//===- CodeGenRegisters.h - Register and RegisterClass Info -----*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines structures to encapsulate information gleaned from the // target register and register class definitions. // //===----------------------------------------------------------------------===// #ifndef LLVM_UTILS_TABLEGEN_CODEGENREGISTERS_H #define LLVM_UTILS_TABLEGEN_CODEGENREGISTERS_H #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/BitVector.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SparseBitVector.h" #include "llvm/CodeGen/MachineValueType.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/TableGen/Record.h" #include "llvm/TableGen/SetTheory.h" #include <cstdlib> #include <deque> #include <list> #include <map> #include <string> #include <vector> namespace llvm { class CodeGenRegBank; template <typename T, typename Vector, typename Set> class SetVector; /// Used to encode a step in a register lane mask transformation. /// Mask the bits specified in Mask, then rotate them Rol bits to the left /// assuming a wraparound at 32bits. struct MaskRolPair { unsigned Mask; uint8_t RotateLeft; bool operator==(const MaskRolPair Other) const { return Mask == Other.Mask && RotateLeft == Other.RotateLeft; } bool operator!=(const MaskRolPair Other) const { return Mask != Other.Mask || RotateLeft != Other.RotateLeft; } }; /// CodeGenSubRegIndex - Represents a sub-register index. class CodeGenSubRegIndex { Record *const TheDef; std::string Name; std::string Namespace; public: uint16_t Size; uint16_t Offset; const unsigned EnumValue; mutable unsigned LaneMask; mutable SmallVector<MaskRolPair,1> CompositionLaneMaskTransform; // Are all super-registers containing this SubRegIndex covered by their // sub-registers? bool AllSuperRegsCovered; CodeGenSubRegIndex(Record *R, unsigned Enum); CodeGenSubRegIndex(StringRef N, StringRef Nspace, unsigned Enum); const std::string &getName() const { return Name; } const std::string &getNamespace() const { return Namespace; } std::string getQualifiedName() const; // Map of composite subreg indices. typedef std::map<CodeGenSubRegIndex *, CodeGenSubRegIndex *, deref<llvm::less>> CompMap; // Returns the subreg index that results from composing this with Idx. // Returns NULL if this and Idx don't compose. CodeGenSubRegIndex *compose(CodeGenSubRegIndex *Idx) const { CompMap::const_iterator I = Composed.find(Idx); return I == Composed.end() ? nullptr : I->second; } // Add a composite subreg index: this+A = B. // Return a conflicting composite, or NULL CodeGenSubRegIndex *addComposite(CodeGenSubRegIndex *A, CodeGenSubRegIndex *B) { assert(A && B); std::pair<CompMap::iterator, bool> Ins = Composed.insert(std::make_pair(A, B)); // Synthetic subreg indices that aren't contiguous (for instance ARM // register tuples) don't have a bit range, so it's OK to let // B->Offset == -1. For the other cases, accumulate the offset and set // the size here. Only do so if there is no offset yet though. if ((Offset != (uint16_t)-1 && A->Offset != (uint16_t)-1) && (B->Offset == (uint16_t)-1)) { B->Offset = Offset + A->Offset; B->Size = A->Size; } return (Ins.second || Ins.first->second == B) ? nullptr : Ins.first->second; } // Update the composite maps of components specified in 'ComposedOf'. void updateComponents(CodeGenRegBank&); // Return the map of composites. const CompMap &getComposites() const { return Composed; } // Compute LaneMask from Composed. Return LaneMask. unsigned computeLaneMask() const; private: CompMap Composed; }; inline bool operator<(const CodeGenSubRegIndex &A, const CodeGenSubRegIndex &B) { return A.EnumValue < B.EnumValue; } /// CodeGenRegister - Represents a register definition. struct CodeGenRegister { Record *TheDef; unsigned EnumValue; unsigned CostPerUse; bool CoveredBySubRegs; bool HasDisjunctSubRegs; // Map SubRegIndex -> Register. typedef std::map<CodeGenSubRegIndex *, CodeGenRegister *, deref<llvm::less>> SubRegMap; CodeGenRegister(Record *R, unsigned Enum); const std::string &getName() const; // Extract more information from TheDef. This is used to build an object // graph after all CodeGenRegister objects have been created. void buildObjectGraph(CodeGenRegBank&); // Lazily compute a map of all sub-registers. // This includes unique entries for all sub-sub-registers. const SubRegMap &computeSubRegs(CodeGenRegBank&); // Compute extra sub-registers by combining the existing sub-registers. void computeSecondarySubRegs(CodeGenRegBank&); // Add this as a super-register to all sub-registers after the sub-register // graph has been built. void computeSuperRegs(CodeGenRegBank&); const SubRegMap &getSubRegs() const { assert(SubRegsComplete && "Must precompute sub-registers"); return SubRegs; } // Add sub-registers to OSet following a pre-order defined by the .td file. void addSubRegsPreOrder(SetVector<const CodeGenRegister*> &OSet, CodeGenRegBank&) const; // Return the sub-register index naming Reg as a sub-register of this // register. Returns NULL if Reg is not a sub-register. CodeGenSubRegIndex *getSubRegIndex(const CodeGenRegister *Reg) const { return SubReg2Idx.lookup(Reg); } typedef std::vector<const CodeGenRegister*> SuperRegList; // Get the list of super-registers in topological order, small to large. // This is valid after computeSubRegs visits all registers during RegBank // construction. const SuperRegList &getSuperRegs() const { assert(SubRegsComplete && "Must precompute sub-registers"); return SuperRegs; } // Get the list of ad hoc aliases. The graph is symmetric, so the list // contains all registers in 'Aliases', and all registers that mention this // register in 'Aliases'. ArrayRef<CodeGenRegister*> getExplicitAliases() const { return ExplicitAliases; } // Get the topological signature of this register. This is a small integer // less than RegBank.getNumTopoSigs(). Registers with the same TopoSig have // identical sub-register structure. That is, they support the same set of // sub-register indices mapping to the same kind of sub-registers // (TopoSig-wise). unsigned getTopoSig() const { assert(SuperRegsComplete && "TopoSigs haven't been computed yet."); return TopoSig; } // List of register units in ascending order. typedef SparseBitVector<> RegUnitList; typedef SmallVector<unsigned, 16> RegUnitLaneMaskList; // How many entries in RegUnitList are native? RegUnitList NativeRegUnits; // Get the list of register units. // This is only valid after computeSubRegs() completes. const RegUnitList &getRegUnits() const { return RegUnits; } ArrayRef<unsigned> getRegUnitLaneMasks() const { return makeArrayRef(RegUnitLaneMasks).slice(0, NativeRegUnits.count()); } // Get the native register units. This is a prefix of getRegUnits(). RegUnitList getNativeRegUnits() const { return NativeRegUnits; } void setRegUnitLaneMasks(const RegUnitLaneMaskList &LaneMasks) { RegUnitLaneMasks = LaneMasks; } // Inherit register units from subregisters. // Return true if the RegUnits changed. bool inheritRegUnits(CodeGenRegBank &RegBank); // Adopt a register unit for pressure tracking. // A unit is adopted iff its unit number is >= NativeRegUnits.count(). void adoptRegUnit(unsigned RUID) { RegUnits.set(RUID); } // Get the sum of this register's register unit weights. unsigned getWeight(const CodeGenRegBank &RegBank) const; // Canonically ordered set. typedef std::vector<const CodeGenRegister*> Vec; private: bool SubRegsComplete; bool SuperRegsComplete; unsigned TopoSig; // The sub-registers explicit in the .td file form a tree. SmallVector<CodeGenSubRegIndex*, 8> ExplicitSubRegIndices; SmallVector<CodeGenRegister*, 8> ExplicitSubRegs; // Explicit ad hoc aliases, symmetrized to form an undirected graph. SmallVector<CodeGenRegister*, 8> ExplicitAliases; // Super-registers where this is the first explicit sub-register. SuperRegList LeadingSuperRegs; SubRegMap SubRegs; SuperRegList SuperRegs; DenseMap<const CodeGenRegister*, CodeGenSubRegIndex*> SubReg2Idx; RegUnitList RegUnits; RegUnitLaneMaskList RegUnitLaneMasks; }; inline bool operator<(const CodeGenRegister &A, const CodeGenRegister &B) { return A.EnumValue < B.EnumValue; } inline bool operator==(const CodeGenRegister &A, const CodeGenRegister &B) { return A.EnumValue == B.EnumValue; } class CodeGenRegisterClass { CodeGenRegister::Vec Members; // Allocation orders. Order[0] always contains all registers in Members. std::vector<SmallVector<Record*, 16> > Orders; // Bit mask of sub-classes including this, indexed by their EnumValue. BitVector SubClasses; // List of super-classes, topologocally ordered to have the larger classes // first. This is the same as sorting by EnumValue. SmallVector<CodeGenRegisterClass*, 4> SuperClasses; Record *TheDef; std::string Name; // For a synthesized class, inherit missing properties from the nearest // super-class. void inheritProperties(CodeGenRegBank&); // Map SubRegIndex -> sub-class. This is the largest sub-class where all // registers have a SubRegIndex sub-register. DenseMap<const CodeGenSubRegIndex *, CodeGenRegisterClass *> SubClassWithSubReg; // Map SubRegIndex -> set of super-reg classes. This is all register // classes SuperRC such that: // // R:SubRegIndex in this RC for all R in SuperRC. // DenseMap<const CodeGenSubRegIndex *, SmallPtrSet<CodeGenRegisterClass *, 8>> SuperRegClasses; // Bit vector of TopoSigs for the registers in this class. This will be // very sparse on regular architectures. BitVector TopoSigs; public: unsigned EnumValue; std::string Namespace; SmallVector<MVT::SimpleValueType, 4> VTs; unsigned SpillSize; unsigned SpillAlignment; int CopyCost; bool Allocatable; std::string AltOrderSelect; uint8_t AllocationPriority; /// Contains the combination of the lane masks of all subregisters. unsigned LaneMask; /// True if there are at least 2 subregisters which do not interfere. bool HasDisjunctSubRegs; bool CoveredBySubRegs; // Return the Record that defined this class, or NULL if the class was // created by TableGen. Record *getDef() const { return TheDef; } const std::string &getName() const { return Name; } std::string getQualifiedName() const; ArrayRef<MVT::SimpleValueType> getValueTypes() const {return VTs;} unsigned getNumValueTypes() const { return VTs.size(); } MVT::SimpleValueType getValueTypeNum(unsigned VTNum) const { if (VTNum < VTs.size()) return VTs[VTNum]; llvm_unreachable("VTNum greater than number of ValueTypes in RegClass!"); } // Return true if this this class contains the register. bool contains(const CodeGenRegister*) const; // Returns true if RC is a subclass. // RC is a sub-class of this class if it is a valid replacement for any // instruction operand where a register of this classis required. It must // satisfy these conditions: // // 1. All RC registers are also in this. // 2. The RC spill size must not be smaller than our spill size. // 3. RC spill alignment must be compatible with ours. // bool hasSubClass(const CodeGenRegisterClass *RC) const { return SubClasses.test(RC->EnumValue); } // getSubClassWithSubReg - Returns the largest sub-class where all // registers have a SubIdx sub-register. CodeGenRegisterClass * getSubClassWithSubReg(const CodeGenSubRegIndex *SubIdx) const { return SubClassWithSubReg.lookup(SubIdx); } void setSubClassWithSubReg(const CodeGenSubRegIndex *SubIdx, CodeGenRegisterClass *SubRC) { SubClassWithSubReg[SubIdx] = SubRC; } // getSuperRegClasses - Returns a bit vector of all register classes // containing only SubIdx super-registers of this class. void getSuperRegClasses(const CodeGenSubRegIndex *SubIdx, BitVector &Out) const; // addSuperRegClass - Add a class containing only SudIdx super-registers. void addSuperRegClass(CodeGenSubRegIndex *SubIdx, CodeGenRegisterClass *SuperRC) { SuperRegClasses[SubIdx].insert(SuperRC); } // getSubClasses - Returns a constant BitVector of subclasses indexed by // EnumValue. // The SubClasses vector includes an entry for this class. const BitVector &getSubClasses() const { return SubClasses; } // getSuperClasses - Returns a list of super classes ordered by EnumValue. // The array does not include an entry for this class. ArrayRef<CodeGenRegisterClass*> getSuperClasses() const { return SuperClasses; } // Returns an ordered list of class members. // The order of registers is the same as in the .td file. // No = 0 is the default allocation order, No = 1 is the first alternative. ArrayRef<Record*> getOrder(unsigned No = 0) const { return Orders[No]; } // Return the total number of allocation orders available. unsigned getNumOrders() const { return Orders.size(); } // Get the set of registers. This set contains the same registers as // getOrder(0). const CodeGenRegister::Vec &getMembers() const { return Members; } // Get a bit vector of TopoSigs present in this register class. const BitVector &getTopoSigs() const { return TopoSigs; } // Populate a unique sorted list of units from a register set. void buildRegUnitSet(std::vector<unsigned> &RegUnits) const; CodeGenRegisterClass(CodeGenRegBank&, Record *R); // A key representing the parts of a register class used for forming // sub-classes. Note the ordering provided by this key is not the same as // the topological order used for the EnumValues. struct Key { const CodeGenRegister::Vec *Members; unsigned SpillSize; unsigned SpillAlignment; Key(const CodeGenRegister::Vec *M, unsigned S = 0, unsigned A = 0) : Members(M), SpillSize(S), SpillAlignment(A) {} Key(const CodeGenRegisterClass &RC) : Members(&RC.getMembers()), SpillSize(RC.SpillSize), SpillAlignment(RC.SpillAlignment) {} // Lexicographical order of (Members, SpillSize, SpillAlignment). bool operator<(const Key&) const; }; // Create a non-user defined register class. CodeGenRegisterClass(CodeGenRegBank&, StringRef Name, Key Props); // Called by CodeGenRegBank::CodeGenRegBank(). static void computeSubClasses(CodeGenRegBank&); }; // Register units are used to model interference and register pressure. // Every register is assigned one or more register units such that two // registers overlap if and only if they have a register unit in common. // // Normally, one register unit is created per leaf register. Non-leaf // registers inherit the units of their sub-registers. struct RegUnit { // Weight assigned to this RegUnit for estimating register pressure. // This is useful when equalizing weights in register classes with mixed // register topologies. unsigned Weight; // Each native RegUnit corresponds to one or two root registers. The full // set of registers containing this unit can be computed as the union of // these two registers and their super-registers. const CodeGenRegister *Roots[2]; // Index into RegClassUnitSets where we can find the list of UnitSets that // contain this unit. unsigned RegClassUnitSetsIdx; RegUnit() : Weight(0), RegClassUnitSetsIdx(0) { Roots[0] = Roots[1] = nullptr; } ArrayRef<const CodeGenRegister*> getRoots() const { assert(!(Roots[1] && !Roots[0]) && "Invalid roots array"); return makeArrayRef(Roots, !!Roots[0] + !!Roots[1]); } }; // Each RegUnitSet is a sorted vector with a name. struct RegUnitSet { typedef std::vector<unsigned>::const_iterator iterator; std::string Name; std::vector<unsigned> Units; unsigned Weight; // Cache the sum of all unit weights. unsigned Order; // Cache the sort key. RegUnitSet() : Weight(0), Order(0) {} }; // Base vector for identifying TopoSigs. The contents uniquely identify a // TopoSig, only computeSuperRegs needs to know how. typedef SmallVector<unsigned, 16> TopoSigId; // CodeGenRegBank - Represent a target's registers and the relations between // them. class CodeGenRegBank { SetTheory Sets; std::deque<CodeGenSubRegIndex> SubRegIndices; DenseMap<Record*, CodeGenSubRegIndex*> Def2SubRegIdx; CodeGenSubRegIndex *createSubRegIndex(StringRef Name, StringRef NameSpace); typedef std::map<SmallVector<CodeGenSubRegIndex*, 8>, CodeGenSubRegIndex*> ConcatIdxMap; ConcatIdxMap ConcatIdx; // Registers. std::deque<CodeGenRegister> Registers; StringMap<CodeGenRegister*> RegistersByName; DenseMap<Record*, CodeGenRegister*> Def2Reg; unsigned NumNativeRegUnits; std::map<TopoSigId, unsigned> TopoSigs; // Includes native (0..NumNativeRegUnits-1) and adopted register units. SmallVector<RegUnit, 8> RegUnits; // Register classes. std::list<CodeGenRegisterClass> RegClasses; DenseMap<Record*, CodeGenRegisterClass*> Def2RC; typedef std::map<CodeGenRegisterClass::Key, CodeGenRegisterClass*> RCKeyMap; RCKeyMap Key2RC; // Remember each unique set of register units. Initially, this contains a // unique set for each register class. Simliar sets are coalesced with // pruneUnitSets and new supersets are inferred during computeRegUnitSets. std::vector<RegUnitSet> RegUnitSets; // Map RegisterClass index to the index of the RegUnitSet that contains the // class's units and any inferred RegUnit supersets. // // NOTE: This could grow beyond the number of register classes when we map // register units to lists of unit sets. If the list of unit sets does not // already exist for a register class, we create a new entry in this vector. std::vector<std::vector<unsigned> > RegClassUnitSets; // Give each register unit set an order based on sorting criteria. std::vector<unsigned> RegUnitSetOrder; // Add RC to *2RC maps. void addToMaps(CodeGenRegisterClass*); // Create a synthetic sub-class if it is missing. CodeGenRegisterClass *getOrCreateSubClass(const CodeGenRegisterClass *RC, const CodeGenRegister::Vec *Membs, StringRef Name); // Infer missing register classes. void computeInferredRegisterClasses(); void inferCommonSubClass(CodeGenRegisterClass *RC); void inferSubClassWithSubReg(CodeGenRegisterClass *RC); void inferMatchingSuperRegClass(CodeGenRegisterClass *RC) { inferMatchingSuperRegClass(RC, RegClasses.begin()); } void inferMatchingSuperRegClass( CodeGenRegisterClass *RC, std::list<CodeGenRegisterClass>::iterator FirstSubRegRC); // Iteratively prune unit sets. void pruneUnitSets(); // Compute a weight for each register unit created during getSubRegs. void computeRegUnitWeights(); // Create a RegUnitSet for each RegClass and infer superclasses. void computeRegUnitSets(); // Populate the Composite map from sub-register relationships. void computeComposites(); // Compute a lane mask for each sub-register index. void computeSubRegLaneMasks(); /// Computes a lane mask for each register unit enumerated by a physical /// register. void computeRegUnitLaneMasks(); public: CodeGenRegBank(RecordKeeper&); SetTheory &getSets() { return Sets; } // Sub-register indices. The first NumNamedIndices are defined by the user // in the .td files. The rest are synthesized such that all sub-registers // have a unique name. const std::deque<CodeGenSubRegIndex> &getSubRegIndices() const { return SubRegIndices; } // Find a SubRegIndex form its Record def. CodeGenSubRegIndex *getSubRegIdx(Record*); // Find or create a sub-register index representing the A+B composition. CodeGenSubRegIndex *getCompositeSubRegIndex(CodeGenSubRegIndex *A, CodeGenSubRegIndex *B); // Find or create a sub-register index representing the concatenation of // non-overlapping sibling indices. CodeGenSubRegIndex * getConcatSubRegIndex(const SmallVector<CodeGenSubRegIndex *, 8>&); void addConcatSubRegIndex(const SmallVector<CodeGenSubRegIndex *, 8> &Parts, CodeGenSubRegIndex *Idx) { ConcatIdx.insert(std::make_pair(Parts, Idx)); } const std::deque<CodeGenRegister> &getRegisters() { return Registers; } const StringMap<CodeGenRegister*> &getRegistersByName() { return RegistersByName; } // Find a register from its Record def. CodeGenRegister *getReg(Record*); // Get a Register's index into the Registers array. unsigned getRegIndex(const CodeGenRegister *Reg) const { return Reg->EnumValue - 1; } // Return the number of allocated TopoSigs. The first TopoSig representing // leaf registers is allocated number 0. unsigned getNumTopoSigs() const { return TopoSigs.size(); } // Find or create a TopoSig for the given TopoSigId. // This function is only for use by CodeGenRegister::computeSuperRegs(). // Others should simply use Reg->getTopoSig(). unsigned getTopoSig(const TopoSigId &Id) { return TopoSigs.insert(std::make_pair(Id, TopoSigs.size())).first->second; } // Create a native register unit that is associated with one or two root // registers. unsigned newRegUnit(CodeGenRegister *R0, CodeGenRegister *R1 = nullptr) { RegUnits.resize(RegUnits.size() + 1); RegUnits.back().Roots[0] = R0; RegUnits.back().Roots[1] = R1; return RegUnits.size() - 1; } // Create a new non-native register unit that can be adopted by a register // to increase its pressure. Note that NumNativeRegUnits is not increased. unsigned newRegUnit(unsigned Weight) { RegUnits.resize(RegUnits.size() + 1); RegUnits.back().Weight = Weight; return RegUnits.size() - 1; } // Native units are the singular unit of a leaf register. Register aliasing // is completely characterized by native units. Adopted units exist to give // register additional weight but don't affect aliasing. bool isNativeUnit(unsigned RUID) { return RUID < NumNativeRegUnits; } unsigned getNumNativeRegUnits() const { return NumNativeRegUnits; } RegUnit &getRegUnit(unsigned RUID) { return RegUnits[RUID]; } const RegUnit &getRegUnit(unsigned RUID) const { return RegUnits[RUID]; } std::list<CodeGenRegisterClass> &getRegClasses() { return RegClasses; } const std::list<CodeGenRegisterClass> &getRegClasses() const { return RegClasses; } // Find a register class from its def. CodeGenRegisterClass *getRegClass(Record*); /// getRegisterClassForRegister - Find the register class that contains the /// specified physical register. If the register is not in a register /// class, return null. If the register is in multiple classes, and the /// classes have a superset-subset relationship and the same set of types, /// return the superclass. Otherwise return null. const CodeGenRegisterClass* getRegClassForRegister(Record *R); // Get the sum of unit weights. unsigned getRegUnitSetWeight(const std::vector<unsigned> &Units) const { unsigned Weight = 0; for (std::vector<unsigned>::const_iterator I = Units.begin(), E = Units.end(); I != E; ++I) Weight += getRegUnit(*I).Weight; return Weight; } unsigned getRegSetIDAt(unsigned Order) const { return RegUnitSetOrder[Order]; } const RegUnitSet &getRegSetAt(unsigned Order) const { return RegUnitSets[RegUnitSetOrder[Order]]; } // Increase a RegUnitWeight. void increaseRegUnitWeight(unsigned RUID, unsigned Inc) { getRegUnit(RUID).Weight += Inc; } // Get the number of register pressure dimensions. unsigned getNumRegPressureSets() const { return RegUnitSets.size(); } // Get a set of register unit IDs for a given dimension of pressure. const RegUnitSet &getRegPressureSet(unsigned Idx) const { return RegUnitSets[Idx]; } // The number of pressure set lists may be larget than the number of // register classes if some register units appeared in a list of sets that // did not correspond to an existing register class. unsigned getNumRegClassPressureSetLists() const { return RegClassUnitSets.size(); } // Get a list of pressure set IDs for a register class. Liveness of a // register in this class impacts each pressure set in this list by the // weight of the register. An exact solution requires all registers in a // class to have the same class, but it is not strictly guaranteed. ArrayRef<unsigned> getRCPressureSetIDs(unsigned RCIdx) const { return RegClassUnitSets[RCIdx]; } // Computed derived records such as missing sub-register indices. void computeDerivedInfo(); // Compute the set of registers completely covered by the registers in Regs. // The returned BitVector will have a bit set for each register in Regs, // all sub-registers, and all super-registers that are covered by the // registers in Regs. // // This is used to compute the mask of call-preserved registers from a list // of callee-saves. BitVector computeCoveredRegisters(ArrayRef<Record*> Regs); // Bit mask of lanes that cover their registers. A sub-register index whose // LaneMask is contained in CoveringLanes will be completely covered by // another sub-register with the same or larger lane mask. unsigned CoveringLanes; }; } #endif