/* * The copyright in this software is being made available under the 2-clauses * BSD License, included below. This software may be subject to other third * party and contributor rights, including patent rights, and no such rights * are granted under this license. * * Copyright (c) 2002-2014, Universite catholique de Louvain (UCL), Belgium * Copyright (c) 2002-2014, Professor Benoit Macq * Copyright (c) 2001-2003, David Janssens * Copyright (c) 2002-2003, Yannick Verschueren * Copyright (c) 2003-2007, Francois-Olivier Devaux * Copyright (c) 2003-2014, Antonin Descampe * Copyright (c) 2005, Herve Drolon, FreeImage Team * Copyright (c) 2007, Jonathan Ballard <dzonatas@dzonux.net> * Copyright (c) 2007, Callum Lerwick <seg@haxxed.com> * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS `AS IS' * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #ifdef __SSE__ #include <xmmintrin.h> #endif #include "opj_includes.h" /** @defgroup DWT DWT - Implementation of a discrete wavelet transform */ /*@{*/ /** @name Local data structures */ /*@{*/ typedef struct dwt_local { OPJ_INT32* mem; OPJ_SIZE_T mem_count; OPJ_INT32 dn; OPJ_INT32 sn; OPJ_INT32 cas; } opj_dwt_t; typedef union { OPJ_FLOAT32 f[4]; } opj_v4_t; typedef struct v4dwt_local { opj_v4_t* wavelet ; OPJ_INT32 dn ; OPJ_INT32 sn ; OPJ_INT32 cas ; } opj_v4dwt_t ; static const OPJ_FLOAT32 opj_dwt_alpha = 1.586134342f; /* 12994 */ static const OPJ_FLOAT32 opj_dwt_beta = 0.052980118f; /* 434 */ static const OPJ_FLOAT32 opj_dwt_gamma = -0.882911075f; /* -7233 */ static const OPJ_FLOAT32 opj_dwt_delta = -0.443506852f; /* -3633 */ static const OPJ_FLOAT32 opj_K = 1.230174105f; /* 10078 */ static const OPJ_FLOAT32 opj_c13318 = 1.625732422f; /*@}*/ /** Virtual function type for wavelet transform in 1-D */ typedef void (*DWT1DFN)(opj_dwt_t* v); /** @name Local static functions */ /*@{*/ /** Forward lazy transform (horizontal) */ static void opj_dwt_deinterleave_h(OPJ_INT32 *a, OPJ_INT32 *b, OPJ_INT32 dn, OPJ_INT32 sn, OPJ_INT32 cas); /** Forward lazy transform (vertical) */ static void opj_dwt_deinterleave_v(OPJ_INT32 *a, OPJ_INT32 *b, OPJ_INT32 dn, OPJ_INT32 sn, OPJ_INT32 x, OPJ_INT32 cas); /** Inverse lazy transform (horizontal) */ static void opj_dwt_interleave_h(opj_dwt_t* h, OPJ_INT32 *a); /** Inverse lazy transform (vertical) */ static void opj_dwt_interleave_v(opj_dwt_t* v, OPJ_INT32 *a, OPJ_INT32 x); /** Forward 5-3 wavelet transform in 1-D */ static void opj_dwt_encode_1(OPJ_INT32 *a, OPJ_SIZE_T a_count, OPJ_INT32 dn, OPJ_INT32 sn, OPJ_INT32 cas); /** Inverse 5-3 wavelet transform in 1-D */ static void opj_dwt_decode_1(opj_dwt_t *v); static void opj_dwt_decode_1_(OPJ_INT32 *a, OPJ_SIZE_T a_count, OPJ_INT32 dn, OPJ_INT32 sn, OPJ_INT32 cas); /** Forward 9-7 wavelet transform in 1-D */ static void opj_dwt_encode_1_real(OPJ_INT32 *a, OPJ_SIZE_T a_count, OPJ_INT32 dn, OPJ_INT32 sn, OPJ_INT32 cas); /** Explicit calculation of the Quantization Stepsizes */ static void opj_dwt_encode_stepsize(OPJ_INT32 stepsize, OPJ_INT32 numbps, opj_stepsize_t *bandno_stepsize); /** Inverse wavelet transform in 2-D. */ static OPJ_BOOL opj_dwt_decode_tile(const opj_tcd_tilecomp_t* tilec, OPJ_UINT32 i, DWT1DFN fn); static OPJ_BOOL opj_dwt_encode_procedure(const opj_tcd_tilecomp_t * tilec, void(*p_function)(OPJ_INT32 *, OPJ_SIZE_T, OPJ_INT32, OPJ_INT32, OPJ_INT32)); static OPJ_UINT32 opj_dwt_max_resolution(opj_tcd_resolution_t* restrict r, OPJ_UINT32 i); /* <summary> */ /* Inverse 9-7 wavelet transform in 1-D. */ /* </summary> */ static void opj_v4dwt_decode(opj_v4dwt_t* restrict dwt); static void opj_v4dwt_interleave_h(opj_v4dwt_t* restrict w, OPJ_FLOAT32* restrict a, OPJ_INT32 x, OPJ_INT32 size); static void opj_v4dwt_interleave_v(opj_v4dwt_t* restrict v , OPJ_FLOAT32* restrict a , OPJ_INT32 x, OPJ_INT32 nb_elts_read); #ifdef __SSE__ static void opj_v4dwt_decode_step1_sse(opj_v4_t* w, OPJ_INT32 count, const __m128 c); static void opj_v4dwt_decode_step2_sse(opj_v4_t* l, opj_v4_t* w, OPJ_INT32 k, OPJ_INT32 m, __m128 c); #else static void opj_v4dwt_decode_step1(opj_v4_t* w, OPJ_INT32 count, const OPJ_FLOAT32 c); static void opj_v4dwt_decode_step2(opj_v4_t* l, opj_v4_t* w, OPJ_INT32 k, OPJ_INT32 m, OPJ_FLOAT32 c); #endif /*@}*/ /*@}*/ #define IDX_S(i) (i)*2 #define IDX_D(i) 1 + (i)* 2 #define UNDERFLOW_SN(i) ((i) >= sn&&sn>0) #define UNDERFLOW_DN(i) ((i) >= dn&&dn>0) #define OVERFLOW_S(i) (IDX_S(i) >= a_count) #define OVERFLOW_D(i) (IDX_D(i) >= a_count) #define OPJ_S(i) a[IDX_S(i)] #define OPJ_D(i) a[IDX_D(i)] #define OPJ_S_(i) ((i)<0 ? OPJ_S(0) : (UNDERFLOW_SN(i) ? OPJ_S(sn - 1) : OVERFLOW_S(i) ? OPJ_S(i - 1) : OPJ_S(i))) #define OPJ_D_(i) ((i)<0 ? OPJ_D(0) : (UNDERFLOW_DN(i) ? OPJ_D(dn - 1) : OVERFLOW_D(i) ? OPJ_D(i - 1) : OPJ_D(i))) /* new */ #define OPJ_SS_(i) ((i)<0 ? OPJ_S(0) : (UNDERFLOW_DN(i) ? OPJ_S(dn - 1) : OVERFLOW_S(i) ? OPJ_S(i - 1) : OPJ_S(i))) #define OPJ_DD_(i) ((i)<0 ? OPJ_D(0) : (UNDERFLOW_SN(i) ? OPJ_D(sn - 1) : OVERFLOW_D(i) ? OPJ_D(i - 1) : OPJ_D(i))) /* <summary> */ /* This table contains the norms of the 5-3 wavelets for different bands. */ /* </summary> */ static const OPJ_FLOAT64 opj_dwt_norms[4][10] = { {1.000, 1.500, 2.750, 5.375, 10.68, 21.34, 42.67, 85.33, 170.7, 341.3}, {1.038, 1.592, 2.919, 5.703, 11.33, 22.64, 45.25, 90.48, 180.9}, {1.038, 1.592, 2.919, 5.703, 11.33, 22.64, 45.25, 90.48, 180.9}, {.7186, .9218, 1.586, 3.043, 6.019, 12.01, 24.00, 47.97, 95.93} }; /* <summary> */ /* This table contains the norms of the 9-7 wavelets for different bands. */ /* </summary> */ static const OPJ_FLOAT64 opj_dwt_norms_real[4][10] = { {1.000, 1.965, 4.177, 8.403, 16.90, 33.84, 67.69, 135.3, 270.6, 540.9}, {2.022, 3.989, 8.355, 17.04, 34.27, 68.63, 137.3, 274.6, 549.0}, {2.022, 3.989, 8.355, 17.04, 34.27, 68.63, 137.3, 274.6, 549.0}, {2.080, 3.865, 8.307, 17.18, 34.71, 69.59, 139.3, 278.6, 557.2} }; /* ========================================================== local functions ========================================================== */ /* <summary> */ /* Forward lazy transform (horizontal). */ /* </summary> */ static void opj_dwt_deinterleave_h(OPJ_INT32 *a, OPJ_INT32 *b, OPJ_INT32 dn, OPJ_INT32 sn, OPJ_INT32 cas) { OPJ_INT32 i; OPJ_INT32 * l_dest = b; OPJ_INT32 * l_src = a+cas; for (i=0; i<sn; ++i) { *l_dest++ = *l_src; l_src += 2; } l_dest = b + sn; l_src = a + 1 - cas; for (i=0; i<dn; ++i) { *l_dest++=*l_src; l_src += 2; } } /* <summary> */ /* Forward lazy transform (vertical). */ /* </summary> */ static void opj_dwt_deinterleave_v(OPJ_INT32 *a, OPJ_INT32 *b, OPJ_INT32 dn, OPJ_INT32 sn, OPJ_INT32 x, OPJ_INT32 cas) { OPJ_INT32 i = sn; OPJ_INT32 * l_dest = b; OPJ_INT32 * l_src = a+cas; while (i--) { *l_dest = *l_src; l_dest += x; l_src += 2; } /* b[i*x]=a[2*i+cas]; */ l_dest = b + sn * x; l_src = a + 1 - cas; i = dn; while (i--) { *l_dest = *l_src; l_dest += x; l_src += 2; } /*b[(sn+i)*x]=a[(2*i+1-cas)];*/ } /* <summary> */ /* Inverse lazy transform (horizontal). */ /* </summary> */ static void opj_dwt_interleave_h(opj_dwt_t* h, OPJ_INT32 *a) { OPJ_INT32 *ai = a; OPJ_INT32 *bi = h->mem + h->cas; OPJ_INT32 i = h->sn; while( i-- ) { *bi = *(ai++); bi += 2; } ai = a + h->sn; bi = h->mem + 1 - h->cas; i = h->dn ; while( i-- ) { *bi = *(ai++); bi += 2; } } /* <summary> */ /* Inverse lazy transform (vertical). */ /* </summary> */ static void opj_dwt_interleave_v(opj_dwt_t* v, OPJ_INT32 *a, OPJ_INT32 x) { OPJ_INT32 *ai = a; OPJ_INT32 *bi = v->mem + v->cas; OPJ_INT32 i = v->sn; while( i-- ) { *bi = *ai; bi += 2; ai += x; } ai = a + (v->sn * x); bi = v->mem + 1 - v->cas; i = v->dn ; while( i-- ) { *bi = *ai; bi += 2; ai += x; } } /* <summary> */ /* Forward 5-3 wavelet transform in 1-D. */ /* </summary> */ static void opj_dwt_encode_1(OPJ_INT32 *a, OPJ_SIZE_T a_count, OPJ_INT32 dn, OPJ_INT32 sn, OPJ_INT32 cas) { OPJ_INT32 i; if (!cas) { if ((dn > 0) || (sn > 1)) { /* NEW : CASE ONE ELEMENT */ for (i = 0; i < dn; i++) OPJ_D(i) -= (OPJ_S_(i) + OPJ_S_(i + 1)) >> 1; for (i = 0; i < sn; i++) OPJ_S(i) += (OPJ_D_(i - 1) + OPJ_D_(i) + 2) >> 2; } } else { if (!sn && dn == 1) /* NEW : CASE ONE ELEMENT */ OPJ_S(0) *= 2; else { for (i = 0; i < dn; i++) OPJ_S(i) -= (OPJ_DD_(i) + OPJ_DD_(i - 1)) >> 1; for (i = 0; i < sn; i++) OPJ_D(i) += (OPJ_SS_(i) + OPJ_SS_(i + 1) + 2) >> 2; } } } /* <summary> */ /* Inverse 5-3 wavelet transform in 1-D. */ /* </summary> */ static void opj_dwt_decode_1_(OPJ_INT32 *a, OPJ_SIZE_T a_count, OPJ_INT32 dn, OPJ_INT32 sn, OPJ_INT32 cas) { OPJ_INT32 i; if (!cas) { if ((dn > 0) || (sn > 1)) { /* NEW : CASE ONE ELEMENT */ for (i = 0; i < sn; i++) OPJ_S(i) -= (OPJ_D_(i - 1) + OPJ_D_(i) + 2) >> 2; for (i = 0; i < dn; i++) OPJ_D(i) += (OPJ_S_(i) + OPJ_S_(i + 1)) >> 1; } } else { if (!sn && dn == 1) /* NEW : CASE ONE ELEMENT */ OPJ_S(0) /= 2; else { for (i = 0; i < sn; i++) OPJ_D(i) -= (OPJ_SS_(i) + OPJ_SS_(i + 1) + 2) >> 2; for (i = 0; i < dn; i++) OPJ_S(i) += (OPJ_DD_(i) + OPJ_DD_(i - 1)) >> 1; } } } /* <summary> */ /* Inverse 5-3 wavelet transform in 1-D. */ /* </summary> */ static void opj_dwt_decode_1(opj_dwt_t *v) { opj_dwt_decode_1_(v->mem, v->mem_count, v->dn, v->sn, v->cas); } /* <summary> */ /* Forward 9-7 wavelet transform in 1-D. */ /* </summary> */ static void opj_dwt_encode_1_real(OPJ_INT32 *a, OPJ_SIZE_T a_count, OPJ_INT32 dn, OPJ_INT32 sn, OPJ_INT32 cas) { OPJ_INT32 i; if (!cas) { if ((dn > 0) || (sn > 1)) { /* NEW : CASE ONE ELEMENT */ for (i = 0; i < dn; i++) OPJ_D(i) -= opj_int_fix_mul(OPJ_S_(i) + OPJ_S_(i + 1), 12993); for (i = 0; i < sn; i++) OPJ_S(i) -= opj_int_fix_mul(OPJ_D_(i - 1) + OPJ_D_(i), 434); for (i = 0; i < dn; i++) OPJ_D(i) += opj_int_fix_mul(OPJ_S_(i) + OPJ_S_(i + 1), 7233); for (i = 0; i < sn; i++) OPJ_S(i) += opj_int_fix_mul(OPJ_D_(i - 1) + OPJ_D_(i), 3633); for (i = 0; i < dn; i++) OPJ_D(i) = opj_int_fix_mul(OPJ_D(i), 5038); /*5038 */ for (i = 0; i < sn; i++) OPJ_S(i) = opj_int_fix_mul(OPJ_S(i), 6659); /*6660 */ } } else { if ((sn > 0) || (dn > 1)) { /* NEW : CASE ONE ELEMENT */ for (i = 0; i < dn; i++) OPJ_S(i) -= opj_int_fix_mul(OPJ_DD_(i) + OPJ_DD_(i - 1), 12993); for (i = 0; i < sn; i++) OPJ_D(i) -= opj_int_fix_mul(OPJ_SS_(i) + OPJ_SS_(i + 1), 434); for (i = 0; i < dn; i++) OPJ_S(i) += opj_int_fix_mul(OPJ_DD_(i) + OPJ_DD_(i - 1), 7233); for (i = 0; i < sn; i++) OPJ_D(i) += opj_int_fix_mul(OPJ_SS_(i) + OPJ_SS_(i + 1), 3633); for (i = 0; i < dn; i++) OPJ_S(i) = opj_int_fix_mul(OPJ_S(i), 5038); /*5038 */ for (i = 0; i < sn; i++) OPJ_D(i) = opj_int_fix_mul(OPJ_D(i), 6659); /*6660 */ } } } static void opj_dwt_encode_stepsize(OPJ_INT32 stepsize, OPJ_INT32 numbps, opj_stepsize_t *bandno_stepsize) { OPJ_INT32 p, n; p = opj_int_floorlog2(stepsize) - 13; n = 11 - opj_int_floorlog2(stepsize); bandno_stepsize->mant = (n < 0 ? stepsize >> -n : stepsize << n) & 0x7ff; bandno_stepsize->expn = numbps - p; } /* ========================================================== DWT interface ========================================================== */ /* <summary> */ /* Forward 5-3 wavelet transform in 2-D. */ /* </summary> */ static INLINE OPJ_BOOL opj_dwt_encode_procedure(const opj_tcd_tilecomp_t * tilec, void(*p_function)(OPJ_INT32 *, OPJ_SIZE_T, OPJ_INT32, OPJ_INT32, OPJ_INT32)) { OPJ_INT32 i, j, k; OPJ_INT32 *a = 00; OPJ_INT32 *aj = 00; OPJ_INT32 *bj = 00; OPJ_INT32 w, l; OPJ_INT32 rw; /* width of the resolution level computed */ OPJ_INT32 rh; /* height of the resolution level computed */ OPJ_SIZE_T l_data_count; OPJ_SIZE_T l_data_size; opj_tcd_resolution_t * l_cur_res = 0; opj_tcd_resolution_t * l_last_res = 0; w = tilec->x1-tilec->x0; l = (OPJ_INT32)tilec->numresolutions-1; a = tilec->data; l_cur_res = tilec->resolutions + l; l_last_res = l_cur_res - 1; l_data_count = opj_dwt_max_resolution(tilec->resolutions, tilec->numresolutions) * (OPJ_UINT32)sizeof(OPJ_INT32); l_data_size = l_data_count * (OPJ_UINT32)sizeof(OPJ_INT32); bj = (OPJ_INT32*)opj_malloc(l_data_size); if (! bj) { return OPJ_FALSE; } i = l; while (i--) { OPJ_INT32 rw1; /* width of the resolution level once lower than computed one */ OPJ_INT32 rh1; /* height of the resolution level once lower than computed one */ OPJ_INT32 cas_col; /* 0 = non inversion on horizontal filtering 1 = inversion between low-pass and high-pass filtering */ OPJ_INT32 cas_row; /* 0 = non inversion on vertical filtering 1 = inversion between low-pass and high-pass filtering */ OPJ_INT32 dn, sn; rw = l_cur_res->x1 - l_cur_res->x0; rh = l_cur_res->y1 - l_cur_res->y0; rw1 = l_last_res->x1 - l_last_res->x0; rh1 = l_last_res->y1 - l_last_res->y0; cas_row = l_cur_res->x0 & 1; cas_col = l_cur_res->y0 & 1; sn = rh1; dn = rh - rh1; for (j = 0; j < rw; ++j) { aj = a + j; for (k = 0; k < rh; ++k) { bj[k] = aj[k*w]; } (*p_function) (bj, l_data_count, dn, sn, cas_col); opj_dwt_deinterleave_v(bj, aj, dn, sn, w, cas_col); } sn = rw1; dn = rw - rw1; for (j = 0; j < rh; j++) { aj = a + j * w; for (k = 0; k < rw; k++) bj[k] = aj[k]; (*p_function) (bj, l_data_count, dn, sn, cas_row); opj_dwt_deinterleave_h(bj, aj, dn, sn, cas_row); } l_cur_res = l_last_res; --l_last_res; } opj_free(bj); return OPJ_TRUE; } /* Forward 5-3 wavelet transform in 2-D. */ /* </summary> */ OPJ_BOOL opj_dwt_encode(opj_tcd_tilecomp_t * tilec) { return opj_dwt_encode_procedure(tilec,opj_dwt_encode_1); } /* <summary> */ /* Inverse 5-3 wavelet transform in 2-D. */ /* </summary> */ OPJ_BOOL opj_dwt_decode(opj_tcd_tilecomp_t* tilec, OPJ_UINT32 numres) { return opj_dwt_decode_tile(tilec, numres, &opj_dwt_decode_1); } /* <summary> */ /* Get gain of 5-3 wavelet transform. */ /* </summary> */ OPJ_UINT32 opj_dwt_getgain(OPJ_UINT32 orient) { if (orient == 0) return 0; if (orient == 1 || orient == 2) return 1; return 2; } /* <summary> */ /* Get norm of 5-3 wavelet. */ /* </summary> */ OPJ_FLOAT64 opj_dwt_getnorm(OPJ_UINT32 level, OPJ_UINT32 orient) { return opj_dwt_norms[orient][level]; } /* <summary> */ /* Forward 9-7 wavelet transform in 2-D. */ /* </summary> */ OPJ_BOOL opj_dwt_encode_real(opj_tcd_tilecomp_t * tilec) { return opj_dwt_encode_procedure(tilec,opj_dwt_encode_1_real); } /* <summary> */ /* Get gain of 9-7 wavelet transform. */ /* </summary> */ OPJ_UINT32 opj_dwt_getgain_real(OPJ_UINT32 orient) { (void)orient; return 0; } /* <summary> */ /* Get norm of 9-7 wavelet. */ /* </summary> */ OPJ_FLOAT64 opj_dwt_getnorm_real(OPJ_UINT32 level, OPJ_UINT32 orient) { return opj_dwt_norms_real[orient][level]; } void opj_dwt_calc_explicit_stepsizes(opj_tccp_t * tccp, OPJ_UINT32 prec) { OPJ_UINT32 numbands, bandno; numbands = 3 * tccp->numresolutions - 2; for (bandno = 0; bandno < numbands; bandno++) { OPJ_FLOAT64 stepsize; OPJ_UINT32 resno, level, orient, gain; resno = (bandno == 0) ? 0 : ((bandno - 1) / 3 + 1); orient = (bandno == 0) ? 0 : ((bandno - 1) % 3 + 1); level = tccp->numresolutions - 1 - resno; gain = (tccp->qmfbid == 0) ? 0 : ((orient == 0) ? 0 : (((orient == 1) || (orient == 2)) ? 1 : 2)); if (tccp->qntsty == J2K_CCP_QNTSTY_NOQNT) { stepsize = 1.0; } else { OPJ_FLOAT64 norm = opj_dwt_norms_real[orient][level]; stepsize = (1 << (gain)) / norm; } opj_dwt_encode_stepsize((OPJ_INT32) floor(stepsize * 8192.0), (OPJ_INT32)(prec + gain), &tccp->stepsizes[bandno]); } } /* <summary> */ /* Determine maximum computed resolution level for inverse wavelet transform */ /* </summary> */ static OPJ_UINT32 opj_dwt_max_resolution(opj_tcd_resolution_t* restrict r, OPJ_UINT32 i) { OPJ_UINT32 mr = 0; OPJ_UINT32 w; while( --i ) { ++r; if( mr < ( w = (OPJ_UINT32)(r->x1 - r->x0) ) ) mr = w ; if( mr < ( w = (OPJ_UINT32)(r->y1 - r->y0) ) ) mr = w ; } return mr ; } /* <summary> */ /* Inverse wavelet transform in 2-D. */ /* </summary> */ static OPJ_BOOL opj_dwt_decode_tile(const opj_tcd_tilecomp_t* tilec, OPJ_UINT32 numres, DWT1DFN dwt_1D) { opj_dwt_t h; opj_dwt_t v; opj_tcd_resolution_t* tr = tilec->resolutions; OPJ_UINT32 rw = (OPJ_UINT32)(tr->x1 - tr->x0); /* width of the resolution level computed */ OPJ_UINT32 rh = (OPJ_UINT32)(tr->y1 - tr->y0); /* height of the resolution level computed */ OPJ_UINT32 w = (OPJ_UINT32)(tilec->x1 - tilec->x0); h.mem_count = opj_dwt_max_resolution(tr, numres); if (((OPJ_UINT32)-1) / (OPJ_UINT32)sizeof(OPJ_INT32) < (OPJ_UINT32)h.mem_count) { return OPJ_FALSE; } h.mem = (OPJ_INT32*)opj_aligned_malloc(h.mem_count * sizeof(OPJ_INT32)); if (! h.mem){ /* FIXME event manager error callback */ return OPJ_FALSE; } v.mem_count = h.mem_count; v.mem = h.mem; while( --numres) { OPJ_INT32 * restrict tiledp = tilec->data; OPJ_UINT32 j; ++tr; h.sn = (OPJ_INT32)rw; v.sn = (OPJ_INT32)rh; rw = (OPJ_UINT32)(tr->x1 - tr->x0); rh = (OPJ_UINT32)(tr->y1 - tr->y0); h.dn = (OPJ_INT32)(rw - (OPJ_UINT32)h.sn); h.cas = tr->x0 % 2; for(j = 0; j < rh; ++j) { opj_dwt_interleave_h(&h, &tiledp[j*w]); (dwt_1D)(&h); memcpy(&tiledp[j*w], h.mem, rw * sizeof(OPJ_INT32)); } v.dn = (OPJ_INT32)(rh - (OPJ_UINT32)v.sn); v.cas = tr->y0 % 2; for(j = 0; j < rw; ++j){ OPJ_UINT32 k; opj_dwt_interleave_v(&v, &tiledp[j], (OPJ_INT32)w); (dwt_1D)(&v); for(k = 0; k < rh; ++k) { tiledp[k * w + j] = v.mem[k]; } } } opj_aligned_free(h.mem); return OPJ_TRUE; } static void opj_v4dwt_interleave_h(opj_v4dwt_t* restrict w, OPJ_FLOAT32* restrict a, OPJ_INT32 x, OPJ_INT32 size){ OPJ_FLOAT32* restrict bi = (OPJ_FLOAT32*) (w->wavelet + w->cas); OPJ_INT32 count = w->sn; OPJ_INT32 i, k; for(k = 0; k < 2; ++k){ if ( count + 3 * x < size && ((size_t) a & 0x0f) == 0 && ((size_t) bi & 0x0f) == 0 && (x & 0x0f) == 0 ) { /* Fast code path */ for(i = 0; i < count; ++i){ OPJ_INT32 j = i; bi[i*8 ] = a[j]; j += x; bi[i*8 + 1] = a[j]; j += x; bi[i*8 + 2] = a[j]; j += x; bi[i*8 + 3] = a[j]; } } else { /* Slow code path */ for(i = 0; i < count; ++i){ OPJ_INT32 j = i; bi[i*8 ] = a[j]; j += x; if(j >= size) continue; bi[i*8 + 1] = a[j]; j += x; if(j >= size) continue; bi[i*8 + 2] = a[j]; j += x; if(j >= size) continue; bi[i*8 + 3] = a[j]; /* This one*/ } } bi = (OPJ_FLOAT32*) (w->wavelet + 1 - w->cas); a += w->sn; size -= w->sn; count = w->dn; } } static void opj_v4dwt_interleave_v(opj_v4dwt_t* restrict v , OPJ_FLOAT32* restrict a , OPJ_INT32 x, OPJ_INT32 nb_elts_read){ opj_v4_t* restrict bi = v->wavelet + v->cas; OPJ_INT32 i; for(i = 0; i < v->sn; ++i){ memcpy(&bi[i*2], &a[i*x], (size_t)nb_elts_read * sizeof(OPJ_FLOAT32)); } a += v->sn * x; bi = v->wavelet + 1 - v->cas; for(i = 0; i < v->dn; ++i){ memcpy(&bi[i*2], &a[i*x], (size_t)nb_elts_read * sizeof(OPJ_FLOAT32)); } } #ifdef __SSE__ static void opj_v4dwt_decode_step1_sse(opj_v4_t* w, OPJ_INT32 count, const __m128 c){ __m128* restrict vw = (__m128*) w; OPJ_INT32 i; /* 4x unrolled loop */ for(i = 0; i < count >> 2; ++i){ *vw = _mm_mul_ps(*vw, c); vw += 2; *vw = _mm_mul_ps(*vw, c); vw += 2; *vw = _mm_mul_ps(*vw, c); vw += 2; *vw = _mm_mul_ps(*vw, c); vw += 2; } count &= 3; for(i = 0; i < count; ++i){ *vw = _mm_mul_ps(*vw, c); vw += 2; } } void opj_v4dwt_decode_step2_sse(opj_v4_t* l, opj_v4_t* w, OPJ_INT32 k, OPJ_INT32 m, __m128 c){ __m128* restrict vl = (__m128*) l; __m128* restrict vw = (__m128*) w; OPJ_INT32 i; __m128 tmp1, tmp2, tmp3; tmp1 = vl[0]; for(i = 0; i < m; ++i){ tmp2 = vw[-1]; tmp3 = vw[ 0]; vw[-1] = _mm_add_ps(tmp2, _mm_mul_ps(_mm_add_ps(tmp1, tmp3), c)); tmp1 = tmp3; vw += 2; } vl = vw - 2; if(m >= k){ return; } c = _mm_add_ps(c, c); c = _mm_mul_ps(c, vl[0]); for(; m < k; ++m){ __m128 tmp = vw[-1]; vw[-1] = _mm_add_ps(tmp, c); vw += 2; } } #else static void opj_v4dwt_decode_step1(opj_v4_t* w, OPJ_INT32 count, const OPJ_FLOAT32 c) { OPJ_FLOAT32* restrict fw = (OPJ_FLOAT32*) w; OPJ_INT32 i; for(i = 0; i < count; ++i){ OPJ_FLOAT32 tmp1 = fw[i*8 ]; OPJ_FLOAT32 tmp2 = fw[i*8 + 1]; OPJ_FLOAT32 tmp3 = fw[i*8 + 2]; OPJ_FLOAT32 tmp4 = fw[i*8 + 3]; fw[i*8 ] = tmp1 * c; fw[i*8 + 1] = tmp2 * c; fw[i*8 + 2] = tmp3 * c; fw[i*8 + 3] = tmp4 * c; } } static void opj_v4dwt_decode_step2(opj_v4_t* l, opj_v4_t* w, OPJ_INT32 k, OPJ_INT32 m, OPJ_FLOAT32 c) { OPJ_FLOAT32* restrict fl = (OPJ_FLOAT32*) l; OPJ_FLOAT32* restrict fw = (OPJ_FLOAT32*) w; OPJ_INT32 i; for(i = 0; i < m; ++i){ OPJ_FLOAT32 tmp1_1 = fl[0]; OPJ_FLOAT32 tmp1_2 = fl[1]; OPJ_FLOAT32 tmp1_3 = fl[2]; OPJ_FLOAT32 tmp1_4 = fl[3]; OPJ_FLOAT32 tmp2_1 = fw[-4]; OPJ_FLOAT32 tmp2_2 = fw[-3]; OPJ_FLOAT32 tmp2_3 = fw[-2]; OPJ_FLOAT32 tmp2_4 = fw[-1]; OPJ_FLOAT32 tmp3_1 = fw[0]; OPJ_FLOAT32 tmp3_2 = fw[1]; OPJ_FLOAT32 tmp3_3 = fw[2]; OPJ_FLOAT32 tmp3_4 = fw[3]; fw[-4] = tmp2_1 + ((tmp1_1 + tmp3_1) * c); fw[-3] = tmp2_2 + ((tmp1_2 + tmp3_2) * c); fw[-2] = tmp2_3 + ((tmp1_3 + tmp3_3) * c); fw[-1] = tmp2_4 + ((tmp1_4 + tmp3_4) * c); fl = fw; fw += 8; } if(m < k){ OPJ_FLOAT32 c1; OPJ_FLOAT32 c2; OPJ_FLOAT32 c3; OPJ_FLOAT32 c4; c += c; c1 = fl[0] * c; c2 = fl[1] * c; c3 = fl[2] * c; c4 = fl[3] * c; for(; m < k; ++m){ OPJ_FLOAT32 tmp1 = fw[-4]; OPJ_FLOAT32 tmp2 = fw[-3]; OPJ_FLOAT32 tmp3 = fw[-2]; OPJ_FLOAT32 tmp4 = fw[-1]; fw[-4] = tmp1 + c1; fw[-3] = tmp2 + c2; fw[-2] = tmp3 + c3; fw[-1] = tmp4 + c4; fw += 8; } } } #endif /* <summary> */ /* Inverse 9-7 wavelet transform in 1-D. */ /* </summary> */ void opj_v4dwt_decode(opj_v4dwt_t* restrict dwt) { OPJ_INT32 a, b; if(dwt->cas == 0) { if(!((dwt->dn > 0) || (dwt->sn > 1))){ return; } a = 0; b = 1; }else{ if(!((dwt->sn > 0) || (dwt->dn > 1))) { return; } a = 1; b = 0; } #ifdef __SSE__ opj_v4dwt_decode_step1_sse(dwt->wavelet+a, dwt->sn, _mm_set1_ps(opj_K)); opj_v4dwt_decode_step1_sse(dwt->wavelet+b, dwt->dn, _mm_set1_ps(opj_c13318)); opj_v4dwt_decode_step2_sse(dwt->wavelet+b, dwt->wavelet+a+1, dwt->sn, opj_int_min(dwt->sn, dwt->dn-a), _mm_set1_ps(opj_dwt_delta)); opj_v4dwt_decode_step2_sse(dwt->wavelet+a, dwt->wavelet+b+1, dwt->dn, opj_int_min(dwt->dn, dwt->sn-b), _mm_set1_ps(opj_dwt_gamma)); opj_v4dwt_decode_step2_sse(dwt->wavelet+b, dwt->wavelet+a+1, dwt->sn, opj_int_min(dwt->sn, dwt->dn-a), _mm_set1_ps(opj_dwt_beta)); opj_v4dwt_decode_step2_sse(dwt->wavelet+a, dwt->wavelet+b+1, dwt->dn, opj_int_min(dwt->dn, dwt->sn-b), _mm_set1_ps(opj_dwt_alpha)); #else opj_v4dwt_decode_step1(dwt->wavelet+a, dwt->sn, opj_K); opj_v4dwt_decode_step1(dwt->wavelet+b, dwt->dn, opj_c13318); opj_v4dwt_decode_step2(dwt->wavelet+b, dwt->wavelet+a+1, dwt->sn, opj_int_min(dwt->sn, dwt->dn-a), opj_dwt_delta); opj_v4dwt_decode_step2(dwt->wavelet+a, dwt->wavelet+b+1, dwt->dn, opj_int_min(dwt->dn, dwt->sn-b), opj_dwt_gamma); opj_v4dwt_decode_step2(dwt->wavelet+b, dwt->wavelet+a+1, dwt->sn, opj_int_min(dwt->sn, dwt->dn-a), opj_dwt_beta); opj_v4dwt_decode_step2(dwt->wavelet+a, dwt->wavelet+b+1, dwt->dn, opj_int_min(dwt->dn, dwt->sn-b), opj_dwt_alpha); #endif } /* <summary> */ /* Inverse 9-7 wavelet transform in 2-D. */ /* </summary> */ OPJ_BOOL opj_dwt_decode_real(opj_tcd_tilecomp_t* restrict tilec, OPJ_UINT32 numres) { opj_v4dwt_t h; opj_v4dwt_t v; opj_tcd_resolution_t* res = tilec->resolutions; OPJ_UINT32 rw = (OPJ_UINT32)(res->x1 - res->x0); /* width of the resolution level computed */ OPJ_UINT32 rh = (OPJ_UINT32)(res->y1 - res->y0); /* height of the resolution level computed */ OPJ_UINT32 w = (OPJ_UINT32)(tilec->x1 - tilec->x0); OPJ_UINT32 mr = opj_dwt_max_resolution(res, numres); if (mr >= ((OPJ_UINT32)-5)) { return OPJ_FALSE; } mr += 5; if (((OPJ_UINT32)-1) / (OPJ_UINT32)sizeof(opj_v4_t) < mr) { return OPJ_FALSE; } h.wavelet = (opj_v4_t*) opj_aligned_malloc(mr * sizeof(opj_v4_t)); if (!h.wavelet) { /* FIXME event manager error callback */ return OPJ_FALSE; } v.wavelet = h.wavelet; while( --numres) { OPJ_FLOAT32 * restrict aj = (OPJ_FLOAT32*) tilec->data; OPJ_UINT32 bufsize = (OPJ_UINT32)((tilec->x1 - tilec->x0) * (tilec->y1 - tilec->y0)); OPJ_INT32 j; h.sn = (OPJ_INT32)rw; v.sn = (OPJ_INT32)rh; ++res; rw = (OPJ_UINT32)(res->x1 - res->x0); /* width of the resolution level computed */ rh = (OPJ_UINT32)(res->y1 - res->y0); /* height of the resolution level computed */ h.dn = (OPJ_INT32)(rw - (OPJ_UINT32)h.sn); h.cas = res->x0 % 2; for(j = (OPJ_INT32)rh; j > 3; j -= 4) { OPJ_INT32 k; opj_v4dwt_interleave_h(&h, aj, (OPJ_INT32)w, (OPJ_INT32)bufsize); opj_v4dwt_decode(&h); for(k = (OPJ_INT32)rw; --k >= 0;){ aj[k ] = h.wavelet[k].f[0]; aj[k+(OPJ_INT32)w ] = h.wavelet[k].f[1]; aj[k+(OPJ_INT32)w*2] = h.wavelet[k].f[2]; aj[k+(OPJ_INT32)w*3] = h.wavelet[k].f[3]; } aj += w*4; bufsize -= w*4; } if (rh & 0x03) { OPJ_INT32 k; j = rh & 0x03; opj_v4dwt_interleave_h(&h, aj, (OPJ_INT32)w, (OPJ_INT32)bufsize); opj_v4dwt_decode(&h); for(k = (OPJ_INT32)rw; --k >= 0;){ switch(j) { case 3: aj[k+(OPJ_INT32)w*2] = h.wavelet[k].f[2]; case 2: aj[k+(OPJ_INT32)w ] = h.wavelet[k].f[1]; case 1: aj[k ] = h.wavelet[k].f[0]; } } } v.dn = (OPJ_INT32)(rh - (OPJ_UINT32)v.sn); v.cas = res->y0 % 2; aj = (OPJ_FLOAT32*) tilec->data; for(j = (OPJ_INT32)rw; j > 3; j -= 4){ OPJ_UINT32 k; opj_v4dwt_interleave_v(&v, aj, (OPJ_INT32)w, 4); opj_v4dwt_decode(&v); for(k = 0; k < rh; ++k){ memcpy(&aj[k*w], &v.wavelet[k], 4 * sizeof(OPJ_FLOAT32)); } aj += 4; } if (rw & 0x03){ OPJ_UINT32 k; j = rw & 0x03; opj_v4dwt_interleave_v(&v, aj, (OPJ_INT32)w, j); opj_v4dwt_decode(&v); for(k = 0; k < rh; ++k){ memcpy(&aj[k*w], &v.wavelet[k], (size_t)j * sizeof(OPJ_FLOAT32)); } } } opj_aligned_free(h.wavelet); return OPJ_TRUE; }