/* * Copyright © 2010 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ /** * \file ir_constant_expression.cpp * Evaluate and process constant valued expressions * * In GLSL, constant valued expressions are used in several places. These * must be processed and evaluated very early in the compilation process. * * * Sizes of arrays * * Initializers for uniforms * * Initializers for \c const variables */ #include <math.h> #include "main/core.h" /* for MAX2, MIN2, CLAMP */ #include "ir.h" #include "ir_visitor.h" #include "glsl_types.h" #include "program/hash_table.h" /* Using C99 rounding functions for roundToEven() implementation is * difficult, because round(), rint, and nearbyint() are affected by * fesetenv(), which the application may have done for its own * purposes. Mesa's IROUND macro is close to what we want, but it * rounds away from 0 on n + 0.5. */ static int round_to_even(float val) { int rounded = IROUND(val); if (val - floor(val) == 0.5) { if (rounded % 2 != 0) rounded += val > 0 ? -1 : 1; } return rounded; } static float dot(ir_constant *op0, ir_constant *op1) { assert(op0->type->is_float() && op1->type->is_float()); float result = 0; for (unsigned c = 0; c < op0->type->components(); c++) result += op0->value.f[c] * op1->value.f[c]; return result; } /* This method is the only one supported by gcc. Unions in particular * are iffy, and read-through-converted-pointer is killed by strict * aliasing. OTOH, the compiler sees through the memcpy, so the * resulting asm is reasonable. */ static float bitcast_u2f(unsigned int u) { assert(sizeof(float) == sizeof(unsigned int)); float f; memcpy(&f, &u, sizeof(f)); return f; } static unsigned int bitcast_f2u(float f) { assert(sizeof(float) == sizeof(unsigned int)); unsigned int u; memcpy(&u, &f, sizeof(f)); return u; } ir_constant * ir_rvalue::constant_expression_value(struct hash_table *variable_context) { assert(this->type->is_error()); return NULL; } ir_constant * ir_expression::constant_expression_value(struct hash_table *variable_context) { if (this->type->is_error()) return NULL; ir_constant *op[Elements(this->operands)] = { NULL, }; ir_constant_data data; memset(&data, 0, sizeof(data)); for (unsigned operand = 0; operand < this->get_num_operands(); operand++) { op[operand] = this->operands[operand]->constant_expression_value(variable_context); if (!op[operand]) return NULL; } if (op[1] != NULL) assert(op[0]->type->base_type == op[1]->type->base_type || this->operation == ir_binop_lshift || this->operation == ir_binop_rshift); bool op0_scalar = op[0]->type->is_scalar(); bool op1_scalar = op[1] != NULL && op[1]->type->is_scalar(); /* When iterating over a vector or matrix's components, we want to increase * the loop counter. However, for scalars, we want to stay at 0. */ unsigned c0_inc = op0_scalar ? 0 : 1; unsigned c1_inc = op1_scalar ? 0 : 1; unsigned components; if (op1_scalar || !op[1]) { components = op[0]->type->components(); } else { components = op[1]->type->components(); } void *ctx = ralloc_parent(this); /* Handle array operations here, rather than below. */ if (op[0]->type->is_array()) { assert(op[1] != NULL && op[1]->type->is_array()); switch (this->operation) { case ir_binop_all_equal: return new(ctx) ir_constant(op[0]->has_value(op[1])); case ir_binop_any_nequal: return new(ctx) ir_constant(!op[0]->has_value(op[1])); default: break; } return NULL; } switch (this->operation) { case ir_unop_bit_not: switch (op[0]->type->base_type) { case GLSL_TYPE_INT: for (unsigned c = 0; c < components; c++) data.i[c] = ~ op[0]->value.i[c]; break; case GLSL_TYPE_UINT: for (unsigned c = 0; c < components; c++) data.u[c] = ~ op[0]->value.u[c]; break; default: assert(0); } break; case ir_unop_logic_not: assert(op[0]->type->base_type == GLSL_TYPE_BOOL); for (unsigned c = 0; c < op[0]->type->components(); c++) data.b[c] = !op[0]->value.b[c]; break; case ir_unop_f2i: assert(op[0]->type->base_type == GLSL_TYPE_FLOAT); for (unsigned c = 0; c < op[0]->type->components(); c++) { data.i[c] = (int) op[0]->value.f[c]; } break; case ir_unop_f2u: assert(op[0]->type->base_type == GLSL_TYPE_FLOAT); for (unsigned c = 0; c < op[0]->type->components(); c++) { data.i[c] = (unsigned) op[0]->value.f[c]; } break; case ir_unop_i2f: assert(op[0]->type->base_type == GLSL_TYPE_INT); for (unsigned c = 0; c < op[0]->type->components(); c++) { data.f[c] = (float) op[0]->value.i[c]; } break; case ir_unop_u2f: assert(op[0]->type->base_type == GLSL_TYPE_UINT); for (unsigned c = 0; c < op[0]->type->components(); c++) { data.f[c] = (float) op[0]->value.u[c]; } break; case ir_unop_b2f: assert(op[0]->type->base_type == GLSL_TYPE_BOOL); for (unsigned c = 0; c < op[0]->type->components(); c++) { data.f[c] = op[0]->value.b[c] ? 1.0F : 0.0F; } break; case ir_unop_f2b: assert(op[0]->type->base_type == GLSL_TYPE_FLOAT); for (unsigned c = 0; c < op[0]->type->components(); c++) { data.b[c] = op[0]->value.f[c] != 0.0F ? true : false; } break; case ir_unop_b2i: assert(op[0]->type->base_type == GLSL_TYPE_BOOL); for (unsigned c = 0; c < op[0]->type->components(); c++) { data.u[c] = op[0]->value.b[c] ? 1 : 0; } break; case ir_unop_i2b: assert(op[0]->type->is_integer()); for (unsigned c = 0; c < op[0]->type->components(); c++) { data.b[c] = op[0]->value.u[c] ? true : false; } break; case ir_unop_u2i: assert(op[0]->type->base_type == GLSL_TYPE_UINT); for (unsigned c = 0; c < op[0]->type->components(); c++) { data.i[c] = op[0]->value.u[c]; } break; case ir_unop_i2u: assert(op[0]->type->base_type == GLSL_TYPE_INT); for (unsigned c = 0; c < op[0]->type->components(); c++) { data.u[c] = op[0]->value.i[c]; } break; case ir_unop_bitcast_i2f: assert(op[0]->type->base_type == GLSL_TYPE_INT); for (unsigned c = 0; c < op[0]->type->components(); c++) { data.f[c] = bitcast_u2f(op[0]->value.i[c]); } break; case ir_unop_bitcast_f2i: assert(op[0]->type->base_type == GLSL_TYPE_FLOAT); for (unsigned c = 0; c < op[0]->type->components(); c++) { data.i[c] = bitcast_f2u(op[0]->value.f[c]); } break; case ir_unop_bitcast_u2f: assert(op[0]->type->base_type == GLSL_TYPE_UINT); for (unsigned c = 0; c < op[0]->type->components(); c++) { data.f[c] = bitcast_u2f(op[0]->value.u[c]); } break; case ir_unop_bitcast_f2u: assert(op[0]->type->base_type == GLSL_TYPE_FLOAT); for (unsigned c = 0; c < op[0]->type->components(); c++) { data.u[c] = bitcast_f2u(op[0]->value.f[c]); } break; case ir_unop_any: assert(op[0]->type->is_boolean()); data.b[0] = false; for (unsigned c = 0; c < op[0]->type->components(); c++) { if (op[0]->value.b[c]) data.b[0] = true; } break; case ir_unop_trunc: assert(op[0]->type->base_type == GLSL_TYPE_FLOAT); for (unsigned c = 0; c < op[0]->type->components(); c++) { data.f[c] = truncf(op[0]->value.f[c]); } break; case ir_unop_round_even: assert(op[0]->type->base_type == GLSL_TYPE_FLOAT); for (unsigned c = 0; c < op[0]->type->components(); c++) { data.f[c] = round_to_even(op[0]->value.f[c]); } break; case ir_unop_ceil: assert(op[0]->type->base_type == GLSL_TYPE_FLOAT); for (unsigned c = 0; c < op[0]->type->components(); c++) { data.f[c] = ceilf(op[0]->value.f[c]); } break; case ir_unop_floor: assert(op[0]->type->base_type == GLSL_TYPE_FLOAT); for (unsigned c = 0; c < op[0]->type->components(); c++) { data.f[c] = floorf(op[0]->value.f[c]); } break; case ir_unop_fract: for (unsigned c = 0; c < op[0]->type->components(); c++) { switch (this->type->base_type) { case GLSL_TYPE_UINT: data.u[c] = 0; break; case GLSL_TYPE_INT: data.i[c] = 0; break; case GLSL_TYPE_FLOAT: data.f[c] = op[0]->value.f[c] - floor(op[0]->value.f[c]); break; default: assert(0); } } break; case ir_unop_sin: case ir_unop_sin_reduced: assert(op[0]->type->base_type == GLSL_TYPE_FLOAT); for (unsigned c = 0; c < op[0]->type->components(); c++) { data.f[c] = sinf(op[0]->value.f[c]); } break; case ir_unop_cos: case ir_unop_cos_reduced: assert(op[0]->type->base_type == GLSL_TYPE_FLOAT); for (unsigned c = 0; c < op[0]->type->components(); c++) { data.f[c] = cosf(op[0]->value.f[c]); } break; case ir_unop_neg: for (unsigned c = 0; c < op[0]->type->components(); c++) { switch (this->type->base_type) { case GLSL_TYPE_UINT: data.u[c] = -((int) op[0]->value.u[c]); break; case GLSL_TYPE_INT: data.i[c] = -op[0]->value.i[c]; break; case GLSL_TYPE_FLOAT: data.f[c] = -op[0]->value.f[c]; break; default: assert(0); } } break; case ir_unop_abs: for (unsigned c = 0; c < op[0]->type->components(); c++) { switch (this->type->base_type) { case GLSL_TYPE_UINT: data.u[c] = op[0]->value.u[c]; break; case GLSL_TYPE_INT: data.i[c] = op[0]->value.i[c]; if (data.i[c] < 0) data.i[c] = -data.i[c]; break; case GLSL_TYPE_FLOAT: data.f[c] = fabs(op[0]->value.f[c]); break; default: assert(0); } } break; case ir_unop_sign: for (unsigned c = 0; c < op[0]->type->components(); c++) { switch (this->type->base_type) { case GLSL_TYPE_UINT: data.u[c] = op[0]->value.i[c] > 0; break; case GLSL_TYPE_INT: data.i[c] = (op[0]->value.i[c] > 0) - (op[0]->value.i[c] < 0); break; case GLSL_TYPE_FLOAT: data.f[c] = float((op[0]->value.f[c] > 0)-(op[0]->value.f[c] < 0)); break; default: assert(0); } } break; case ir_unop_rcp: assert(op[0]->type->base_type == GLSL_TYPE_FLOAT); for (unsigned c = 0; c < op[0]->type->components(); c++) { switch (this->type->base_type) { case GLSL_TYPE_UINT: if (op[0]->value.u[c] != 0.0) data.u[c] = 1 / op[0]->value.u[c]; break; case GLSL_TYPE_INT: if (op[0]->value.i[c] != 0.0) data.i[c] = 1 / op[0]->value.i[c]; break; case GLSL_TYPE_FLOAT: if (op[0]->value.f[c] != 0.0) data.f[c] = 1.0F / op[0]->value.f[c]; break; default: assert(0); } } break; case ir_unop_rsq: assert(op[0]->type->base_type == GLSL_TYPE_FLOAT); for (unsigned c = 0; c < op[0]->type->components(); c++) { data.f[c] = 1.0F / sqrtf(op[0]->value.f[c]); } break; case ir_unop_sqrt: assert(op[0]->type->base_type == GLSL_TYPE_FLOAT); for (unsigned c = 0; c < op[0]->type->components(); c++) { data.f[c] = sqrtf(op[0]->value.f[c]); } break; case ir_unop_exp: assert(op[0]->type->base_type == GLSL_TYPE_FLOAT); for (unsigned c = 0; c < op[0]->type->components(); c++) { data.f[c] = expf(op[0]->value.f[c]); } break; case ir_unop_exp2: assert(op[0]->type->base_type == GLSL_TYPE_FLOAT); for (unsigned c = 0; c < op[0]->type->components(); c++) { data.f[c] = exp2f(op[0]->value.f[c]); } break; case ir_unop_log: assert(op[0]->type->base_type == GLSL_TYPE_FLOAT); for (unsigned c = 0; c < op[0]->type->components(); c++) { data.f[c] = logf(op[0]->value.f[c]); } break; case ir_unop_log2: assert(op[0]->type->base_type == GLSL_TYPE_FLOAT); for (unsigned c = 0; c < op[0]->type->components(); c++) { data.f[c] = log2f(op[0]->value.f[c]); } break; case ir_unop_dFdx: case ir_unop_dFdy: assert(op[0]->type->base_type == GLSL_TYPE_FLOAT); for (unsigned c = 0; c < op[0]->type->components(); c++) { data.f[c] = 0.0; } break; case ir_binop_pow: assert(op[0]->type->base_type == GLSL_TYPE_FLOAT); for (unsigned c = 0; c < op[0]->type->components(); c++) { data.f[c] = powf(op[0]->value.f[c], op[1]->value.f[c]); } break; case ir_binop_dot: data.f[0] = dot(op[0], op[1]); break; case ir_binop_min: assert(op[0]->type == op[1]->type || op0_scalar || op1_scalar); for (unsigned c = 0, c0 = 0, c1 = 0; c < components; c0 += c0_inc, c1 += c1_inc, c++) { switch (op[0]->type->base_type) { case GLSL_TYPE_UINT: data.u[c] = MIN2(op[0]->value.u[c0], op[1]->value.u[c1]); break; case GLSL_TYPE_INT: data.i[c] = MIN2(op[0]->value.i[c0], op[1]->value.i[c1]); break; case GLSL_TYPE_FLOAT: data.f[c] = MIN2(op[0]->value.f[c0], op[1]->value.f[c1]); break; default: assert(0); } } break; case ir_binop_max: assert(op[0]->type == op[1]->type || op0_scalar || op1_scalar); for (unsigned c = 0, c0 = 0, c1 = 0; c < components; c0 += c0_inc, c1 += c1_inc, c++) { switch (op[0]->type->base_type) { case GLSL_TYPE_UINT: data.u[c] = MAX2(op[0]->value.u[c0], op[1]->value.u[c1]); break; case GLSL_TYPE_INT: data.i[c] = MAX2(op[0]->value.i[c0], op[1]->value.i[c1]); break; case GLSL_TYPE_FLOAT: data.f[c] = MAX2(op[0]->value.f[c0], op[1]->value.f[c1]); break; default: assert(0); } } break; case ir_binop_add: assert(op[0]->type == op[1]->type || op0_scalar || op1_scalar); for (unsigned c = 0, c0 = 0, c1 = 0; c < components; c0 += c0_inc, c1 += c1_inc, c++) { switch (op[0]->type->base_type) { case GLSL_TYPE_UINT: data.u[c] = op[0]->value.u[c0] + op[1]->value.u[c1]; break; case GLSL_TYPE_INT: data.i[c] = op[0]->value.i[c0] + op[1]->value.i[c1]; break; case GLSL_TYPE_FLOAT: data.f[c] = op[0]->value.f[c0] + op[1]->value.f[c1]; break; default: assert(0); } } break; case ir_binop_sub: assert(op[0]->type == op[1]->type || op0_scalar || op1_scalar); for (unsigned c = 0, c0 = 0, c1 = 0; c < components; c0 += c0_inc, c1 += c1_inc, c++) { switch (op[0]->type->base_type) { case GLSL_TYPE_UINT: data.u[c] = op[0]->value.u[c0] - op[1]->value.u[c1]; break; case GLSL_TYPE_INT: data.i[c] = op[0]->value.i[c0] - op[1]->value.i[c1]; break; case GLSL_TYPE_FLOAT: data.f[c] = op[0]->value.f[c0] - op[1]->value.f[c1]; break; default: assert(0); } } break; case ir_binop_mul: /* Check for equal types, or unequal types involving scalars */ if ((op[0]->type == op[1]->type && !op[0]->type->is_matrix()) || op0_scalar || op1_scalar) { for (unsigned c = 0, c0 = 0, c1 = 0; c < components; c0 += c0_inc, c1 += c1_inc, c++) { switch (op[0]->type->base_type) { case GLSL_TYPE_UINT: data.u[c] = op[0]->value.u[c0] * op[1]->value.u[c1]; break; case GLSL_TYPE_INT: data.i[c] = op[0]->value.i[c0] * op[1]->value.i[c1]; break; case GLSL_TYPE_FLOAT: data.f[c] = op[0]->value.f[c0] * op[1]->value.f[c1]; break; default: assert(0); } } } else { assert(op[0]->type->is_matrix() || op[1]->type->is_matrix()); /* Multiply an N-by-M matrix with an M-by-P matrix. Since either * matrix can be a GLSL vector, either N or P can be 1. * * For vec*mat, the vector is treated as a row vector. This * means the vector is a 1-row x M-column matrix. * * For mat*vec, the vector is treated as a column vector. Since * matrix_columns is 1 for vectors, this just works. */ const unsigned n = op[0]->type->is_vector() ? 1 : op[0]->type->vector_elements; const unsigned m = op[1]->type->vector_elements; const unsigned p = op[1]->type->matrix_columns; for (unsigned j = 0; j < p; j++) { for (unsigned i = 0; i < n; i++) { for (unsigned k = 0; k < m; k++) { data.f[i+n*j] += op[0]->value.f[i+n*k]*op[1]->value.f[k+m*j]; } } } } break; case ir_binop_div: /* FINISHME: Emit warning when division-by-zero is detected. */ assert(op[0]->type == op[1]->type || op0_scalar || op1_scalar); for (unsigned c = 0, c0 = 0, c1 = 0; c < components; c0 += c0_inc, c1 += c1_inc, c++) { switch (op[0]->type->base_type) { case GLSL_TYPE_UINT: if (op[1]->value.u[c1] == 0) { data.u[c] = 0; } else { data.u[c] = op[0]->value.u[c0] / op[1]->value.u[c1]; } break; case GLSL_TYPE_INT: if (op[1]->value.i[c1] == 0) { data.i[c] = 0; } else { data.i[c] = op[0]->value.i[c0] / op[1]->value.i[c1]; } break; case GLSL_TYPE_FLOAT: data.f[c] = op[0]->value.f[c0] / op[1]->value.f[c1]; break; default: assert(0); } } break; case ir_binop_mod: /* FINISHME: Emit warning when division-by-zero is detected. */ assert(op[0]->type == op[1]->type || op0_scalar || op1_scalar); for (unsigned c = 0, c0 = 0, c1 = 0; c < components; c0 += c0_inc, c1 += c1_inc, c++) { switch (op[0]->type->base_type) { case GLSL_TYPE_UINT: if (op[1]->value.u[c1] == 0) { data.u[c] = 0; } else { data.u[c] = op[0]->value.u[c0] % op[1]->value.u[c1]; } break; case GLSL_TYPE_INT: if (op[1]->value.i[c1] == 0) { data.i[c] = 0; } else { data.i[c] = op[0]->value.i[c0] % op[1]->value.i[c1]; } break; case GLSL_TYPE_FLOAT: /* We don't use fmod because it rounds toward zero; GLSL specifies * the use of floor. */ data.f[c] = op[0]->value.f[c0] - op[1]->value.f[c1] * floorf(op[0]->value.f[c0] / op[1]->value.f[c1]); break; default: assert(0); } } break; case ir_binop_logic_and: assert(op[0]->type->base_type == GLSL_TYPE_BOOL); for (unsigned c = 0; c < op[0]->type->components(); c++) data.b[c] = op[0]->value.b[c] && op[1]->value.b[c]; break; case ir_binop_logic_xor: assert(op[0]->type->base_type == GLSL_TYPE_BOOL); for (unsigned c = 0; c < op[0]->type->components(); c++) data.b[c] = op[0]->value.b[c] ^ op[1]->value.b[c]; break; case ir_binop_logic_or: assert(op[0]->type->base_type == GLSL_TYPE_BOOL); for (unsigned c = 0; c < op[0]->type->components(); c++) data.b[c] = op[0]->value.b[c] || op[1]->value.b[c]; break; case ir_binop_less: assert(op[0]->type == op[1]->type); for (unsigned c = 0; c < op[0]->type->components(); c++) { switch (op[0]->type->base_type) { case GLSL_TYPE_UINT: data.b[c] = op[0]->value.u[c] < op[1]->value.u[c]; break; case GLSL_TYPE_INT: data.b[c] = op[0]->value.i[c] < op[1]->value.i[c]; break; case GLSL_TYPE_FLOAT: data.b[c] = op[0]->value.f[c] < op[1]->value.f[c]; break; default: assert(0); } } break; case ir_binop_greater: assert(op[0]->type == op[1]->type); for (unsigned c = 0; c < op[0]->type->components(); c++) { switch (op[0]->type->base_type) { case GLSL_TYPE_UINT: data.b[c] = op[0]->value.u[c] > op[1]->value.u[c]; break; case GLSL_TYPE_INT: data.b[c] = op[0]->value.i[c] > op[1]->value.i[c]; break; case GLSL_TYPE_FLOAT: data.b[c] = op[0]->value.f[c] > op[1]->value.f[c]; break; default: assert(0); } } break; case ir_binop_lequal: assert(op[0]->type == op[1]->type); for (unsigned c = 0; c < op[0]->type->components(); c++) { switch (op[0]->type->base_type) { case GLSL_TYPE_UINT: data.b[c] = op[0]->value.u[c] <= op[1]->value.u[c]; break; case GLSL_TYPE_INT: data.b[c] = op[0]->value.i[c] <= op[1]->value.i[c]; break; case GLSL_TYPE_FLOAT: data.b[c] = op[0]->value.f[c] <= op[1]->value.f[c]; break; default: assert(0); } } break; case ir_binop_gequal: assert(op[0]->type == op[1]->type); for (unsigned c = 0; c < op[0]->type->components(); c++) { switch (op[0]->type->base_type) { case GLSL_TYPE_UINT: data.b[c] = op[0]->value.u[c] >= op[1]->value.u[c]; break; case GLSL_TYPE_INT: data.b[c] = op[0]->value.i[c] >= op[1]->value.i[c]; break; case GLSL_TYPE_FLOAT: data.b[c] = op[0]->value.f[c] >= op[1]->value.f[c]; break; default: assert(0); } } break; case ir_binop_equal: assert(op[0]->type == op[1]->type); for (unsigned c = 0; c < components; c++) { switch (op[0]->type->base_type) { case GLSL_TYPE_UINT: data.b[c] = op[0]->value.u[c] == op[1]->value.u[c]; break; case GLSL_TYPE_INT: data.b[c] = op[0]->value.i[c] == op[1]->value.i[c]; break; case GLSL_TYPE_FLOAT: data.b[c] = op[0]->value.f[c] == op[1]->value.f[c]; break; case GLSL_TYPE_BOOL: data.b[c] = op[0]->value.b[c] == op[1]->value.b[c]; break; default: assert(0); } } break; case ir_binop_nequal: assert(op[0]->type == op[1]->type); for (unsigned c = 0; c < components; c++) { switch (op[0]->type->base_type) { case GLSL_TYPE_UINT: data.b[c] = op[0]->value.u[c] != op[1]->value.u[c]; break; case GLSL_TYPE_INT: data.b[c] = op[0]->value.i[c] != op[1]->value.i[c]; break; case GLSL_TYPE_FLOAT: data.b[c] = op[0]->value.f[c] != op[1]->value.f[c]; break; case GLSL_TYPE_BOOL: data.b[c] = op[0]->value.b[c] != op[1]->value.b[c]; break; default: assert(0); } } break; case ir_binop_all_equal: data.b[0] = op[0]->has_value(op[1]); break; case ir_binop_any_nequal: data.b[0] = !op[0]->has_value(op[1]); break; case ir_binop_lshift: for (unsigned c = 0, c0 = 0, c1 = 0; c < components; c0 += c0_inc, c1 += c1_inc, c++) { if (op[0]->type->base_type == GLSL_TYPE_INT && op[1]->type->base_type == GLSL_TYPE_INT) { data.i[c] = op[0]->value.i[c0] << op[1]->value.i[c1]; } else if (op[0]->type->base_type == GLSL_TYPE_INT && op[1]->type->base_type == GLSL_TYPE_UINT) { data.i[c] = op[0]->value.i[c0] << op[1]->value.u[c1]; } else if (op[0]->type->base_type == GLSL_TYPE_UINT && op[1]->type->base_type == GLSL_TYPE_INT) { data.u[c] = op[0]->value.u[c0] << op[1]->value.i[c1]; } else if (op[0]->type->base_type == GLSL_TYPE_UINT && op[1]->type->base_type == GLSL_TYPE_UINT) { data.u[c] = op[0]->value.u[c0] << op[1]->value.u[c1]; } } break; case ir_binop_rshift: for (unsigned c = 0, c0 = 0, c1 = 0; c < components; c0 += c0_inc, c1 += c1_inc, c++) { if (op[0]->type->base_type == GLSL_TYPE_INT && op[1]->type->base_type == GLSL_TYPE_INT) { data.i[c] = op[0]->value.i[c0] >> op[1]->value.i[c1]; } else if (op[0]->type->base_type == GLSL_TYPE_INT && op[1]->type->base_type == GLSL_TYPE_UINT) { data.i[c] = op[0]->value.i[c0] >> op[1]->value.u[c1]; } else if (op[0]->type->base_type == GLSL_TYPE_UINT && op[1]->type->base_type == GLSL_TYPE_INT) { data.u[c] = op[0]->value.u[c0] >> op[1]->value.i[c1]; } else if (op[0]->type->base_type == GLSL_TYPE_UINT && op[1]->type->base_type == GLSL_TYPE_UINT) { data.u[c] = op[0]->value.u[c0] >> op[1]->value.u[c1]; } } break; case ir_binop_bit_and: for (unsigned c = 0, c0 = 0, c1 = 0; c < components; c0 += c0_inc, c1 += c1_inc, c++) { switch (op[0]->type->base_type) { case GLSL_TYPE_INT: data.i[c] = op[0]->value.i[c0] & op[1]->value.i[c1]; break; case GLSL_TYPE_UINT: data.u[c] = op[0]->value.u[c0] & op[1]->value.u[c1]; break; default: assert(0); } } break; case ir_binop_bit_or: for (unsigned c = 0, c0 = 0, c1 = 0; c < components; c0 += c0_inc, c1 += c1_inc, c++) { switch (op[0]->type->base_type) { case GLSL_TYPE_INT: data.i[c] = op[0]->value.i[c0] | op[1]->value.i[c1]; break; case GLSL_TYPE_UINT: data.u[c] = op[0]->value.u[c0] | op[1]->value.u[c1]; break; default: assert(0); } } break; case ir_binop_bit_xor: for (unsigned c = 0, c0 = 0, c1 = 0; c < components; c0 += c0_inc, c1 += c1_inc, c++) { switch (op[0]->type->base_type) { case GLSL_TYPE_INT: data.i[c] = op[0]->value.i[c0] ^ op[1]->value.i[c1]; break; case GLSL_TYPE_UINT: data.u[c] = op[0]->value.u[c0] ^ op[1]->value.u[c1]; break; default: assert(0); } } break; case ir_quadop_vector: for (unsigned c = 0; c < this->type->vector_elements; c++) { switch (this->type->base_type) { case GLSL_TYPE_INT: data.i[c] = op[c]->value.i[0]; break; case GLSL_TYPE_UINT: data.u[c] = op[c]->value.u[0]; break; case GLSL_TYPE_FLOAT: data.f[c] = op[c]->value.f[0]; break; default: assert(0); } } break; default: /* FINISHME: Should handle all expression types. */ return NULL; } return new(ctx) ir_constant(this->type, &data); } ir_constant * ir_texture::constant_expression_value(struct hash_table *variable_context) { /* texture lookups aren't constant expressions */ return NULL; } ir_constant * ir_swizzle::constant_expression_value(struct hash_table *variable_context) { ir_constant *v = this->val->constant_expression_value(variable_context); if (v != NULL) { ir_constant_data data = { { 0 } }; const unsigned swiz_idx[4] = { this->mask.x, this->mask.y, this->mask.z, this->mask.w }; for (unsigned i = 0; i < this->mask.num_components; i++) { switch (v->type->base_type) { case GLSL_TYPE_UINT: case GLSL_TYPE_INT: data.u[i] = v->value.u[swiz_idx[i]]; break; case GLSL_TYPE_FLOAT: data.f[i] = v->value.f[swiz_idx[i]]; break; case GLSL_TYPE_BOOL: data.b[i] = v->value.b[swiz_idx[i]]; break; default: assert(!"Should not get here."); break; } } void *ctx = ralloc_parent(this); return new(ctx) ir_constant(this->type, &data); } return NULL; } void ir_dereference_variable::constant_referenced(struct hash_table *variable_context, ir_constant *&store, int &offset) const { if (variable_context) { store = (ir_constant *)hash_table_find(variable_context, var); offset = 0; } else { store = NULL; offset = 0; } } ir_constant * ir_dereference_variable::constant_expression_value(struct hash_table *variable_context) { /* This may occur during compile and var->type is glsl_type::error_type */ if (!var) return NULL; /* Give priority to the context hashtable, if it exists */ if (variable_context) { ir_constant *value = (ir_constant *)hash_table_find(variable_context, var); if(value) return value; } /* The constant_value of a uniform variable is its initializer, * not the lifetime constant value of the uniform. */ if (var->mode == ir_var_uniform) return NULL; if (!var->constant_value) return NULL; return var->constant_value->clone(ralloc_parent(var), NULL); } void ir_dereference_array::constant_referenced(struct hash_table *variable_context, ir_constant *&store, int &offset) const { ir_constant *index_c = array_index->constant_expression_value(variable_context); if (!index_c || !index_c->type->is_scalar() || !index_c->type->is_integer()) { store = 0; offset = 0; return; } int index = index_c->type->base_type == GLSL_TYPE_INT ? index_c->get_int_component(0) : index_c->get_uint_component(0); ir_constant *substore; int suboffset; const ir_dereference *deref = array->as_dereference(); if (!deref) { store = 0; offset = 0; return; } deref->constant_referenced(variable_context, substore, suboffset); if (!substore) { store = 0; offset = 0; return; } const glsl_type *vt = substore->type; if (vt->is_array()) { store = substore->get_array_element(index); offset = 0; return; } if (vt->is_matrix()) { store = substore; offset = index * vt->vector_elements; return; } if (vt->is_vector()) { store = substore; offset = suboffset + index; return; } store = 0; offset = 0; } ir_constant * ir_dereference_array::constant_expression_value(struct hash_table *variable_context) { ir_constant *array = this->array->constant_expression_value(variable_context); ir_constant *idx = this->array_index->constant_expression_value(variable_context); if ((array != NULL) && (idx != NULL)) { void *ctx = ralloc_parent(this); if (array->type->is_matrix()) { /* Array access of a matrix results in a vector. */ const unsigned column = idx->value.u[0]; const glsl_type *const column_type = array->type->column_type(); /* Offset in the constant matrix to the first element of the column * to be extracted. */ const unsigned mat_idx = column * column_type->vector_elements; ir_constant_data data = { { 0 } }; switch (column_type->base_type) { case GLSL_TYPE_UINT: case GLSL_TYPE_INT: for (unsigned i = 0; i < column_type->vector_elements; i++) data.u[i] = array->value.u[mat_idx + i]; break; case GLSL_TYPE_FLOAT: for (unsigned i = 0; i < column_type->vector_elements; i++) data.f[i] = array->value.f[mat_idx + i]; break; default: assert(!"Should not get here."); break; } return new(ctx) ir_constant(column_type, &data); } else if (array->type->is_vector()) { const unsigned component = idx->value.u[0]; return new(ctx) ir_constant(array, component); } else { const unsigned index = idx->value.u[0]; return array->get_array_element(index)->clone(ctx, NULL); } } return NULL; } void ir_dereference_record::constant_referenced(struct hash_table *variable_context, ir_constant *&store, int &offset) const { ir_constant *substore; int suboffset; const ir_dereference *deref = record->as_dereference(); if (!deref) { store = 0; offset = 0; return; } deref->constant_referenced(variable_context, substore, suboffset); if (!substore) { store = 0; offset = 0; return; } store = substore->get_record_field(field); offset = 0; } ir_constant * ir_dereference_record::constant_expression_value(struct hash_table *variable_context) { ir_constant *v = this->record->constant_expression_value(); return (v != NULL) ? v->get_record_field(this->field) : NULL; } ir_constant * ir_assignment::constant_expression_value(struct hash_table *variable_context) { /* FINISHME: Handle CEs involving assignment (return RHS) */ return NULL; } ir_constant * ir_constant::constant_expression_value(struct hash_table *variable_context) { return this; } ir_constant * ir_call::constant_expression_value(struct hash_table *variable_context) { return this->callee->constant_expression_value(&this->actual_parameters, variable_context); } bool ir_function_signature::constant_expression_evaluate_expression_list(const struct exec_list &body, struct hash_table *variable_context, ir_constant **result) { foreach_list(n, &body) { ir_instruction *inst = (ir_instruction *)n; switch(inst->ir_type) { /* (declare () type symbol) */ case ir_type_variable: { ir_variable *var = inst->as_variable(); hash_table_insert(variable_context, ir_constant::zero(this, var->type), var); break; } /* (assign [condition] (write-mask) (ref) (value)) */ case ir_type_assignment: { ir_assignment *asg = inst->as_assignment(); if (asg->condition) { ir_constant *cond = asg->condition->constant_expression_value(variable_context); if (!cond) return false; if (!cond->get_bool_component(0)) break; } ir_constant *store = NULL; int offset = 0; asg->lhs->constant_referenced(variable_context, store, offset); if (!store) return false; ir_constant *value = asg->rhs->constant_expression_value(variable_context); if (!value) return false; store->copy_masked_offset(value, offset, asg->write_mask); break; } /* (return (expression)) */ case ir_type_return: assert (result); *result = inst->as_return()->value->constant_expression_value(variable_context); return *result != NULL; /* (call name (ref) (params))*/ case ir_type_call: { ir_call *call = inst->as_call(); /* Just say no to void functions in constant expressions. We * don't need them at that point. */ if (!call->return_deref) return false; ir_constant *store = NULL; int offset = 0; call->return_deref->constant_referenced(variable_context, store, offset); if (!store) return false; ir_constant *value = call->constant_expression_value(variable_context); if(!value) return false; store->copy_offset(value, offset); break; } /* (if condition (then-instructions) (else-instructions)) */ case ir_type_if: { ir_if *iif = inst->as_if(); ir_constant *cond = iif->condition->constant_expression_value(variable_context); if (!cond || !cond->type->is_boolean()) return false; exec_list &branch = cond->get_bool_component(0) ? iif->then_instructions : iif->else_instructions; *result = NULL; if (!constant_expression_evaluate_expression_list(branch, variable_context, result)) return false; /* If there was a return in the branch chosen, drop out now. */ if (*result) return true; break; } /* Every other expression type, we drop out. */ default: return false; } } /* Reaching the end of the block is not an error condition */ if (result) *result = NULL; return true; } ir_constant * ir_function_signature::constant_expression_value(exec_list *actual_parameters, struct hash_table *variable_context) { const glsl_type *type = this->return_type; if (type == glsl_type::void_type) return NULL; /* From the GLSL 1.20 spec, page 23: * "Function calls to user-defined functions (non-built-in functions) * cannot be used to form constant expressions." */ if (!this->is_builtin) return NULL; /* * Of the builtin functions, only the texture lookups and the noise * ones must not be used in constant expressions. They all include * specific opcodes so they don't need to be special-cased at this * point. */ /* Initialize the table of dereferencable names with the function * parameters. Verify their const-ness on the way. * * We expect the correctness of the number of parameters to have * been checked earlier. */ hash_table *deref_hash = hash_table_ctor(8, hash_table_pointer_hash, hash_table_pointer_compare); /* If "origin" is non-NULL, then the function body is there. So we * have to use the variable objects from the object with the body, * but the parameter instanciation on the current object. */ const exec_node *parameter_info = origin ? origin->parameters.head : parameters.head; foreach_list(n, actual_parameters) { ir_constant *constant = ((ir_rvalue *) n)->constant_expression_value(variable_context); if (constant == NULL) { hash_table_dtor(deref_hash); return NULL; } ir_variable *var = (ir_variable *)parameter_info; hash_table_insert(deref_hash, constant, var); parameter_info = parameter_info->next; } ir_constant *result = NULL; /* Now run the builtin function until something non-constant * happens or we get the result. */ if (constant_expression_evaluate_expression_list(origin ? origin->body : body, deref_hash, &result) && result) result = result->clone(ralloc_parent(this), NULL); hash_table_dtor(deref_hash); return result; }