/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "_cxcore.h" /****************************************************************************************\ * Mean and StdDev calculation * \****************************************************************************************/ #define ICV_MEAN_SDV_COI_CASE( worktype, sqsumtype, \ sqr_macro, len, cn ) \ for( ; x <= (len) - 4*(cn); x += 4*(cn))\ { \ worktype t0 = src[x]; \ worktype t1 = src[x + (cn)]; \ \ s0 += t0 + t1; \ sq0 += (sqsumtype)(sqr_macro(t0)) + \ (sqsumtype)(sqr_macro(t1)); \ \ t0 = src[x + 2*(cn)]; \ t1 = src[x + 3*(cn)]; \ \ s0 += t0 + t1; \ sq0 += (sqsumtype)(sqr_macro(t0)) + \ (sqsumtype)(sqr_macro(t1)); \ } \ \ for( ; x < (len); x += (cn) ) \ { \ worktype t0 = src[x]; \ \ s0 += t0; \ sq0 += (sqsumtype)(sqr_macro(t0)); \ } #define ICV_MEAN_SDV_CASE_C1( worktype, sqsumtype, sqr_macro, len ) \ ICV_MEAN_SDV_COI_CASE( worktype, sqsumtype, sqr_macro, len, 1 ) #define ICV_MEAN_SDV_CASE_C2( worktype, sqsumtype, \ sqr_macro, len ) \ for( ; x < (len); x += 2 ) \ { \ worktype t0 = (src)[x]; \ worktype t1 = (src)[x + 1]; \ \ s0 += t0; \ sq0 += (sqsumtype)(sqr_macro(t0)); \ s1 += t1; \ sq1 += (sqsumtype)(sqr_macro(t1)); \ } #define ICV_MEAN_SDV_CASE_C3( worktype, sqsumtype, \ sqr_macro, len ) \ for( ; x < (len); x += 3 ) \ { \ worktype t0 = (src)[x]; \ worktype t1 = (src)[x + 1]; \ worktype t2 = (src)[x + 2]; \ \ s0 += t0; \ sq0 += (sqsumtype)(sqr_macro(t0)); \ s1 += t1; \ sq1 += (sqsumtype)(sqr_macro(t1)); \ s2 += t2; \ sq2 += (sqsumtype)(sqr_macro(t2)); \ } #define ICV_MEAN_SDV_CASE_C4( worktype, sqsumtype, \ sqr_macro, len ) \ for( ; x < (len); x += 4 ) \ { \ worktype t0 = (src)[x]; \ worktype t1 = (src)[x + 1]; \ \ s0 += t0; \ sq0 += (sqsumtype)(sqr_macro(t0)); \ s1 += t1; \ sq1 += (sqsumtype)(sqr_macro(t1)); \ \ t0 = (src)[x + 2]; \ t1 = (src)[x + 3]; \ \ s2 += t0; \ sq2 += (sqsumtype)(sqr_macro(t0)); \ s3 += t1; \ sq3 += (sqsumtype)(sqr_macro(t1)); \ } #define ICV_MEAN_SDV_MASK_COI_CASE( worktype, sqsumtype, \ sqr_macro, len, cn ) \ for( ; x <= (len) - 4; x += 4 ) \ { \ worktype t0; \ if( mask[x] ) \ { \ t0 = src[x*(cn)]; pix++; \ s0 += t0; \ sq0 += sqsumtype(sqr_macro(t0)); \ } \ \ if( mask[x+1] ) \ { \ t0 = src[(x+1)*(cn)]; pix++; \ s0 += t0; \ sq0 += sqsumtype(sqr_macro(t0)); \ } \ \ if( mask[x+2] ) \ { \ t0 = src[(x+2)*(cn)]; pix++; \ s0 += t0; \ sq0 += sqsumtype(sqr_macro(t0)); \ } \ \ if( mask[x+3] ) \ { \ t0 = src[(x+3)*(cn)]; pix++; \ s0 += t0; \ sq0 += sqsumtype(sqr_macro(t0)); \ } \ } \ \ for( ; x < (len); x++ ) \ { \ if( mask[x] ) \ { \ worktype t0 = src[x*(cn)]; pix++; \ s0 += t0; \ sq0 += sqsumtype(sqr_macro(t0)); \ } \ } #define ICV_MEAN_SDV_MASK_CASE_C1( worktype, sqsumtype, sqr_macro, len ) \ ICV_MEAN_SDV_MASK_COI_CASE( worktype, sqsumtype, sqr_macro, len, 1 ) #define ICV_MEAN_SDV_MASK_CASE_C2( worktype, sqsumtype,\ sqr_macro, len ) \ for( ; x < (len); x++ ) \ { \ if( mask[x] ) \ { \ worktype t0 = src[x*2]; \ worktype t1 = src[x*2+1]; \ pix++; \ s0 += t0; \ sq0 += sqsumtype(sqr_macro(t0)); \ s1 += t1; \ sq1 += sqsumtype(sqr_macro(t1)); \ } \ } #define ICV_MEAN_SDV_MASK_CASE_C3( worktype, sqsumtype,\ sqr_macro, len ) \ for( ; x < (len); x++ ) \ { \ if( mask[x] ) \ { \ worktype t0 = src[x*3]; \ worktype t1 = src[x*3+1]; \ worktype t2 = src[x*3+2]; \ pix++; \ s0 += t0; \ sq0 += sqsumtype(sqr_macro(t0)); \ s1 += t1; \ sq1 += sqsumtype(sqr_macro(t1)); \ s2 += t2; \ sq2 += sqsumtype(sqr_macro(t2)); \ } \ } #define ICV_MEAN_SDV_MASK_CASE_C4( worktype, sqsumtype,\ sqr_macro, len ) \ for( ; x < (len); x++ ) \ { \ if( mask[x] ) \ { \ worktype t0 = src[x*4]; \ worktype t1 = src[x*4+1]; \ pix++; \ s0 += t0; \ sq0 += sqsumtype(sqr_macro(t0)); \ s1 += t1; \ sq1 += sqsumtype(sqr_macro(t1)); \ t0 = src[x*4+2]; \ t1 = src[x*4+3]; \ s2 += t0; \ sq2 += sqsumtype(sqr_macro(t0)); \ s3 += t1; \ sq3 += sqsumtype(sqr_macro(t1)); \ } \ } ////////////////////////////////////// entry macros ////////////////////////////////////// #define ICV_MEAN_SDV_ENTRY_COMMON() \ int pix; \ double scale, tmp; \ step /= sizeof(src[0]) #define ICV_MEAN_SDV_ENTRY_C1( sumtype, sqsumtype ) \ sumtype s0 = 0; \ sqsumtype sq0 = 0; \ ICV_MEAN_SDV_ENTRY_COMMON() #define ICV_MEAN_SDV_ENTRY_C2( sumtype, sqsumtype ) \ sumtype s0 = 0, s1 = 0; \ sqsumtype sq0 = 0, sq1 = 0; \ ICV_MEAN_SDV_ENTRY_COMMON() #define ICV_MEAN_SDV_ENTRY_C3( sumtype, sqsumtype ) \ sumtype s0 = 0, s1 = 0, s2 = 0; \ sqsumtype sq0 = 0, sq1 = 0, sq2 = 0; \ ICV_MEAN_SDV_ENTRY_COMMON() #define ICV_MEAN_SDV_ENTRY_C4( sumtype, sqsumtype ) \ sumtype s0 = 0, s1 = 0, s2 = 0, s3 = 0; \ sqsumtype sq0 = 0, sq1 = 0, sq2 = 0, sq3 = 0; \ ICV_MEAN_SDV_ENTRY_COMMON() #define ICV_MEAN_SDV_ENTRY_BLOCK_COMMON( block_size ) \ int remaining = block_size; \ ICV_MEAN_SDV_ENTRY_COMMON() #define ICV_MEAN_SDV_ENTRY_BLOCK_C1( sumtype, sqsumtype, \ worktype, sqworktype, block_size ) \ sumtype sum0 = 0; \ sqsumtype sqsum0 = 0; \ worktype s0 = 0; \ sqworktype sq0 = 0; \ ICV_MEAN_SDV_ENTRY_BLOCK_COMMON( block_size ) #define ICV_MEAN_SDV_ENTRY_BLOCK_C2( sumtype, sqsumtype, \ worktype, sqworktype, block_size ) \ sumtype sum0 = 0, sum1 = 0; \ sqsumtype sqsum0 = 0, sqsum1 = 0; \ worktype s0 = 0, s1 = 0; \ sqworktype sq0 = 0, sq1 = 0; \ ICV_MEAN_SDV_ENTRY_BLOCK_COMMON( block_size ) #define ICV_MEAN_SDV_ENTRY_BLOCK_C3( sumtype, sqsumtype, \ worktype, sqworktype, block_size ) \ sumtype sum0 = 0, sum1 = 0, sum2 = 0; \ sqsumtype sqsum0 = 0, sqsum1 = 0, sqsum2 = 0; \ worktype s0 = 0, s1 = 0, s2 = 0; \ sqworktype sq0 = 0, sq1 = 0, sq2 = 0; \ ICV_MEAN_SDV_ENTRY_BLOCK_COMMON( block_size ) #define ICV_MEAN_SDV_ENTRY_BLOCK_C4( sumtype, sqsumtype, \ worktype, sqworktype, block_size ) \ sumtype sum0 = 0, sum1 = 0, sum2 = 0, sum3 = 0; \ sqsumtype sqsum0 = 0, sqsum1 = 0, sqsum2 = 0, sqsum3 = 0; \ worktype s0 = 0, s1 = 0, s2 = 0, s3 = 0; \ sqworktype sq0 = 0, sq1 = 0, sq2 = 0, sq3 = 0; \ ICV_MEAN_SDV_ENTRY_BLOCK_COMMON( block_size ) /////////////////////////////////////// exit macros ////////////////////////////////////// #define ICV_MEAN_SDV_EXIT_COMMON() \ scale = pix ? 1./pix : 0 #define ICV_MEAN_SDV_EXIT_CN( total, sqtotal, idx ) \ ICV_MEAN_SDV_EXIT_COMMON(); \ mean[idx] = tmp = scale*(double)total##idx; \ tmp = scale*(double)sqtotal##idx - tmp*tmp; \ sdv[idx] = sqrt(MAX(tmp,0.)) #define ICV_MEAN_SDV_EXIT_C1( total, sqtotal ) \ ICV_MEAN_SDV_EXIT_COMMON(); \ ICV_MEAN_SDV_EXIT_CN( total, sqtotal, 0 ) #define ICV_MEAN_SDV_EXIT_C2( total, sqtotal ) \ ICV_MEAN_SDV_EXIT_COMMON(); \ ICV_MEAN_SDV_EXIT_CN( total, sqtotal, 0 ); \ ICV_MEAN_SDV_EXIT_CN( total, sqtotal, 1 ) #define ICV_MEAN_SDV_EXIT_C3( total, sqtotal ) \ ICV_MEAN_SDV_EXIT_COMMON(); \ ICV_MEAN_SDV_EXIT_CN( total, sqtotal, 0 ); \ ICV_MEAN_SDV_EXIT_CN( total, sqtotal, 1 ); \ ICV_MEAN_SDV_EXIT_CN( total, sqtotal, 2 ) #define ICV_MEAN_SDV_EXIT_C4( total, sqtotal ) \ ICV_MEAN_SDV_EXIT_COMMON(); \ ICV_MEAN_SDV_EXIT_CN( total, sqtotal, 0 ); \ ICV_MEAN_SDV_EXIT_CN( total, sqtotal, 1 ); \ ICV_MEAN_SDV_EXIT_CN( total, sqtotal, 2 ); \ ICV_MEAN_SDV_EXIT_CN( total, sqtotal, 3 ) ////////////////////////////////////// update macros ///////////////////////////////////// #define ICV_MEAN_SDV_UPDATE_COMMON( block_size )\ remaining = block_size #define ICV_MEAN_SDV_UPDATE_C1( block_size ) \ ICV_MEAN_SDV_UPDATE_COMMON( block_size ); \ sum0 += s0; sqsum0 += sq0; \ s0 = 0; sq0 = 0 #define ICV_MEAN_SDV_UPDATE_C2( block_size ) \ ICV_MEAN_SDV_UPDATE_COMMON( block_size ); \ sum0 += s0; sqsum0 += sq0; \ sum1 += s1; sqsum1 += sq1; \ s0 = s1 = 0; sq0 = sq1 = 0 #define ICV_MEAN_SDV_UPDATE_C3( block_size ) \ ICV_MEAN_SDV_UPDATE_COMMON( block_size ); \ sum0 += s0; sqsum0 += sq0; \ sum1 += s1; sqsum1 += sq1; \ sum2 += s2; sqsum2 += sq2; \ s0 = s1 = s2 = 0; sq0 = sq1 = sq2 = 0 #define ICV_MEAN_SDV_UPDATE_C4( block_size ) \ ICV_MEAN_SDV_UPDATE_COMMON( block_size ); \ sum0 += s0; sqsum0 += sq0; \ sum1 += s1; sqsum1 += sq1; \ sum2 += s2; sqsum2 += sq2; \ sum3 += s3; sqsum3 += sq3; \ s0 = s1 = s2 = s3 = 0; sq0 = sq1 = sq2 = sq3 = 0 #define ICV_DEF_MEAN_SDV_BLOCK_FUNC_2D( flavor, cn, arrtype, \ sumtype, sqsumtype, worktype, \ sqworktype, block_size, sqr_macro ) \ IPCVAPI_IMPL( CvStatus, icvMean_StdDev_##flavor##_C##cn##R, \ ( const arrtype* src, int step, \ CvSize size, double* mean, double* sdv ), \ (src, step, size, mean, sdv) ) \ { \ ICV_MEAN_SDV_ENTRY_BLOCK_C##cn( sumtype, sqsumtype, \ worktype, sqworktype, (block_size)*(cn) ); \ pix = size.width * size.height; \ size.width *= (cn); \ \ for( ; size.height--; src += step ) \ { \ int x = 0; \ while( x < size.width ) \ { \ int limit = MIN( remaining, size.width - x ); \ remaining -= limit; \ limit += x; \ ICV_MEAN_SDV_CASE_C##cn( worktype, sqworktype, \ sqr_macro, limit ); \ if( remaining == 0 ) \ { \ ICV_MEAN_SDV_UPDATE_C##cn( (block_size)*(cn) ); \ } \ } \ } \ \ ICV_MEAN_SDV_UPDATE_C##cn(0); \ ICV_MEAN_SDV_EXIT_C##cn( sum, sqsum ); \ return CV_OK; \ } #define ICV_DEF_MEAN_SDV_FUNC_2D( flavor, cn, arrtype, \ sumtype, sqsumtype, worktype ) \ IPCVAPI_IMPL( CvStatus, icvMean_StdDev_##flavor##_C##cn##R, \ ( const arrtype* src, int step, \ CvSize size, double* mean, double* sdv ), \ (src, step, size, mean, sdv) ) \ { \ ICV_MEAN_SDV_ENTRY_C##cn( sumtype, sqsumtype ); \ pix = size.width * size.height; \ size.width *= (cn); \ \ for( ; size.height--; src += step ) \ { \ int x = 0; \ ICV_MEAN_SDV_CASE_C##cn( worktype, sqsumtype, \ CV_SQR, size.width ); \ } \ \ ICV_MEAN_SDV_EXIT_C##cn( s, sq ); \ return CV_OK; \ } #define ICV_DEF_MEAN_SDV_BLOCK_FUNC_2D_COI( flavor, arrtype, \ sumtype, sqsumtype, worktype, \ sqworktype, block_size, sqr_macro ) \ static CvStatus CV_STDCALL icvMean_StdDev_##flavor##_CnCR \ ( const arrtype* src, int step, \ CvSize size, int cn, int coi, \ double* mean, double* sdv ) \ { \ ICV_MEAN_SDV_ENTRY_BLOCK_C1( sumtype, sqsumtype, \ worktype, sqworktype, (block_size)*(cn) ); \ pix = size.width * size.height; \ size.width *= (cn); \ src += coi - 1; \ \ for( ; size.height--; src += step ) \ { \ int x = 0; \ while( x < size.width ) \ { \ int limit = MIN( remaining, size.width - x ); \ remaining -= limit; \ limit += x; \ ICV_MEAN_SDV_COI_CASE( worktype, sqworktype, \ sqr_macro, limit, cn); \ if( remaining == 0 ) \ { \ ICV_MEAN_SDV_UPDATE_C1( (block_size)*(cn) ); \ } \ } \ } \ \ ICV_MEAN_SDV_UPDATE_C1(0); \ ICV_MEAN_SDV_EXIT_C1( sum, sqsum ); \ return CV_OK; \ } #define ICV_DEF_MEAN_SDV_FUNC_2D_COI( flavor, arrtype, \ sumtype, sqsumtype, worktype )\ static CvStatus CV_STDCALL icvMean_StdDev_##flavor##_CnCR \ ( const arrtype* src, int step, CvSize size,\ int cn, int coi, double* mean, double* sdv )\ { \ ICV_MEAN_SDV_ENTRY_C1( sumtype, sqsumtype ); \ pix = size.width * size.height; \ size.width *= (cn); \ src += coi - 1; \ \ for( ; size.height--; src += step ) \ { \ int x = 0; \ ICV_MEAN_SDV_COI_CASE( worktype, sqsumtype, \ CV_SQR, size.width, cn ); \ } \ \ ICV_MEAN_SDV_EXIT_C1( s, sq ); \ return CV_OK; \ } #define ICV_DEF_MEAN_SDV_MASK_BLOCK_FUNC_2D( flavor, cn, \ arrtype, sumtype, sqsumtype, worktype, \ sqworktype, block_size, sqr_macro ) \ IPCVAPI_IMPL( CvStatus, icvMean_StdDev_##flavor##_C##cn##MR, \ ( const arrtype* src, int step, \ const uchar* mask, int maskstep, \ CvSize size, double* mean, double* sdv ), \ (src, step, mask, maskstep, size, mean, sdv))\ { \ ICV_MEAN_SDV_ENTRY_BLOCK_C##cn( sumtype, sqsumtype, \ worktype, sqworktype, block_size ); \ pix = 0; \ \ for( ; size.height--; src += step, mask += maskstep ) \ { \ int x = 0; \ while( x < size.width ) \ { \ int limit = MIN( remaining, size.width - x ); \ remaining -= limit; \ limit += x; \ ICV_MEAN_SDV_MASK_CASE_C##cn( worktype, sqworktype, \ sqr_macro, limit ); \ if( remaining == 0 ) \ { \ ICV_MEAN_SDV_UPDATE_C##cn( block_size ); \ } \ } \ } \ \ ICV_MEAN_SDV_UPDATE_C##cn(0); \ ICV_MEAN_SDV_EXIT_C##cn( sum, sqsum ); \ return CV_OK; \ } #define ICV_DEF_MEAN_SDV_MASK_FUNC_2D( flavor, cn, arrtype, \ sumtype, sqsumtype, worktype)\ IPCVAPI_IMPL( CvStatus, icvMean_StdDev_##flavor##_C##cn##MR, \ ( const arrtype* src, int step, \ const uchar* mask, int maskstep, \ CvSize size, double* mean, double* sdv ), \ (src, step, mask, maskstep, size, mean, sdv))\ { \ ICV_MEAN_SDV_ENTRY_C##cn( sumtype, sqsumtype ); \ pix = 0; \ \ for( ; size.height--; src += step, mask += maskstep ) \ { \ int x = 0; \ ICV_MEAN_SDV_MASK_CASE_C##cn( worktype, sqsumtype, \ CV_SQR, size.width ); \ } \ \ ICV_MEAN_SDV_EXIT_C##cn( s, sq ); \ return CV_OK; \ } #define ICV_DEF_MEAN_SDV_MASK_BLOCK_FUNC_2D_COI( flavor, \ arrtype, sumtype, sqsumtype, worktype, \ sqworktype, block_size, sqr_macro ) \ static CvStatus CV_STDCALL icvMean_StdDev_##flavor##_CnCMR \ ( const arrtype* src, int step, \ const uchar* mask, int maskstep, \ CvSize size, int cn, int coi, \ double* mean, double* sdv ) \ { \ ICV_MEAN_SDV_ENTRY_BLOCK_C1( sumtype, sqsumtype, \ worktype, sqworktype, block_size ); \ pix = 0; \ src += coi - 1; \ \ for( ; size.height--; src += step, mask += maskstep ) \ { \ int x = 0; \ while( x < size.width ) \ { \ int limit = MIN( remaining, size.width - x ); \ remaining -= limit; \ limit += x; \ ICV_MEAN_SDV_MASK_COI_CASE( worktype, sqworktype, \ sqr_macro, limit, cn ); \ if( remaining == 0 ) \ { \ ICV_MEAN_SDV_UPDATE_C1( block_size ); \ } \ } \ } \ \ ICV_MEAN_SDV_UPDATE_C1(0); \ ICV_MEAN_SDV_EXIT_C1( sum, sqsum ); \ return CV_OK; \ } #define ICV_DEF_MEAN_SDV_MASK_FUNC_2D_COI( flavor, arrtype, \ sumtype, sqsumtype, worktype ) \ static CvStatus CV_STDCALL icvMean_StdDev_##flavor##_CnCMR \ ( const arrtype* src, int step, \ const uchar* mask, int maskstep, \ CvSize size, int cn, int coi, \ double* mean, double* sdv ) \ { \ ICV_MEAN_SDV_ENTRY_C1( sumtype, sqsumtype ); \ pix = 0; \ src += coi - 1; \ \ for( ; size.height--; src += step, mask += maskstep ) \ { \ int x = 0; \ ICV_MEAN_SDV_MASK_COI_CASE( worktype, sqsumtype, \ CV_SQR, size.width, cn ); \ } \ \ ICV_MEAN_SDV_EXIT_C1( s, sq ); \ return CV_OK; \ } #define ICV_DEF_MEAN_SDV_BLOCK_ALL( flavor, arrtype, sumtype, sqsumtype,\ worktype, sqworktype, block_size, sqr_macro)\ ICV_DEF_MEAN_SDV_BLOCK_FUNC_2D( flavor, 1, arrtype, sumtype, sqsumtype, \ worktype, sqworktype, block_size, sqr_macro)\ ICV_DEF_MEAN_SDV_BLOCK_FUNC_2D( flavor, 2, arrtype, sumtype, sqsumtype, \ worktype, sqworktype, block_size, sqr_macro)\ ICV_DEF_MEAN_SDV_BLOCK_FUNC_2D( flavor, 3, arrtype, sumtype, sqsumtype, \ worktype, sqworktype, block_size, sqr_macro)\ ICV_DEF_MEAN_SDV_BLOCK_FUNC_2D( flavor, 4, arrtype, sumtype, sqsumtype, \ worktype, sqworktype, block_size, sqr_macro)\ ICV_DEF_MEAN_SDV_BLOCK_FUNC_2D_COI( flavor, arrtype, sumtype, sqsumtype,\ worktype, sqworktype, block_size, sqr_macro)\ \ ICV_DEF_MEAN_SDV_MASK_BLOCK_FUNC_2D( flavor, 1, arrtype, sumtype, \ sqsumtype, worktype, sqworktype, block_size, sqr_macro ) \ ICV_DEF_MEAN_SDV_MASK_BLOCK_FUNC_2D( flavor, 2, arrtype, sumtype, \ sqsumtype, worktype, sqworktype, block_size, sqr_macro ) \ ICV_DEF_MEAN_SDV_MASK_BLOCK_FUNC_2D( flavor, 3, arrtype, sumtype, \ sqsumtype, worktype, sqworktype, block_size, sqr_macro ) \ ICV_DEF_MEAN_SDV_MASK_BLOCK_FUNC_2D( flavor, 4, arrtype, sumtype, \ sqsumtype, worktype, sqworktype, block_size, sqr_macro ) \ ICV_DEF_MEAN_SDV_MASK_BLOCK_FUNC_2D_COI( flavor, arrtype, sumtype, \ sqsumtype, worktype, sqworktype, block_size, sqr_macro ) #define ICV_DEF_MEAN_SDV_ALL( flavor, arrtype, sumtype, sqsumtype, worktype ) \ ICV_DEF_MEAN_SDV_FUNC_2D( flavor, 1, arrtype, sumtype, sqsumtype, worktype ) \ ICV_DEF_MEAN_SDV_FUNC_2D( flavor, 2, arrtype, sumtype, sqsumtype, worktype ) \ ICV_DEF_MEAN_SDV_FUNC_2D( flavor, 3, arrtype, sumtype, sqsumtype, worktype ) \ ICV_DEF_MEAN_SDV_FUNC_2D( flavor, 4, arrtype, sumtype, sqsumtype, worktype ) \ ICV_DEF_MEAN_SDV_FUNC_2D_COI( flavor, arrtype, sumtype, sqsumtype, worktype ) \ \ ICV_DEF_MEAN_SDV_MASK_FUNC_2D(flavor, 1, arrtype, sumtype, sqsumtype, worktype) \ ICV_DEF_MEAN_SDV_MASK_FUNC_2D(flavor, 2, arrtype, sumtype, sqsumtype, worktype) \ ICV_DEF_MEAN_SDV_MASK_FUNC_2D(flavor, 3, arrtype, sumtype, sqsumtype, worktype) \ ICV_DEF_MEAN_SDV_MASK_FUNC_2D(flavor, 4, arrtype, sumtype, sqsumtype, worktype) \ ICV_DEF_MEAN_SDV_MASK_FUNC_2D_COI( flavor, arrtype, sumtype, sqsumtype, worktype ) ICV_DEF_MEAN_SDV_BLOCK_ALL( 8u, uchar, int64, int64, unsigned, unsigned, 1 << 16, CV_SQR_8U ) ICV_DEF_MEAN_SDV_BLOCK_ALL( 16u, ushort, int64, int64, unsigned, int64, 1 << 16, CV_SQR ) ICV_DEF_MEAN_SDV_BLOCK_ALL( 16s, short, int64, int64, int, int64, 1 << 16, CV_SQR ) ICV_DEF_MEAN_SDV_ALL( 32s, int, double, double, double ) ICV_DEF_MEAN_SDV_ALL( 32f, float, double, double, double ) ICV_DEF_MEAN_SDV_ALL( 64f, double, double, double, double ) #define icvMean_StdDev_8s_C1R 0 #define icvMean_StdDev_8s_C2R 0 #define icvMean_StdDev_8s_C3R 0 #define icvMean_StdDev_8s_C4R 0 #define icvMean_StdDev_8s_CnCR 0 #define icvMean_StdDev_8s_C1MR 0 #define icvMean_StdDev_8s_C2MR 0 #define icvMean_StdDev_8s_C3MR 0 #define icvMean_StdDev_8s_C4MR 0 #define icvMean_StdDev_8s_CnCMR 0 CV_DEF_INIT_BIG_FUNC_TAB_2D( Mean_StdDev, R ) CV_DEF_INIT_FUNC_TAB_2D( Mean_StdDev, CnCR ) CV_DEF_INIT_BIG_FUNC_TAB_2D( Mean_StdDev, MR ) CV_DEF_INIT_FUNC_TAB_2D( Mean_StdDev, CnCMR ) CV_IMPL void cvAvgSdv( const CvArr* img, CvScalar* _mean, CvScalar* _sdv, const void* mask ) { CvScalar mean = {{0,0,0,0}}; CvScalar sdv = {{0,0,0,0}}; static CvBigFuncTable meansdv_tab; static CvFuncTable meansdvcoi_tab; static CvBigFuncTable meansdvmask_tab; static CvFuncTable meansdvmaskcoi_tab; static int inittab = 0; CV_FUNCNAME("cvMean_StdDev"); __BEGIN__; int type, coi = 0; int mat_step, mask_step = 0; CvSize size; CvMat stub, maskstub, *mat = (CvMat*)img, *matmask = (CvMat*)mask; if( !inittab ) { icvInitMean_StdDevRTable( &meansdv_tab ); icvInitMean_StdDevCnCRTable( &meansdvcoi_tab ); icvInitMean_StdDevMRTable( &meansdvmask_tab ); icvInitMean_StdDevCnCMRTable( &meansdvmaskcoi_tab ); inittab = 1; } if( !CV_IS_MAT(mat) ) CV_CALL( mat = cvGetMat( mat, &stub, &coi )); type = CV_MAT_TYPE( mat->type ); if( CV_MAT_CN(type) > 4 && coi == 0 ) CV_ERROR( CV_StsOutOfRange, "The input array must have at most 4 channels unless COI is set" ); size = cvGetMatSize( mat ); mat_step = mat->step; if( !mask ) { if( CV_IS_MAT_CONT( mat->type )) { size.width *= size.height; size.height = 1; mat_step = CV_STUB_STEP; } if( CV_MAT_CN(type) == 1 || coi == 0 ) { CvFunc2D_1A2P func = (CvFunc2D_1A2P)(meansdv_tab.fn_2d[type]); if( !func ) CV_ERROR( CV_StsBadArg, cvUnsupportedFormat ); IPPI_CALL( func( mat->data.ptr, mat_step, size, mean.val, sdv.val )); } else { CvFunc2DnC_1A2P func = (CvFunc2DnC_1A2P) (meansdvcoi_tab.fn_2d[CV_MAT_DEPTH(type)]); if( !func ) CV_ERROR( CV_StsBadArg, cvUnsupportedFormat ); IPPI_CALL( func( mat->data.ptr, mat_step, size, CV_MAT_CN(type), coi, mean.val, sdv.val )); } } else { CV_CALL( matmask = cvGetMat( matmask, &maskstub )); mask_step = matmask->step; if( !CV_IS_MASK_ARR( matmask )) CV_ERROR( CV_StsBadMask, "" ); if( !CV_ARE_SIZES_EQ( mat, matmask )) CV_ERROR( CV_StsUnmatchedSizes, "" ); if( CV_IS_MAT_CONT( mat->type & matmask->type )) { size.width *= size.height; size.height = 1; mat_step = mask_step = CV_STUB_STEP; } if( CV_MAT_CN(type) == 1 || coi == 0 ) { CvFunc2D_2A2P func = (CvFunc2D_2A2P)(meansdvmask_tab.fn_2d[type]); if( !func ) CV_ERROR( CV_StsBadArg, cvUnsupportedFormat ); IPPI_CALL( func( mat->data.ptr, mat_step, matmask->data.ptr, mask_step, size, mean.val, sdv.val )); } else { CvFunc2DnC_2A2P func = (CvFunc2DnC_2A2P) (meansdvmaskcoi_tab.fn_2d[CV_MAT_DEPTH(type)]); if( !func ) CV_ERROR( CV_StsBadArg, cvUnsupportedFormat ); IPPI_CALL( func( mat->data.ptr, mat_step, matmask->data.ptr, mask_step, size, CV_MAT_CN(type), coi, mean.val, sdv.val )); } } __END__; if( _mean ) *_mean = mean; if( _sdv ) *_sdv = sdv; } /* End of file */