//===- InstrInfoEmitter.cpp - Generate a Instruction Set Desc. --*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This tablegen backend is responsible for emitting a description of the target // instruction set for the code generator. // //===----------------------------------------------------------------------===// #include "CodeGenDAGPatterns.h" #include "CodeGenSchedule.h" #include "CodeGenTarget.h" #include "SequenceToOffsetTable.h" #include "TableGenBackends.h" #include "llvm/ADT/StringExtras.h" #include "llvm/TableGen/Error.h" #include "llvm/TableGen/Record.h" #include "llvm/TableGen/TableGenBackend.h" #include <algorithm> #include <cstdio> #include <map> #include <vector> using namespace llvm; namespace { class InstrInfoEmitter { RecordKeeper &Records; CodeGenDAGPatterns CDP; const CodeGenSchedModels &SchedModels; public: InstrInfoEmitter(RecordKeeper &R): Records(R), CDP(R), SchedModels(CDP.getTargetInfo().getSchedModels()) {} // run - Output the instruction set description. void run(raw_ostream &OS); private: void emitEnums(raw_ostream &OS); typedef std::map<std::vector<std::string>, unsigned> OperandInfoMapTy; /// The keys of this map are maps which have OpName enum values as their keys /// and instruction operand indices as their values. The values of this map /// are lists of instruction names. typedef std::map<std::map<unsigned, unsigned>, std::vector<std::string> > OpNameMapTy; typedef std::map<std::string, unsigned>::iterator StrUintMapIter; void emitRecord(const CodeGenInstruction &Inst, unsigned Num, Record *InstrInfo, std::map<std::vector<Record*>, unsigned> &EL, const OperandInfoMapTy &OpInfo, raw_ostream &OS); void emitOperandTypesEnum(raw_ostream &OS, const CodeGenTarget &Target); void initOperandMapData( ArrayRef<const CodeGenInstruction *> NumberedInstructions, const std::string &Namespace, std::map<std::string, unsigned> &Operands, OpNameMapTy &OperandMap); void emitOperandNameMappings(raw_ostream &OS, const CodeGenTarget &Target, ArrayRef<const CodeGenInstruction*> NumberedInstructions); // Operand information. void EmitOperandInfo(raw_ostream &OS, OperandInfoMapTy &OperandInfoIDs); std::vector<std::string> GetOperandInfo(const CodeGenInstruction &Inst); }; } // end anonymous namespace static void PrintDefList(const std::vector<Record*> &Uses, unsigned Num, raw_ostream &OS) { OS << "static const MCPhysReg ImplicitList" << Num << "[] = { "; for (Record *U : Uses) OS << getQualifiedName(U) << ", "; OS << "0 };\n"; } //===----------------------------------------------------------------------===// // Operand Info Emission. //===----------------------------------------------------------------------===// std::vector<std::string> InstrInfoEmitter::GetOperandInfo(const CodeGenInstruction &Inst) { std::vector<std::string> Result; for (auto &Op : Inst.Operands) { // Handle aggregate operands and normal operands the same way by expanding // either case into a list of operands for this op. std::vector<CGIOperandList::OperandInfo> OperandList; // This might be a multiple operand thing. Targets like X86 have // registers in their multi-operand operands. It may also be an anonymous // operand, which has a single operand, but no declared class for the // operand. DagInit *MIOI = Op.MIOperandInfo; if (!MIOI || MIOI->getNumArgs() == 0) { // Single, anonymous, operand. OperandList.push_back(Op); } else { for (unsigned j = 0, e = Op.MINumOperands; j != e; ++j) { OperandList.push_back(Op); Record *OpR = cast<DefInit>(MIOI->getArg(j))->getDef(); OperandList.back().Rec = OpR; } } for (unsigned j = 0, e = OperandList.size(); j != e; ++j) { Record *OpR = OperandList[j].Rec; std::string Res; if (OpR->isSubClassOf("RegisterOperand")) OpR = OpR->getValueAsDef("RegClass"); if (OpR->isSubClassOf("RegisterClass")) Res += getQualifiedName(OpR) + "RegClassID, "; else if (OpR->isSubClassOf("PointerLikeRegClass")) Res += utostr(OpR->getValueAsInt("RegClassKind")) + ", "; else // -1 means the operand does not have a fixed register class. Res += "-1, "; // Fill in applicable flags. Res += "0"; // Ptr value whose register class is resolved via callback. if (OpR->isSubClassOf("PointerLikeRegClass")) Res += "|(1<<MCOI::LookupPtrRegClass)"; // Predicate operands. Check to see if the original unexpanded operand // was of type PredicateOp. if (Op.Rec->isSubClassOf("PredicateOp")) Res += "|(1<<MCOI::Predicate)"; // Optional def operands. Check to see if the original unexpanded operand // was of type OptionalDefOperand. if (Op.Rec->isSubClassOf("OptionalDefOperand")) Res += "|(1<<MCOI::OptionalDef)"; // Fill in operand type. Res += ", "; assert(!Op.OperandType.empty() && "Invalid operand type."); Res += Op.OperandType; // Fill in constraint info. Res += ", "; const CGIOperandList::ConstraintInfo &Constraint = Op.Constraints[j]; if (Constraint.isNone()) Res += "0"; else if (Constraint.isEarlyClobber()) Res += "(1 << MCOI::EARLY_CLOBBER)"; else { assert(Constraint.isTied()); Res += "((" + utostr(Constraint.getTiedOperand()) + " << 16) | (1 << MCOI::TIED_TO))"; } Result.push_back(Res); } } return Result; } void InstrInfoEmitter::EmitOperandInfo(raw_ostream &OS, OperandInfoMapTy &OperandInfoIDs) { // ID #0 is for no operand info. unsigned OperandListNum = 0; OperandInfoIDs[std::vector<std::string>()] = ++OperandListNum; OS << "\n"; const CodeGenTarget &Target = CDP.getTargetInfo(); for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) { std::vector<std::string> OperandInfo = GetOperandInfo(*Inst); unsigned &N = OperandInfoIDs[OperandInfo]; if (N != 0) continue; N = ++OperandListNum; OS << "static const MCOperandInfo OperandInfo" << N << "[] = { "; for (const std::string &Info : OperandInfo) OS << "{ " << Info << " }, "; OS << "};\n"; } } /// Initialize data structures for generating operand name mappings. /// /// \param Operands [out] A map used to generate the OpName enum with operand /// names as its keys and operand enum values as its values. /// \param OperandMap [out] A map for representing the operand name mappings for /// each instructions. This is used to generate the OperandMap table as /// well as the getNamedOperandIdx() function. void InstrInfoEmitter::initOperandMapData( ArrayRef<const CodeGenInstruction *> NumberedInstructions, const std::string &Namespace, std::map<std::string, unsigned> &Operands, OpNameMapTy &OperandMap) { unsigned NumOperands = 0; for (const CodeGenInstruction *Inst : NumberedInstructions) { if (!Inst->TheDef->getValueAsBit("UseNamedOperandTable")) continue; std::map<unsigned, unsigned> OpList; for (const auto &Info : Inst->Operands) { StrUintMapIter I = Operands.find(Info.Name); if (I == Operands.end()) { I = Operands.insert(Operands.begin(), std::pair<std::string, unsigned>(Info.Name, NumOperands++)); } OpList[I->second] = Info.MIOperandNo; } OperandMap[OpList].push_back(Namespace + "::" + Inst->TheDef->getName()); } } /// Generate a table and function for looking up the indices of operands by /// name. /// /// This code generates: /// - An enum in the llvm::TargetNamespace::OpName namespace, with one entry /// for each operand name. /// - A 2-dimensional table called OperandMap for mapping OpName enum values to /// operand indices. /// - A function called getNamedOperandIdx(uint16_t Opcode, uint16_t NamedIdx) /// for looking up the operand index for an instruction, given a value from /// OpName enum void InstrInfoEmitter::emitOperandNameMappings(raw_ostream &OS, const CodeGenTarget &Target, ArrayRef<const CodeGenInstruction*> NumberedInstructions) { const std::string &Namespace = Target.getInstNamespace(); std::string OpNameNS = "OpName"; // Map of operand names to their enumeration value. This will be used to // generate the OpName enum. std::map<std::string, unsigned> Operands; OpNameMapTy OperandMap; initOperandMapData(NumberedInstructions, Namespace, Operands, OperandMap); OS << "#ifdef GET_INSTRINFO_OPERAND_ENUM\n"; OS << "#undef GET_INSTRINFO_OPERAND_ENUM\n"; OS << "namespace llvm {\n"; OS << "namespace " << Namespace << " {\n"; OS << "namespace " << OpNameNS << " {\n"; OS << "enum {\n"; for (const auto &Op : Operands) OS << " " << Op.first << " = " << Op.second << ",\n"; OS << "OPERAND_LAST"; OS << "\n};\n"; OS << "} // end namespace OpName\n"; OS << "} // end namespace " << Namespace << "\n"; OS << "} // end namespace llvm\n"; OS << "#endif //GET_INSTRINFO_OPERAND_ENUM\n\n"; OS << "#ifdef GET_INSTRINFO_NAMED_OPS\n"; OS << "#undef GET_INSTRINFO_NAMED_OPS\n"; OS << "namespace llvm {\n"; OS << "namespace " << Namespace << " {\n"; OS << "LLVM_READONLY\n"; OS << "int16_t getNamedOperandIdx(uint16_t Opcode, uint16_t NamedIdx) {\n"; if (!Operands.empty()) { OS << " static const int16_t OperandMap [][" << Operands.size() << "] = {\n"; for (const auto &Entry : OperandMap) { const std::map<unsigned, unsigned> &OpList = Entry.first; OS << "{"; // Emit a row of the OperandMap table for (unsigned i = 0, e = Operands.size(); i != e; ++i) OS << (OpList.count(i) == 0 ? -1 : (int)OpList.find(i)->second) << ", "; OS << "},\n"; } OS << "};\n"; OS << " switch(Opcode) {\n"; unsigned TableIndex = 0; for (const auto &Entry : OperandMap) { for (const std::string &Name : Entry.second) OS << " case " << Name << ":\n"; OS << " return OperandMap[" << TableIndex++ << "][NamedIdx];\n"; } OS << " default: return -1;\n"; OS << " }\n"; } else { // There are no operands, so no need to emit anything OS << " return -1;\n"; } OS << "}\n"; OS << "} // end namespace " << Namespace << "\n"; OS << "} // end namespace llvm\n"; OS << "#endif //GET_INSTRINFO_NAMED_OPS\n\n"; } /// Generate an enum for all the operand types for this target, under the /// llvm::TargetNamespace::OpTypes namespace. /// Operand types are all definitions derived of the Operand Target.td class. void InstrInfoEmitter::emitOperandTypesEnum(raw_ostream &OS, const CodeGenTarget &Target) { const std::string &Namespace = Target.getInstNamespace(); std::vector<Record *> Operands = Records.getAllDerivedDefinitions("Operand"); OS << "#ifdef GET_INSTRINFO_OPERAND_TYPES_ENUM\n"; OS << "#undef GET_INSTRINFO_OPERAND_TYPES_ENUM\n"; OS << "namespace llvm {\n"; OS << "namespace " << Namespace << " {\n"; OS << "namespace OpTypes {\n"; OS << "enum OperandType {\n"; unsigned EnumVal = 0; for (const Record *Op : Operands) { if (!Op->isAnonymous()) OS << " " << Op->getName() << " = " << EnumVal << ",\n"; ++EnumVal; } OS << " OPERAND_TYPE_LIST_END" << "\n};\n"; OS << "} // end namespace OpTypes\n"; OS << "} // end namespace " << Namespace << "\n"; OS << "} // end namespace llvm\n"; OS << "#endif // GET_INSTRINFO_OPERAND_TYPES_ENUM\n\n"; } //===----------------------------------------------------------------------===// // Main Output. //===----------------------------------------------------------------------===// // run - Emit the main instruction description records for the target... void InstrInfoEmitter::run(raw_ostream &OS) { emitSourceFileHeader("Target Instruction Enum Values and Descriptors", OS); emitEnums(OS); OS << "#ifdef GET_INSTRINFO_MC_DESC\n"; OS << "#undef GET_INSTRINFO_MC_DESC\n"; OS << "namespace llvm {\n\n"; CodeGenTarget &Target = CDP.getTargetInfo(); const std::string &TargetName = Target.getName(); Record *InstrInfo = Target.getInstructionSet(); // Keep track of all of the def lists we have emitted already. std::map<std::vector<Record*>, unsigned> EmittedLists; unsigned ListNumber = 0; // Emit all of the instruction's implicit uses and defs. for (const CodeGenInstruction *II : Target.getInstructionsByEnumValue()) { Record *Inst = II->TheDef; std::vector<Record*> Uses = Inst->getValueAsListOfDefs("Uses"); if (!Uses.empty()) { unsigned &IL = EmittedLists[Uses]; if (!IL) PrintDefList(Uses, IL = ++ListNumber, OS); } std::vector<Record*> Defs = Inst->getValueAsListOfDefs("Defs"); if (!Defs.empty()) { unsigned &IL = EmittedLists[Defs]; if (!IL) PrintDefList(Defs, IL = ++ListNumber, OS); } } OperandInfoMapTy OperandInfoIDs; // Emit all of the operand info records. EmitOperandInfo(OS, OperandInfoIDs); // Emit all of the MCInstrDesc records in their ENUM ordering. // OS << "\nextern const MCInstrDesc " << TargetName << "Insts[] = {\n"; ArrayRef<const CodeGenInstruction*> NumberedInstructions = Target.getInstructionsByEnumValue(); SequenceToOffsetTable<std::string> InstrNames; unsigned Num = 0; for (const CodeGenInstruction *Inst : NumberedInstructions) { // Keep a list of the instruction names. InstrNames.add(Inst->TheDef->getName()); // Emit the record into the table. emitRecord(*Inst, Num++, InstrInfo, EmittedLists, OperandInfoIDs, OS); } OS << "};\n\n"; // Emit the array of instruction names. InstrNames.layout(); OS << "extern const char " << TargetName << "InstrNameData[] = {\n"; InstrNames.emit(OS, printChar); OS << "};\n\n"; OS << "extern const unsigned " << TargetName <<"InstrNameIndices[] = {"; Num = 0; for (const CodeGenInstruction *Inst : NumberedInstructions) { // Newline every eight entries. if (Num % 8 == 0) OS << "\n "; OS << InstrNames.get(Inst->TheDef->getName()) << "U, "; ++Num; } OS << "\n};\n\n"; // MCInstrInfo initialization routine. OS << "static inline void Init" << TargetName << "MCInstrInfo(MCInstrInfo *II) {\n"; OS << " II->InitMCInstrInfo(" << TargetName << "Insts, " << TargetName << "InstrNameIndices, " << TargetName << "InstrNameData, " << NumberedInstructions.size() << ");\n}\n\n"; OS << "} // end llvm namespace\n"; OS << "#endif // GET_INSTRINFO_MC_DESC\n\n"; // Create a TargetInstrInfo subclass to hide the MC layer initialization. OS << "#ifdef GET_INSTRINFO_HEADER\n"; OS << "#undef GET_INSTRINFO_HEADER\n"; std::string ClassName = TargetName + "GenInstrInfo"; OS << "namespace llvm {\n"; OS << "struct " << ClassName << " : public TargetInstrInfo {\n" << " explicit " << ClassName << "(int CFSetupOpcode = -1, int CFDestroyOpcode = -1, int CatchRetOpcode = -1, int ReturnOpcode = -1);\n" << " ~" << ClassName << "() override {}\n" << "};\n"; OS << "} // end llvm namespace\n"; OS << "#endif // GET_INSTRINFO_HEADER\n\n"; OS << "#ifdef GET_INSTRINFO_CTOR_DTOR\n"; OS << "#undef GET_INSTRINFO_CTOR_DTOR\n"; OS << "namespace llvm {\n"; OS << "extern const MCInstrDesc " << TargetName << "Insts[];\n"; OS << "extern const unsigned " << TargetName << "InstrNameIndices[];\n"; OS << "extern const char " << TargetName << "InstrNameData[];\n"; OS << ClassName << "::" << ClassName << "(int CFSetupOpcode, int CFDestroyOpcode, int CatchRetOpcode, int ReturnOpcode)\n" << " : TargetInstrInfo(CFSetupOpcode, CFDestroyOpcode, CatchRetOpcode, ReturnOpcode) {\n" << " InitMCInstrInfo(" << TargetName << "Insts, " << TargetName << "InstrNameIndices, " << TargetName << "InstrNameData, " << NumberedInstructions.size() << ");\n}\n"; OS << "} // end llvm namespace\n"; OS << "#endif // GET_INSTRINFO_CTOR_DTOR\n\n"; emitOperandNameMappings(OS, Target, NumberedInstructions); emitOperandTypesEnum(OS, Target); } void InstrInfoEmitter::emitRecord(const CodeGenInstruction &Inst, unsigned Num, Record *InstrInfo, std::map<std::vector<Record*>, unsigned> &EmittedLists, const OperandInfoMapTy &OpInfo, raw_ostream &OS) { int MinOperands = 0; if (!Inst.Operands.empty()) // Each logical operand can be multiple MI operands. MinOperands = Inst.Operands.back().MIOperandNo + Inst.Operands.back().MINumOperands; OS << " { "; OS << Num << ",\t" << MinOperands << ",\t" << Inst.Operands.NumDefs << ",\t" << Inst.TheDef->getValueAsInt("Size") << ",\t" << SchedModels.getSchedClassIdx(Inst) << ",\t0"; // Emit all of the target independent flags... if (Inst.isPseudo) OS << "|(1ULL<<MCID::Pseudo)"; if (Inst.isReturn) OS << "|(1ULL<<MCID::Return)"; if (Inst.isBranch) OS << "|(1ULL<<MCID::Branch)"; if (Inst.isIndirectBranch) OS << "|(1ULL<<MCID::IndirectBranch)"; if (Inst.isCompare) OS << "|(1ULL<<MCID::Compare)"; if (Inst.isMoveImm) OS << "|(1ULL<<MCID::MoveImm)"; if (Inst.isBitcast) OS << "|(1ULL<<MCID::Bitcast)"; if (Inst.isSelect) OS << "|(1ULL<<MCID::Select)"; if (Inst.isBarrier) OS << "|(1ULL<<MCID::Barrier)"; if (Inst.hasDelaySlot) OS << "|(1ULL<<MCID::DelaySlot)"; if (Inst.isCall) OS << "|(1ULL<<MCID::Call)"; if (Inst.canFoldAsLoad) OS << "|(1ULL<<MCID::FoldableAsLoad)"; if (Inst.mayLoad) OS << "|(1ULL<<MCID::MayLoad)"; if (Inst.mayStore) OS << "|(1ULL<<MCID::MayStore)"; if (Inst.isPredicable) OS << "|(1ULL<<MCID::Predicable)"; if (Inst.isConvertibleToThreeAddress) OS << "|(1ULL<<MCID::ConvertibleTo3Addr)"; if (Inst.isCommutable) OS << "|(1ULL<<MCID::Commutable)"; if (Inst.isTerminator) OS << "|(1ULL<<MCID::Terminator)"; if (Inst.isReMaterializable) OS << "|(1ULL<<MCID::Rematerializable)"; if (Inst.isNotDuplicable) OS << "|(1ULL<<MCID::NotDuplicable)"; if (Inst.Operands.hasOptionalDef) OS << "|(1ULL<<MCID::HasOptionalDef)"; if (Inst.usesCustomInserter) OS << "|(1ULL<<MCID::UsesCustomInserter)"; if (Inst.hasPostISelHook) OS << "|(1ULL<<MCID::HasPostISelHook)"; if (Inst.Operands.isVariadic)OS << "|(1ULL<<MCID::Variadic)"; if (Inst.hasSideEffects) OS << "|(1ULL<<MCID::UnmodeledSideEffects)"; if (Inst.isAsCheapAsAMove) OS << "|(1ULL<<MCID::CheapAsAMove)"; if (Inst.hasExtraSrcRegAllocReq) OS << "|(1ULL<<MCID::ExtraSrcRegAllocReq)"; if (Inst.hasExtraDefRegAllocReq) OS << "|(1ULL<<MCID::ExtraDefRegAllocReq)"; if (Inst.isRegSequence) OS << "|(1ULL<<MCID::RegSequence)"; if (Inst.isExtractSubreg) OS << "|(1ULL<<MCID::ExtractSubreg)"; if (Inst.isInsertSubreg) OS << "|(1ULL<<MCID::InsertSubreg)"; if (Inst.isConvergent) OS << "|(1ULL<<MCID::Convergent)"; // Emit all of the target-specific flags... BitsInit *TSF = Inst.TheDef->getValueAsBitsInit("TSFlags"); if (!TSF) PrintFatalError("no TSFlags?"); uint64_t Value = 0; for (unsigned i = 0, e = TSF->getNumBits(); i != e; ++i) { if (BitInit *Bit = dyn_cast<BitInit>(TSF->getBit(i))) Value |= uint64_t(Bit->getValue()) << i; else PrintFatalError("Invalid TSFlags bit in " + Inst.TheDef->getName()); } OS << ", 0x"; OS.write_hex(Value); OS << "ULL, "; // Emit the implicit uses and defs lists... std::vector<Record*> UseList = Inst.TheDef->getValueAsListOfDefs("Uses"); if (UseList.empty()) OS << "nullptr, "; else OS << "ImplicitList" << EmittedLists[UseList] << ", "; std::vector<Record*> DefList = Inst.TheDef->getValueAsListOfDefs("Defs"); if (DefList.empty()) OS << "nullptr, "; else OS << "ImplicitList" << EmittedLists[DefList] << ", "; // Emit the operand info. std::vector<std::string> OperandInfo = GetOperandInfo(Inst); if (OperandInfo.empty()) OS << "nullptr"; else OS << "OperandInfo" << OpInfo.find(OperandInfo)->second; CodeGenTarget &Target = CDP.getTargetInfo(); if (Inst.HasComplexDeprecationPredicate) // Emit a function pointer to the complex predicate method. OS << ", -1 " << ",&get" << Inst.DeprecatedReason << "DeprecationInfo"; else if (!Inst.DeprecatedReason.empty()) // Emit the Subtarget feature. OS << ", " << Target.getInstNamespace() << "::" << Inst.DeprecatedReason << " ,nullptr"; else // Instruction isn't deprecated. OS << ", -1 ,nullptr"; OS << " }, // Inst #" << Num << " = " << Inst.TheDef->getName() << "\n"; } // emitEnums - Print out enum values for all of the instructions. void InstrInfoEmitter::emitEnums(raw_ostream &OS) { OS << "#ifdef GET_INSTRINFO_ENUM\n"; OS << "#undef GET_INSTRINFO_ENUM\n"; OS << "namespace llvm {\n\n"; CodeGenTarget Target(Records); // We must emit the PHI opcode first... std::string Namespace = Target.getInstNamespace(); if (Namespace.empty()) PrintFatalError("No instructions defined!"); OS << "namespace " << Namespace << " {\n"; OS << " enum {\n"; unsigned Num = 0; for (const CodeGenInstruction *Inst : Target.getInstructionsByEnumValue()) OS << " " << Inst->TheDef->getName() << "\t= " << Num++ << ",\n"; OS << " INSTRUCTION_LIST_END = " << Num << "\n"; OS << " };\n\n"; OS << "namespace Sched {\n"; OS << " enum {\n"; Num = 0; for (const auto &Class : SchedModels.explicit_classes()) OS << " " << Class.Name << "\t= " << Num++ << ",\n"; OS << " SCHED_LIST_END = " << Num << "\n"; OS << " };\n"; OS << "} // end Sched namespace\n"; OS << "} // end " << Namespace << " namespace\n"; OS << "} // end llvm namespace\n"; OS << "#endif // GET_INSTRINFO_ENUM\n\n"; } namespace llvm { void EmitInstrInfo(RecordKeeper &RK, raw_ostream &OS) { InstrInfoEmitter(RK).run(OS); EmitMapTable(RK, OS); } } // end llvm namespace