoint & 0x0F) | 0xE0; length = 3; } /* TODO(haberman): Handle high surrogates: if codepoint is a high surrogate * we have to wait for the next escape to get the full code point). */ return multipart_text(p, utf8, length, false); } static void start_text(upb_json_parser *p, const char *ptr) { capture_begin(p, ptr); } static bool end_text(upb_json_parser *p, const char *ptr) { return capture_end(p, ptr); } static void start_number(upb_json_parser *p, const char *ptr) { multipart_startaccum(p); capture_begin(p, ptr); } static bool parse_number(upb_json_parser *p); static bool end_number(upb_json_parser *p, const char *ptr) { if (!capture_end(p, ptr)) { return false; } return parse_number(p); } static bool parse_number(upb_json_parser *p) { size_t len; const char *buf; const char *myend; char *end; /* strtol() and friends unfortunately do not support specifying the length of * the input string, so we need to force a copy into a NULL-terminated buffer. */ if (!multipart_text(p, "\0", 1, false)) { return false; } buf = accumulate_getptr(p, &len); myend = buf + len - 1; /* One for NULL. */ /* XXX: We are using strtol to parse integers, but this is wrong as even * integers can be represented as 1e6 (for example), which strtol can't * handle correctly. * * XXX: Also, we can't handle large integers properly because strto[u]ll * isn't in C89. * * XXX: Also, we don't properly check floats for overflow, since strtof * isn't in C89. */ switch (upb_fielddef_type(p->top->f)) { case UPB_TYPE_ENUM: case UPB_TYPE_INT32: { long val = strtol(p->accumulated, &end, 0); if (val > INT32_MAX || val < INT32_MIN || errno == ERANGE || end != myend) goto err; else upb_sink_putint32(&p->top->sink, parser_getsel(p), val); break; } case UPB_TYPE_INT64: { long long val = strtol(p->accumulated, &end, 0); if (val > INT64_MAX || val < INT64_MIN || errno == ERANGE || end != myend) goto err; else upb_sink_putint64(&p->top->sink, parser_getsel(p), val); break; } case UPB_TYPE_UINT32: { unsigned long val = strtoul(p->accumulated, &end, 0); if (val > UINT32_MAX || errno == ERANGE || end != myend) goto err; else upb_sink_putuint32(&p->top->sink, parser_getsel(p), val); break; } case UPB_TYPE_UINT64: { unsigned long long val = strtoul(p->accumulated, &end, 0); if (val > UINT64_MAX || errno == ERANGE || end != myend) goto err; else upb_sink_putuint64(&p->top->sink, parser_getsel(p), val); break; } case UPB_TYPE_DOUBLE: { double val = strtod(p->accumulated, &end); if (errno == ERANGE || end != myend) goto err; else upb_sink_putdouble(&p->top->sink, parser_getsel(p), val); break; } case UPB_TYPE_FLOAT: { float val = strtod(p->accumulated, &end); if (errno == ERANGE || end != myend) goto err; else upb_sink_putfloat(&p->top->sink, parser_getsel(p), val); break; } default: assert(false); } multipart_end(p); return true; err: upb_status_seterrf(&p->status, "error parsing number: %s", buf); upb_env_reporterror(p->env, &p->status); multipart_end(p); return false; } static bool parser_putbool(upb_json_parser *p, bool val) { bool ok; if (upb_fielddef_type(p->top->f) != UPB_TYPE_BOOL) { upb_status_seterrf(&p->status, "Boolean value specified for non-bool field: %s", upb_fielddef_name(p->top->f)); upb_env_reporterror(p->env, &p->status); return false; } ok = upb_sink_putbool(&p->top->sink, parser_getsel(p), val); UPB_ASSERT_VAR(ok, ok); return true; } static bool start_stringval(upb_json_parser *p) { assert(p->top->f); if (upb_fielddef_isstring(p->top->f)) { upb_jsonparser_frame *inner; upb_selector_t sel; if (!check_stack(p)) return false; /* Start a new parser frame: parser frames correspond one-to-one with * handler frames, and string events occur in a sub-frame. */ inner = p->top + 1; sel = getsel_for_handlertype(p, UPB_HANDLER_STARTSTR); upb_sink_startstr(&p->top->sink, sel, 0, &inner->sink); inner->m = p->top->m; inner->f = p->top->f; inner->name_table = NULL; inner->is_map = false; inner->is_mapentry = false; p->top = inner; if (upb_fielddef_type(p->top->f) == UPB_TYPE_STRING) { /* For STRING fields we push data directly to the handlers as it is * parsed. We don't do this yet for BYTES fields, because our base64 * decoder is not streaming. * * TODO(haberman): make base64 decoding streaming also. */ multipart_start(p, getsel_for_handlertype(p, UPB_HANDLER_STRING)); return true; } else { multipart_startaccum(p); return true; } } else if (upb_fielddef_type(p->top->f) == UPB_TYPE_ENUM) { /* No need to push a frame -- symbolic enum names in quotes remain in the * current parser frame. * * Enum string values must accumulate so we can look up the value in a table * once it is complete. */ multipart_startaccum(p); return true; } else { upb_status_seterrf(&p->status, "String specified for non-string/non-enum field: %s", upb_fielddef_name(p->top->f)); upb_env_reporterror(p->env, &p->status); return false; } } static bool end_stringval(upb_json_parser *p) { bool ok = true; switch (upb_fielddef_type(p->top->f)) { case UPB_TYPE_BYTES: if (!base64_push(p, getsel_for_handlertype(p, UPB_HANDLER_STRING), p->accumulated, p->accumulated_len)) { return false; } /* Fall through. */ case UPB_TYPE_STRING: { upb_selector_t sel = getsel_for_handlertype(p, UPB_HANDLER_ENDSTR); upb_sink_endstr(&p->top->sink, sel); p->top--; break; } case UPB_TYPE_ENUM: { /* Resolve enum symbolic name to integer value. */ const upb_enumdef *enumdef = (const upb_enumdef*)upb_fielddef_subdef(p->top->f); size_t len; const char *buf = accumulate_getptr(p, &len); int32_t int_val = 0; ok = upb_enumdef_ntoi(enumdef, buf, len, &int_val); if (ok) { upb_selector_t sel = parser_getsel(p); upb_sink_putint32(&p->top->sink, sel, int_val); } else { upb_status_seterrf(&p->status, "Enum value unknown: '%.*s'", len, buf); upb_env_reporterror(p->env, &p->status); } break; } default: assert(false); upb_status_seterrmsg(&p->status, "Internal error in JSON decoder"); upb_env_reporterror(p->env, &p->status); ok = false; break; } multipart_end(p); return ok; } static void start_member(upb_json_parser *p) { assert(!p->top->f); multipart_startaccum(p); } /* Helper: invoked during parse_mapentry() to emit the mapentry message's key * field based on the current contents of the accumulate buffer. */ static bool parse_mapentry_key(upb_json_parser *p) { size_t len; const char *buf = accumulate_getptr(p, &len); /* Emit the key field. We do a bit of ad-hoc parsing here because the * parser state machine has already decided that this is a string field * name, and we are reinterpreting it as some arbitrary key type. In * particular, integer and bool keys are quoted, so we need to parse the * quoted string contents here. */ p->top->f = upb_msgdef_itof(p->top->m, UPB_MAPENTRY_KEY); if (p->top->f == NULL) { upb_status_seterrmsg(&p->status, "mapentry message has no key"); upb_env_reporterror(p->env, &p->status); return false; } switch (upb_fielddef_type(p->top->f)) { case UPB_TYPE_INT32: case UPB_TYPE_INT64: case UPB_TYPE_UINT32: case UPB_TYPE_UINT64: /* Invoke end_number. The accum buffer has the number's text already. */ if (!parse_number(p)) { return false; } break; case UPB_TYPE_BOOL: if (len == 4 && !strncmp(buf, "true", 4)) { if (!parser_putbool(p, true)) { return false; } } else if (len == 5 && !strncmp(buf, "false", 5)) { if (!parser_putbool(p, false)) { return false; } } else { upb_status_seterrmsg(&p->status, "Map bool key not 'true' or 'false'"); upb_env_reporterror(p->env, &p->status); return false; } multipart_end(p); break; case UPB_TYPE_STRING: case UPB_TYPE_BYTES: { upb_sink subsink; upb_selector_t sel = getsel_for_handlertype(p, UPB_HANDLER_STARTSTR); upb_sink_startstr(&p->top->sink, sel, len, &subsink); sel = getsel_for_handlertype(p, UPB_HANDLER_STRING); upb_sink_putstring(&subsink, sel, buf, len, NULL); sel = getsel_for_handlertype(p, UPB_HANDLER_ENDSTR); upb_sink_endstr(&subsink, sel); multipart_end(p); break; } default: upb_status_seterrmsg(&p->status, "Invalid field type for map key"); upb_env_reporterror(p->env, &p->status); return false; } return true; } /* Helper: emit one map entry (as a submessage in the map field sequence). This * is invoked from end_membername(), at the end of the map entry's key string, * with the map key in the accumulate buffer. It parses the key from that * buffer, emits the handler calls to start the mapentry submessage (setting up * its subframe in the process), and sets up state in the subframe so that the * value parser (invoked next) will emit the mapentry's value field and then * end the mapentry message. */ static bool handle_mapentry(upb_json_parser *p) { const upb_fielddef *mapfield; const upb_msgdef *mapentrymsg; upb_jsonparser_frame *inner; upb_selector_t sel; /* Map entry: p->top->sink is the seq frame, so we need to start a frame * for the mapentry itself, and then set |f| in that frame so that the map * value field is parsed, and also set a flag to end the frame after the * map-entry value is parsed. */ if (!check_stack(p)) return false; mapfield = p->top->mapfield; mapentrymsg = upb_fielddef_msgsubdef(mapfield); inner = p->top + 1; p->top->f = mapfield; sel = getsel_for_handlertype(p, UPB_HANDLER_STARTSUBMSG); upb_sink_startsubmsg(&p->top->sink, sel, &inner->sink); inner->m = mapentrymsg; inner->name_table = NULL; inner->mapfield = mapfield; inner->is_map = false; /* Don't set this to true *yet* -- we reuse parsing handlers below to push * the key field value to the sink, and these handlers will pop the frame * if they see is_mapentry (when invoked by the parser state machine, they * would have just seen the map-entry value, not key). */ inner->is_mapentry = false; p->top = inner; /* send STARTMSG in submsg frame. */ upb_sink_startmsg(&p->top->sink); parse_mapentry_key(p); /* Set up the value field to receive the map-entry value. */ p->top->f = upb_msgdef_itof(p->top->m, UPB_MAPENTRY_VALUE); p->top->is_mapentry = true; /* set up to pop frame after value is parsed. */ p->top->mapfield = mapfield; if (p->top->f == NULL) { upb_status_seterrmsg(&p->status, "mapentry message has no value"); upb_env_reporterror(p->env, &p->status); return false; } return true; } static bool end_membername(upb_json_parser *p) { assert(!p->top->f); if (p->top->is_map) { return handle_mapentry(p); } else { size_t len; const char *buf = accumulate_getptr(p, &len); upb_value v; if (upb_strtable_lookup2(p->top->name_table, buf, len, &v)) { p->top->f = upb_value_getconstptr(v); multipart_end(p); return true; } else { /* TODO(haberman): Ignore unknown fields if requested/configured to do * so. */ upb_status_seterrf(&p->status, "No such field: %.*s\n", (int)len, buf); upb_env_reporterror(p->env, &p->status); return false; } } } static void end_member(upb_json_parser *p) { /* If we just parsed a map-entry value, end that frame too. */ if (p->top->is_mapentry) { upb_status s = UPB_STATUS_INIT; upb_selector_t sel; bool ok; const upb_fielddef *mapfield; assert(p->top > p->stack); /* send ENDMSG on submsg. */ upb_sink_endmsg(&p->top->sink, &s); mapfield = p->top->mapfield; /* send ENDSUBMSG in repeated-field-of-mapentries frame. */ p->top--; ok = upb_handlers_getselector(mapfield, UPB_HANDLER_ENDSUBMSG, &sel); UPB_ASSERT_VAR(ok, ok); upb_sink_endsubmsg(&p->top->sink, sel); } p->top->f = NULL; } static bool start_subobject(upb_json_parser *p) { assert(p->top->f); if (upb_fielddef_ismap(p->top->f)) { upb_jsonparser_frame *inner; upb_selector_t sel; /* Beginning of a map. Start a new parser frame in a repeated-field * context. */ if (!check_stack(p)) return false; inner = p->top + 1; sel = getsel_for_handlertype(p, UPB_HANDLER_STARTSEQ); upb_sink_startseq(&p->top->sink, sel, &inner->sink); inner->m = upb_fielddef_msgsubdef(p->top->f); inner->name_table = NULL; inner->mapfield = p->top->f; inner->f = NULL; inner->is_map = true; inner->is_mapentry = false; p->top = inner; return true; } else if (upb_fielddef_issubmsg(p->top->f)) { upb_jsonparser_frame *inner; upb_selector_t sel; /* Beginning of a subobject. Start a new parser frame in the submsg * context. */ if (!check_stack(p)) return false; inner = p->top + 1; sel = getsel_for_handlertype(p, UPB_HANDLER_STARTSUBMSG); upb_sink_startsubmsg(&p->top->sink, sel, &inner->sink); inner->m = upb_fielddef_msgsubdef(p->top->f); set_name_table(p, inner); inner->f = NULL; inner->is_map = false; inner->is_mapentry = false; p->top = inner; return true; } else { upb_status_seterrf(&p->status, "Object specified for non-message/group field: %s", upb_fielddef_name(p->top->f)); upb_env_reporterror(p->env, &p->status); return false; } } static void end_subobject(upb_json_parser *p) { if (p->top->is_map) { upb_selector_t sel; p->top--; sel = getsel_for_handlertype(p, UPB_HANDLER_ENDSEQ); upb_sink_endseq(&p->top->sink, sel); } else { upb_selector_t sel; p->top--; sel = getsel_for_handlertype(p, UPB_HANDLER_ENDSUBMSG); upb_sink_endsubmsg(&p->top->sink, sel); } } static bool start_array(upb_json_parser *p) { upb_jsonparser_frame *inner; upb_selector_t sel; assert(p->top->f); if (!upb_fielddef_isseq(p->top->f)) { upb_status_seterrf(&p->status, "Array specified for non-repeated field: %s", upb_fielddef_name(p->top->f)); upb_env_reporterror(p->env, &p->status); return false; } if (!check_stack(p)) return false; inner = p->top + 1; sel = getsel_for_handlertype(p, UPB_HANDLER_STARTSEQ); upb_sink_startseq(&p->top->sink, sel, &inner->sink); inner->m = p->top->m; inner->name_table = NULL; inner->f = p->top->f; inner->is_map = false; inner->is_mapentry = false; p->top = inner; return true; } static void end_array(upb_json_parser *p) { upb_selector_t sel; assert(p->top > p->stack); p->top--; sel = getsel_for_handlertype(p, UPB_HANDLER_ENDSEQ); upb_sink_endseq(&p->top->sink, sel); } static void start_object(upb_json_parser *p) { if (!p->top->is_map) { upb_sink_startmsg(&p->top->sink); } } static void end_object(upb_json_parser *p) { if (!p->top->is_map) { upb_status status; upb_status_clear(&status); upb_sink_endmsg(&p->top->sink, &status); if (!upb_ok(&status)) { upb_env_reporterror(p->env, &status); } } } #define CHECK_RETURN_TOP(x) if (!(x)) goto error /* The actual parser **********************************************************/ /* What follows is the Ragel parser itself. The language is specified in Ragel * and the actions call our C functions above. * * Ragel has an extensive set of functionality, and we use only a small part of * it. There are many action types but we only use a few: * * ">" -- transition into a machine * "%" -- transition out of a machine * "@" -- transition into a final state of a machine. * * "@" transitions are tricky because a machine can transition into a final * state repeatedly. But in some cases we know this can't happen, for example * a string which is delimited by a final '"' can only transition into its * final state once, when the closing '"' is seen. */ #line 1245 "upb/json/parser.rl" #line 1157 "upb/json/parser.c" static const char _json_actions[] = { 0, 1, 0, 1, 2, 1, 3, 1, 5, 1, 6, 1, 7, 1, 8, 1, 10, 1, 12, 1, 13, 1, 14, 1, 15, 1, 16, 1, 17, 1, 21, 1, 25, 1, 27, 2, 3, 8, 2, 4, 5, 2, 6, 2, 2, 6, 8, 2, 11, 9, 2, 13, 15, 2, 14, 15, 2, 18, 1, 2, 19, 27, 2, 20, 9, 2, 22, 27, 2, 23, 27, 2, 24, 27, 2, 26, 27, 3, 14, 11, 9 }; static const unsigned char _json_key_offsets[] = { 0, 0, 4, 9, 14, 15, 19, 24, 29, 34, 38, 42, 45, 48, 50, 54, 58, 60, 62, 67, 69, 71, 80, 86, 92, 98, 104, 106, 115, 116, 116, 116, 121, 126, 131, 132, 133, 134, 135, 135, 136, 137, 138, 138, 139, 140, 141, 141, 146, 151, 152, 156, 161, 166, 171, 175, 175, 178, 178, 178 }; static const char _json_trans_keys[] = { 32, 123, 9, 13, 32, 34, 125, 9, 13, 32, 34, 125, 9, 13, 34, 32, 58, 9, 13, 32, 93, 125, 9, 13, 32, 44, 125, 9, 13, 32, 44, 125, 9, 13, 32, 34, 9, 13, 45, 48, 49, 57, 48, 49, 57, 46, 69, 101, 48, 57, 69, 101, 48, 57, 43, 45, 48, 57, 48, 57, 48, 57, 46, 69, 101, 48, 57, 34, 92, 34, 92, 34, 47, 92, 98, 102, 110, 114, 116, 117, 48, 57, 65, 70, 97, 102, 48, 57, 65, 70, 97, 102, 48, 57, 65, 70, 97, 102, 48, 57, 65, 70, 97, 102, 34, 92, 34, 45, 91, 102, 110, 116, 123, 48, 57, 34, 32, 93, 125, 9, 13, 32, 44, 93, 9, 13, 32, 93, 125, 9, 13, 97, 108, 115, 101, 117, 108, 108, 114, 117, 101, 32, 34, 125, 9, 13, 32, 34, 125, 9, 13, 34, 32, 58, 9, 13, 32, 93, 125, 9, 13, 32, 44, 125, 9, 13, 32, 44, 125, 9, 13, 32, 34, 9, 13, 32, 9, 13, 0 }; static const char _json_single_lengths[] = { 0, 2, 3, 3, 1, 2, 3, 3, 3, 2, 2, 1, 3, 0, 2, 2, 0, 0, 3, 2, 2, 9, 0, 0, 0, 0, 2, 7, 1, 0, 0, 3, 3, 3, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 3, 3, 1, 2, 3, 3, 3, 2, 0, 1, 0, 0, 0 }; static const char _json_range_lengths[] = { 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 3, 3, 3, 3, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0 }; static const short _json_index_offsets[] = { 0, 0, 4, 9, 14, 16, 20, 25, 30, 35, 39, 43, 46, 50, 52, 56, 60, 62, 64, 69, 72, 75, 85, 89, 93, 97, 101, 104, 113, 115, 116, 117, 122, 127, 132, 134, 136, 138, 140, 141, 143, 145, 147, 148, 150, 152, 154, 155, 160, 165, 167, 171, 176, 181, 186, 190, 191, 194, 195, 196 }; static const char _json_indicies[] = { 0, 2, 0, 1, 3, 4, 5, 3, 1, 6, 7, 8, 6, 1, 9, 1, 10, 11, 10, 1, 11, 1, 1, 11, 12, 13, 14, 15, 13, 1, 16, 17, 8, 16, 1, 17, 7, 17, 1, 18, 19, 20, 1, 19, 20, 1, 22, 23, 23, 21, 24, 1, 23, 23, 24, 21, 25, 25, 26, 1, 26, 1, 26, 21, 22, 23, 23, 20, 21, 28, 29, 27, 31, 32, 30, 33, 33, 33, 33, 33, 33, 33, 33, 34, 1, 35, 35, 35, 1, 36, 36, 36, 1, 37, 37, 37, 1, 38, 38, 38, 1, 40, 41, 39, 42, 43, 44, 45, 46, 47, 48, 43, 1, 49, 1, 50, 51, 53, 54, 1, 53, 52, 55, 56, 54, 55, 1, 56, 1, 1, 56, 52, 57, 1, 58, 1, 59, 1, 60, 1, 61, 62, 1, 63, 1, 64, 1, 65, 66, 1, 67, 1, 68, 1, 69, 70, 71, 72, 70, 1, 73, 74, 75, 73, 1, 76, 1, 77, 78, 77, 1, 78, 1, 1, 78, 79, 80, 81, 82, 80, 1, 83, 84, 75, 83, 1, 84, 74, 84, 1, 85, 86, 86, 1, 1, 1, 1, 0 }; static const char _json_trans_targs[] = { 1, 0, 2, 3, 4, 56, 3, 4, 56, 5, 5, 6, 7, 8, 9, 56, 8, 9, 11, 12, 18, 57, 13, 15, 14, 16, 17, 20, 58, 21, 20, 58, 21, 19, 22, 23, 24, 25, 26, 20, 58, 21, 28, 30, 31, 34, 39, 43, 47, 29, 59, 59, 32, 31, 29, 32, 33, 35, 36, 37, 38, 59, 40, 41, 42, 59, 44, 45, 46, 59, 48, 49, 55, 48, 49, 55, 50, 50, 51, 52, 53, 54, 55, 53, 54, 59, 56 }; static const char _json_trans_actions[] = { 0, 0, 0, 21, 77, 53, 0, 47, 23, 17, 0, 0, 15, 19, 19, 50, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 3, 13, 0, 0, 35, 5, 11, 0, 38, 7, 7, 7, 41, 44, 9, 62, 56, 25, 0, 0, 0, 31, 29, 33, 59, 15, 0, 27, 0, 0, 0, 0, 0, 0, 68, 0, 0, 0, 71, 0, 0, 0, 65, 21, 77, 53, 0, 47, 23, 17, 0, 0, 15, 19, 19, 50, 0, 0, 74, 0 }; static const int json_start = 1; static const int json_en_number_machine = 10; static const int json_en_string_machine = 19; static const int json_en_value_machine = 27; static const int json_en_main = 1; #line 1248 "upb/json/parser.rl" size_t parse(void *closure, const void *hd, const char *buf, size_t size, const upb_bufhandle *handle) { upb_json_parser *parser = closure; /* Variables used by Ragel's generated code. */ int cs = parser->current_state; int *stack = parser->parser_stack; int top = parser->parser_top; const char *p = buf; const char *pe = buf + size; parser->handle = handle; UPB_UNUSED(hd); UPB_UNUSED(handle); capture_resume(parser, buf); #line 1328 "upb/json/parser.c" { int _klen; unsigned int _trans; const char *_acts; unsigned int _nacts; const char *_keys; if ( p == pe ) goto _test_eof; if ( cs == 0 ) goto _out; _resume: _keys = _json_trans_keys + _json_key_offsets[cs]; _trans = _json_index_offsets[cs]; _klen = _json_single_lengths[cs]; if ( _klen > 0 ) { const char *_lower = _keys; const char *_mid; const char *_upper = _keys + _klen - 1; while (1) { if ( _upper < _lower ) break; _mid = _lower + ((_upper-_lower) >> 1); if ( (*p) < *_mid ) _upper = _mid - 1; else if ( (*p) > *_mid ) _lower = _mid + 1; else { _trans += (unsigned int)(_mid - _keys); goto _match; } } _keys += _klen; _trans += _klen; } _klen = _json_range_lengths[cs]; if ( _klen > 0 ) { const char *_lower = _keys; const char *_mid; const char *_upper = _keys + (_klen<<1) - 2; while (1) { if ( _upper < _lower ) break; _mid = _lower + (((_upper-_lower) >> 1) & ~1); if ( (*p) < _mid[0] ) _upper = _mid - 2; else if ( (*p) > _mid[1] ) _lower = _mid + 2; else { _trans += (unsigned int)((_mid - _keys)>>1); goto _match; } } _trans += _klen; } _match: _trans = _json_indicies[_trans]; cs = _json_trans_targs[_trans]; if ( _json_trans_actions[_trans] == 0 ) goto _again; _acts = _json_actions + _json_trans_actions[_trans]; _nacts = (unsigned int) *_acts++; while ( _nacts-- > 0 ) { switch ( *_acts++ ) { case 0: #line 1160 "upb/json/parser.rl" { p--; {cs = stack[--top]; goto _again;} } break; case 1: #line 1161 "upb/json/parser.rl" { p--; {stack[top++] = cs; cs = 10; goto _again;} } break; case 2: #line 1165 "upb/json/parser.rl" { start_text(parser, p); } break; case 3: #line 1166 "upb/json/parser.rl" { CHECK_RETURN_TOP(end_text(parser, p)); } break; case 4: #line 1172 "upb/json/parser.rl" { start_hex(parser); } break; case 5: #line 1173 "upb/json/parser.rl" { hexdigit(parser, p); } break; case 6: #line 1174 "upb/json/parser.rl" { CHECK_RETURN_TOP(end_hex(parser)); } break; case 7: #line 1180 "upb/json/parser.rl" { CHECK_RETURN_TOP(escape(parser, p)); } break; case 8: #line 1186 "upb/json/parser.rl" { p--; {cs = stack[--top]; goto _again;} } break; case 9: #line 1189 "upb/json/parser.rl" { {stack[top++] = cs; cs = 19; goto _again;} } break; case 10: #line 1191 "upb/json/parser.rl" { p--; {stack[top++] = cs; cs = 27; goto _again;} } break; case 11: #line 1196 "upb/json/parser.rl" { start_member(parser); } break; case 12: #line 1197 "upb/json/parser.rl" { CHECK_RETURN_TOP(end_membername(parser)); } break; case 13: #line 1200 "upb/json/parser.rl" { end_member(parser); } break; case 14: #line 1206 "upb/json/parser.rl" { start_object(parser); } break; case 15: #line 1209 "upb/json/parser.rl" { end_object(parser); } break; case 16: #line 1215 "upb/json/parser.rl" { CHECK_RETURN_TOP(start_array(parser)); } break; case 17: #line 1219 "upb/json/parser.rl" { end_array(parser); } break; case 18: #line 1224 "upb/json/parser.rl" { start_number(parser, p); } break; case 19: #line 1225 "upb/json/parser.rl" { CHECK_RETURN_TOP(end_number(parser, p)); } break; case 20: #line 1227 "upb/json/parser.rl" { CHECK_RETURN_TOP(start_stringval(parser)); } break; case 21: #line 1228 "upb/json/parser.rl" { CHECK_RETURN_TOP(end_stringval(parser)); } break; case 22: #line 1230 "upb/json/parser.rl" { CHECK_RETURN_TOP(parser_putbool(parser, true)); } break; case 23: #line 1232 "upb/json/parser.rl" { CHECK_RETURN_TOP(parser_putbool(parser, false)); } break; case 24: #line 1234 "upb/json/parser.rl" { /* null value */ } break; case 25: #line 1236 "upb/json/parser.rl" { CHECK_RETURN_TOP(start_subobject(parser)); } break; case 26: #line 1237 "upb/json/parser.rl" { end_subobject(parser); } break; case 27: #line 1242 "upb/json/parser.rl" { p--; {cs = stack[--top]; goto _again;} } break; #line 1514 "upb/json/parser.c" } } _again: if ( cs == 0 ) goto _out; if ( ++p != pe ) goto _resume; _test_eof: {} _out: {} } #line 1269 "upb/json/parser.rl" if (p != pe) { upb_status_seterrf(&parser->status, "Parse error at '%.*s'\n", pe - p, p); upb_env_reporterror(parser->env, &parser->status); } else { capture_suspend(parser, &p); } error: /* Save parsing state back to parser. */ parser->current_state = cs; parser->parser_top = top; return p - buf; } bool end(void *closure, const void *hd) { UPB_UNUSED(closure); UPB_UNUSED(hd); /* Prevent compile warning on unused static constants. */ UPB_UNUSED(json_start); UPB_UNUSED(json_en_number_machine); UPB_UNUSED(json_en_string_machine); UPB_UNUSED(json_en_value_machine); UPB_UNUSED(json_en_main); return true; } static void json_parser_reset(upb_json_parser *p) { int cs; int top; p->top = p->stack; p->top->f = NULL; p->top->is_map = false; p->top->is_mapentry = false; /* Emit Ragel initialization of the parser. */ #line 1568 "upb/json/parser.c" { cs = json_start; top = 0; } #line 1309 "upb/json/parser.rl" p->current_state = cs; p->parser_top = top; accumulate_clear(p); p->multipart_state = MULTIPART_INACTIVE; p->capture = NULL; p->accumulated = NULL; upb_status_clear(&p->status); } static void visit_json_parsermethod(const upb_refcounted *r, upb_refcounted_visit *visit, void *closure) { const upb_json_parsermethod *method = (upb_json_parsermethod*)r; visit(r, upb_msgdef_upcast2(method->msg), closure); } static void free_json_parsermethod(upb_refcounted *r) { upb_json_parsermethod *method = (upb_json_parsermethod*)r; upb_inttable_iter i; upb_inttable_begin(&i, &method->name_tables); for(; !upb_inttable_done(&i); upb_inttable_next(&i)) { upb_value val = upb_inttable_iter_value(&i); upb_strtable *t = upb_value_getptr(val); upb_strtable_uninit(t); upb_gfree(t); } upb_inttable_uninit(&method->name_tables); upb_gfree(r); } static void add_jsonname_table(upb_json_parsermethod *m, const upb_msgdef* md) { upb_msg_field_iter i; upb_strtable *t; /* It would be nice to stack-allocate this, but protobufs do not limit the * length of fields to any reasonable limit. */ char *buf = NULL; size_t len = 0; if (upb_inttable_lookupptr(&m->name_tables, md, NULL)) { return; } /* TODO(haberman): handle malloc failure. */ t = upb_gmalloc(sizeof(*t)); upb_strtable_init(t, UPB_CTYPE_CONSTPTR); upb_inttable_insertptr(&m->name_tables, md, upb_value_ptr(t)); for(upb_msg_field_begin(&i, md); !upb_msg_field_done(&i); upb_msg_field_next(&i)) { const upb_fielddef *f = upb_msg_iter_field(&i); /* Add an entry for the JSON name. */ size_t field_len = upb_fielddef_getjsonname(f, buf, len); if (field_len > len) { size_t len2; buf = upb_grealloc(buf, 0, field_len); len = field_len; len2 = upb_fielddef_getjsonname(f, buf, len); UPB_ASSERT_VAR(len2, len == len2); } upb_strtable_insert(t, buf, upb_value_constptr(f)); if (strcmp(buf, upb_fielddef_name(f)) != 0) { /* Since the JSON name is different from the regular field name, add an * entry for the raw name (compliant proto3 JSON parsers must accept * both). */ upb_strtable_insert(t, upb_fielddef_name(f), upb_value_constptr(f)); } if (upb_fielddef_issubmsg(f)) { add_jsonname_table(m, upb_fielddef_msgsubdef(f)); } } upb_gfree(buf); } /* Public API *****************************************************************/ upb_json_parser *upb_json_parser_create(upb_env *env, const upb_json_parsermethod *method, upb_sink *output) { #ifndef NDEBUG const size_t size_before = upb_env_bytesallocated(env); #endif upb_json_parser *p = upb_env_malloc(env, sizeof(upb_json_parser)); if (!p) return false; p->env = env; p->method = method; p->limit = p->stack + UPB_JSON_MAX_DEPTH; p->accumulate_buf = NULL; p->accumulate_buf_size = 0; upb_bytessink_reset(&p->input_, &method->input_handler_, p); json_parser_reset(p); upb_sink_reset(&p->top->sink, output->handlers, output->closure); p->top->m = upb_handlers_msgdef(output->handlers); set_name_table(p, p->top); /* If this fails, uncomment and increase the value in parser.h. */ /* fprintf(stderr, "%zd\n", upb_env_bytesallocated(env) - size_before); */ assert(upb_env_bytesallocated(env) - size_before <= UPB_JSON_PARSER_SIZE); return p; } upb_bytessink *upb_json_parser_input(upb_json_parser *p) { return &p->input_; } upb_json_parsermethod *upb_json_parsermethod_new(const upb_msgdef* md, const void* owner) { static const struct upb_refcounted_vtbl vtbl = {visit_json_parsermethod, free_json_parsermethod}; upb_json_parsermethod *ret = upb_gmalloc(sizeof(*ret)); upb_refcounted_init(upb_json_parsermethod_upcast_mutable(ret), &vtbl, owner); ret->msg = md; upb_ref2(md, ret); upb_byteshandler_init(&ret->input_handler_); upb_byteshandler_setstring(&ret->input_handler_, parse, ret); upb_byteshandler_setendstr(&ret->input_handler_, end, ret); upb_inttable_init(&ret->name_tables, UPB_CTYPE_PTR); add_jsonname_table(ret, md); return ret; } const upb_byteshandler *upb_json_parsermethod_inputhandler( const upb_json_parsermethod *m) { return &m->input_handler_; } /* ** This currently uses snprintf() to format primitives, and could be optimized ** further. */ #include <string.h> #include <stdint.h> struct upb_json_printer { upb_sink input_; /* BytesSink closure. */ void *subc_; upb_bytessink *output_; /* We track the depth so that we know when to emit startstr/endstr on the * output. */ int depth_; /* Have we emitted the first element? This state is necessary to emit commas * without leaving a trailing comma in arrays/maps. We keep this state per * frame depth. * * Why max_depth * 2? UPB_MAX_HANDLER_DEPTH counts depth as nested messages. * We count frames (contexts in which we separate elements by commas) as both * repeated fields and messages (maps), and the worst case is a * message->repeated field->submessage->repeated field->... nesting. */ bool first_elem_[UPB_MAX_HANDLER_DEPTH * 2]; }; /* StringPiece; a pointer plus a length. */ typedef struct { char *ptr; size_t len; } strpc; void freestrpc(void *ptr) { strpc *pc = ptr; upb_gfree(pc->ptr); upb_gfree(pc); } /* Convert fielddef name to JSON name and return as a string piece. */ strpc *newstrpc(upb_handlers *h, const upb_fielddef *f, bool preserve_fieldnames) { /* TODO(haberman): handle malloc failure. */ strpc *ret = upb_gmalloc(sizeof(*ret)); if (preserve_fieldnames) { ret->ptr = upb_gstrdup(upb_fielddef_name(f)); ret->len = strlen(ret->ptr); } else { size_t len; ret->len = upb_fielddef_getjsonname(f, NULL, 0); ret->ptr = upb_gmalloc(ret->len); len = upb_fielddef_getjsonname(f, ret->ptr, ret->len); UPB_ASSERT_VAR(len, len == ret->len); ret->len--; /* NULL */ } upb_handlers_addcleanup(h, ret, freestrpc); return ret; } /* ------------ JSON string printing: values, maps, arrays ------------------ */ static void print_data( upb_json_printer *p, const char *buf, unsigned int len) { /* TODO: Will need to change if we support pushback from the sink. */ size_t n = upb_bytessink_putbuf(p->output_, p->subc_, buf, len, NULL); UPB_ASSERT_VAR(n, n == len); } static void print_comma(upb_json_printer *p) { if (!p->first_elem_[p->depth_]) { print_data(p, ",", 1); } p->first_elem_[p->depth_] = false; } /* Helpers that print properly formatted elements to the JSON output stream. */ /* Used for escaping control chars in strings. */ static const char kControlCharLimit = 0x20; UPB_INLINE bool is_json_escaped(char c) { /* See RFC 4627. */ unsigned char uc = (unsigned char)c; return uc < kControlCharLimit || uc == '"' || uc == '\\'; } UPB_INLINE const char* json_nice_escape(char c) { switch (c) { case '"': return "\\\""; case '\\': return "\\\\"; case '\b': return "\\b"; case '\f': return "\\f"; case '\n': return "\\n"; case '\r': return "\\r"; case '\t': return "\\t"; default: return NULL; } } /* Write a properly escaped string chunk. The surrounding quotes are *not* * printed; this is so that the caller has the option of emitting the string * content in chunks. */ static void putstring(upb_json_printer *p, const char *buf, unsigned int len) { const char* unescaped_run = NULL; unsigned int i; for (i = 0; i < len; i++) { char c = buf[i]; /* Handle escaping. */ if (is_json_escaped(c)) { /* Use a "nice" escape, like \n, if one exists for this character. */ const char* escape = json_nice_escape(c); /* If we don't have a specific 'nice' escape code, use a \uXXXX-style * escape. */ char escape_buf[8]; if (!escape) { unsigned char byte = (unsigned char)c; _upb_snprintf(escape_buf, sizeof(escape_buf), "\\u%04x", (int)byte); escape = escape_buf; } /* N.B. that we assume that the input encoding is equal to the output * encoding (both UTF-8 for now), so for chars >= 0x20 and != \, ", we * can simply pass the bytes through. */ /* If there's a current run of unescaped chars, print that run first. */ if (unescaped_run) { print_data(p, unescaped_run, &buf[i] - unescaped_run); unescaped_run = NULL; } /* Then print the escape code. */ print_data(p, escape, strlen(escape)); } else { /* Add to the current unescaped run of characters. */ if (unescaped_run == NULL) { unescaped_run = &buf[i]; } } } /* If the string ended in a run of unescaped characters, print that last run. */ if (unescaped_run) { print_data(p, unescaped_run, &buf[len] - unescaped_run); } } #define CHKLENGTH(x) if (!(x)) return -1; /* Helpers that format floating point values according to our custom formats. * Right now we use %.8g and %.17g for float/double, respectively, to match * proto2::util::JsonFormat's defaults. May want to change this later. */ static size_t fmt_double(double val, char* buf, size_t length) { size_t n = _upb_snprintf(buf, length, "%.17g", val); CHKLENGTH(n > 0 && n < length); return n; } static size_t fmt_float(float val, char* buf, size_t length) { size_t n = _upb_snprintf(buf, length, "%.8g", val); CHKLENGTH(n > 0 && n < length); return n; } static size_t fmt_bool(bool val, char* buf, size_t length) { size_t n = _upb_snprintf(buf, length, "%s", (val ? "true" : "false")); CHKLENGTH(n > 0 && n < length); return n; } static size_t fmt_int64(long val, char* buf, size_t length) { size_t n = _upb_snprintf(buf, length, "%ld", val); CHKLENGTH(n > 0 && n < length); return n; } static size_t fmt_uint64(unsigned long long val, char* buf, size_t length) { size_t n = _upb_snprintf(buf, length, "%llu", val); CHKLENGTH(n > 0 && n < length); return n; } /* Print a map key given a field name. Called by scalar field handlers and by * startseq for repeated fields. */ static bool putkey(void *closure, const void *handler_data) { upb_json_printer *p = closure; const strpc *key = handler_data; print_comma(p); print_data(p, "\"", 1); putstring(p, key->ptr, key->len); print_data(p, "\":", 2); return true; } #define CHKFMT(val) if ((val) == (size_t)-1) return false; #define CHK(val) if (!(val)) return false; #define TYPE_HANDLERS(type, fmt_func) \ static bool put##type(void *closure, const void *handler_data, type val) { \ upb_json_printer *p = closure; \ char data[64]; \ size_t length = fmt_func(val, data, sizeof(data)); \ UPB_UNUSED(handler_data); \ CHKFMT(length); \ print_data(p, data, length); \ return true; \ } \ static bool scalar_##type(void *closure, const void *handler_data, \ type val) { \ CHK(putkey(closure, handler_data)); \ CHK(put##type(closure, handler_data, val)); \ return true; \ } \ static bool repeated_##type(void *closure, const void *handler_data, \ type val) { \ upb_json_printer *p = closure; \ print_comma(p); \ CHK(put##type(closure, handler_data, val)); \ return true; \ } #define TYPE_HANDLERS_MAPKEY(type, fmt_func) \ static bool putmapkey_##type(void *closure, const void *handler_data, \ type val) { \ upb_json_printer *p = closure; \ print_data(p, "\"", 1); \ CHK(put##type(closure, handler_data, val)); \ print_data(p, "\":", 2); \ return true; \ } TYPE_HANDLERS(double, fmt_double) TYPE_HANDLERS(float, fmt_float) TYPE_HANDLERS(bool, fmt_bool) TYPE_HANDLERS(int32_t, fmt_int64) TYPE_HANDLERS(uint32_t, fmt_int64) TYPE_HANDLERS(int64_t, fmt_int64) TYPE_HANDLERS(uint64_t, fmt_uint64) /* double and float are not allowed to be map keys. */ TYPE_HANDLERS_MAPKEY(bool, fmt_bool) TYPE_HANDLERS_MAPKEY(int32_t, fmt_int64) TYPE_HANDLERS_MAPKEY(uint32_t, fmt_int64) TYPE_HANDLERS_MAPKEY(int64_t, fmt_int64) TYPE_HANDLERS_MAPKEY(uint64_t, fmt_uint64) #undef TYPE_HANDLERS #undef TYPE_HANDLERS_MAPKEY typedef struct { void *keyname; const upb_enumdef *enumdef; } EnumHandlerData; static bool scalar_enum(void *closure, const void *handler_data, int32_t val) { const EnumHandlerData *hd = handler_data; upb_json_printer *p = closure; const char *symbolic_name; CHK(putkey(closure, hd->keyname)); symbolic_name = upb_enumdef_iton(hd->enumdef, val); if (symbolic_name) { print_data(p, "\"", 1); putstring(p, symbolic_name, strlen(symbolic_name)); print_data(p, "\"", 1); } else { putint32_t(closure, NULL, val); } return true; } static void print_enum_symbolic_name(upb_json_printer *p, const upb_enumdef *def, int32_t val) { const char *symbolic_name = upb_enumdef_iton(def, val); if (symbolic_name) { print_data(p, "\"", 1); putstring(p, symbolic_name, strlen(symbolic_name)); print_data(p, "\"", 1); } else { putint32_t(p, NULL, val); } } static bool repeated_enum(void *closure, const void *handler_data, int32_t val) { const EnumHandlerData *hd = handler_data; upb_json_printer *p = closure; print_comma(p); print_enum_symbolic_name(p, hd->enumdef, val); return true; } static bool mapvalue_enum(void *closure, const void *handler_data, int32_t val) { const EnumHandlerData *hd = handler_data; upb_json_printer *p = closure; print_enum_symbolic_name(p, hd->enumdef, val); return true; } static void *scalar_startsubmsg(void *closure, const void *handler_data) { return putkey(closure, handler_data) ? closure : UPB_BREAK; } static void *repeated_startsubmsg(void *closure, const void *handler_data) { upb_json_printer *p = closure; UPB_UNUSED(handler_data); print_comma(p); return closure; } static void start_frame(upb_json_printer *p) { p->depth_++; p->first_elem_[p->depth_] = true; print_data(p, "{", 1); } static void end_frame(upb_json_printer *p) { print_data(p, "}", 1); p->depth_--; } static bool printer_startmsg(void *closure, const void *handler_data) { upb_json_printer *p = closure; UPB_UNUSED(handler_data); if (p->depth_ == 0) { upb_bytessink_start(p->output_, 0, &p->subc_); } start_frame(p); return true; } static bool printer_endmsg(void *closure, const void *handler_data, upb_status *s) { upb_json_printer *p = closure; UPB_UNUSED(handler_data); UPB_UNUSED(s); end_frame(p); if (p->depth_ == 0) { upb_bytessink_end(p->output_); } return true; } static void *startseq(void *closure, const void *handler_data) { upb_json_printer *p = closure; CHK(putkey(closure, handler_data)); p->depth_++; p->first_elem_[p->depth_] = true; print_data(p, "[", 1); return closure; } static bool endseq(void *closure, const void *handler_data) { upb_json_printer *p = closure; UPB_UNUSED(handler_data); print_data(p, "]", 1); p->depth_--; return true; } static void *startmap(void *closure, const void *handler_data) { upb_json_printer *p = closure; CHK(putkey(closure, handler_data)); p->depth_++; p->first_elem_[p->depth_] = true; print_data(p, "{", 1); return closure; } static bool endmap(void *closure, const void *handler_data) { upb_json_printer *p = closure; UPB_UNUSED(handler_data); print_data(p, "}", 1); p->depth_--; return true; } static size_t putstr(void *closure, const void *handler_data, const char *str, size_t len, const upb_bufhandle *handle) { upb_json_printer *p = closure; UPB_UNUSED(handler_data); UPB_UNUSED(handle); putstring(p, str, len); return len; } /* This has to Base64 encode the bytes, because JSON has no "bytes" type. */ static size_t putbytes(void *closure, const void *handler_data, const char *str, size_t len, const upb_bufhandle *handle) { upb_json_printer *p = closure; /* This is the regular base64, not the "web-safe" version. */ static const char base64[] = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"; /* Base64-encode. */ char data[16000]; const char *limit = data + sizeof(data); const unsigned char *from = (const unsigned char*)str; char *to = data; size_t remaining = len; size_t bytes; UPB_UNUSED(handler_data); UPB_UNUSED(handle); while (remaining > 2) { /* TODO(haberman): handle encoded lengths > sizeof(data) */ UPB_ASSERT_VAR(limit, (limit - to) >= 4); to[0] = base64[from[0] >> 2]; to[1] = base64[((from[0] & 0x3) << 4) | (from[1] >> 4)]; to[2] = base64[((from[1] & 0xf) << 2) | (from[2] >> 6)]; to[3] = base64[from[2] & 0x3f]; remaining -= 3; to += 4; from += 3; } switch (remaining) { case 2: to[0] = base64[from[0] >> 2]; to[1] = base64[((from[0] & 0x3) << 4) | (from[1] >> 4)]; to[2] = base64[(from[1] & 0xf) << 2]; to[3] = '='; to += 4; from += 2; break; case 1: to[0] = base64[from[0] >> 2]; to[1] = base64[((from[0] & 0x3) << 4)]; to[2] = '='; to[3] = '='; to += 4; from += 1; break; } bytes = to - data; print_data(p, "\"", 1); putstring(p, data, bytes); print_data(p, "\"", 1); return len; } static void *scalar_startstr(void *closure, const void *handler_data, size_t size_hint) { upb_json_printer *p = closure; UPB_UNUSED(handler_data); UPB_UNUSED(size_hint); CHK(putkey(closure, handler_data)); print_data(p, "\"", 1); return p; } static size_t scalar_str(void *closure, const void *handler_data, const char *str, size_t len, const upb_bufhandle *handle) { CHK(putstr(closure, handler_data, str, len, handle)); return len; } static bool scalar_endstr(void *closure, const void *handler_data) { upb_json_printer *p = closure; UPB_UNUSED(handler_data); print_data(p, "\"", 1); return true; } static void *repeated_startstr(void *closure, const void *handler_data, size_t size_hint) { upb_json_printer *p = closure; UPB_UNUSED(handler_data); UPB_UNUSED(size_hint); print_comma(p); print_data(p, "\"", 1); return p; } static size_t repeated_str(void *closure, const void *handler_data, const char *str, size_t len, const upb_bufhandle *handle) { CHK(putstr(closure, handler_data, str, len, handle)); return len; } static bool repeated_endstr(void *closure, const void *handler_data) { upb_json_printer *p = closure; UPB_UNUSED(handler_data); print_data(p, "\"", 1); return true; } static void *mapkeyval_startstr(void *closure, const void *handler_data, size_t size_hint) { upb_json_printer *p = closure; UPB_UNUSED(handler_data); UPB_UNUSED(size_hint); print_data(p, "\"", 1); return p; } static size_t mapkey_str(void *closure, const void *handler_data, const char *str, size_t len, const upb_bufhandle *handle) { CHK(putstr(closure, handler_data, str, len, handle)); return len; } static bool mapkey_endstr(void *closure, const void *handler_data) { upb_json_printer *p = closure; UPB_UNUSED(handler_data); print_data(p, "\":", 2); return true; } static bool mapvalue_endstr(void *closure, const void *handler_data) { upb_json_printer *p = closure; UPB_UNUSED(handler_data); print_data(p, "\"", 1); return true; } static size_t scalar_bytes(void *closure, const void *handler_data, const char *str, size_t len, const upb_bufhandle *handle) { CHK(putkey(closure, handler_data)); CHK(putbytes(closure, handler_data, str, len, handle)); return len; } static size_t repeated_bytes(void *closure, const void *handler_data, const char *str, size_t len, const upb_bufhandle *handle) { upb_json_printer *p = closure; print_comma(p); CHK(putbytes(closure, handler_data, str, len, handle)); return len; } static size_t mapkey_bytes(void *closure, const void *handler_data, const char *str, size_t len, const upb_bufhandle *handle) { upb_json_printer *p = closure; CHK(putbytes(closure, handler_data, str, len, handle)); print_data(p, ":", 1); return len; } static void set_enum_hd(upb_handlers *h, const upb_fielddef *f, bool preserve_fieldnames, upb_handlerattr *attr) { EnumHandlerData *hd = upb_gmalloc(sizeof(EnumHandlerData)); hd->enumdef = (const upb_enumdef *)upb_fielddef_subdef(f); hd->keyname = newstrpc(h, f, preserve_fieldnames); upb_handlers_addcleanup(h, hd, upb_gfree); upb_handlerattr_sethandlerdata(attr, hd); } /* Set up handlers for a mapentry submessage (i.e., an individual key/value pair * in a map). * * TODO: Handle missing key, missing value, out-of-order key/value, or repeated * key or value cases properly. The right way to do this is to allocate a * temporary structure at the start of a mapentry submessage, store key and * value data in it as key and value handlers are called, and then print the * key/value pair once at the end of the submessage. If we don't do this, we * should at least detect the case and throw an error. However, so far all of * our sources that emit mapentry messages do so canonically (with one key * field, and then one value field), so this is not a pressing concern at the * moment. */ void printer_sethandlers_mapentry(const void *closure, bool preserve_fieldnames, upb_handlers *h) { const upb_msgdef *md = upb_handlers_msgdef(h); /* A mapentry message is printed simply as '"key": value'. Rather than * special-case key and value for every type below, we just handle both * fields explicitly here. */ const upb_fielddef* key_field = upb_msgdef_itof(md, UPB_MAPENTRY_KEY); const upb_fielddef* value_field = upb_msgdef_itof(md, UPB_MAPENTRY_VALUE); upb_handlerattr empty_attr = UPB_HANDLERATTR_INITIALIZER; UPB_UNUSED(closure); switch (upb_fielddef_type(key_field)) { case UPB_TYPE_INT32: upb_handlers_setint32(h, key_field, putmapkey_int32_t, &empty_attr); break; case UPB_TYPE_INT64: upb_handlers_setint64(h, key_field, putmapkey_int64_t, &empty_attr); break; case UPB_TYPE_UINT32: upb_handlers_setuint32(h, key_field, putmapkey_uint32_t, &empty_attr); break; case UPB_TYPE_UINT64: upb_handlers_setuint64(h, key_field, putmapkey_uint64_t, &empty_attr); break; case UPB_TYPE_BOOL: upb_handlers_setbool(h, key_field, putmapkey_bool, &empty_attr); break; case UPB_TYPE_STRING: upb_handlers_setstartstr(h, key_field, mapkeyval_startstr, &empty_attr); upb_handlers_setstring(h, key_field, mapkey_str, &empty_attr); upb_handlers_setendstr(h, key_field, mapkey_endstr, &empty_attr); break; case UPB_TYPE_BYTES: upb_handlers_setstring(h, key_field, mapkey_bytes, &empty_attr); break; default: assert(false); break; } switch (upb_fielddef_type(value_field)) { case UPB_TYPE_INT32: upb_handlers_setint32(h, value_field, putint32_t, &empty_attr); break; case UPB_TYPE_INT64: upb_handlers_setint64(h, value_field, putint64_t, &empty_attr); break; case UPB_TYPE_UINT32: upb_handlers_setuint32(h, value_field, putuint32_t, &empty_attr); break; case UPB_TYPE_UINT64: upb_handlers_setuint64(h, value_field, putuint64_t, &empty_attr); break; case UPB_TYPE_BOOL: upb_handlers_setbool(h, value_field, putbool, &empty_attr); break; case UPB_TYPE_FLOAT: upb_handlers_setfloat(h, value_field, putfloat, &empty_attr); break; case UPB_TYPE_DOUBLE: upb_handlers_setdouble(h, value_field, putdouble, &empty_attr); break; case UPB_TYPE_STRING: upb_handlers_setstartstr(h, value_field, mapkeyval_startstr, &empty_attr); upb_handlers_setstring(h, value_field, putstr, &empty_attr); upb_handlers_setendstr(h, value_field, mapvalue_endstr, &empty_attr); break; case UPB_TYPE_BYTES: upb_handlers_setstring(h, value_field, putbytes, &empty_attr); break; case UPB_TYPE_ENUM: { upb_handlerattr enum_attr = UPB_HANDLERATTR_INITIALIZER; set_enum_hd(h, value_field, preserve_fieldnames, &enum_attr); upb_handlers_setint32(h, value_field, mapvalue_enum, &enum_attr); upb_handlerattr_uninit(&enum_attr); break; } case UPB_TYPE_MESSAGE: /* No handler necessary -- the submsg handlers will print the message * as appropriate. */ break; } upb_handlerattr_uninit(&empty_attr); } void printer_sethandlers(const void *closure, upb_handlers *h) { const upb_msgdef *md = upb_handlers_msgdef(h); bool is_mapentry = upb_msgdef_mapentry(md); upb_handlerattr empty_attr = UPB_HANDLERATTR_INITIALIZER; upb_msg_field_iter i; const bool *preserve_fieldnames_ptr = closure; const bool preserve_fieldnames = *preserve_fieldnames_ptr; if (is_mapentry) { /* mapentry messages are sufficiently different that we handle them * separately. */ printer_sethandlers_mapentry(closure, preserve_fieldnames, h); return; } upb_handlers_setstartmsg(h, printer_startmsg, &empty_attr); upb_handlers_setendmsg(h, printer_endmsg, &empty_attr); #define TYPE(type, name, ctype) \ case type: \ if (upb_fielddef_isseq(f)) { \ upb_handlers_set##name(h, f, repeated_##ctype, &empty_attr); \ } else { \ upb_handlers_set##name(h, f, scalar_##ctype, &name_attr); \ } \ break; upb_msg_field_begin(&i, md); for(; !upb_msg_field_done(&i); upb_msg_field_next(&i)) { const upb_fielddef *f = upb_msg_iter_field(&i); upb_handlerattr name_attr = UPB_HANDLERATTR_INITIALIZER; upb_handlerattr_sethandlerdata(&name_attr, newstrpc(h, f, preserve_fieldnames)); if (upb_fielddef_ismap(f)) { upb_handlers_setstartseq(h, f, startmap, &name_attr); upb_handlers_setendseq(h, f, endmap, &name_attr); } else if (upb_fielddef_isseq(f)) { upb_handlers_setstartseq(h, f, startseq, &name_attr); upb_handlers_setendseq(h, f, endseq, &empty_attr); } switch (upb_fielddef_type(f)) { TYPE(UPB_TYPE_FLOAT, float, float); TYPE(UPB_TYPE_DOUBLE, double, double); TYPE(UPB_TYPE_BOOL, bool, bool); TYPE(UPB_TYPE_INT32, int32, int32_t); TYPE(UPB_TYPE_UINT32, uint32, uint32_t); TYPE(UPB_TYPE_INT64, int64, int64_t); TYPE(UPB_TYPE_UINT64, uint64, uint64_t); case UPB_TYPE_ENUM: { /* For now, we always emit symbolic names for enums. We may want an * option later to control this behavior, but we will wait for a real * need first. */ upb_handlerattr enum_attr = UPB_HANDLERATTR_INITIALIZER; set_enum_hd(h, f, preserve_fieldnames, &enum_attr); if (upb_fielddef_isseq(f)) { upb_handlers_setint32(h, f, repeated_enum, &enum_attr); } else { upb_handlers_setint32(h, f, scalar_enum, &enum_attr); } upb_handlerattr_uninit(&enum_attr); break; } case UPB_TYPE_STRING: if (upb_fielddef_isseq(f)) { upb_handlers_setstartstr(h, f, repeated_startstr, &empty_attr); upb_handlers_setstring(h, f, repeated_str, &empty_attr); upb_handlers_setendstr(h, f, repeated_endstr, &empty_attr); } else { upb_handlers_setstartstr(h, f, scalar_startstr, &name_attr); upb_handlers_setstring(h, f, scalar_str, &empty_attr); upb_handlers_setendstr(h, f, scalar_endstr, &empty_attr); } break; case UPB_TYPE_BYTES: /* XXX: this doesn't support strings that span buffers yet. The base64 * encoder will need to be made resumable for this to work properly. */ if (upb_fielddef_isseq(f)) { upb_handlers_setstring(h, f, repeated_bytes, &empty_attr); } else { upb_handlers_setstring(h, f, scalar_bytes, &name_attr); } break; case UPB_TYPE_MESSAGE: if (upb_fielddef_isseq(f)) { upb_handlers_setstartsubmsg(h, f, repeated_startsubmsg, &name_attr); } else { upb_handlers_setstartsubmsg(h, f, scalar_startsubmsg, &name_attr); } break; } upb_handlerattr_uninit(&name_attr); } upb_handlerattr_uninit(&empty_attr); #undef TYPE } static void json_printer_reset(upb_json_printer *p) { p->depth_ = 0; } /* Public API *****************************************************************/ upb_json_printer *upb_json_printer_create(upb_env *e, const upb_handlers *h, upb_bytessink *output) { #ifndef NDEBUG size_t size_before = upb_env_bytesallocated(e); #endif upb_json_printer *p = upb_env_malloc(e, sizeof(upb_json_printer)); if (!p) return NULL; p->output_ = output; json_printer_reset(p); upb_sink_reset(&p->input_, h, p); /* If this fails, increase the value in printer.h. */ assert(upb_env_bytesallocated(e) - size_before <= UPB_JSON_PRINTER_SIZE); return p; } upb_sink *upb_json_printer_input(upb_json_printer *p) { return &p->input_; } const upb_handlers *upb_json_printer_newhandlers(const upb_msgdef *md, bool preserve_fieldnames, const void *owner) { return upb_handlers_newfrozen( md, owner, printer_sethandlers, &preserve_fieldnames); }