; RUN: llc -mtriple x86_64-apple-macosx -mcpu=corei7-avx -combiner-stress-load-slicing < %s -o - | FileCheck %s --check-prefix=STRESS ; RUN: llc -mtriple x86_64-apple-macosx -mcpu=corei7-avx < %s -o - | FileCheck %s --check-prefix=REGULAR ; ; <rdar://problem/14477220> %class.Complex = type { float, float } ; Check that independent slices leads to independent loads then the slices leads to ; different register file. ; ; The layout is: ; LSB 0 1 2 3 | 4 5 6 7 MSB ; Low High ; The base address points to 0 and is 8-bytes aligned. ; Low slice starts at 0 (base) and is 8-bytes aligned. ; High slice starts at 4 (base + 4-bytes) and is 4-bytes aligned. ; ; STRESS-LABEL: t1: ; Load out[out_start + 8].real, this is base + 8 * 8 + 0. ; STRESS: vmovss 64([[BASE:[^(]+]]), [[OUT_Real:%xmm[0-9]+]] ; Add low slice: out[out_start].real, this is base + 0. ; STRESS-NEXT: vaddss ([[BASE]]), [[OUT_Real]], [[RES_Real:%xmm[0-9]+]] ; Load out[out_start + 8].imm, this is base + 8 * 8 + 4. ; STRESS-NEXT: vmovss 68([[BASE]]), [[OUT_Imm:%xmm[0-9]+]] ; Add high slice: out[out_start].imm, this is base + 4. ; STRESS-NEXT: vaddss 4([[BASE]]), [[OUT_Imm]], [[RES_Imm:%xmm[0-9]+]] ; Swap Imm and Real. ; STRESS-NEXT: vinsertps $16, [[RES_Imm]], [[RES_Real]], [[RES_Vec:%xmm[0-9]+]] ; Put the results back into out[out_start]. ; STRESS-NEXT: vmovlps [[RES_Vec]], ([[BASE]]) ; ; Same for REGULAR, we eliminate register bank copy with each slices. ; REGULAR-LABEL: t1: ; Load out[out_start + 8].real, this is base + 8 * 8 + 0. ; REGULAR: vmovss 64([[BASE:[^)]+]]), [[OUT_Real:%xmm[0-9]+]] ; Add low slice: out[out_start].real, this is base + 0. ; REGULAR-NEXT: vaddss ([[BASE]]), [[OUT_Real]], [[RES_Real:%xmm[0-9]+]] ; Load out[out_start + 8].imm, this is base + 8 * 8 + 4. ; REGULAR-NEXT: vmovss 68([[BASE]]), [[OUT_Imm:%xmm[0-9]+]] ; Add high slice: out[out_start].imm, this is base + 4. ; REGULAR-NEXT: vaddss 4([[BASE]]), [[OUT_Imm]], [[RES_Imm:%xmm[0-9]+]] ; Swap Imm and Real. ; REGULAR-NEXT: vinsertps $16, [[RES_Imm]], [[RES_Real]], [[RES_Vec:%xmm[0-9]+]] ; Put the results back into out[out_start]. ; REGULAR-NEXT: vmovlps [[RES_Vec]], ([[BASE]]) define void @t1(%class.Complex* nocapture %out, i64 %out_start) { entry: %arrayidx = getelementptr inbounds %class.Complex, %class.Complex* %out, i64 %out_start %tmp = bitcast %class.Complex* %arrayidx to i64* %tmp1 = load i64, i64* %tmp, align 8 %t0.sroa.0.0.extract.trunc = trunc i64 %tmp1 to i32 %tmp2 = bitcast i32 %t0.sroa.0.0.extract.trunc to float %t0.sroa.2.0.extract.shift = lshr i64 %tmp1, 32 %t0.sroa.2.0.extract.trunc = trunc i64 %t0.sroa.2.0.extract.shift to i32 %tmp3 = bitcast i32 %t0.sroa.2.0.extract.trunc to float %add = add i64 %out_start, 8 %arrayidx2 = getelementptr inbounds %class.Complex, %class.Complex* %out, i64 %add %i.i = getelementptr inbounds %class.Complex, %class.Complex* %arrayidx2, i64 0, i32 0 %tmp4 = load float, float* %i.i, align 4 %add.i = fadd float %tmp4, %tmp2 %retval.sroa.0.0.vec.insert.i = insertelement <2 x float> undef, float %add.i, i32 0 %r.i = getelementptr inbounds %class.Complex, %class.Complex* %arrayidx2, i64 0, i32 1 %tmp5 = load float, float* %r.i, align 4 %add5.i = fadd float %tmp5, %tmp3 %retval.sroa.0.4.vec.insert.i = insertelement <2 x float> %retval.sroa.0.0.vec.insert.i, float %add5.i, i32 1 %ref.tmp.sroa.0.0.cast = bitcast %class.Complex* %arrayidx to <2 x float>* store <2 x float> %retval.sroa.0.4.vec.insert.i, <2 x float>* %ref.tmp.sroa.0.0.cast, align 4 ret void } ; Function Attrs: nounwind declare void @llvm.memcpy.p0i8.p0i8.i64(i8* nocapture, i8* nocapture readonly, i64, i32, i1) #1 ; Function Attrs: nounwind declare void @llvm.lifetime.start(i64, i8* nocapture) ; Function Attrs: nounwind declare void @llvm.lifetime.end(i64, i8* nocapture) ; Check that we do not read outside of the chunk of bits of the original loads. ; ; The 64-bits should have been split in one 32-bits and one 16-bits slices. ; The 16-bits should be zero extended to match the final type. ; ; The memory layout is: ; LSB 0 1 2 3 | 4 5 | 6 7 MSB ; Low High ; The base address points to 0 and is 8-bytes aligned. ; Low slice starts at 0 (base) and is 8-bytes aligned. ; High slice starts at 6 (base + 6-bytes) and is 2-bytes aligned. ; ; STRESS-LABEL: t2: ; STRESS: movzwl 6([[BASE:[^)]+]]), %eax ; STRESS-NEXT: addl ([[BASE]]), %eax ; STRESS-NEXT: ret ; ; For the REGULAR heuristic, this is not profitable to slice things that are not ; next to each other in memory. Here we have a hole with bytes #4-5. ; REGULAR-LABEL: t2: ; REGULAR: shrq $48 define i32 @t2(%class.Complex* nocapture %out, i64 %out_start) { %arrayidx = getelementptr inbounds %class.Complex, %class.Complex* %out, i64 %out_start %bitcast = bitcast %class.Complex* %arrayidx to i64* %chunk64 = load i64, i64* %bitcast, align 8 %slice32_low = trunc i64 %chunk64 to i32 %shift48 = lshr i64 %chunk64, 48 %slice32_high = trunc i64 %shift48 to i32 %res = add i32 %slice32_high, %slice32_low ret i32 %res } ; Check that we do not optimize overlapping slices. ; ; The 64-bits should NOT have been split in as slices are overlapping. ; First slice uses bytes numbered 0 to 3. ; Second slice uses bytes numbered 6 and 7. ; Third slice uses bytes numbered 4 to 7. ; ; STRESS-LABEL: t3: ; STRESS: shrq $48 ; STRESS: shrq $32 ; ; REGULAR-LABEL: t3: ; REGULAR: shrq $48 ; REGULAR: shrq $32 define i32 @t3(%class.Complex* nocapture %out, i64 %out_start) { %arrayidx = getelementptr inbounds %class.Complex, %class.Complex* %out, i64 %out_start %bitcast = bitcast %class.Complex* %arrayidx to i64* %chunk64 = load i64, i64* %bitcast, align 8 %slice32_low = trunc i64 %chunk64 to i32 %shift48 = lshr i64 %chunk64, 48 %slice32_high = trunc i64 %shift48 to i32 %shift32 = lshr i64 %chunk64, 32 %slice32_lowhigh = trunc i64 %shift32 to i32 %tmpres = add i32 %slice32_high, %slice32_low %res = add i32 %slice32_lowhigh, %tmpres ret i32 %res }