//===- AsmMatcherEmitter.cpp - Generate an assembly matcher ---------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This tablegen backend emits a target specifier matcher for converting parsed // assembly operands in the MCInst structures. It also emits a matcher for // custom operand parsing. // // Converting assembly operands into MCInst structures // --------------------------------------------------- // // The input to the target specific matcher is a list of literal tokens and // operands. The target specific parser should generally eliminate any syntax // which is not relevant for matching; for example, comma tokens should have // already been consumed and eliminated by the parser. Most instructions will // end up with a single literal token (the instruction name) and some number of // operands. // // Some example inputs, for X86: // 'addl' (immediate ...) (register ...) // 'add' (immediate ...) (memory ...) // 'call' '*' %epc // // The assembly matcher is responsible for converting this input into a precise // machine instruction (i.e., an instruction with a well defined encoding). This // mapping has several properties which complicate matching: // // - It may be ambiguous; many architectures can legally encode particular // variants of an instruction in different ways (for example, using a smaller // encoding for small immediates). Such ambiguities should never be // arbitrarily resolved by the assembler, the assembler is always responsible // for choosing the "best" available instruction. // // - It may depend on the subtarget or the assembler context. Instructions // which are invalid for the current mode, but otherwise unambiguous (e.g., // an SSE instruction in a file being assembled for i486) should be accepted // and rejected by the assembler front end. However, if the proper encoding // for an instruction is dependent on the assembler context then the matcher // is responsible for selecting the correct machine instruction for the // current mode. // // The core matching algorithm attempts to exploit the regularity in most // instruction sets to quickly determine the set of possibly matching // instructions, and the simplify the generated code. Additionally, this helps // to ensure that the ambiguities are intentionally resolved by the user. // // The matching is divided into two distinct phases: // // 1. Classification: Each operand is mapped to the unique set which (a) // contains it, and (b) is the largest such subset for which a single // instruction could match all members. // // For register classes, we can generate these subgroups automatically. For // arbitrary operands, we expect the user to define the classes and their // relations to one another (for example, 8-bit signed immediates as a // subset of 32-bit immediates). // // By partitioning the operands in this way, we guarantee that for any // tuple of classes, any single instruction must match either all or none // of the sets of operands which could classify to that tuple. // // In addition, the subset relation amongst classes induces a partial order // on such tuples, which we use to resolve ambiguities. // // 2. The input can now be treated as a tuple of classes (static tokens are // simple singleton sets). Each such tuple should generally map to a single // instruction (we currently ignore cases where this isn't true, whee!!!), // which we can emit a simple matcher for. // // Custom Operand Parsing // ---------------------- // // Some targets need a custom way to parse operands, some specific instructions // can contain arguments that can represent processor flags and other kinds of // identifiers that need to be mapped to specific values in the final encoded // instructions. The target specific custom operand parsing works in the // following way: // // 1. A operand match table is built, each entry contains a mnemonic, an // operand class, a mask for all operand positions for that same // class/mnemonic and target features to be checked while trying to match. // // 2. The operand matcher will try every possible entry with the same // mnemonic and will check if the target feature for this mnemonic also // matches. After that, if the operand to be matched has its index // present in the mask, a successful match occurs. Otherwise, fallback // to the regular operand parsing. // // 3. For a match success, each operand class that has a 'ParserMethod' // becomes part of a switch from where the custom method is called. // //===----------------------------------------------------------------------===// #include "CodeGenTarget.h" #include "llvm/ADT/PointerUnion.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringExtras.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/TableGen/Error.h" #include "llvm/TableGen/Record.h" #include "llvm/TableGen/StringMatcher.h" #include "llvm/TableGen/StringToOffsetTable.h" #include "llvm/TableGen/TableGenBackend.h" #include <cassert> #include <cctype> #include <forward_list> #include <map> #include <set> using namespace llvm; #define DEBUG_TYPE "asm-matcher-emitter" static cl::opt<std::string> MatchPrefix("match-prefix", cl::init(""), cl::desc("Only match instructions with the given prefix")); namespace { class AsmMatcherInfo; struct SubtargetFeatureInfo; // Register sets are used as keys in some second-order sets TableGen creates // when generating its data structures. This means that the order of two // RegisterSets can be seen in the outputted AsmMatcher tables occasionally, and // can even affect compiler output (at least seen in diagnostics produced when // all matches fail). So we use a type that sorts them consistently. typedef std::set<Record*, LessRecordByID> RegisterSet; class AsmMatcherEmitter { RecordKeeper &Records; public: AsmMatcherEmitter(RecordKeeper &R) : Records(R) {} void run(raw_ostream &o); }; /// ClassInfo - Helper class for storing the information about a particular /// class of operands which can be matched. struct ClassInfo { enum ClassInfoKind { /// Invalid kind, for use as a sentinel value. Invalid = 0, /// The class for a particular token. Token, /// The (first) register class, subsequent register classes are /// RegisterClass0+1, and so on. RegisterClass0, /// The (first) user defined class, subsequent user defined classes are /// UserClass0+1, and so on. UserClass0 = 1<<16 }; /// Kind - The class kind, which is either a predefined kind, or (UserClass0 + /// N) for the Nth user defined class. unsigned Kind; /// SuperClasses - The super classes of this class. Note that for simplicities /// sake user operands only record their immediate super class, while register /// operands include all superclasses. std::vector<ClassInfo*> SuperClasses; /// Name - The full class name, suitable for use in an enum. std::string Name; /// ClassName - The unadorned generic name for this class (e.g., Token). std::string ClassName; /// ValueName - The name of the value this class represents; for a token this /// is the literal token string, for an operand it is the TableGen class (or /// empty if this is a derived class). std::string ValueName; /// PredicateMethod - The name of the operand method to test whether the /// operand matches this class; this is not valid for Token or register kinds. std::string PredicateMethod; /// RenderMethod - The name of the operand method to add this operand to an /// MCInst; this is not valid for Token or register kinds. std::string RenderMethod; /// ParserMethod - The name of the operand method to do a target specific /// parsing on the operand. std::string ParserMethod; /// For register classes: the records for all the registers in this class. RegisterSet Registers; /// For custom match classes: the diagnostic kind for when the predicate fails. std::string DiagnosticType; /// Is this operand optional and not always required. bool IsOptional; /// DefaultMethod - The name of the method that returns the default operand /// for optional operand std::string DefaultMethod; public: /// isRegisterClass() - Check if this is a register class. bool isRegisterClass() const { return Kind >= RegisterClass0 && Kind < UserClass0; } /// isUserClass() - Check if this is a user defined class. bool isUserClass() const { return Kind >= UserClass0; } /// isRelatedTo - Check whether this class is "related" to \p RHS. Classes /// are related if they are in the same class hierarchy. bool isRelatedTo(const ClassInfo &RHS) const { // Tokens are only related to tokens. if (Kind == Token || RHS.Kind == Token) return Kind == Token && RHS.Kind == Token; // Registers classes are only related to registers classes, and only if // their intersection is non-empty. if (isRegisterClass() || RHS.isRegisterClass()) { if (!isRegisterClass() || !RHS.isRegisterClass()) return false; RegisterSet Tmp; std::insert_iterator<RegisterSet> II(Tmp, Tmp.begin()); std::set_intersection(Registers.begin(), Registers.end(), RHS.Registers.begin(), RHS.Registers.end(), II, LessRecordByID()); return !Tmp.empty(); } // Otherwise we have two users operands; they are related if they are in the // same class hierarchy. // // FIXME: This is an oversimplification, they should only be related if they // intersect, however we don't have that information. assert(isUserClass() && RHS.isUserClass() && "Unexpected class!"); const ClassInfo *Root = this; while (!Root->SuperClasses.empty()) Root = Root->SuperClasses.front(); const ClassInfo *RHSRoot = &RHS; while (!RHSRoot->SuperClasses.empty()) RHSRoot = RHSRoot->SuperClasses.front(); return Root == RHSRoot; } /// isSubsetOf - Test whether this class is a subset of \p RHS. bool isSubsetOf(const ClassInfo &RHS) const { // This is a subset of RHS if it is the same class... if (this == &RHS) return true; // ... or if any of its super classes are a subset of RHS. for (const ClassInfo *CI : SuperClasses) if (CI->isSubsetOf(RHS)) return true; return false; } int getTreeDepth() const { int Depth = 0; const ClassInfo *Root = this; while (!Root->SuperClasses.empty()) { Depth++; Root = Root->SuperClasses.front(); } return Depth; } const ClassInfo *findRoot() const { const ClassInfo *Root = this; while (!Root->SuperClasses.empty()) Root = Root->SuperClasses.front(); return Root; } /// Compare two classes. This does not produce a total ordering, but does /// guarantee that subclasses are sorted before their parents, and that the /// ordering is transitive. bool operator<(const ClassInfo &RHS) const { if (this == &RHS) return false; // First, enforce the ordering between the three different types of class. // Tokens sort before registers, which sort before user classes. if (Kind == Token) { if (RHS.Kind != Token) return true; assert(RHS.Kind == Token); } else if (isRegisterClass()) { if (RHS.Kind == Token) return false; else if (RHS.isUserClass()) return true; assert(RHS.isRegisterClass()); } else if (isUserClass()) { if (!RHS.isUserClass()) return false; assert(RHS.isUserClass()); } else { llvm_unreachable("Unknown ClassInfoKind"); } if (Kind == Token || isUserClass()) { // Related tokens and user classes get sorted by depth in the inheritence // tree (so that subclasses are before their parents). if (isRelatedTo(RHS)) { if (getTreeDepth() > RHS.getTreeDepth()) return true; if (getTreeDepth() < RHS.getTreeDepth()) return false; } else { // Unrelated tokens and user classes are ordered by the name of their // root nodes, so that there is a consistent ordering between // unconnected trees. return findRoot()->ValueName < RHS.findRoot()->ValueName; } } else if (isRegisterClass()) { // For register sets, sort by number of registers. This guarantees that // a set will always sort before all of it's strict supersets. if (Registers.size() != RHS.Registers.size()) return Registers.size() < RHS.Registers.size(); } else { llvm_unreachable("Unknown ClassInfoKind"); } // FIXME: We should be able to just return false here, as we only need a // partial order (we use stable sorts, so this is deterministic) and the // name of a class shouldn't be significant. However, some of the backends // accidentally rely on this behaviour, so it will have to stay like this // until they are fixed. return ValueName < RHS.ValueName; } }; class AsmVariantInfo { public: std::string RegisterPrefix; std::string TokenizingCharacters; std::string SeparatorCharacters; std::string BreakCharacters; int AsmVariantNo; }; /// MatchableInfo - Helper class for storing the necessary information for an /// instruction or alias which is capable of being matched. struct MatchableInfo { struct AsmOperand { /// Token - This is the token that the operand came from. StringRef Token; /// The unique class instance this operand should match. ClassInfo *Class; /// The operand name this is, if anything. StringRef SrcOpName; /// The suboperand index within SrcOpName, or -1 for the entire operand. int SubOpIdx; /// Whether the token is "isolated", i.e., it is preceded and followed /// by separators. bool IsIsolatedToken; /// Register record if this token is singleton register. Record *SingletonReg; explicit AsmOperand(bool IsIsolatedToken, StringRef T) : Token(T), Class(nullptr), SubOpIdx(-1), IsIsolatedToken(IsIsolatedToken), SingletonReg(nullptr) {} }; /// ResOperand - This represents a single operand in the result instruction /// generated by the match. In cases (like addressing modes) where a single /// assembler operand expands to multiple MCOperands, this represents the /// single assembler operand, not the MCOperand. struct ResOperand { enum { /// RenderAsmOperand - This represents an operand result that is /// generated by calling the render method on the assembly operand. The /// corresponding AsmOperand is specified by AsmOperandNum. RenderAsmOperand, /// TiedOperand - This represents a result operand that is a duplicate of /// a previous result operand. TiedOperand, /// ImmOperand - This represents an immediate value that is dumped into /// the operand. ImmOperand, /// RegOperand - This represents a fixed register that is dumped in. RegOperand } Kind; union { /// This is the operand # in the AsmOperands list that this should be /// copied from. unsigned AsmOperandNum; /// TiedOperandNum - This is the (earlier) result operand that should be /// copied from. unsigned TiedOperandNum; /// ImmVal - This is the immediate value added to the instruction. int64_t ImmVal; /// Register - This is the register record. Record *Register; }; /// MINumOperands - The number of MCInst operands populated by this /// operand. unsigned MINumOperands; static ResOperand getRenderedOp(unsigned AsmOpNum, unsigned NumOperands) { ResOperand X; X.Kind = RenderAsmOperand; X.AsmOperandNum = AsmOpNum; X.MINumOperands = NumOperands; return X; } static ResOperand getTiedOp(unsigned TiedOperandNum) { ResOperand X; X.Kind = TiedOperand; X.TiedOperandNum = TiedOperandNum; X.MINumOperands = 1; return X; } static ResOperand getImmOp(int64_t Val) { ResOperand X; X.Kind = ImmOperand; X.ImmVal = Val; X.MINumOperands = 1; return X; } static ResOperand getRegOp(Record *Reg) { ResOperand X; X.Kind = RegOperand; X.Register = Reg; X.MINumOperands = 1; return X; } }; /// AsmVariantID - Target's assembly syntax variant no. int AsmVariantID; /// AsmString - The assembly string for this instruction (with variants /// removed), e.g. "movsx $src, $dst". std::string AsmString; /// TheDef - This is the definition of the instruction or InstAlias that this /// matchable came from. Record *const TheDef; /// DefRec - This is the definition that it came from. PointerUnion<const CodeGenInstruction*, const CodeGenInstAlias*> DefRec; const CodeGenInstruction *getResultInst() const { if (DefRec.is<const CodeGenInstruction*>()) return DefRec.get<const CodeGenInstruction*>(); return DefRec.get<const CodeGenInstAlias*>()->ResultInst; } /// ResOperands - This is the operand list that should be built for the result /// MCInst. SmallVector<ResOperand, 8> ResOperands; /// Mnemonic - This is the first token of the matched instruction, its /// mnemonic. StringRef Mnemonic; /// AsmOperands - The textual operands that this instruction matches, /// annotated with a class and where in the OperandList they were defined. /// This directly corresponds to the tokenized AsmString after the mnemonic is /// removed. SmallVector<AsmOperand, 8> AsmOperands; /// Predicates - The required subtarget features to match this instruction. SmallVector<const SubtargetFeatureInfo *, 4> RequiredFeatures; /// ConversionFnKind - The enum value which is passed to the generated /// convertToMCInst to convert parsed operands into an MCInst for this /// function. std::string ConversionFnKind; /// If this instruction is deprecated in some form. bool HasDeprecation; /// If this is an alias, this is use to determine whether or not to using /// the conversion function defined by the instruction's AsmMatchConverter /// or to use the function generated by the alias. bool UseInstAsmMatchConverter; MatchableInfo(const CodeGenInstruction &CGI) : AsmVariantID(0), AsmString(CGI.AsmString), TheDef(CGI.TheDef), DefRec(&CGI), UseInstAsmMatchConverter(true) { } MatchableInfo(std::unique_ptr<const CodeGenInstAlias> Alias) : AsmVariantID(0), AsmString(Alias->AsmString), TheDef(Alias->TheDef), DefRec(Alias.release()), UseInstAsmMatchConverter( TheDef->getValueAsBit("UseInstAsmMatchConverter")) { } // Could remove this and the dtor if PointerUnion supported unique_ptr // elements with a dynamic failure/assertion (like the one below) in the case // where it was copied while being in an owning state. MatchableInfo(const MatchableInfo &RHS) : AsmVariantID(RHS.AsmVariantID), AsmString(RHS.AsmString), TheDef(RHS.TheDef), DefRec(RHS.DefRec), ResOperands(RHS.ResOperands), Mnemonic(RHS.Mnemonic), AsmOperands(RHS.AsmOperands), RequiredFeatures(RHS.RequiredFeatures), ConversionFnKind(RHS.ConversionFnKind), HasDeprecation(RHS.HasDeprecation), UseInstAsmMatchConverter(RHS.UseInstAsmMatchConverter) { assert(!DefRec.is<const CodeGenInstAlias *>()); } ~MatchableInfo() { delete DefRec.dyn_cast<const CodeGenInstAlias*>(); } // Two-operand aliases clone from the main matchable, but mark the second // operand as a tied operand of the first for purposes of the assembler. void formTwoOperandAlias(StringRef Constraint); void initialize(const AsmMatcherInfo &Info, SmallPtrSetImpl<Record*> &SingletonRegisters, AsmVariantInfo const &Variant, bool HasMnemonicFirst); /// validate - Return true if this matchable is a valid thing to match against /// and perform a bunch of validity checking. bool validate(StringRef CommentDelimiter, bool Hack) const; /// findAsmOperand - Find the AsmOperand with the specified name and /// suboperand index. int findAsmOperand(StringRef N, int SubOpIdx) const { auto I = std::find_if(AsmOperands.begin(), AsmOperands.end(), [&](const AsmOperand &Op) { return Op.SrcOpName == N && Op.SubOpIdx == SubOpIdx; }); return (I != AsmOperands.end()) ? I - AsmOperands.begin() : -1; } /// findAsmOperandNamed - Find the first AsmOperand with the specified name. /// This does not check the suboperand index. int findAsmOperandNamed(StringRef N) const { auto I = std::find_if(AsmOperands.begin(), AsmOperands.end(), [&](const AsmOperand &Op) { return Op.SrcOpName == N; }); return (I != AsmOperands.end()) ? I - AsmOperands.begin() : -1; } void buildInstructionResultOperands(); void buildAliasResultOperands(); /// operator< - Compare two matchables. bool operator<(const MatchableInfo &RHS) const { // The primary comparator is the instruction mnemonic. if (int Cmp = Mnemonic.compare(RHS.Mnemonic)) return Cmp == -1; if (AsmOperands.size() != RHS.AsmOperands.size()) return AsmOperands.size() < RHS.AsmOperands.size(); // Compare lexicographically by operand. The matcher validates that other // orderings wouldn't be ambiguous using \see couldMatchAmbiguouslyWith(). for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) { if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class) return true; if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class) return false; } // Give matches that require more features higher precedence. This is useful // because we cannot define AssemblerPredicates with the negation of // processor features. For example, ARM v6 "nop" may be either a HINT or // MOV. With v6, we want to match HINT. The assembler has no way to // predicate MOV under "NoV6", but HINT will always match first because it // requires V6 while MOV does not. if (RequiredFeatures.size() != RHS.RequiredFeatures.size()) return RequiredFeatures.size() > RHS.RequiredFeatures.size(); return false; } /// couldMatchAmbiguouslyWith - Check whether this matchable could /// ambiguously match the same set of operands as \p RHS (without being a /// strictly superior match). bool couldMatchAmbiguouslyWith(const MatchableInfo &RHS) const { // The primary comparator is the instruction mnemonic. if (Mnemonic != RHS.Mnemonic) return false; // The number of operands is unambiguous. if (AsmOperands.size() != RHS.AsmOperands.size()) return false; // Otherwise, make sure the ordering of the two instructions is unambiguous // by checking that either (a) a token or operand kind discriminates them, // or (b) the ordering among equivalent kinds is consistent. // Tokens and operand kinds are unambiguous (assuming a correct target // specific parser). for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) if (AsmOperands[i].Class->Kind != RHS.AsmOperands[i].Class->Kind || AsmOperands[i].Class->Kind == ClassInfo::Token) if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class || *RHS.AsmOperands[i].Class < *AsmOperands[i].Class) return false; // Otherwise, this operand could commute if all operands are equivalent, or // there is a pair of operands that compare less than and a pair that // compare greater than. bool HasLT = false, HasGT = false; for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) { if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class) HasLT = true; if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class) HasGT = true; } return HasLT == HasGT; } void dump() const; private: void tokenizeAsmString(AsmMatcherInfo const &Info, AsmVariantInfo const &Variant); void addAsmOperand(StringRef Token, bool IsIsolatedToken = false); }; /// SubtargetFeatureInfo - Helper class for storing information on a subtarget /// feature which participates in instruction matching. struct SubtargetFeatureInfo { /// \brief The predicate record for this feature. Record *TheDef; /// \brief An unique index assigned to represent this feature. uint64_t Index; SubtargetFeatureInfo(Record *D, uint64_t Idx) : TheDef(D), Index(Idx) {} /// \brief The name of the enumerated constant identifying this feature. std::string getEnumName() const { return "Feature_" + TheDef->getName(); } void dump() const { errs() << getEnumName() << " " << Index << "\n"; TheDef->dump(); } }; struct OperandMatchEntry { unsigned OperandMask; const MatchableInfo* MI; ClassInfo *CI; static OperandMatchEntry create(const MatchableInfo *mi, ClassInfo *ci, unsigned opMask) { OperandMatchEntry X; X.OperandMask = opMask; X.CI = ci; X.MI = mi; return X; } }; class AsmMatcherInfo { public: /// Tracked Records RecordKeeper &Records; /// The tablegen AsmParser record. Record *AsmParser; /// Target - The target information. CodeGenTarget &Target; /// The classes which are needed for matching. std::forward_list<ClassInfo> Classes; /// The information on the matchables to match. std::vector<std::unique_ptr<MatchableInfo>> Matchables; /// Info for custom matching operands by user defined methods. std::vector<OperandMatchEntry> OperandMatchInfo; /// Map of Register records to their class information. typedef std::map<Record*, ClassInfo*, LessRecordByID> RegisterClassesTy; RegisterClassesTy RegisterClasses; /// Map of Predicate records to their subtarget information. std::map<Record *, SubtargetFeatureInfo, LessRecordByID> SubtargetFeatures; /// Map of AsmOperandClass records to their class information. std::map<Record*, ClassInfo*> AsmOperandClasses; private: /// Map of token to class information which has already been constructed. std::map<std::string, ClassInfo*> TokenClasses; /// Map of RegisterClass records to their class information. std::map<Record*, ClassInfo*> RegisterClassClasses; private: /// getTokenClass - Lookup or create the class for the given token. ClassInfo *getTokenClass(StringRef Token); /// getOperandClass - Lookup or create the class for the given operand. ClassInfo *getOperandClass(const CGIOperandList::OperandInfo &OI, int SubOpIdx); ClassInfo *getOperandClass(Record *Rec, int SubOpIdx); /// buildRegisterClasses - Build the ClassInfo* instances for register /// classes. void buildRegisterClasses(SmallPtrSetImpl<Record*> &SingletonRegisters); /// buildOperandClasses - Build the ClassInfo* instances for user defined /// operand classes. void buildOperandClasses(); void buildInstructionOperandReference(MatchableInfo *II, StringRef OpName, unsigned AsmOpIdx); void buildAliasOperandReference(MatchableInfo *II, StringRef OpName, MatchableInfo::AsmOperand &Op); public: AsmMatcherInfo(Record *AsmParser, CodeGenTarget &Target, RecordKeeper &Records); /// buildInfo - Construct the various tables used during matching. void buildInfo(); /// buildOperandMatchInfo - Build the necessary information to handle user /// defined operand parsing methods. void buildOperandMatchInfo(); /// getSubtargetFeature - Lookup or create the subtarget feature info for the /// given operand. const SubtargetFeatureInfo *getSubtargetFeature(Record *Def) const { assert(Def->isSubClassOf("Predicate") && "Invalid predicate type!"); const auto &I = SubtargetFeatures.find(Def); return I == SubtargetFeatures.end() ? nullptr : &I->second; } RecordKeeper &getRecords() const { return Records; } bool hasOptionalOperands() const { return std::find_if(Classes.begin(), Classes.end(), [](const ClassInfo& Class){ return Class.IsOptional; }) != Classes.end(); } }; } // end anonymous namespace void MatchableInfo::dump() const { errs() << TheDef->getName() << " -- " << "flattened:\"" << AsmString <<"\"\n"; for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) { const AsmOperand &Op = AsmOperands[i]; errs() << " op[" << i << "] = " << Op.Class->ClassName << " - "; errs() << '\"' << Op.Token << "\"\n"; } } static std::pair<StringRef, StringRef> parseTwoOperandConstraint(StringRef S, ArrayRef<SMLoc> Loc) { // Split via the '='. std::pair<StringRef, StringRef> Ops = S.split('='); if (Ops.second == "") PrintFatalError(Loc, "missing '=' in two-operand alias constraint"); // Trim whitespace and the leading '$' on the operand names. size_t start = Ops.first.find_first_of('$'); if (start == std::string::npos) PrintFatalError(Loc, "expected '$' prefix on asm operand name"); Ops.first = Ops.first.slice(start + 1, std::string::npos); size_t end = Ops.first.find_last_of(" \t"); Ops.first = Ops.first.slice(0, end); // Now the second operand. start = Ops.second.find_first_of('$'); if (start == std::string::npos) PrintFatalError(Loc, "expected '$' prefix on asm operand name"); Ops.second = Ops.second.slice(start + 1, std::string::npos); end = Ops.second.find_last_of(" \t"); Ops.first = Ops.first.slice(0, end); return Ops; } void MatchableInfo::formTwoOperandAlias(StringRef Constraint) { // Figure out which operands are aliased and mark them as tied. std::pair<StringRef, StringRef> Ops = parseTwoOperandConstraint(Constraint, TheDef->getLoc()); // Find the AsmOperands that refer to the operands we're aliasing. int SrcAsmOperand = findAsmOperandNamed(Ops.first); int DstAsmOperand = findAsmOperandNamed(Ops.second); if (SrcAsmOperand == -1) PrintFatalError(TheDef->getLoc(), "unknown source two-operand alias operand '" + Ops.first + "'."); if (DstAsmOperand == -1) PrintFatalError(TheDef->getLoc(), "unknown destination two-operand alias operand '" + Ops.second + "'."); // Find the ResOperand that refers to the operand we're aliasing away // and update it to refer to the combined operand instead. for (ResOperand &Op : ResOperands) { if (Op.Kind == ResOperand::RenderAsmOperand && Op.AsmOperandNum == (unsigned)SrcAsmOperand) { Op.AsmOperandNum = DstAsmOperand; break; } } // Remove the AsmOperand for the alias operand. AsmOperands.erase(AsmOperands.begin() + SrcAsmOperand); // Adjust the ResOperand references to any AsmOperands that followed // the one we just deleted. for (ResOperand &Op : ResOperands) { switch(Op.Kind) { default: // Nothing to do for operands that don't reference AsmOperands. break; case ResOperand::RenderAsmOperand: if (Op.AsmOperandNum > (unsigned)SrcAsmOperand) --Op.AsmOperandNum; break; case ResOperand::TiedOperand: if (Op.TiedOperandNum > (unsigned)SrcAsmOperand) --Op.TiedOperandNum; break; } } } /// extractSingletonRegisterForAsmOperand - Extract singleton register, /// if present, from specified token. static void extractSingletonRegisterForAsmOperand(MatchableInfo::AsmOperand &Op, const AsmMatcherInfo &Info, StringRef RegisterPrefix) { StringRef Tok = Op.Token; // If this token is not an isolated token, i.e., it isn't separated from // other tokens (e.g. with whitespace), don't interpret it as a register name. if (!Op.IsIsolatedToken) return; if (RegisterPrefix.empty()) { std::string LoweredTok = Tok.lower(); if (const CodeGenRegister *Reg = Info.Target.getRegisterByName(LoweredTok)) Op.SingletonReg = Reg->TheDef; return; } if (!Tok.startswith(RegisterPrefix)) return; StringRef RegName = Tok.substr(RegisterPrefix.size()); if (const CodeGenRegister *Reg = Info.Target.getRegisterByName(RegName)) Op.SingletonReg = Reg->TheDef; // If there is no register prefix (i.e. "%" in "%eax"), then this may // be some random non-register token, just ignore it. } void MatchableInfo::initialize(const AsmMatcherInfo &Info, SmallPtrSetImpl<Record*> &SingletonRegisters, AsmVariantInfo const &Variant, bool HasMnemonicFirst) { AsmVariantID = Variant.AsmVariantNo; AsmString = CodeGenInstruction::FlattenAsmStringVariants(AsmString, Variant.AsmVariantNo); tokenizeAsmString(Info, Variant); // The first token of the instruction is the mnemonic, which must be a // simple string, not a $foo variable or a singleton register. if (AsmOperands.empty()) PrintFatalError(TheDef->getLoc(), "Instruction '" + TheDef->getName() + "' has no tokens"); assert(!AsmOperands[0].Token.empty()); if (HasMnemonicFirst) { Mnemonic = AsmOperands[0].Token; if (Mnemonic[0] == '$') PrintFatalError(TheDef->getLoc(), "Invalid instruction mnemonic '" + Mnemonic + "'!"); // Remove the first operand, it is tracked in the mnemonic field. AsmOperands.erase(AsmOperands.begin()); } else if (AsmOperands[0].Token[0] != '$') Mnemonic = AsmOperands[0].Token; // Compute the require features. for (Record *Predicate : TheDef->getValueAsListOfDefs("Predicates")) if (const SubtargetFeatureInfo *Feature = Info.getSubtargetFeature(Predicate)) RequiredFeatures.push_back(Feature); // Collect singleton registers, if used. for (MatchableInfo::AsmOperand &Op : AsmOperands) { extractSingletonRegisterForAsmOperand(Op, Info, Variant.RegisterPrefix); if (Record *Reg = Op.SingletonReg) SingletonRegisters.insert(Reg); } const RecordVal *DepMask = TheDef->getValue("DeprecatedFeatureMask"); if (!DepMask) DepMask = TheDef->getValue("ComplexDeprecationPredicate"); HasDeprecation = DepMask ? !DepMask->getValue()->getAsUnquotedString().empty() : false; } /// Append an AsmOperand for the given substring of AsmString. void MatchableInfo::addAsmOperand(StringRef Token, bool IsIsolatedToken) { AsmOperands.push_back(AsmOperand(IsIsolatedToken, Token)); } /// tokenizeAsmString - Tokenize a simplified assembly string. void MatchableInfo::tokenizeAsmString(const AsmMatcherInfo &Info, AsmVariantInfo const &Variant) { StringRef String = AsmString; size_t Prev = 0; bool InTok = false; bool IsIsolatedToken = true; for (size_t i = 0, e = String.size(); i != e; ++i) { char Char = String[i]; if (Variant.BreakCharacters.find(Char) != std::string::npos) { if (InTok) { addAsmOperand(String.slice(Prev, i), false); Prev = i; IsIsolatedToken = false; } InTok = true; continue; } if (Variant.TokenizingCharacters.find(Char) != std::string::npos) { if (InTok) { addAsmOperand(String.slice(Prev, i), IsIsolatedToken); InTok = false; IsIsolatedToken = false; } addAsmOperand(String.slice(i, i + 1), IsIsolatedToken); Prev = i + 1; IsIsolatedToken = true; continue; } if (Variant.SeparatorCharacters.find(Char) != std::string::npos) { if (InTok) { addAsmOperand(String.slice(Prev, i), IsIsolatedToken); InTok = false; } Prev = i + 1; IsIsolatedToken = true; continue; } switch (Char) { case '\\': if (InTok) { addAsmOperand(String.slice(Prev, i), false); InTok = false; IsIsolatedToken = false; } ++i; assert(i != String.size() && "Invalid quoted character"); addAsmOperand(String.slice(i, i + 1), IsIsolatedToken); Prev = i + 1; IsIsolatedToken = false; break; case '$': { if (InTok) { addAsmOperand(String.slice(Prev, i), false); InTok = false; IsIsolatedToken = false; } // If this isn't "${", start new identifier looking like "$xxx" if (i + 1 == String.size() || String[i + 1] != '{') { Prev = i; break; } size_t EndPos = String.find('}', i); assert(EndPos != StringRef::npos && "Missing brace in operand reference!"); addAsmOperand(String.slice(i, EndPos+1), IsIsolatedToken); Prev = EndPos + 1; i = EndPos; IsIsolatedToken = false; break; } default: InTok = true; break; } } if (InTok && Prev != String.size()) addAsmOperand(String.substr(Prev), IsIsolatedToken); } bool MatchableInfo::validate(StringRef CommentDelimiter, bool Hack) const { // Reject matchables with no .s string. if (AsmString.empty()) PrintFatalError(TheDef->getLoc(), "instruction with empty asm string"); // Reject any matchables with a newline in them, they should be marked // isCodeGenOnly if they are pseudo instructions. if (AsmString.find('\n') != std::string::npos) PrintFatalError(TheDef->getLoc(), "multiline instruction is not valid for the asmparser, " "mark it isCodeGenOnly"); // Remove comments from the asm string. We know that the asmstring only // has one line. if (!CommentDelimiter.empty() && StringRef(AsmString).find(CommentDelimiter) != StringRef::npos) PrintFatalError(TheDef->getLoc(), "asmstring for instruction has comment character in it, " "mark it isCodeGenOnly"); // Reject matchables with operand modifiers, these aren't something we can // handle, the target should be refactored to use operands instead of // modifiers. // // Also, check for instructions which reference the operand multiple times; // this implies a constraint we would not honor. std::set<std::string> OperandNames; for (const AsmOperand &Op : AsmOperands) { StringRef Tok = Op.Token; if (Tok[0] == '$' && Tok.find(':') != StringRef::npos) PrintFatalError(TheDef->getLoc(), "matchable with operand modifier '" + Tok + "' not supported by asm matcher. Mark isCodeGenOnly!"); // Verify that any operand is only mentioned once. // We reject aliases and ignore instructions for now. if (Tok[0] == '$' && !OperandNames.insert(Tok).second) { if (!Hack) PrintFatalError(TheDef->getLoc(), "ERROR: matchable with tied operand '" + Tok + "' can never be matched!"); // FIXME: Should reject these. The ARM backend hits this with $lane in a // bunch of instructions. It is unclear what the right answer is. DEBUG({ errs() << "warning: '" << TheDef->getName() << "': " << "ignoring instruction with tied operand '" << Tok << "'\n"; }); return false; } } return true; } static std::string getEnumNameForToken(StringRef Str) { std::string Res; for (StringRef::iterator it = Str.begin(), ie = Str.end(); it != ie; ++it) { switch (*it) { case '*': Res += "_STAR_"; break; case '%': Res += "_PCT_"; break; case ':': Res += "_COLON_"; break; case '!': Res += "_EXCLAIM_"; break; case '.': Res += "_DOT_"; break; case '<': Res += "_LT_"; break; case '>': Res += "_GT_"; break; case '-': Res += "_MINUS_"; break; default: if ((*it >= 'A' && *it <= 'Z') || (*it >= 'a' && *it <= 'z') || (*it >= '0' && *it <= '9')) Res += *it; else Res += "_" + utostr((unsigned) *it) + "_"; } } return Res; } ClassInfo *AsmMatcherInfo::getTokenClass(StringRef Token) { ClassInfo *&Entry = TokenClasses[Token]; if (!Entry) { Classes.emplace_front(); Entry = &Classes.front(); Entry->Kind = ClassInfo::Token; Entry->ClassName = "Token"; Entry->Name = "MCK_" + getEnumNameForToken(Token); Entry->ValueName = Token; Entry->PredicateMethod = "<invalid>"; Entry->RenderMethod = "<invalid>"; Entry->ParserMethod = ""; Entry->DiagnosticType = ""; Entry->IsOptional = false; Entry->DefaultMethod = "<invalid>"; } return Entry; } ClassInfo * AsmMatcherInfo::getOperandClass(const CGIOperandList::OperandInfo &OI, int SubOpIdx) { Record *Rec = OI.Rec; if (SubOpIdx != -1) Rec = cast<DefInit>(OI.MIOperandInfo->getArg(SubOpIdx))->getDef(); return getOperandClass(Rec, SubOpIdx); } ClassInfo * AsmMatcherInfo::getOperandClass(Record *Rec, int SubOpIdx) { if (Rec->isSubClassOf("RegisterOperand")) { // RegisterOperand may have an associated ParserMatchClass. If it does, // use it, else just fall back to the underlying register class. const RecordVal *R = Rec->getValue("ParserMatchClass"); if (!R || !R->getValue()) PrintFatalError("Record `" + Rec->getName() + "' does not have a ParserMatchClass!\n"); if (DefInit *DI= dyn_cast<DefInit>(R->getValue())) { Record *MatchClass = DI->getDef(); if (ClassInfo *CI = AsmOperandClasses[MatchClass]) return CI; } // No custom match class. Just use the register class. Record *ClassRec = Rec->getValueAsDef("RegClass"); if (!ClassRec) PrintFatalError(Rec->getLoc(), "RegisterOperand `" + Rec->getName() + "' has no associated register class!\n"); if (ClassInfo *CI = RegisterClassClasses[ClassRec]) return CI; PrintFatalError(Rec->getLoc(), "register class has no class info!"); } if (Rec->isSubClassOf("RegisterClass")) { if (ClassInfo *CI = RegisterClassClasses[Rec]) return CI; PrintFatalError(Rec->getLoc(), "register class has no class info!"); } if (!Rec->isSubClassOf("Operand")) PrintFatalError(Rec->getLoc(), "Operand `" + Rec->getName() + "' does not derive from class Operand!\n"); Record *MatchClass = Rec->getValueAsDef("ParserMatchClass"); if (ClassInfo *CI = AsmOperandClasses[MatchClass]) return CI; PrintFatalError(Rec->getLoc(), "operand has no match class!"); } struct LessRegisterSet { bool operator() (const RegisterSet &LHS, const RegisterSet & RHS) const { // std::set<T> defines its own compariso "operator<", but it // performs a lexicographical comparison by T's innate comparison // for some reason. We don't want non-deterministic pointer // comparisons so use this instead. return std::lexicographical_compare(LHS.begin(), LHS.end(), RHS.begin(), RHS.end(), LessRecordByID()); } }; void AsmMatcherInfo:: buildRegisterClasses(SmallPtrSetImpl<Record*> &SingletonRegisters) { const auto &Registers = Target.getRegBank().getRegisters(); auto &RegClassList = Target.getRegBank().getRegClasses(); typedef std::set<RegisterSet, LessRegisterSet> RegisterSetSet; // The register sets used for matching. RegisterSetSet RegisterSets; // Gather the defined sets. for (const CodeGenRegisterClass &RC : RegClassList) RegisterSets.insert( RegisterSet(RC.getOrder().begin(), RC.getOrder().end())); // Add any required singleton sets. for (Record *Rec : SingletonRegisters) { RegisterSets.insert(RegisterSet(&Rec, &Rec + 1)); } // Introduce derived sets where necessary (when a register does not determine // a unique register set class), and build the mapping of registers to the set // they should classify to. std::map<Record*, RegisterSet> RegisterMap; for (const CodeGenRegister &CGR : Registers) { // Compute the intersection of all sets containing this register. RegisterSet ContainingSet; for (const RegisterSet &RS : RegisterSets) { if (!RS.count(CGR.TheDef)) continue; if (ContainingSet.empty()) { ContainingSet = RS; continue; } RegisterSet Tmp; std::swap(Tmp, ContainingSet); std::insert_iterator<RegisterSet> II(ContainingSet, ContainingSet.begin()); std::set_intersection(Tmp.begin(), Tmp.end(), RS.begin(), RS.end(), II, LessRecordByID()); } if (!ContainingSet.empty()) { RegisterSets.insert(ContainingSet); RegisterMap.insert(std::make_pair(CGR.TheDef, ContainingSet)); } } // Construct the register classes. std::map<RegisterSet, ClassInfo*, LessRegisterSet> RegisterSetClasses; unsigned Index = 0; for (const RegisterSet &RS : RegisterSets) { Classes.emplace_front(); ClassInfo *CI = &Classes.front(); CI->Kind = ClassInfo::RegisterClass0 + Index; CI->ClassName = "Reg" + utostr(Index); CI->Name = "MCK_Reg" + utostr(Index); CI->ValueName = ""; CI->PredicateMethod = ""; // unused CI->RenderMethod = "addRegOperands"; CI->Registers = RS; // FIXME: diagnostic type. CI->DiagnosticType = ""; CI->IsOptional = false; CI->DefaultMethod = ""; // unused RegisterSetClasses.insert(std::make_pair(RS, CI)); ++Index; } // Find the superclasses; we could compute only the subgroup lattice edges, // but there isn't really a point. for (const RegisterSet &RS : RegisterSets) { ClassInfo *CI = RegisterSetClasses[RS]; for (const RegisterSet &RS2 : RegisterSets) if (RS != RS2 && std::includes(RS2.begin(), RS2.end(), RS.begin(), RS.end(), LessRecordByID())) CI->SuperClasses.push_back(RegisterSetClasses[RS2]); } // Name the register classes which correspond to a user defined RegisterClass. for (const CodeGenRegisterClass &RC : RegClassList) { // Def will be NULL for non-user defined register classes. Record *Def = RC.getDef(); if (!Def) continue; ClassInfo *CI = RegisterSetClasses[RegisterSet(RC.getOrder().begin(), RC.getOrder().end())]; if (CI->ValueName.empty()) { CI->ClassName = RC.getName(); CI->Name = "MCK_" + RC.getName(); CI->ValueName = RC.getName(); } else CI->ValueName = CI->ValueName + "," + RC.getName(); RegisterClassClasses.insert(std::make_pair(Def, CI)); } // Populate the map for individual registers. for (std::map<Record*, RegisterSet>::iterator it = RegisterMap.begin(), ie = RegisterMap.end(); it != ie; ++it) RegisterClasses[it->first] = RegisterSetClasses[it->second]; // Name the register classes which correspond to singleton registers. for (Record *Rec : SingletonRegisters) { ClassInfo *CI = RegisterClasses[Rec]; assert(CI && "Missing singleton register class info!"); if (CI->ValueName.empty()) { CI->ClassName = Rec->getName(); CI->Name = "MCK_" + Rec->getName(); CI->ValueName = Rec->getName(); } else CI->ValueName = CI->ValueName + "," + Rec->getName(); } } void AsmMatcherInfo::buildOperandClasses() { std::vector<Record*> AsmOperands = Records.getAllDerivedDefinitions("AsmOperandClass"); // Pre-populate AsmOperandClasses map. for (Record *Rec : AsmOperands) { Classes.emplace_front(); AsmOperandClasses[Rec] = &Classes.front(); } unsigned Index = 0; for (Record *Rec : AsmOperands) { ClassInfo *CI = AsmOperandClasses[Rec]; CI->Kind = ClassInfo::UserClass0 + Index; ListInit *Supers = Rec->getValueAsListInit("SuperClasses"); for (Init *I : Supers->getValues()) { DefInit *DI = dyn_cast<DefInit>(I); if (!DI) { PrintError(Rec->getLoc(), "Invalid super class reference!"); continue; } ClassInfo *SC = AsmOperandClasses[DI->getDef()]; if (!SC) PrintError(Rec->getLoc(), "Invalid super class reference!"); else CI->SuperClasses.push_back(SC); } CI->ClassName = Rec->getValueAsString("Name"); CI->Name = "MCK_" + CI->ClassName; CI->ValueName = Rec->getName(); // Get or construct the predicate method name. Init *PMName = Rec->getValueInit("PredicateMethod"); if (StringInit *SI = dyn_cast<StringInit>(PMName)) { CI->PredicateMethod = SI->getValue(); } else { assert(isa<UnsetInit>(PMName) && "Unexpected PredicateMethod field!"); CI->PredicateMethod = "is" + CI->ClassName; } // Get or construct the render method name. Init *RMName = Rec->getValueInit("RenderMethod"); if (StringInit *SI = dyn_cast<StringInit>(RMName)) { CI->RenderMethod = SI->getValue(); } else { assert(isa<UnsetInit>(RMName) && "Unexpected RenderMethod field!"); CI->RenderMethod = "add" + CI->ClassName + "Operands"; } // Get the parse method name or leave it as empty. Init *PRMName = Rec->getValueInit("ParserMethod"); if (StringInit *SI = dyn_cast<StringInit>(PRMName)) CI->ParserMethod = SI->getValue(); // Get the diagnostic type or leave it as empty. // Get the parse method name or leave it as empty. Init *DiagnosticType = Rec->getValueInit("DiagnosticType"); if (StringInit *SI = dyn_cast<StringInit>(DiagnosticType)) CI->DiagnosticType = SI->getValue(); Init *IsOptional = Rec->getValueInit("IsOptional"); if (BitInit *BI = dyn_cast<BitInit>(IsOptional)) CI->IsOptional = BI->getValue(); // Get or construct the default method name. Init *DMName = Rec->getValueInit("DefaultMethod"); if (StringInit *SI = dyn_cast<StringInit>(DMName)) { CI->DefaultMethod = SI->getValue(); } else { assert(isa<UnsetInit>(DMName) && "Unexpected DefaultMethod field!"); CI->DefaultMethod = "default" + CI->ClassName + "Operands"; } ++Index; } } AsmMatcherInfo::AsmMatcherInfo(Record *asmParser, CodeGenTarget &target, RecordKeeper &records) : Records(records), AsmParser(asmParser), Target(target) { } /// buildOperandMatchInfo - Build the necessary information to handle user /// defined operand parsing methods. void AsmMatcherInfo::buildOperandMatchInfo() { /// Map containing a mask with all operands indices that can be found for /// that class inside a instruction. typedef std::map<ClassInfo *, unsigned, less_ptr<ClassInfo>> OpClassMaskTy; OpClassMaskTy OpClassMask; for (const auto &MI : Matchables) { OpClassMask.clear(); // Keep track of all operands of this instructions which belong to the // same class. for (unsigned i = 0, e = MI->AsmOperands.size(); i != e; ++i) { const MatchableInfo::AsmOperand &Op = MI->AsmOperands[i]; if (Op.Class->ParserMethod.empty()) continue; unsigned &OperandMask = OpClassMask[Op.Class]; OperandMask |= (1 << i); } // Generate operand match info for each mnemonic/operand class pair. for (const auto &OCM : OpClassMask) { unsigned OpMask = OCM.second; ClassInfo *CI = OCM.first; OperandMatchInfo.push_back(OperandMatchEntry::create(MI.get(), CI, OpMask)); } } } void AsmMatcherInfo::buildInfo() { // Build information about all of the AssemblerPredicates. std::vector<Record*> AllPredicates = Records.getAllDerivedDefinitions("Predicate"); for (Record *Pred : AllPredicates) { // Ignore predicates that are not intended for the assembler. if (!Pred->getValueAsBit("AssemblerMatcherPredicate")) continue; if (Pred->getName().empty()) PrintFatalError(Pred->getLoc(), "Predicate has no name!"); SubtargetFeatures.insert(std::make_pair( Pred, SubtargetFeatureInfo(Pred, SubtargetFeatures.size()))); DEBUG(SubtargetFeatures.find(Pred)->second.dump()); assert(SubtargetFeatures.size() <= 64 && "Too many subtarget features!"); } bool HasMnemonicFirst = AsmParser->getValueAsBit("HasMnemonicFirst"); // Parse the instructions; we need to do this first so that we can gather the // singleton register classes. SmallPtrSet<Record*, 16> SingletonRegisters; unsigned VariantCount = Target.getAsmParserVariantCount(); for (unsigned VC = 0; VC != VariantCount; ++VC) { Record *AsmVariant = Target.getAsmParserVariant(VC); std::string CommentDelimiter = AsmVariant->getValueAsString("CommentDelimiter"); AsmVariantInfo Variant; Variant.RegisterPrefix = AsmVariant->getValueAsString("RegisterPrefix"); Variant.TokenizingCharacters = AsmVariant->getValueAsString("TokenizingCharacters"); Variant.SeparatorCharacters = AsmVariant->getValueAsString("SeparatorCharacters"); Variant.BreakCharacters = AsmVariant->getValueAsString("BreakCharacters"); Variant.AsmVariantNo = AsmVariant->getValueAsInt("Variant"); for (const CodeGenInstruction *CGI : Target.getInstructionsByEnumValue()) { // If the tblgen -match-prefix option is specified (for tblgen hackers), // filter the set of instructions we consider. if (!StringRef(CGI->TheDef->getName()).startswith(MatchPrefix)) continue; // Ignore "codegen only" instructions. if (CGI->TheDef->getValueAsBit("isCodeGenOnly")) continue; auto II = llvm::make_unique<MatchableInfo>(*CGI); II->initialize(*this, SingletonRegisters, Variant, HasMnemonicFirst); // Ignore instructions which shouldn't be matched and diagnose invalid // instruction definitions with an error. if (!II->validate(CommentDelimiter, true)) continue; Matchables.push_back(std::move(II)); } // Parse all of the InstAlias definitions and stick them in the list of // matchables. std::vector<Record*> AllInstAliases = Records.getAllDerivedDefinitions("InstAlias"); for (unsigned i = 0, e = AllInstAliases.size(); i != e; ++i) { auto Alias = llvm::make_unique<CodeGenInstAlias>(AllInstAliases[i], Variant.AsmVariantNo, Target); // If the tblgen -match-prefix option is specified (for tblgen hackers), // filter the set of instruction aliases we consider, based on the target // instruction. if (!StringRef(Alias->ResultInst->TheDef->getName()) .startswith( MatchPrefix)) continue; auto II = llvm::make_unique<MatchableInfo>(std::move(Alias)); II->initialize(*this, SingletonRegisters, Variant, HasMnemonicFirst); // Validate the alias definitions. II->validate(CommentDelimiter, false); Matchables.push_back(std::move(II)); } } // Build info for the register classes. buildRegisterClasses(SingletonRegisters); // Build info for the user defined assembly operand classes. buildOperandClasses(); // Build the information about matchables, now that we have fully formed // classes. std::vector<std::unique_ptr<MatchableInfo>> NewMatchables; for (auto &II : Matchables) { // Parse the tokens after the mnemonic. // Note: buildInstructionOperandReference may insert new AsmOperands, so // don't precompute the loop bound. for (unsigned i = 0; i != II->AsmOperands.size(); ++i) { MatchableInfo::AsmOperand &Op = II->AsmOperands[i]; StringRef Token = Op.Token; // Check for singleton registers. if (Record *RegRecord = Op.SingletonReg) { Op.Class = RegisterClasses[RegRecord]; assert(Op.Class && Op.Class->Registers.size() == 1 && "Unexpected class for singleton register"); continue; } // Check for simple tokens. if (Token[0] != '$') { Op.Class = getTokenClass(Token); continue; } if (Token.size() > 1 && isdigit(Token[1])) { Op.Class = getTokenClass(Token); continue; } // Otherwise this is an operand reference. StringRef OperandName; if (Token[1] == '{') OperandName = Token.substr(2, Token.size() - 3); else OperandName = Token.substr(1); if (II->DefRec.is<const CodeGenInstruction*>()) buildInstructionOperandReference(II.get(), OperandName, i); else buildAliasOperandReference(II.get(), OperandName, Op); } if (II->DefRec.is<const CodeGenInstruction*>()) { II->buildInstructionResultOperands(); // If the instruction has a two-operand alias, build up the // matchable here. We'll add them in bulk at the end to avoid // confusing this loop. std::string Constraint = II->TheDef->getValueAsString("TwoOperandAliasConstraint"); if (Constraint != "") { // Start by making a copy of the original matchable. auto AliasII = llvm::make_unique<MatchableInfo>(*II); // Adjust it to be a two-operand alias. AliasII->formTwoOperandAlias(Constraint); // Add the alias to the matchables list. NewMatchables.push_back(std::move(AliasII)); } } else II->buildAliasResultOperands(); } if (!NewMatchables.empty()) Matchables.insert(Matchables.end(), std::make_move_iterator(NewMatchables.begin()), std::make_move_iterator(NewMatchables.end())); // Process token alias definitions and set up the associated superclass // information. std::vector<Record*> AllTokenAliases = Records.getAllDerivedDefinitions("TokenAlias"); for (Record *Rec : AllTokenAliases) { ClassInfo *FromClass = getTokenClass(Rec->getValueAsString("FromToken")); ClassInfo *ToClass = getTokenClass(Rec->getValueAsString("ToToken")); if (FromClass == ToClass) PrintFatalError(Rec->getLoc(), "error: Destination value identical to source value."); FromClass->SuperClasses.push_back(ToClass); } // Reorder classes so that classes precede super classes. Classes.sort(); #ifndef NDEBUG // Verify that the table is now sorted for (auto I = Classes.begin(), E = Classes.end(); I != E; ++I) { for (auto J = I; J != E; ++J) { assert(!(*J < *I)); assert(I == J || !J->isSubsetOf(*I)); } } #endif // NDEBUG } /// buildInstructionOperandReference - The specified operand is a reference to a /// named operand such as $src. Resolve the Class and OperandInfo pointers. void AsmMatcherInfo:: buildInstructionOperandReference(MatchableInfo *II, StringRef OperandName, unsigned AsmOpIdx) { const CodeGenInstruction &CGI = *II->DefRec.get<const CodeGenInstruction*>(); const CGIOperandList &Operands = CGI.Operands; MatchableInfo::AsmOperand *Op = &II->AsmOperands[AsmOpIdx]; // Map this token to an operand. unsigned Idx; if (!Operands.hasOperandNamed(OperandName, Idx)) PrintFatalError(II->TheDef->getLoc(), "error: unable to find operand: '" + OperandName + "'"); // If the instruction operand has multiple suboperands, but the parser // match class for the asm operand is still the default "ImmAsmOperand", // then handle each suboperand separately. if (Op->SubOpIdx == -1 && Operands[Idx].MINumOperands > 1) { Record *Rec = Operands[Idx].Rec; assert(Rec->isSubClassOf("Operand") && "Unexpected operand!"); Record *MatchClass = Rec->getValueAsDef("ParserMatchClass"); if (MatchClass && MatchClass->getValueAsString("Name") == "Imm") { // Insert remaining suboperands after AsmOpIdx in II->AsmOperands. StringRef Token = Op->Token; // save this in case Op gets moved for (unsigned SI = 1, SE = Operands[Idx].MINumOperands; SI != SE; ++SI) { MatchableInfo::AsmOperand NewAsmOp(/*IsIsolatedToken=*/true, Token); NewAsmOp.SubOpIdx = SI; II->AsmOperands.insert(II->AsmOperands.begin()+AsmOpIdx+SI, NewAsmOp); } // Replace Op with first suboperand. Op = &II->AsmOperands[AsmOpIdx]; // update the pointer in case it moved Op->SubOpIdx = 0; } } // Set up the operand class. Op->Class = getOperandClass(Operands[Idx], Op->SubOpIdx); // If the named operand is tied, canonicalize it to the untied operand. // For example, something like: // (outs GPR:$dst), (ins GPR:$src) // with an asmstring of // "inc $src" // we want to canonicalize to: // "inc $dst" // so that we know how to provide the $dst operand when filling in the result. int OITied = -1; if (Operands[Idx].MINumOperands == 1) OITied = Operands[Idx].getTiedRegister(); if (OITied != -1) { // The tied operand index is an MIOperand index, find the operand that // contains it. std::pair<unsigned, unsigned> Idx = Operands.getSubOperandNumber(OITied); OperandName = Operands[Idx.first].Name; Op->SubOpIdx = Idx.second; } Op->SrcOpName = OperandName; } /// buildAliasOperandReference - When parsing an operand reference out of the /// matching string (e.g. "movsx $src, $dst"), determine what the class of the /// operand reference is by looking it up in the result pattern definition. void AsmMatcherInfo::buildAliasOperandReference(MatchableInfo *II, StringRef OperandName, MatchableInfo::AsmOperand &Op) { const CodeGenInstAlias &CGA = *II->DefRec.get<const CodeGenInstAlias*>(); // Set up the operand class. for (unsigned i = 0, e = CGA.ResultOperands.size(); i != e; ++i) if (CGA.ResultOperands[i].isRecord() && CGA.ResultOperands[i].getName() == OperandName) { // It's safe to go with the first one we find, because CodeGenInstAlias // validates that all operands with the same name have the same record. Op.SubOpIdx = CGA.ResultInstOperandIndex[i].second; // Use the match class from the Alias definition, not the // destination instruction, as we may have an immediate that's // being munged by the match class. Op.Class = getOperandClass(CGA.ResultOperands[i].getRecord(), Op.SubOpIdx); Op.SrcOpName = OperandName; return; } PrintFatalError(II->TheDef->getLoc(), "error: unable to find operand: '" + OperandName + "'"); } void MatchableInfo::buildInstructionResultOperands() { const CodeGenInstruction *ResultInst = getResultInst(); // Loop over all operands of the result instruction, determining how to // populate them. for (const CGIOperandList::OperandInfo &OpInfo : ResultInst->Operands) { // If this is a tied operand, just copy from the previously handled operand. int TiedOp = -1; if (OpInfo.MINumOperands == 1) TiedOp = OpInfo.getTiedRegister(); if (TiedOp != -1) { ResOperands.push_back(ResOperand::getTiedOp(TiedOp)); continue; } // Find out what operand from the asmparser this MCInst operand comes from. int SrcOperand = findAsmOperandNamed(OpInfo.Name); if (OpInfo.Name.empty() || SrcOperand == -1) { // This may happen for operands that are tied to a suboperand of a // complex operand. Simply use a dummy value here; nobody should // use this operand slot. // FIXME: The long term goal is for the MCOperand list to not contain // tied operands at all. ResOperands.push_back(ResOperand::getImmOp(0)); continue; } // Check if the one AsmOperand populates the entire operand. unsigned NumOperands = OpInfo.MINumOperands; if (AsmOperands[SrcOperand].SubOpIdx == -1) { ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand, NumOperands)); continue; } // Add a separate ResOperand for each suboperand. for (unsigned AI = 0; AI < NumOperands; ++AI) { assert(AsmOperands[SrcOperand+AI].SubOpIdx == (int)AI && AsmOperands[SrcOperand+AI].SrcOpName == OpInfo.Name && "unexpected AsmOperands for suboperands"); ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand + AI, 1)); } } } void MatchableInfo::buildAliasResultOperands() { const CodeGenInstAlias &CGA = *DefRec.get<const CodeGenInstAlias*>(); const CodeGenInstruction *ResultInst = getResultInst(); // Loop over all operands of the result instruction, determining how to // populate them. unsigned AliasOpNo = 0; unsigned LastOpNo = CGA.ResultInstOperandIndex.size(); for (unsigned i = 0, e = ResultInst->Operands.size(); i != e; ++i) { const CGIOperandList::OperandInfo *OpInfo = &ResultInst->Operands[i]; // If this is a tied operand, just copy from the previously handled operand. int TiedOp = -1; if (OpInfo->MINumOperands == 1) TiedOp = OpInfo->getTiedRegister(); if (TiedOp != -1) { ResOperands.push_back(ResOperand::getTiedOp(TiedOp)); continue; } // Handle all the suboperands for this operand. const std::string &OpName = OpInfo->Name; for ( ; AliasOpNo < LastOpNo && CGA.ResultInstOperandIndex[AliasOpNo].first == i; ++AliasOpNo) { int SubIdx = CGA.ResultInstOperandIndex[AliasOpNo].second; // Find out what operand from the asmparser that this MCInst operand // comes from. switch (CGA.ResultOperands[AliasOpNo].Kind) { case CodeGenInstAlias::ResultOperand::K_Record: { StringRef Name = CGA.ResultOperands[AliasOpNo].getName(); int SrcOperand = findAsmOperand(Name, SubIdx); if (SrcOperand == -1) PrintFatalError(TheDef->getLoc(), "Instruction '" + TheDef->getName() + "' has operand '" + OpName + "' that doesn't appear in asm string!"); unsigned NumOperands = (SubIdx == -1 ? OpInfo->MINumOperands : 1); ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand, NumOperands)); break; } case CodeGenInstAlias::ResultOperand::K_Imm: { int64_t ImmVal = CGA.ResultOperands[AliasOpNo].getImm(); ResOperands.push_back(ResOperand::getImmOp(ImmVal)); break; } case CodeGenInstAlias::ResultOperand::K_Reg: { Record *Reg = CGA.ResultOperands[AliasOpNo].getRegister(); ResOperands.push_back(ResOperand::getRegOp(Reg)); break; } } } } } static unsigned getConverterOperandID(const std::string &Name, SmallSetVector<std::string, 16> &Table, bool &IsNew) { IsNew = Table.insert(Name); unsigned ID = IsNew ? Table.size() - 1 : std::find(Table.begin(), Table.end(), Name) - Table.begin(); assert(ID < Table.size()); return ID; } static void emitConvertFuncs(CodeGenTarget &Target, StringRef ClassName, std::vector<std::unique_ptr<MatchableInfo>> &Infos, bool HasMnemonicFirst, bool HasOptionalOperands, raw_ostream &OS) { SmallSetVector<std::string, 16> OperandConversionKinds; SmallSetVector<std::string, 16> InstructionConversionKinds; std::vector<std::vector<uint8_t> > ConversionTable; size_t MaxRowLength = 2; // minimum is custom converter plus terminator. // TargetOperandClass - This is the target's operand class, like X86Operand. std::string TargetOperandClass = Target.getName() + "Operand"; // Write the convert function to a separate stream, so we can drop it after // the enum. We'll build up the conversion handlers for the individual // operand types opportunistically as we encounter them. std::string ConvertFnBody; raw_string_ostream CvtOS(ConvertFnBody); // Start the unified conversion function. if (HasOptionalOperands) { CvtOS << "void " << Target.getName() << ClassName << "::\n" << "convertToMCInst(unsigned Kind, MCInst &Inst, " << "unsigned Opcode,\n" << " const OperandVector &Operands,\n" << " const SmallBitVector &OptionalOperandsMask) {\n"; } else { CvtOS << "void " << Target.getName() << ClassName << "::\n" << "convertToMCInst(unsigned Kind, MCInst &Inst, " << "unsigned Opcode,\n" << " const OperandVector &Operands) {\n"; } CvtOS << " assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n"; CvtOS << " const uint8_t *Converter = ConversionTable[Kind];\n"; if (HasOptionalOperands) { CvtOS << " unsigned NumDefaults = 0;\n"; } CvtOS << " unsigned OpIdx;\n"; CvtOS << " Inst.setOpcode(Opcode);\n"; CvtOS << " for (const uint8_t *p = Converter; *p; p+= 2) {\n"; if (HasOptionalOperands) { CvtOS << " OpIdx = *(p + 1) - NumDefaults;\n"; } else { CvtOS << " OpIdx = *(p + 1);\n"; } CvtOS << " switch (*p) {\n"; CvtOS << " default: llvm_unreachable(\"invalid conversion entry!\");\n"; CvtOS << " case CVT_Reg:\n"; CvtOS << " static_cast<" << TargetOperandClass << "&>(*Operands[OpIdx]).addRegOperands(Inst, 1);\n"; CvtOS << " break;\n"; CvtOS << " case CVT_Tied:\n"; CvtOS << " Inst.addOperand(Inst.getOperand(OpIdx));\n"; CvtOS << " break;\n"; std::string OperandFnBody; raw_string_ostream OpOS(OperandFnBody); // Start the operand number lookup function. OpOS << "void " << Target.getName() << ClassName << "::\n" << "convertToMapAndConstraints(unsigned Kind,\n"; OpOS.indent(27); OpOS << "const OperandVector &Operands) {\n" << " assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n" << " unsigned NumMCOperands = 0;\n" << " const uint8_t *Converter = ConversionTable[Kind];\n" << " for (const uint8_t *p = Converter; *p; p+= 2) {\n" << " switch (*p) {\n" << " default: llvm_unreachable(\"invalid conversion entry!\");\n" << " case CVT_Reg:\n" << " Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n" << " Operands[*(p + 1)]->setConstraint(\"r\");\n" << " ++NumMCOperands;\n" << " break;\n" << " case CVT_Tied:\n" << " ++NumMCOperands;\n" << " break;\n"; // Pre-populate the operand conversion kinds with the standard always // available entries. OperandConversionKinds.insert("CVT_Done"); OperandConversionKinds.insert("CVT_Reg"); OperandConversionKinds.insert("CVT_Tied"); enum { CVT_Done, CVT_Reg, CVT_Tied }; for (auto &II : Infos) { // Check if we have a custom match function. std::string AsmMatchConverter = II->getResultInst()->TheDef->getValueAsString("AsmMatchConverter"); if (!AsmMatchConverter.empty() && II->UseInstAsmMatchConverter) { std::string Signature = "ConvertCustom_" + AsmMatchConverter; II->ConversionFnKind = Signature; // Check if we have already generated this signature. if (!InstructionConversionKinds.insert(Signature)) continue; // Remember this converter for the kind enum. unsigned KindID = OperandConversionKinds.size(); OperandConversionKinds.insert("CVT_" + getEnumNameForToken(AsmMatchConverter)); // Add the converter row for this instruction. ConversionTable.emplace_back(); ConversionTable.back().push_back(KindID); ConversionTable.back().push_back(CVT_Done); // Add the handler to the conversion driver function. CvtOS << " case CVT_" << getEnumNameForToken(AsmMatchConverter) << ":\n" << " " << AsmMatchConverter << "(Inst, Operands);\n" << " break;\n"; // FIXME: Handle the operand number lookup for custom match functions. continue; } // Build the conversion function signature. std::string Signature = "Convert"; std::vector<uint8_t> ConversionRow; // Compute the convert enum and the case body. MaxRowLength = std::max(MaxRowLength, II->ResOperands.size()*2 + 1 ); for (unsigned i = 0, e = II->ResOperands.size(); i != e; ++i) { const MatchableInfo::ResOperand &OpInfo = II->ResOperands[i]; // Generate code to populate each result operand. switch (OpInfo.Kind) { case MatchableInfo::ResOperand::RenderAsmOperand: { // This comes from something we parsed. const MatchableInfo::AsmOperand &Op = II->AsmOperands[OpInfo.AsmOperandNum]; // Registers are always converted the same, don't duplicate the // conversion function based on them. Signature += "__"; std::string Class; Class = Op.Class->isRegisterClass() ? "Reg" : Op.Class->ClassName; Signature += Class; Signature += utostr(OpInfo.MINumOperands); Signature += "_" + itostr(OpInfo.AsmOperandNum); // Add the conversion kind, if necessary, and get the associated ID // the index of its entry in the vector). std::string Name = "CVT_" + (Op.Class->isRegisterClass() ? "Reg" : Op.Class->RenderMethod); if (Op.Class->IsOptional) { // For optional operands we must also care about DefaultMethod assert(HasOptionalOperands); Name += "_" + Op.Class->DefaultMethod; } Name = getEnumNameForToken(Name); bool IsNewConverter = false; unsigned ID = getConverterOperandID(Name, OperandConversionKinds, IsNewConverter); // Add the operand entry to the instruction kind conversion row. ConversionRow.push_back(ID); ConversionRow.push_back(OpInfo.AsmOperandNum + HasMnemonicFirst); if (!IsNewConverter) break; // This is a new operand kind. Add a handler for it to the // converter driver. CvtOS << " case " << Name << ":\n"; if (Op.Class->IsOptional) { // If optional operand is not present in actual instruction then we // should call its DefaultMethod before RenderMethod assert(HasOptionalOperands); CvtOS << " if (OptionalOperandsMask[*(p + 1) - 1]) {\n" << " " << Op.Class->DefaultMethod << "()" << "->" << Op.Class->RenderMethod << "(Inst, " << OpInfo.MINumOperands << ");\n" << " ++NumDefaults;\n" << " } else {\n" << " static_cast<" << TargetOperandClass << "&>(*Operands[OpIdx])." << Op.Class->RenderMethod << "(Inst, " << OpInfo.MINumOperands << ");\n" << " }\n"; } else { CvtOS << " static_cast<" << TargetOperandClass << "&>(*Operands[OpIdx])." << Op.Class->RenderMethod << "(Inst, " << OpInfo.MINumOperands << ");\n"; } CvtOS << " break;\n"; // Add a handler for the operand number lookup. OpOS << " case " << Name << ":\n" << " Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n"; if (Op.Class->isRegisterClass()) OpOS << " Operands[*(p + 1)]->setConstraint(\"r\");\n"; else OpOS << " Operands[*(p + 1)]->setConstraint(\"m\");\n"; OpOS << " NumMCOperands += " << OpInfo.MINumOperands << ";\n" << " break;\n"; break; } case MatchableInfo::ResOperand::TiedOperand: { // If this operand is tied to a previous one, just copy the MCInst // operand from the earlier one.We can only tie single MCOperand values. assert(OpInfo.MINumOperands == 1 && "Not a singular MCOperand"); unsigned TiedOp = OpInfo.TiedOperandNum; assert(i > TiedOp && "Tied operand precedes its target!"); Signature += "__Tie" + utostr(TiedOp); ConversionRow.push_back(CVT_Tied); ConversionRow.push_back(TiedOp); break; } case MatchableInfo::ResOperand::ImmOperand: { int64_t Val = OpInfo.ImmVal; std::string Ty = "imm_" + itostr(Val); Ty = getEnumNameForToken(Ty); Signature += "__" + Ty; std::string Name = "CVT_" + Ty; bool IsNewConverter = false; unsigned ID = getConverterOperandID(Name, OperandConversionKinds, IsNewConverter); // Add the operand entry to the instruction kind conversion row. ConversionRow.push_back(ID); ConversionRow.push_back(0); if (!IsNewConverter) break; CvtOS << " case " << Name << ":\n" << " Inst.addOperand(MCOperand::createImm(" << Val << "));\n" << " break;\n"; OpOS << " case " << Name << ":\n" << " Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n" << " Operands[*(p + 1)]->setConstraint(\"\");\n" << " ++NumMCOperands;\n" << " break;\n"; break; } case MatchableInfo::ResOperand::RegOperand: { std::string Reg, Name; if (!OpInfo.Register) { Name = "reg0"; Reg = "0"; } else { Reg = getQualifiedName(OpInfo.Register); Name = "reg" + OpInfo.Register->getName(); } Signature += "__" + Name; Name = "CVT_" + Name; bool IsNewConverter = false; unsigned ID = getConverterOperandID(Name, OperandConversionKinds, IsNewConverter); // Add the operand entry to the instruction kind conversion row. ConversionRow.push_back(ID); ConversionRow.push_back(0); if (!IsNewConverter) break; CvtOS << " case " << Name << ":\n" << " Inst.addOperand(MCOperand::createReg(" << Reg << "));\n" << " break;\n"; OpOS << " case " << Name << ":\n" << " Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n" << " Operands[*(p + 1)]->setConstraint(\"m\");\n" << " ++NumMCOperands;\n" << " break;\n"; } } } // If there were no operands, add to the signature to that effect if (Signature == "Convert") Signature += "_NoOperands"; II->ConversionFnKind = Signature; // Save the signature. If we already have it, don't add a new row // to the table. if (!InstructionConversionKinds.insert(Signature)) continue; // Add the row to the table. ConversionTable.push_back(std::move(ConversionRow)); } // Finish up the converter driver function. CvtOS << " }\n }\n}\n\n"; // Finish up the operand number lookup function. OpOS << " }\n }\n}\n\n"; OS << "namespace {\n"; // Output the operand conversion kind enum. OS << "enum OperatorConversionKind {\n"; for (const std::string &Converter : OperandConversionKinds) OS << " " << Converter << ",\n"; OS << " CVT_NUM_CONVERTERS\n"; OS << "};\n\n"; // Output the instruction conversion kind enum. OS << "enum InstructionConversionKind {\n"; for (const std::string &Signature : InstructionConversionKinds) OS << " " << Signature << ",\n"; OS << " CVT_NUM_SIGNATURES\n"; OS << "};\n\n"; OS << "} // end anonymous namespace\n\n"; // Output the conversion table. OS << "static const uint8_t ConversionTable[CVT_NUM_SIGNATURES][" << MaxRowLength << "] = {\n"; for (unsigned Row = 0, ERow = ConversionTable.size(); Row != ERow; ++Row) { assert(ConversionTable[Row].size() % 2 == 0 && "bad conversion row!"); OS << " // " << InstructionConversionKinds[Row] << "\n"; OS << " { "; for (unsigned i = 0, e = ConversionTable[Row].size(); i != e; i += 2) OS << OperandConversionKinds[ConversionTable[Row][i]] << ", " << (unsigned)(ConversionTable[Row][i + 1]) << ", "; OS << "CVT_Done },\n"; } OS << "};\n\n"; // Spit out the conversion driver function. OS << CvtOS.str(); // Spit out the operand number lookup function. OS << OpOS.str(); } /// emitMatchClassEnumeration - Emit the enumeration for match class kinds. static void emitMatchClassEnumeration(CodeGenTarget &Target, std::forward_list<ClassInfo> &Infos, raw_ostream &OS) { OS << "namespace {\n\n"; OS << "/// MatchClassKind - The kinds of classes which participate in\n" << "/// instruction matching.\n"; OS << "enum MatchClassKind {\n"; OS << " InvalidMatchClass = 0,\n"; OS << " OptionalMatchClass = 1,\n"; for (const auto &CI : Infos) { OS << " " << CI.Name << ", // "; if (CI.Kind == ClassInfo::Token) { OS << "'" << CI.ValueName << "'\n"; } else if (CI.isRegisterClass()) { if (!CI.ValueName.empty()) OS << "register class '" << CI.ValueName << "'\n"; else OS << "derived register class\n"; } else { OS << "user defined class '" << CI.ValueName << "'\n"; } } OS << " NumMatchClassKinds\n"; OS << "};\n\n"; OS << "}\n\n"; } /// emitValidateOperandClass - Emit the function to validate an operand class. static void emitValidateOperandClass(AsmMatcherInfo &Info, raw_ostream &OS) { OS << "static unsigned validateOperandClass(MCParsedAsmOperand &GOp, " << "MatchClassKind Kind) {\n"; OS << " " << Info.Target.getName() << "Operand &Operand = (" << Info.Target.getName() << "Operand&)GOp;\n"; // The InvalidMatchClass is not to match any operand. OS << " if (Kind == InvalidMatchClass)\n"; OS << " return MCTargetAsmParser::Match_InvalidOperand;\n\n"; // Check for Token operands first. // FIXME: Use a more specific diagnostic type. OS << " if (Operand.isToken())\n"; OS << " return isSubclass(matchTokenString(Operand.getToken()), Kind) ?\n" << " MCTargetAsmParser::Match_Success :\n" << " MCTargetAsmParser::Match_InvalidOperand;\n\n"; // Check the user classes. We don't care what order since we're only // actually matching against one of them. OS << " switch (Kind) {\n" " default: break;\n"; for (const auto &CI : Info.Classes) { if (!CI.isUserClass()) continue; OS << " // '" << CI.ClassName << "' class\n"; OS << " case " << CI.Name << ":\n"; OS << " if (Operand." << CI.PredicateMethod << "())\n"; OS << " return MCTargetAsmParser::Match_Success;\n"; if (!CI.DiagnosticType.empty()) OS << " return " << Info.Target.getName() << "AsmParser::Match_" << CI.DiagnosticType << ";\n"; else OS << " break;\n"; } OS << " } // end switch (Kind)\n\n"; // Check for register operands, including sub-classes. OS << " if (Operand.isReg()) {\n"; OS << " MatchClassKind OpKind;\n"; OS << " switch (Operand.getReg()) {\n"; OS << " default: OpKind = InvalidMatchClass; break;\n"; for (const auto &RC : Info.RegisterClasses) OS << " case " << Info.Target.getName() << "::" << RC.first->getName() << ": OpKind = " << RC.second->Name << "; break;\n"; OS << " }\n"; OS << " return isSubclass(OpKind, Kind) ? " << "MCTargetAsmParser::Match_Success :\n " << " MCTargetAsmParser::Match_InvalidOperand;\n }\n\n"; // Generic fallthrough match failure case for operands that don't have // specialized diagnostic types. OS << " return MCTargetAsmParser::Match_InvalidOperand;\n"; OS << "}\n\n"; } /// emitIsSubclass - Emit the subclass predicate function. static void emitIsSubclass(CodeGenTarget &Target, std::forward_list<ClassInfo> &Infos, raw_ostream &OS) { OS << "/// isSubclass - Compute whether \\p A is a subclass of \\p B.\n"; OS << "static bool isSubclass(MatchClassKind A, MatchClassKind B) {\n"; OS << " if (A == B)\n"; OS << " return true;\n\n"; bool EmittedSwitch = false; for (const auto &A : Infos) { std::vector<StringRef> SuperClasses; if (A.IsOptional) SuperClasses.push_back("OptionalMatchClass"); for (const auto &B : Infos) { if (&A != &B && A.isSubsetOf(B)) SuperClasses.push_back(B.Name); } if (SuperClasses.empty()) continue; // If this is the first SuperClass, emit the switch header. if (!EmittedSwitch) { OS << " switch (A) {\n"; OS << " default:\n"; OS << " return false;\n"; EmittedSwitch = true; } OS << "\n case " << A.Name << ":\n"; if (SuperClasses.size() == 1) { OS << " return B == " << SuperClasses.back() << ";\n"; continue; } if (!SuperClasses.empty()) { OS << " switch (B) {\n"; OS << " default: return false;\n"; for (StringRef SC : SuperClasses) OS << " case " << SC << ": return true;\n"; OS << " }\n"; } else { // No case statement to emit OS << " return false;\n"; } } // If there were case statements emitted into the string stream write the // default. if (EmittedSwitch) OS << " }\n"; else OS << " return false;\n"; OS << "}\n\n"; } /// emitMatchTokenString - Emit the function to match a token string to the /// appropriate match class value. static void emitMatchTokenString(CodeGenTarget &Target, std::forward_list<ClassInfo> &Infos, raw_ostream &OS) { // Construct the match list. std::vector<StringMatcher::StringPair> Matches; for (const auto &CI : Infos) { if (CI.Kind == ClassInfo::Token) Matches.emplace_back(CI.ValueName, "return " + CI.Name + ";"); } OS << "static MatchClassKind matchTokenString(StringRef Name) {\n"; StringMatcher("Name", Matches, OS).Emit(); OS << " return InvalidMatchClass;\n"; OS << "}\n\n"; } /// emitMatchRegisterName - Emit the function to match a string to the target /// specific register enum. static void emitMatchRegisterName(CodeGenTarget &Target, Record *AsmParser, raw_ostream &OS) { // Construct the match list. std::vector<StringMatcher::StringPair> Matches; const auto &Regs = Target.getRegBank().getRegisters(); for (const CodeGenRegister &Reg : Regs) { if (Reg.TheDef->getValueAsString("AsmName").empty()) continue; Matches.emplace_back(Reg.TheDef->getValueAsString("AsmName"), "return " + utostr(Reg.EnumValue) + ";"); } OS << "static unsigned MatchRegisterName(StringRef Name) {\n"; StringMatcher("Name", Matches, OS).Emit(); OS << " return 0;\n"; OS << "}\n\n"; } /// Emit the function to match a string to the target /// specific register enum. static void emitMatchRegisterAltName(CodeGenTarget &Target, Record *AsmParser, raw_ostream &OS) { // Construct the match list. std::vector<StringMatcher::StringPair> Matches; const auto &Regs = Target.getRegBank().getRegisters(); for (const CodeGenRegister &Reg : Regs) { auto AltNames = Reg.TheDef->getValueAsListOfStrings("AltNames"); for (auto AltName : AltNames) { AltName = StringRef(AltName).trim(); // don't handle empty alternative names if (AltName.empty()) continue; Matches.emplace_back(AltName, "return " + utostr(Reg.EnumValue) + ";"); } } OS << "static unsigned MatchRegisterAltName(StringRef Name) {\n"; StringMatcher("Name", Matches, OS).Emit(); OS << " return 0;\n"; OS << "}\n\n"; } static const char *getMinimalTypeForRange(uint64_t Range) { assert(Range <= 0xFFFFFFFFFFFFFFFFULL && "Enum too large"); if (Range > 0xFFFFFFFFULL) return "uint64_t"; if (Range > 0xFFFF) return "uint32_t"; if (Range > 0xFF) return "uint16_t"; return "uint8_t"; } static const char *getMinimalRequiredFeaturesType(const AsmMatcherInfo &Info) { uint64_t MaxIndex = Info.SubtargetFeatures.size(); if (MaxIndex > 0) MaxIndex--; return getMinimalTypeForRange(1ULL << MaxIndex); } /// emitSubtargetFeatureFlagEnumeration - Emit the subtarget feature flag /// definitions. static void emitSubtargetFeatureFlagEnumeration(AsmMatcherInfo &Info, raw_ostream &OS) { OS << "// Flags for subtarget features that participate in " << "instruction matching.\n"; OS << "enum SubtargetFeatureFlag : " << getMinimalRequiredFeaturesType(Info) << " {\n"; for (const auto &SF : Info.SubtargetFeatures) { const SubtargetFeatureInfo &SFI = SF.second; OS << " " << SFI.getEnumName() << " = (1ULL << " << SFI.Index << "),\n"; } OS << " Feature_None = 0\n"; OS << "};\n\n"; } /// emitOperandDiagnosticTypes - Emit the operand matching diagnostic types. static void emitOperandDiagnosticTypes(AsmMatcherInfo &Info, raw_ostream &OS) { // Get the set of diagnostic types from all of the operand classes. std::set<StringRef> Types; for (const auto &OpClassEntry : Info.AsmOperandClasses) { if (!OpClassEntry.second->DiagnosticType.empty()) Types.insert(OpClassEntry.second->DiagnosticType); } if (Types.empty()) return; // Now emit the enum entries. for (StringRef Type : Types) OS << " Match_" << Type << ",\n"; OS << " END_OPERAND_DIAGNOSTIC_TYPES\n"; } /// emitGetSubtargetFeatureName - Emit the helper function to get the /// user-level name for a subtarget feature. static void emitGetSubtargetFeatureName(AsmMatcherInfo &Info, raw_ostream &OS) { OS << "// User-level names for subtarget features that participate in\n" << "// instruction matching.\n" << "static const char *getSubtargetFeatureName(uint64_t Val) {\n"; if (!Info.SubtargetFeatures.empty()) { OS << " switch(Val) {\n"; for (const auto &SF : Info.SubtargetFeatures) { const SubtargetFeatureInfo &SFI = SF.second; // FIXME: Totally just a placeholder name to get the algorithm working. OS << " case " << SFI.getEnumName() << ": return \"" << SFI.TheDef->getValueAsString("PredicateName") << "\";\n"; } OS << " default: return \"(unknown)\";\n"; OS << " }\n"; } else { // Nothing to emit, so skip the switch OS << " return \"(unknown)\";\n"; } OS << "}\n\n"; } /// emitComputeAvailableFeatures - Emit the function to compute the list of /// available features given a subtarget. static void emitComputeAvailableFeatures(AsmMatcherInfo &Info, raw_ostream &OS) { std::string ClassName = Info.AsmParser->getValueAsString("AsmParserClassName"); OS << "uint64_t " << Info.Target.getName() << ClassName << "::\n" << "ComputeAvailableFeatures(const FeatureBitset& FB) const {\n"; OS << " uint64_t Features = 0;\n"; for (const auto &SF : Info.SubtargetFeatures) { const SubtargetFeatureInfo &SFI = SF.second; OS << " if ("; std::string CondStorage = SFI.TheDef->getValueAsString("AssemblerCondString"); StringRef Conds = CondStorage; std::pair<StringRef,StringRef> Comma = Conds.split(','); bool First = true; do { if (!First) OS << " && "; bool Neg = false; StringRef Cond = Comma.first; if (Cond[0] == '!') { Neg = true; Cond = Cond.substr(1); } OS << "("; if (Neg) OS << "!"; OS << "FB[" << Info.Target.getName() << "::" << Cond << "])"; if (Comma.second.empty()) break; First = false; Comma = Comma.second.split(','); } while (true); OS << ")\n"; OS << " Features |= " << SFI.getEnumName() << ";\n"; } OS << " return Features;\n"; OS << "}\n\n"; } static std::string GetAliasRequiredFeatures(Record *R, const AsmMatcherInfo &Info) { std::vector<Record*> ReqFeatures = R->getValueAsListOfDefs("Predicates"); std::string Result; unsigned NumFeatures = 0; for (unsigned i = 0, e = ReqFeatures.size(); i != e; ++i) { const SubtargetFeatureInfo *F = Info.getSubtargetFeature(ReqFeatures[i]); if (!F) PrintFatalError(R->getLoc(), "Predicate '" + ReqFeatures[i]->getName() + "' is not marked as an AssemblerPredicate!"); if (NumFeatures) Result += '|'; Result += F->getEnumName(); ++NumFeatures; } if (NumFeatures > 1) Result = '(' + Result + ')'; return Result; } static void emitMnemonicAliasVariant(raw_ostream &OS,const AsmMatcherInfo &Info, std::vector<Record*> &Aliases, unsigned Indent = 0, StringRef AsmParserVariantName = StringRef()){ // Keep track of all the aliases from a mnemonic. Use an std::map so that the // iteration order of the map is stable. std::map<std::string, std::vector<Record*> > AliasesFromMnemonic; for (Record *R : Aliases) { // FIXME: Allow AssemblerVariantName to be a comma separated list. std::string AsmVariantName = R->getValueAsString("AsmVariantName"); if (AsmVariantName != AsmParserVariantName) continue; AliasesFromMnemonic[R->getValueAsString("FromMnemonic")].push_back(R); } if (AliasesFromMnemonic.empty()) return; // Process each alias a "from" mnemonic at a time, building the code executed // by the string remapper. std::vector<StringMatcher::StringPair> Cases; for (const auto &AliasEntry : AliasesFromMnemonic) { const std::vector<Record*> &ToVec = AliasEntry.second; // Loop through each alias and emit code that handles each case. If there // are two instructions without predicates, emit an error. If there is one, // emit it last. std::string MatchCode; int AliasWithNoPredicate = -1; for (unsigned i = 0, e = ToVec.size(); i != e; ++i) { Record *R = ToVec[i]; std::string FeatureMask = GetAliasRequiredFeatures(R, Info); // If this unconditionally matches, remember it for later and diagnose // duplicates. if (FeatureMask.empty()) { if (AliasWithNoPredicate != -1) { // We can't have two aliases from the same mnemonic with no predicate. PrintError(ToVec[AliasWithNoPredicate]->getLoc(), "two MnemonicAliases with the same 'from' mnemonic!"); PrintFatalError(R->getLoc(), "this is the other MnemonicAlias."); } AliasWithNoPredicate = i; continue; } if (R->getValueAsString("ToMnemonic") == AliasEntry.first) PrintFatalError(R->getLoc(), "MnemonicAlias to the same string"); if (!MatchCode.empty()) MatchCode += "else "; MatchCode += "if ((Features & " + FeatureMask + ") == "+FeatureMask+")\n"; MatchCode += " Mnemonic = \"" +R->getValueAsString("ToMnemonic")+"\";\n"; } if (AliasWithNoPredicate != -1) { Record *R = ToVec[AliasWithNoPredicate]; if (!MatchCode.empty()) MatchCode += "else\n "; MatchCode += "Mnemonic = \"" + R->getValueAsString("ToMnemonic")+"\";\n"; } MatchCode += "return;"; Cases.push_back(std::make_pair(AliasEntry.first, MatchCode)); } StringMatcher("Mnemonic", Cases, OS).Emit(Indent); } /// emitMnemonicAliases - If the target has any MnemonicAlias<> definitions, /// emit a function for them and return true, otherwise return false. static bool emitMnemonicAliases(raw_ostream &OS, const AsmMatcherInfo &Info, CodeGenTarget &Target) { // Ignore aliases when match-prefix is set. if (!MatchPrefix.empty()) return false; std::vector<Record*> Aliases = Info.getRecords().getAllDerivedDefinitions("MnemonicAlias"); if (Aliases.empty()) return false; OS << "static void applyMnemonicAliases(StringRef &Mnemonic, " "uint64_t Features, unsigned VariantID) {\n"; OS << " switch (VariantID) {\n"; unsigned VariantCount = Target.getAsmParserVariantCount(); for (unsigned VC = 0; VC != VariantCount; ++VC) { Record *AsmVariant = Target.getAsmParserVariant(VC); int AsmParserVariantNo = AsmVariant->getValueAsInt("Variant"); std::string AsmParserVariantName = AsmVariant->getValueAsString("Name"); OS << " case " << AsmParserVariantNo << ":\n"; emitMnemonicAliasVariant(OS, Info, Aliases, /*Indent=*/2, AsmParserVariantName); OS << " break;\n"; } OS << " }\n"; // Emit aliases that apply to all variants. emitMnemonicAliasVariant(OS, Info, Aliases); OS << "}\n\n"; return true; } static void emitCustomOperandParsing(raw_ostream &OS, CodeGenTarget &Target, const AsmMatcherInfo &Info, StringRef ClassName, StringToOffsetTable &StringTable, unsigned MaxMnemonicIndex, bool HasMnemonicFirst) { unsigned MaxMask = 0; for (const OperandMatchEntry &OMI : Info.OperandMatchInfo) { MaxMask |= OMI.OperandMask; } // Emit the static custom operand parsing table; OS << "namespace {\n"; OS << " struct OperandMatchEntry {\n"; OS << " " << getMinimalRequiredFeaturesType(Info) << " RequiredFeatures;\n"; OS << " " << getMinimalTypeForRange(MaxMnemonicIndex) << " Mnemonic;\n"; OS << " " << getMinimalTypeForRange(std::distance( Info.Classes.begin(), Info.Classes.end())) << " Class;\n"; OS << " " << getMinimalTypeForRange(MaxMask) << " OperandMask;\n\n"; OS << " StringRef getMnemonic() const {\n"; OS << " return StringRef(MnemonicTable + Mnemonic + 1,\n"; OS << " MnemonicTable[Mnemonic]);\n"; OS << " }\n"; OS << " };\n\n"; OS << " // Predicate for searching for an opcode.\n"; OS << " struct LessOpcodeOperand {\n"; OS << " bool operator()(const OperandMatchEntry &LHS, StringRef RHS) {\n"; OS << " return LHS.getMnemonic() < RHS;\n"; OS << " }\n"; OS << " bool operator()(StringRef LHS, const OperandMatchEntry &RHS) {\n"; OS << " return LHS < RHS.getMnemonic();\n"; OS << " }\n"; OS << " bool operator()(const OperandMatchEntry &LHS,"; OS << " const OperandMatchEntry &RHS) {\n"; OS << " return LHS.getMnemonic() < RHS.getMnemonic();\n"; OS << " }\n"; OS << " };\n"; OS << "} // end anonymous namespace.\n\n"; OS << "static const OperandMatchEntry OperandMatchTable[" << Info.OperandMatchInfo.size() << "] = {\n"; OS << " /* Operand List Mask, Mnemonic, Operand Class, Features */\n"; for (const OperandMatchEntry &OMI : Info.OperandMatchInfo) { const MatchableInfo &II = *OMI.MI; OS << " { "; // Write the required features mask. if (!II.RequiredFeatures.empty()) { for (unsigned i = 0, e = II.RequiredFeatures.size(); i != e; ++i) { if (i) OS << "|"; OS << II.RequiredFeatures[i]->getEnumName(); } } else OS << "0"; // Store a pascal-style length byte in the mnemonic. std::string LenMnemonic = char(II.Mnemonic.size()) + II.Mnemonic.str(); OS << ", " << StringTable.GetOrAddStringOffset(LenMnemonic, false) << " /* " << II.Mnemonic << " */, "; OS << OMI.CI->Name; OS << ", " << OMI.OperandMask; OS << " /* "; bool printComma = false; for (int i = 0, e = 31; i !=e; ++i) if (OMI.OperandMask & (1 << i)) { if (printComma) OS << ", "; OS << i; printComma = true; } OS << " */"; OS << " },\n"; } OS << "};\n\n"; // Emit the operand class switch to call the correct custom parser for // the found operand class. OS << Target.getName() << ClassName << "::OperandMatchResultTy " << Target.getName() << ClassName << "::\n" << "tryCustomParseOperand(OperandVector" << " &Operands,\n unsigned MCK) {\n\n" << " switch(MCK) {\n"; for (const auto &CI : Info.Classes) { if (CI.ParserMethod.empty()) continue; OS << " case " << CI.Name << ":\n" << " return " << CI.ParserMethod << "(Operands);\n"; } OS << " default:\n"; OS << " return MatchOperand_NoMatch;\n"; OS << " }\n"; OS << " return MatchOperand_NoMatch;\n"; OS << "}\n\n"; // Emit the static custom operand parser. This code is very similar with // the other matcher. Also use MatchResultTy here just in case we go for // a better error handling. OS << Target.getName() << ClassName << "::OperandMatchResultTy " << Target.getName() << ClassName << "::\n" << "MatchOperandParserImpl(OperandVector" << " &Operands,\n StringRef Mnemonic) {\n"; // Emit code to get the available features. OS << " // Get the current feature set.\n"; OS << " uint64_t AvailableFeatures = getAvailableFeatures();\n\n"; OS << " // Get the next operand index.\n"; OS << " unsigned NextOpNum = Operands.size()" << (HasMnemonicFirst ? " - 1" : "") << ";\n"; // Emit code to search the table. OS << " // Search the table.\n"; if (HasMnemonicFirst) { OS << " auto MnemonicRange =\n"; OS << " std::equal_range(std::begin(OperandMatchTable), " "std::end(OperandMatchTable),\n"; OS << " Mnemonic, LessOpcodeOperand());\n\n"; } else { OS << " auto MnemonicRange = std::make_pair(std::begin(OperandMatchTable)," " std::end(OperandMatchTable));\n"; OS << " if (!Mnemonic.empty())\n"; OS << " MnemonicRange =\n"; OS << " std::equal_range(std::begin(OperandMatchTable), " "std::end(OperandMatchTable),\n"; OS << " Mnemonic, LessOpcodeOperand());\n\n"; } OS << " if (MnemonicRange.first == MnemonicRange.second)\n"; OS << " return MatchOperand_NoMatch;\n\n"; OS << " for (const OperandMatchEntry *it = MnemonicRange.first,\n" << " *ie = MnemonicRange.second; it != ie; ++it) {\n"; OS << " // equal_range guarantees that instruction mnemonic matches.\n"; OS << " assert(Mnemonic == it->getMnemonic());\n\n"; // Emit check that the required features are available. OS << " // check if the available features match\n"; OS << " if ((AvailableFeatures & it->RequiredFeatures) " << "!= it->RequiredFeatures) {\n"; OS << " continue;\n"; OS << " }\n\n"; // Emit check to ensure the operand number matches. OS << " // check if the operand in question has a custom parser.\n"; OS << " if (!(it->OperandMask & (1 << NextOpNum)))\n"; OS << " continue;\n\n"; // Emit call to the custom parser method OS << " // call custom parse method to handle the operand\n"; OS << " OperandMatchResultTy Result = "; OS << "tryCustomParseOperand(Operands, it->Class);\n"; OS << " if (Result != MatchOperand_NoMatch)\n"; OS << " return Result;\n"; OS << " }\n\n"; OS << " // Okay, we had no match.\n"; OS << " return MatchOperand_NoMatch;\n"; OS << "}\n\n"; } void AsmMatcherEmitter::run(raw_ostream &OS) { CodeGenTarget Target(Records); Record *AsmParser = Target.getAsmParser(); std::string ClassName = AsmParser->getValueAsString("AsmParserClassName"); // Compute the information on the instructions to match. AsmMatcherInfo Info(AsmParser, Target, Records); Info.buildInfo(); // Sort the instruction table using the partial order on classes. We use // stable_sort to ensure that ambiguous instructions are still // deterministically ordered. std::stable_sort(Info.Matchables.begin(), Info.Matchables.end(), [](const std::unique_ptr<MatchableInfo> &a, const std::unique_ptr<MatchableInfo> &b){ return *a < *b;}); #ifndef NDEBUG // Verify that the table is now sorted for (auto I = Info.Matchables.begin(), E = Info.Matchables.end(); I != E; ++I) { for (auto J = I; J != E; ++J) { assert(!(**J < **I)); } } #endif // NDEBUG DEBUG_WITH_TYPE("instruction_info", { for (const auto &MI : Info.Matchables) MI->dump(); }); // Check for ambiguous matchables. DEBUG_WITH_TYPE("ambiguous_instrs", { unsigned NumAmbiguous = 0; for (auto I = Info.Matchables.begin(), E = Info.Matchables.end(); I != E; ++I) { for (auto J = std::next(I); J != E; ++J) { const MatchableInfo &A = **I; const MatchableInfo &B = **J; if (A.couldMatchAmbiguouslyWith(B)) { errs() << "warning: ambiguous matchables:\n"; A.dump(); errs() << "\nis incomparable with:\n"; B.dump(); errs() << "\n\n"; ++NumAmbiguous; } } } if (NumAmbiguous) errs() << "warning: " << NumAmbiguous << " ambiguous matchables!\n"; }); // Compute the information on the custom operand parsing. Info.buildOperandMatchInfo(); bool HasMnemonicFirst = AsmParser->getValueAsBit("HasMnemonicFirst"); bool HasOptionalOperands = Info.hasOptionalOperands(); // Write the output. // Information for the class declaration. OS << "\n#ifdef GET_ASSEMBLER_HEADER\n"; OS << "#undef GET_ASSEMBLER_HEADER\n"; OS << " // This should be included into the middle of the declaration of\n"; OS << " // your subclasses implementation of MCTargetAsmParser.\n"; OS << " uint64_t ComputeAvailableFeatures(const FeatureBitset& FB) const;\n"; if (HasOptionalOperands) { OS << " void convertToMCInst(unsigned Kind, MCInst &Inst, " << "unsigned Opcode,\n" << " const OperandVector &Operands,\n" << " const SmallBitVector &OptionalOperandsMask);\n"; } else { OS << " void convertToMCInst(unsigned Kind, MCInst &Inst, " << "unsigned Opcode,\n" << " const OperandVector &Operands);\n"; } OS << " void convertToMapAndConstraints(unsigned Kind,\n "; OS << " const OperandVector &Operands) override;\n"; if (HasMnemonicFirst) OS << " bool mnemonicIsValid(StringRef Mnemonic, unsigned VariantID);\n"; OS << " unsigned MatchInstructionImpl(const OperandVector &Operands,\n" << " MCInst &Inst,\n" << " uint64_t &ErrorInfo," << " bool matchingInlineAsm,\n" << " unsigned VariantID = 0);\n"; if (!Info.OperandMatchInfo.empty()) { OS << "\n enum OperandMatchResultTy {\n"; OS << " MatchOperand_Success, // operand matched successfully\n"; OS << " MatchOperand_NoMatch, // operand did not match\n"; OS << " MatchOperand_ParseFail // operand matched but had errors\n"; OS << " };\n"; OS << " OperandMatchResultTy MatchOperandParserImpl(\n"; OS << " OperandVector &Operands,\n"; OS << " StringRef Mnemonic);\n"; OS << " OperandMatchResultTy tryCustomParseOperand(\n"; OS << " OperandVector &Operands,\n"; OS << " unsigned MCK);\n\n"; } OS << "#endif // GET_ASSEMBLER_HEADER_INFO\n\n"; // Emit the operand match diagnostic enum names. OS << "\n#ifdef GET_OPERAND_DIAGNOSTIC_TYPES\n"; OS << "#undef GET_OPERAND_DIAGNOSTIC_TYPES\n\n"; emitOperandDiagnosticTypes(Info, OS); OS << "#endif // GET_OPERAND_DIAGNOSTIC_TYPES\n\n"; OS << "\n#ifdef GET_REGISTER_MATCHER\n"; OS << "#undef GET_REGISTER_MATCHER\n\n"; // Emit the subtarget feature enumeration. emitSubtargetFeatureFlagEnumeration(Info, OS); // Emit the function to match a register name to number. // This should be omitted for Mips target if (AsmParser->getValueAsBit("ShouldEmitMatchRegisterName")) emitMatchRegisterName(Target, AsmParser, OS); if (AsmParser->getValueAsBit("ShouldEmitMatchRegisterAltName")) emitMatchRegisterAltName(Target, AsmParser, OS); OS << "#endif // GET_REGISTER_MATCHER\n\n"; OS << "\n#ifdef GET_SUBTARGET_FEATURE_NAME\n"; OS << "#undef GET_SUBTARGET_FEATURE_NAME\n\n"; // Generate the helper function to get the names for subtarget features. emitGetSubtargetFeatureName(Info, OS); OS << "#endif // GET_SUBTARGET_FEATURE_NAME\n\n"; OS << "\n#ifdef GET_MATCHER_IMPLEMENTATION\n"; OS << "#undef GET_MATCHER_IMPLEMENTATION\n\n"; // Generate the function that remaps for mnemonic aliases. bool HasMnemonicAliases = emitMnemonicAliases(OS, Info, Target); // Generate the convertToMCInst function to convert operands into an MCInst. // Also, generate the convertToMapAndConstraints function for MS-style inline // assembly. The latter doesn't actually generate a MCInst. emitConvertFuncs(Target, ClassName, Info.Matchables, HasMnemonicFirst, HasOptionalOperands, OS); // Emit the enumeration for classes which participate in matching. emitMatchClassEnumeration(Target, Info.Classes, OS); // Emit the routine to match token strings to their match class. emitMatchTokenString(Target, Info.Classes, OS); // Emit the subclass predicate routine. emitIsSubclass(Target, Info.Classes, OS); // Emit the routine to validate an operand against a match class. emitValidateOperandClass(Info, OS); // Emit the available features compute function. emitComputeAvailableFeatures(Info, OS); StringToOffsetTable StringTable; size_t MaxNumOperands = 0; unsigned MaxMnemonicIndex = 0; bool HasDeprecation = false; for (const auto &MI : Info.Matchables) { MaxNumOperands = std::max(MaxNumOperands, MI->AsmOperands.size()); HasDeprecation |= MI->HasDeprecation; // Store a pascal-style length byte in the mnemonic. std::string LenMnemonic = char(MI->Mnemonic.size()) + MI->Mnemonic.str(); MaxMnemonicIndex = std::max(MaxMnemonicIndex, StringTable.GetOrAddStringOffset(LenMnemonic, false)); } OS << "static const char *const MnemonicTable =\n"; StringTable.EmitString(OS); OS << ";\n\n"; // Emit the static match table; unused classes get initalized to 0 which is // guaranteed to be InvalidMatchClass. // // FIXME: We can reduce the size of this table very easily. First, we change // it so that store the kinds in separate bit-fields for each index, which // only needs to be the max width used for classes at that index (we also need // to reject based on this during classification). If we then make sure to // order the match kinds appropriately (putting mnemonics last), then we // should only end up using a few bits for each class, especially the ones // following the mnemonic. OS << "namespace {\n"; OS << " struct MatchEntry {\n"; OS << " " << getMinimalTypeForRange(MaxMnemonicIndex) << " Mnemonic;\n"; OS << " uint16_t Opcode;\n"; OS << " " << getMinimalTypeForRange(Info.Matchables.size()) << " ConvertFn;\n"; OS << " " << getMinimalRequiredFeaturesType(Info) << " RequiredFeatures;\n"; OS << " " << getMinimalTypeForRange( std::distance(Info.Classes.begin(), Info.Classes.end())) << " Classes[" << MaxNumOperands << "];\n"; OS << " StringRef getMnemonic() const {\n"; OS << " return StringRef(MnemonicTable + Mnemonic + 1,\n"; OS << " MnemonicTable[Mnemonic]);\n"; OS << " }\n"; OS << " };\n\n"; OS << " // Predicate for searching for an opcode.\n"; OS << " struct LessOpcode {\n"; OS << " bool operator()(const MatchEntry &LHS, StringRef RHS) {\n"; OS << " return LHS.getMnemonic() < RHS;\n"; OS << " }\n"; OS << " bool operator()(StringRef LHS, const MatchEntry &RHS) {\n"; OS << " return LHS < RHS.getMnemonic();\n"; OS << " }\n"; OS << " bool operator()(const MatchEntry &LHS, const MatchEntry &RHS) {\n"; OS << " return LHS.getMnemonic() < RHS.getMnemonic();\n"; OS << " }\n"; OS << " };\n"; OS << "} // end anonymous namespace.\n\n"; unsigned VariantCount = Target.getAsmParserVariantCount(); for (unsigned VC = 0; VC != VariantCount; ++VC) { Record *AsmVariant = Target.getAsmParserVariant(VC); int AsmVariantNo = AsmVariant->getValueAsInt("Variant"); OS << "static const MatchEntry MatchTable" << VC << "[] = {\n"; for (const auto &MI : Info.Matchables) { if (MI->AsmVariantID != AsmVariantNo) continue; // Store a pascal-style length byte in the mnemonic. std::string LenMnemonic = char(MI->Mnemonic.size()) + MI->Mnemonic.str(); OS << " { " << StringTable.GetOrAddStringOffset(LenMnemonic, false) << " /* " << MI->Mnemonic << " */, " << Target.getName() << "::" << MI->getResultInst()->TheDef->getName() << ", " << MI->ConversionFnKind << ", "; // Write the required features mask. if (!MI->RequiredFeatures.empty()) { for (unsigned i = 0, e = MI->RequiredFeatures.size(); i != e; ++i) { if (i) OS << "|"; OS << MI->RequiredFeatures[i]->getEnumName(); } } else OS << "0"; OS << ", { "; for (unsigned i = 0, e = MI->AsmOperands.size(); i != e; ++i) { const MatchableInfo::AsmOperand &Op = MI->AsmOperands[i]; if (i) OS << ", "; OS << Op.Class->Name; } OS << " }, },\n"; } OS << "};\n\n"; } // A method to determine if a mnemonic is in the list. if (HasMnemonicFirst) { OS << "bool " << Target.getName() << ClassName << "::\n" << "mnemonicIsValid(StringRef Mnemonic, unsigned VariantID) {\n"; OS << " // Find the appropriate table for this asm variant.\n"; OS << " const MatchEntry *Start, *End;\n"; OS << " switch (VariantID) {\n"; OS << " default: llvm_unreachable(\"invalid variant!\");\n"; for (unsigned VC = 0; VC != VariantCount; ++VC) { Record *AsmVariant = Target.getAsmParserVariant(VC); int AsmVariantNo = AsmVariant->getValueAsInt("Variant"); OS << " case " << AsmVariantNo << ": Start = std::begin(MatchTable" << VC << "); End = std::end(MatchTable" << VC << "); break;\n"; } OS << " }\n"; OS << " // Search the table.\n"; OS << " auto MnemonicRange = "; OS << "std::equal_range(Start, End, Mnemonic, LessOpcode());\n"; OS << " return MnemonicRange.first != MnemonicRange.second;\n"; OS << "}\n\n"; } // Finally, build the match function. OS << "unsigned " << Target.getName() << ClassName << "::\n" << "MatchInstructionImpl(const OperandVector &Operands,\n"; OS << " MCInst &Inst, uint64_t &ErrorInfo,\n" << " bool matchingInlineAsm, unsigned VariantID) {\n"; OS << " // Eliminate obvious mismatches.\n"; OS << " if (Operands.size() > " << (MaxNumOperands + HasMnemonicFirst) << ") {\n"; OS << " ErrorInfo = " << (MaxNumOperands + HasMnemonicFirst) << ";\n"; OS << " return Match_InvalidOperand;\n"; OS << " }\n\n"; // Emit code to get the available features. OS << " // Get the current feature set.\n"; OS << " uint64_t AvailableFeatures = getAvailableFeatures();\n\n"; OS << " // Get the instruction mnemonic, which is the first token.\n"; if (HasMnemonicFirst) { OS << " StringRef Mnemonic = ((" << Target.getName() << "Operand&)*Operands[0]).getToken();\n\n"; } else { OS << " StringRef Mnemonic;\n"; OS << " if (Operands[0]->isToken())\n"; OS << " Mnemonic = ((" << Target.getName() << "Operand&)*Operands[0]).getToken();\n\n"; } if (HasMnemonicAliases) { OS << " // Process all MnemonicAliases to remap the mnemonic.\n"; OS << " applyMnemonicAliases(Mnemonic, AvailableFeatures, VariantID);\n\n"; } // Emit code to compute the class list for this operand vector. OS << " // Some state to try to produce better error messages.\n"; OS << " bool HadMatchOtherThanFeatures = false;\n"; OS << " bool HadMatchOtherThanPredicate = false;\n"; OS << " unsigned RetCode = Match_InvalidOperand;\n"; OS << " uint64_t MissingFeatures = ~0ULL;\n"; if (HasOptionalOperands) { OS << " SmallBitVector OptionalOperandsMask(" << MaxNumOperands << ");\n"; } OS << " // Set ErrorInfo to the operand that mismatches if it is\n"; OS << " // wrong for all instances of the instruction.\n"; OS << " ErrorInfo = ~0ULL;\n"; // Emit code to search the table. OS << " // Find the appropriate table for this asm variant.\n"; OS << " const MatchEntry *Start, *End;\n"; OS << " switch (VariantID) {\n"; OS << " default: llvm_unreachable(\"invalid variant!\");\n"; for (unsigned VC = 0; VC != VariantCount; ++VC) { Record *AsmVariant = Target.getAsmParserVariant(VC); int AsmVariantNo = AsmVariant->getValueAsInt("Variant"); OS << " case " << AsmVariantNo << ": Start = std::begin(MatchTable" << VC << "); End = std::end(MatchTable" << VC << "); break;\n"; } OS << " }\n"; OS << " // Search the table.\n"; if (HasMnemonicFirst) { OS << " auto MnemonicRange = " "std::equal_range(Start, End, Mnemonic, LessOpcode());\n\n"; } else { OS << " auto MnemonicRange = std::make_pair(Start, End);\n"; OS << " unsigned SIndex = Mnemonic.empty() ? 0 : 1;\n"; OS << " if (!Mnemonic.empty())\n"; OS << " MnemonicRange = " "std::equal_range(Start, End, Mnemonic.lower(), LessOpcode());\n\n"; } OS << " // Return a more specific error code if no mnemonics match.\n"; OS << " if (MnemonicRange.first == MnemonicRange.second)\n"; OS << " return Match_MnemonicFail;\n\n"; OS << " for (const MatchEntry *it = MnemonicRange.first, " << "*ie = MnemonicRange.second;\n"; OS << " it != ie; ++it) {\n"; if (HasMnemonicFirst) { OS << " // equal_range guarantees that instruction mnemonic matches.\n"; OS << " assert(Mnemonic == it->getMnemonic());\n"; } // Emit check that the subclasses match. OS << " bool OperandsValid = true;\n"; if (HasOptionalOperands) { OS << " OptionalOperandsMask.reset(0, " << MaxNumOperands << ");\n"; } OS << " for (unsigned FormalIdx = " << (HasMnemonicFirst ? "0" : "SIndex") << ", ActualIdx = " << (HasMnemonicFirst ? "1" : "SIndex") << "; FormalIdx != " << MaxNumOperands << "; ++FormalIdx) {\n"; OS << " auto Formal = " << "static_cast<MatchClassKind>(it->Classes[FormalIdx]);\n"; OS << " if (ActualIdx >= Operands.size()) {\n"; OS << " OperandsValid = (Formal == " <<"InvalidMatchClass) || " "isSubclass(Formal, OptionalMatchClass);\n"; OS << " if (!OperandsValid) ErrorInfo = ActualIdx;\n"; if (HasOptionalOperands) { OS << " OptionalOperandsMask.set(FormalIdx, " << MaxNumOperands << ");\n"; } OS << " break;\n"; OS << " }\n"; OS << " MCParsedAsmOperand &Actual = *Operands[ActualIdx];\n"; OS << " unsigned Diag = validateOperandClass(Actual, Formal);\n"; OS << " if (Diag == Match_Success) {\n"; OS << " ++ActualIdx;\n"; OS << " continue;\n"; OS << " }\n"; OS << " // If the generic handler indicates an invalid operand\n"; OS << " // failure, check for a special case.\n"; OS << " if (Diag == Match_InvalidOperand) {\n"; OS << " Diag = validateTargetOperandClass(Actual, Formal);\n"; OS << " if (Diag == Match_Success) {\n"; OS << " ++ActualIdx;\n"; OS << " continue;\n"; OS << " }\n"; OS << " }\n"; OS << " // If current formal operand wasn't matched and it is optional\n" << " // then try to match next formal operand\n"; OS << " if (Diag == Match_InvalidOperand " << "&& isSubclass(Formal, OptionalMatchClass)) {\n"; if (HasOptionalOperands) { OS << " OptionalOperandsMask.set(FormalIdx);\n"; } OS << " continue;\n"; OS << " }\n"; OS << " // If this operand is broken for all of the instances of this\n"; OS << " // mnemonic, keep track of it so we can report loc info.\n"; OS << " // If we already had a match that only failed due to a\n"; OS << " // target predicate, that diagnostic is preferred.\n"; OS << " if (!HadMatchOtherThanPredicate &&\n"; OS << " (it == MnemonicRange.first || ErrorInfo <= ActualIdx)) {\n"; OS << " ErrorInfo = ActualIdx;\n"; OS << " // InvalidOperand is the default. Prefer specificity.\n"; OS << " if (Diag != Match_InvalidOperand)\n"; OS << " RetCode = Diag;\n"; OS << " }\n"; OS << " // Otherwise, just reject this instance of the mnemonic.\n"; OS << " OperandsValid = false;\n"; OS << " break;\n"; OS << " }\n\n"; OS << " if (!OperandsValid) continue;\n"; // Emit check that the required features are available. OS << " if ((AvailableFeatures & it->RequiredFeatures) " << "!= it->RequiredFeatures) {\n"; OS << " HadMatchOtherThanFeatures = true;\n"; OS << " uint64_t NewMissingFeatures = it->RequiredFeatures & " "~AvailableFeatures;\n"; OS << " if (countPopulation(NewMissingFeatures) <=\n" " countPopulation(MissingFeatures))\n"; OS << " MissingFeatures = NewMissingFeatures;\n"; OS << " continue;\n"; OS << " }\n"; OS << "\n"; OS << " Inst.clear();\n\n"; OS << " if (matchingInlineAsm) {\n"; OS << " Inst.setOpcode(it->Opcode);\n"; OS << " convertToMapAndConstraints(it->ConvertFn, Operands);\n"; OS << " return Match_Success;\n"; OS << " }\n\n"; OS << " // We have selected a definite instruction, convert the parsed\n" << " // operands into the appropriate MCInst.\n"; if (HasOptionalOperands) { OS << " convertToMCInst(it->ConvertFn, Inst, it->Opcode, Operands,\n" << " OptionalOperandsMask);\n"; } else { OS << " convertToMCInst(it->ConvertFn, Inst, it->Opcode, Operands);\n"; } OS << "\n"; // Verify the instruction with the target-specific match predicate function. OS << " // We have a potential match. Check the target predicate to\n" << " // handle any context sensitive constraints.\n" << " unsigned MatchResult;\n" << " if ((MatchResult = checkTargetMatchPredicate(Inst)) !=" << " Match_Success) {\n" << " Inst.clear();\n" << " RetCode = MatchResult;\n" << " HadMatchOtherThanPredicate = true;\n" << " continue;\n" << " }\n\n"; // Call the post-processing function, if used. std::string InsnCleanupFn = AsmParser->getValueAsString("AsmParserInstCleanup"); if (!InsnCleanupFn.empty()) OS << " " << InsnCleanupFn << "(Inst);\n"; if (HasDeprecation) { OS << " std::string Info;\n"; OS << " if (MII.get(Inst.getOpcode()).getDeprecatedInfo(Inst, getSTI(), Info)) {\n"; OS << " SMLoc Loc = ((" << Target.getName() << "Operand&)*Operands[0]).getStartLoc();\n"; OS << " getParser().Warning(Loc, Info, None);\n"; OS << " }\n"; } OS << " return Match_Success;\n"; OS << " }\n\n"; OS << " // Okay, we had no match. Try to return a useful error code.\n"; OS << " if (HadMatchOtherThanPredicate || !HadMatchOtherThanFeatures)\n"; OS << " return RetCode;\n\n"; OS << " // Missing feature matches return which features were missing\n"; OS << " ErrorInfo = MissingFeatures;\n"; OS << " return Match_MissingFeature;\n"; OS << "}\n\n"; if (!Info.OperandMatchInfo.empty()) emitCustomOperandParsing(OS, Target, Info, ClassName, StringTable, MaxMnemonicIndex, HasMnemonicFirst); OS << "#endif // GET_MATCHER_IMPLEMENTATION\n\n"; } namespace llvm { void EmitAsmMatcher(RecordKeeper &RK, raw_ostream &OS) { emitSourceFileHeader("Assembly Matcher Source Fragment", OS); AsmMatcherEmitter(RK).run(OS); } } // end namespace llvm