//===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // This pass implements the Bottom Up SLP vectorizer. It detects consecutive // stores that can be put together into vector-stores. Next, it attempts to // construct vectorizable tree using the use-def chains. If a profitable tree // was found, the SLP vectorizer performs vectorization on the tree. // // The pass is inspired by the work described in the paper: // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Vectorize/SLPVectorizer.h" #include "llvm/ADT/Optional.h" #include "llvm/ADT/PostOrderIterator.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/CodeMetrics.h" #include "llvm/Analysis/GlobalsModRef.h" #include "llvm/Analysis/LoopAccessAnalysis.h" #include "llvm/Analysis/ScalarEvolutionExpressions.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/Analysis/VectorUtils.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Module.h" #include "llvm/IR/NoFolder.h" #include "llvm/IR/Type.h" #include "llvm/IR/Value.h" #include "llvm/IR/Verifier.h" #include "llvm/Pass.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Transforms/Vectorize.h" #include <algorithm> #include <memory> using namespace llvm; using namespace slpvectorizer; #define SV_NAME "slp-vectorizer" #define DEBUG_TYPE "SLP" STATISTIC(NumVectorInstructions, "Number of vector instructions generated"); static cl::opt<int> SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden, cl::desc("Only vectorize if you gain more than this " "number ")); static cl::opt<bool> ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden, cl::desc("Attempt to vectorize horizontal reductions")); static cl::opt<bool> ShouldStartVectorizeHorAtStore( "slp-vectorize-hor-store", cl::init(false), cl::Hidden, cl::desc( "Attempt to vectorize horizontal reductions feeding into a store")); static cl::opt<int> MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden, cl::desc("Attempt to vectorize for this register size in bits")); /// Limits the size of scheduling regions in a block. /// It avoid long compile times for _very_ large blocks where vector /// instructions are spread over a wide range. /// This limit is way higher than needed by real-world functions. static cl::opt<int> ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden, cl::desc("Limit the size of the SLP scheduling region per block")); static cl::opt<int> MinVectorRegSizeOption( "slp-min-reg-size", cl::init(128), cl::Hidden, cl::desc("Attempt to vectorize for this register size in bits")); // FIXME: Set this via cl::opt to allow overriding. static const unsigned RecursionMaxDepth = 12; // Limit the number of alias checks. The limit is chosen so that // it has no negative effect on the llvm benchmarks. static const unsigned AliasedCheckLimit = 10; // Another limit for the alias checks: The maximum distance between load/store // instructions where alias checks are done. // This limit is useful for very large basic blocks. static const unsigned MaxMemDepDistance = 160; /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling /// regions to be handled. static const int MinScheduleRegionSize = 16; /// \brief Predicate for the element types that the SLP vectorizer supports. /// /// The most important thing to filter here are types which are invalid in LLVM /// vectors. We also filter target specific types which have absolutely no /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just /// avoids spending time checking the cost model and realizing that they will /// be inevitably scalarized. static bool isValidElementType(Type *Ty) { return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() && !Ty->isPPC_FP128Ty(); } /// \returns the parent basic block if all of the instructions in \p VL /// are in the same block or null otherwise. static BasicBlock *getSameBlock(ArrayRef<Value *> VL) { Instruction *I0 = dyn_cast<Instruction>(VL[0]); if (!I0) return nullptr; BasicBlock *BB = I0->getParent(); for (int i = 1, e = VL.size(); i < e; i++) { Instruction *I = dyn_cast<Instruction>(VL[i]); if (!I) return nullptr; if (BB != I->getParent()) return nullptr; } return BB; } /// \returns True if all of the values in \p VL are constants. static bool allConstant(ArrayRef<Value *> VL) { for (Value *i : VL) if (!isa<Constant>(i)) return false; return true; } /// \returns True if all of the values in \p VL are identical. static bool isSplat(ArrayRef<Value *> VL) { for (unsigned i = 1, e = VL.size(); i < e; ++i) if (VL[i] != VL[0]) return false; return true; } ///\returns Opcode that can be clubbed with \p Op to create an alternate /// sequence which can later be merged as a ShuffleVector instruction. static unsigned getAltOpcode(unsigned Op) { switch (Op) { case Instruction::FAdd: return Instruction::FSub; case Instruction::FSub: return Instruction::FAdd; case Instruction::Add: return Instruction::Sub; case Instruction::Sub: return Instruction::Add; default: return 0; } } ///\returns bool representing if Opcode \p Op can be part /// of an alternate sequence which can later be merged as /// a ShuffleVector instruction. static bool canCombineAsAltInst(unsigned Op) { return Op == Instruction::FAdd || Op == Instruction::FSub || Op == Instruction::Sub || Op == Instruction::Add; } /// \returns ShuffleVector instruction if instructions in \p VL have /// alternate fadd,fsub / fsub,fadd/add,sub/sub,add sequence. /// (i.e. e.g. opcodes of fadd,fsub,fadd,fsub...) static unsigned isAltInst(ArrayRef<Value *> VL) { Instruction *I0 = dyn_cast<Instruction>(VL[0]); unsigned Opcode = I0->getOpcode(); unsigned AltOpcode = getAltOpcode(Opcode); for (int i = 1, e = VL.size(); i < e; i++) { Instruction *I = dyn_cast<Instruction>(VL[i]); if (!I || I->getOpcode() != ((i & 1) ? AltOpcode : Opcode)) return 0; } return Instruction::ShuffleVector; } /// \returns The opcode if all of the Instructions in \p VL have the same /// opcode, or zero. static unsigned getSameOpcode(ArrayRef<Value *> VL) { Instruction *I0 = dyn_cast<Instruction>(VL[0]); if (!I0) return 0; unsigned Opcode = I0->getOpcode(); for (int i = 1, e = VL.size(); i < e; i++) { Instruction *I = dyn_cast<Instruction>(VL[i]); if (!I || Opcode != I->getOpcode()) { if (canCombineAsAltInst(Opcode) && i == 1) return isAltInst(VL); return 0; } } return Opcode; } /// Get the intersection (logical and) of all of the potential IR flags /// of each scalar operation (VL) that will be converted into a vector (I). /// Flag set: NSW, NUW, exact, and all of fast-math. static void propagateIRFlags(Value *I, ArrayRef<Value *> VL) { if (auto *VecOp = dyn_cast<BinaryOperator>(I)) { if (auto *Intersection = dyn_cast<BinaryOperator>(VL[0])) { // Intersection is initialized to the 0th scalar, // so start counting from index '1'. for (int i = 1, e = VL.size(); i < e; ++i) { if (auto *Scalar = dyn_cast<BinaryOperator>(VL[i])) Intersection->andIRFlags(Scalar); } VecOp->copyIRFlags(Intersection); } } } /// \returns The type that all of the values in \p VL have or null if there /// are different types. static Type* getSameType(ArrayRef<Value *> VL) { Type *Ty = VL[0]->getType(); for (int i = 1, e = VL.size(); i < e; i++) if (VL[i]->getType() != Ty) return nullptr; return Ty; } /// \returns True if Extract{Value,Element} instruction extracts element Idx. static bool matchExtractIndex(Instruction *E, unsigned Idx, unsigned Opcode) { assert(Opcode == Instruction::ExtractElement || Opcode == Instruction::ExtractValue); if (Opcode == Instruction::ExtractElement) { ConstantInt *CI = dyn_cast<ConstantInt>(E->getOperand(1)); return CI && CI->getZExtValue() == Idx; } else { ExtractValueInst *EI = cast<ExtractValueInst>(E); return EI->getNumIndices() == 1 && *EI->idx_begin() == Idx; } } /// \returns True if in-tree use also needs extract. This refers to /// possible scalar operand in vectorized instruction. static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst, TargetLibraryInfo *TLI) { unsigned Opcode = UserInst->getOpcode(); switch (Opcode) { case Instruction::Load: { LoadInst *LI = cast<LoadInst>(UserInst); return (LI->getPointerOperand() == Scalar); } case Instruction::Store: { StoreInst *SI = cast<StoreInst>(UserInst); return (SI->getPointerOperand() == Scalar); } case Instruction::Call: { CallInst *CI = cast<CallInst>(UserInst); Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); if (hasVectorInstrinsicScalarOpd(ID, 1)) { return (CI->getArgOperand(1) == Scalar); } } default: return false; } } /// \returns the AA location that is being access by the instruction. static MemoryLocation getLocation(Instruction *I, AliasAnalysis *AA) { if (StoreInst *SI = dyn_cast<StoreInst>(I)) return MemoryLocation::get(SI); if (LoadInst *LI = dyn_cast<LoadInst>(I)) return MemoryLocation::get(LI); return MemoryLocation(); } /// \returns True if the instruction is not a volatile or atomic load/store. static bool isSimple(Instruction *I) { if (LoadInst *LI = dyn_cast<LoadInst>(I)) return LI->isSimple(); if (StoreInst *SI = dyn_cast<StoreInst>(I)) return SI->isSimple(); if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) return !MI->isVolatile(); return true; } namespace llvm { namespace slpvectorizer { /// Bottom Up SLP Vectorizer. class BoUpSLP { public: typedef SmallVector<Value *, 8> ValueList; typedef SmallVector<Instruction *, 16> InstrList; typedef SmallPtrSet<Value *, 16> ValueSet; typedef SmallVector<StoreInst *, 8> StoreList; BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti, TargetLibraryInfo *TLi, AliasAnalysis *Aa, LoopInfo *Li, DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB, const DataLayout *DL) : NumLoadsWantToKeepOrder(0), NumLoadsWantToChangeOrder(0), F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC), DB(DB), DL(DL), Builder(Se->getContext()) { CodeMetrics::collectEphemeralValues(F, AC, EphValues); // Use the vector register size specified by the target unless overridden // by a command-line option. // TODO: It would be better to limit the vectorization factor based on // data type rather than just register size. For example, x86 AVX has // 256-bit registers, but it does not support integer operations // at that width (that requires AVX2). if (MaxVectorRegSizeOption.getNumOccurrences()) MaxVecRegSize = MaxVectorRegSizeOption; else MaxVecRegSize = TTI->getRegisterBitWidth(true); MinVecRegSize = MinVectorRegSizeOption; } /// \brief Vectorize the tree that starts with the elements in \p VL. /// Returns the vectorized root. Value *vectorizeTree(); /// \returns the cost incurred by unwanted spills and fills, caused by /// holding live values over call sites. int getSpillCost(); /// \returns the vectorization cost of the subtree that starts at \p VL. /// A negative number means that this is profitable. int getTreeCost(); /// Construct a vectorizable tree that starts at \p Roots, ignoring users for /// the purpose of scheduling and extraction in the \p UserIgnoreLst. void buildTree(ArrayRef<Value *> Roots, ArrayRef<Value *> UserIgnoreLst = None); /// Clear the internal data structures that are created by 'buildTree'. void deleteTree() { VectorizableTree.clear(); ScalarToTreeEntry.clear(); MustGather.clear(); ExternalUses.clear(); NumLoadsWantToKeepOrder = 0; NumLoadsWantToChangeOrder = 0; for (auto &Iter : BlocksSchedules) { BlockScheduling *BS = Iter.second.get(); BS->clear(); } MinBWs.clear(); } /// \brief Perform LICM and CSE on the newly generated gather sequences. void optimizeGatherSequence(); /// \returns true if it is beneficial to reverse the vector order. bool shouldReorder() const { return NumLoadsWantToChangeOrder > NumLoadsWantToKeepOrder; } /// \return The vector element size in bits to use when vectorizing the /// expression tree ending at \p V. If V is a store, the size is the width of /// the stored value. Otherwise, the size is the width of the largest loaded /// value reaching V. This method is used by the vectorizer to calculate /// vectorization factors. unsigned getVectorElementSize(Value *V); /// Compute the minimum type sizes required to represent the entries in a /// vectorizable tree. void computeMinimumValueSizes(); // \returns maximum vector register size as set by TTI or overridden by cl::opt. unsigned getMaxVecRegSize() const { return MaxVecRegSize; } // \returns minimum vector register size as set by cl::opt. unsigned getMinVecRegSize() const { return MinVecRegSize; } /// \brief Check if ArrayType or StructType is isomorphic to some VectorType. /// /// \returns number of elements in vector if isomorphism exists, 0 otherwise. unsigned canMapToVector(Type *T, const DataLayout &DL) const; private: struct TreeEntry; /// \returns the cost of the vectorizable entry. int getEntryCost(TreeEntry *E); /// This is the recursive part of buildTree. void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth); /// \returns True if the ExtractElement/ExtractValue instructions in VL can /// be vectorized to use the original vector (or aggregate "bitcast" to a vector). bool canReuseExtract(ArrayRef<Value *> VL, unsigned Opcode) const; /// Vectorize a single entry in the tree. Value *vectorizeTree(TreeEntry *E); /// Vectorize a single entry in the tree, starting in \p VL. Value *vectorizeTree(ArrayRef<Value *> VL); /// \returns the pointer to the vectorized value if \p VL is already /// vectorized, or NULL. They may happen in cycles. Value *alreadyVectorized(ArrayRef<Value *> VL) const; /// \returns the scalarization cost for this type. Scalarization in this /// context means the creation of vectors from a group of scalars. int getGatherCost(Type *Ty); /// \returns the scalarization cost for this list of values. Assuming that /// this subtree gets vectorized, we may need to extract the values from the /// roots. This method calculates the cost of extracting the values. int getGatherCost(ArrayRef<Value *> VL); /// \brief Set the Builder insert point to one after the last instruction in /// the bundle void setInsertPointAfterBundle(ArrayRef<Value *> VL); /// \returns a vector from a collection of scalars in \p VL. Value *Gather(ArrayRef<Value *> VL, VectorType *Ty); /// \returns whether the VectorizableTree is fully vectorizable and will /// be beneficial even the tree height is tiny. bool isFullyVectorizableTinyTree(); /// \reorder commutative operands in alt shuffle if they result in /// vectorized code. void reorderAltShuffleOperands(ArrayRef<Value *> VL, SmallVectorImpl<Value *> &Left, SmallVectorImpl<Value *> &Right); /// \reorder commutative operands to get better probability of /// generating vectorized code. void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, SmallVectorImpl<Value *> &Left, SmallVectorImpl<Value *> &Right); struct TreeEntry { TreeEntry() : Scalars(), VectorizedValue(nullptr), NeedToGather(0) {} /// \returns true if the scalars in VL are equal to this entry. bool isSame(ArrayRef<Value *> VL) const { assert(VL.size() == Scalars.size() && "Invalid size"); return std::equal(VL.begin(), VL.end(), Scalars.begin()); } /// A vector of scalars. ValueList Scalars; /// The Scalars are vectorized into this value. It is initialized to Null. Value *VectorizedValue; /// Do we need to gather this sequence ? bool NeedToGather; }; /// Create a new VectorizableTree entry. TreeEntry *newTreeEntry(ArrayRef<Value *> VL, bool Vectorized) { VectorizableTree.emplace_back(); int idx = VectorizableTree.size() - 1; TreeEntry *Last = &VectorizableTree[idx]; Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end()); Last->NeedToGather = !Vectorized; if (Vectorized) { for (int i = 0, e = VL.size(); i != e; ++i) { assert(!ScalarToTreeEntry.count(VL[i]) && "Scalar already in tree!"); ScalarToTreeEntry[VL[i]] = idx; } } else { MustGather.insert(VL.begin(), VL.end()); } return Last; } /// -- Vectorization State -- /// Holds all of the tree entries. std::vector<TreeEntry> VectorizableTree; /// Maps a specific scalar to its tree entry. SmallDenseMap<Value*, int> ScalarToTreeEntry; /// A list of scalars that we found that we need to keep as scalars. ValueSet MustGather; /// This POD struct describes one external user in the vectorized tree. struct ExternalUser { ExternalUser (Value *S, llvm::User *U, int L) : Scalar(S), User(U), Lane(L){} // Which scalar in our function. Value *Scalar; // Which user that uses the scalar. llvm::User *User; // Which lane does the scalar belong to. int Lane; }; typedef SmallVector<ExternalUser, 16> UserList; /// Checks if two instructions may access the same memory. /// /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it /// is invariant in the calling loop. bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1, Instruction *Inst2) { // First check if the result is already in the cache. AliasCacheKey key = std::make_pair(Inst1, Inst2); Optional<bool> &result = AliasCache[key]; if (result.hasValue()) { return result.getValue(); } MemoryLocation Loc2 = getLocation(Inst2, AA); bool aliased = true; if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) { // Do the alias check. aliased = AA->alias(Loc1, Loc2); } // Store the result in the cache. result = aliased; return aliased; } typedef std::pair<Instruction *, Instruction *> AliasCacheKey; /// Cache for alias results. /// TODO: consider moving this to the AliasAnalysis itself. DenseMap<AliasCacheKey, Optional<bool>> AliasCache; /// Removes an instruction from its block and eventually deletes it. /// It's like Instruction::eraseFromParent() except that the actual deletion /// is delayed until BoUpSLP is destructed. /// This is required to ensure that there are no incorrect collisions in the /// AliasCache, which can happen if a new instruction is allocated at the /// same address as a previously deleted instruction. void eraseInstruction(Instruction *I) { I->removeFromParent(); I->dropAllReferences(); DeletedInstructions.push_back(std::unique_ptr<Instruction>(I)); } /// Temporary store for deleted instructions. Instructions will be deleted /// eventually when the BoUpSLP is destructed. SmallVector<std::unique_ptr<Instruction>, 8> DeletedInstructions; /// A list of values that need to extracted out of the tree. /// This list holds pairs of (Internal Scalar : External User). UserList ExternalUses; /// Values used only by @llvm.assume calls. SmallPtrSet<const Value *, 32> EphValues; /// Holds all of the instructions that we gathered. SetVector<Instruction *> GatherSeq; /// A list of blocks that we are going to CSE. SetVector<BasicBlock *> CSEBlocks; /// Contains all scheduling relevant data for an instruction. /// A ScheduleData either represents a single instruction or a member of an /// instruction bundle (= a group of instructions which is combined into a /// vector instruction). struct ScheduleData { // The initial value for the dependency counters. It means that the // dependencies are not calculated yet. enum { InvalidDeps = -1 }; ScheduleData() : Inst(nullptr), FirstInBundle(nullptr), NextInBundle(nullptr), NextLoadStore(nullptr), SchedulingRegionID(0), SchedulingPriority(0), Dependencies(InvalidDeps), UnscheduledDeps(InvalidDeps), UnscheduledDepsInBundle(InvalidDeps), IsScheduled(false) {} void init(int BlockSchedulingRegionID) { FirstInBundle = this; NextInBundle = nullptr; NextLoadStore = nullptr; IsScheduled = false; SchedulingRegionID = BlockSchedulingRegionID; UnscheduledDepsInBundle = UnscheduledDeps; clearDependencies(); } /// Returns true if the dependency information has been calculated. bool hasValidDependencies() const { return Dependencies != InvalidDeps; } /// Returns true for single instructions and for bundle representatives /// (= the head of a bundle). bool isSchedulingEntity() const { return FirstInBundle == this; } /// Returns true if it represents an instruction bundle and not only a /// single instruction. bool isPartOfBundle() const { return NextInBundle != nullptr || FirstInBundle != this; } /// Returns true if it is ready for scheduling, i.e. it has no more /// unscheduled depending instructions/bundles. bool isReady() const { assert(isSchedulingEntity() && "can't consider non-scheduling entity for ready list"); return UnscheduledDepsInBundle == 0 && !IsScheduled; } /// Modifies the number of unscheduled dependencies, also updating it for /// the whole bundle. int incrementUnscheduledDeps(int Incr) { UnscheduledDeps += Incr; return FirstInBundle->UnscheduledDepsInBundle += Incr; } /// Sets the number of unscheduled dependencies to the number of /// dependencies. void resetUnscheduledDeps() { incrementUnscheduledDeps(Dependencies - UnscheduledDeps); } /// Clears all dependency information. void clearDependencies() { Dependencies = InvalidDeps; resetUnscheduledDeps(); MemoryDependencies.clear(); } void dump(raw_ostream &os) const { if (!isSchedulingEntity()) { os << "/ " << *Inst; } else if (NextInBundle) { os << '[' << *Inst; ScheduleData *SD = NextInBundle; while (SD) { os << ';' << *SD->Inst; SD = SD->NextInBundle; } os << ']'; } else { os << *Inst; } } Instruction *Inst; /// Points to the head in an instruction bundle (and always to this for /// single instructions). ScheduleData *FirstInBundle; /// Single linked list of all instructions in a bundle. Null if it is a /// single instruction. ScheduleData *NextInBundle; /// Single linked list of all memory instructions (e.g. load, store, call) /// in the block - until the end of the scheduling region. ScheduleData *NextLoadStore; /// The dependent memory instructions. /// This list is derived on demand in calculateDependencies(). SmallVector<ScheduleData *, 4> MemoryDependencies; /// This ScheduleData is in the current scheduling region if this matches /// the current SchedulingRegionID of BlockScheduling. int SchedulingRegionID; /// Used for getting a "good" final ordering of instructions. int SchedulingPriority; /// The number of dependencies. Constitutes of the number of users of the /// instruction plus the number of dependent memory instructions (if any). /// This value is calculated on demand. /// If InvalidDeps, the number of dependencies is not calculated yet. /// int Dependencies; /// The number of dependencies minus the number of dependencies of scheduled /// instructions. As soon as this is zero, the instruction/bundle gets ready /// for scheduling. /// Note that this is negative as long as Dependencies is not calculated. int UnscheduledDeps; /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for /// single instructions. int UnscheduledDepsInBundle; /// True if this instruction is scheduled (or considered as scheduled in the /// dry-run). bool IsScheduled; }; #ifndef NDEBUG friend inline raw_ostream &operator<<(raw_ostream &os, const BoUpSLP::ScheduleData &SD) { SD.dump(os); return os; } #endif /// Contains all scheduling data for a basic block. /// struct BlockScheduling { BlockScheduling(BasicBlock *BB) : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize), ScheduleStart(nullptr), ScheduleEnd(nullptr), FirstLoadStoreInRegion(nullptr), LastLoadStoreInRegion(nullptr), ScheduleRegionSize(0), ScheduleRegionSizeLimit(ScheduleRegionSizeBudget), // Make sure that the initial SchedulingRegionID is greater than the // initial SchedulingRegionID in ScheduleData (which is 0). SchedulingRegionID(1) {} void clear() { ReadyInsts.clear(); ScheduleStart = nullptr; ScheduleEnd = nullptr; FirstLoadStoreInRegion = nullptr; LastLoadStoreInRegion = nullptr; // Reduce the maximum schedule region size by the size of the // previous scheduling run. ScheduleRegionSizeLimit -= ScheduleRegionSize; if (ScheduleRegionSizeLimit < MinScheduleRegionSize) ScheduleRegionSizeLimit = MinScheduleRegionSize; ScheduleRegionSize = 0; // Make a new scheduling region, i.e. all existing ScheduleData is not // in the new region yet. ++SchedulingRegionID; } ScheduleData *getScheduleData(Value *V) { ScheduleData *SD = ScheduleDataMap[V]; if (SD && SD->SchedulingRegionID == SchedulingRegionID) return SD; return nullptr; } bool isInSchedulingRegion(ScheduleData *SD) { return SD->SchedulingRegionID == SchedulingRegionID; } /// Marks an instruction as scheduled and puts all dependent ready /// instructions into the ready-list. template <typename ReadyListType> void schedule(ScheduleData *SD, ReadyListType &ReadyList) { SD->IsScheduled = true; DEBUG(dbgs() << "SLP: schedule " << *SD << "\n"); ScheduleData *BundleMember = SD; while (BundleMember) { // Handle the def-use chain dependencies. for (Use &U : BundleMember->Inst->operands()) { ScheduleData *OpDef = getScheduleData(U.get()); if (OpDef && OpDef->hasValidDependencies() && OpDef->incrementUnscheduledDeps(-1) == 0) { // There are no more unscheduled dependencies after decrementing, // so we can put the dependent instruction into the ready list. ScheduleData *DepBundle = OpDef->FirstInBundle; assert(!DepBundle->IsScheduled && "already scheduled bundle gets ready"); ReadyList.insert(DepBundle); DEBUG(dbgs() << "SLP: gets ready (def): " << *DepBundle << "\n"); } } // Handle the memory dependencies. for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) { if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) { // There are no more unscheduled dependencies after decrementing, // so we can put the dependent instruction into the ready list. ScheduleData *DepBundle = MemoryDepSD->FirstInBundle; assert(!DepBundle->IsScheduled && "already scheduled bundle gets ready"); ReadyList.insert(DepBundle); DEBUG(dbgs() << "SLP: gets ready (mem): " << *DepBundle << "\n"); } } BundleMember = BundleMember->NextInBundle; } } /// Put all instructions into the ReadyList which are ready for scheduling. template <typename ReadyListType> void initialFillReadyList(ReadyListType &ReadyList) { for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { ScheduleData *SD = getScheduleData(I); if (SD->isSchedulingEntity() && SD->isReady()) { ReadyList.insert(SD); DEBUG(dbgs() << "SLP: initially in ready list: " << *I << "\n"); } } } /// Checks if a bundle of instructions can be scheduled, i.e. has no /// cyclic dependencies. This is only a dry-run, no instructions are /// actually moved at this stage. bool tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP); /// Un-bundles a group of instructions. void cancelScheduling(ArrayRef<Value *> VL); /// Extends the scheduling region so that V is inside the region. /// \returns true if the region size is within the limit. bool extendSchedulingRegion(Value *V); /// Initialize the ScheduleData structures for new instructions in the /// scheduling region. void initScheduleData(Instruction *FromI, Instruction *ToI, ScheduleData *PrevLoadStore, ScheduleData *NextLoadStore); /// Updates the dependency information of a bundle and of all instructions/ /// bundles which depend on the original bundle. void calculateDependencies(ScheduleData *SD, bool InsertInReadyList, BoUpSLP *SLP); /// Sets all instruction in the scheduling region to un-scheduled. void resetSchedule(); BasicBlock *BB; /// Simple memory allocation for ScheduleData. std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks; /// The size of a ScheduleData array in ScheduleDataChunks. int ChunkSize; /// The allocator position in the current chunk, which is the last entry /// of ScheduleDataChunks. int ChunkPos; /// Attaches ScheduleData to Instruction. /// Note that the mapping survives during all vectorization iterations, i.e. /// ScheduleData structures are recycled. DenseMap<Value *, ScheduleData *> ScheduleDataMap; struct ReadyList : SmallVector<ScheduleData *, 8> { void insert(ScheduleData *SD) { push_back(SD); } }; /// The ready-list for scheduling (only used for the dry-run). ReadyList ReadyInsts; /// The first instruction of the scheduling region. Instruction *ScheduleStart; /// The first instruction _after_ the scheduling region. Instruction *ScheduleEnd; /// The first memory accessing instruction in the scheduling region /// (can be null). ScheduleData *FirstLoadStoreInRegion; /// The last memory accessing instruction in the scheduling region /// (can be null). ScheduleData *LastLoadStoreInRegion; /// The current size of the scheduling region. int ScheduleRegionSize; /// The maximum size allowed for the scheduling region. int ScheduleRegionSizeLimit; /// The ID of the scheduling region. For a new vectorization iteration this /// is incremented which "removes" all ScheduleData from the region. int SchedulingRegionID; }; /// Attaches the BlockScheduling structures to basic blocks. MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules; /// Performs the "real" scheduling. Done before vectorization is actually /// performed in a basic block. void scheduleBlock(BlockScheduling *BS); /// List of users to ignore during scheduling and that don't need extracting. ArrayRef<Value *> UserIgnoreList; // Number of load-bundles, which contain consecutive loads. int NumLoadsWantToKeepOrder; // Number of load-bundles of size 2, which are consecutive loads if reversed. int NumLoadsWantToChangeOrder; // Analysis and block reference. Function *F; ScalarEvolution *SE; TargetTransformInfo *TTI; TargetLibraryInfo *TLI; AliasAnalysis *AA; LoopInfo *LI; DominatorTree *DT; AssumptionCache *AC; DemandedBits *DB; const DataLayout *DL; unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt. unsigned MinVecRegSize; // Set by cl::opt (default: 128). /// Instruction builder to construct the vectorized tree. IRBuilder<> Builder; /// A map of scalar integer values to the smallest bit width with which they /// can legally be represented. MapVector<Value *, uint64_t> MinBWs; }; } // end namespace llvm } // end namespace slpvectorizer void BoUpSLP::buildTree(ArrayRef<Value *> Roots, ArrayRef<Value *> UserIgnoreLst) { deleteTree(); UserIgnoreList = UserIgnoreLst; if (!getSameType(Roots)) return; buildTree_rec(Roots, 0); // Collect the values that we need to extract from the tree. for (TreeEntry &EIdx : VectorizableTree) { TreeEntry *Entry = &EIdx; // For each lane: for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { Value *Scalar = Entry->Scalars[Lane]; // No need to handle users of gathered values. if (Entry->NeedToGather) continue; for (User *U : Scalar->users()) { DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n"); Instruction *UserInst = dyn_cast<Instruction>(U); if (!UserInst) continue; // Skip in-tree scalars that become vectors if (ScalarToTreeEntry.count(U)) { int Idx = ScalarToTreeEntry[U]; TreeEntry *UseEntry = &VectorizableTree[Idx]; Value *UseScalar = UseEntry->Scalars[0]; // Some in-tree scalars will remain as scalar in vectorized // instructions. If that is the case, the one in Lane 0 will // be used. if (UseScalar != U || !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) { DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U << ".\n"); assert(!VectorizableTree[Idx].NeedToGather && "Bad state"); continue; } } // Ignore users in the user ignore list. if (std::find(UserIgnoreList.begin(), UserIgnoreList.end(), UserInst) != UserIgnoreList.end()) continue; DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " << Lane << " from " << *Scalar << ".\n"); ExternalUses.push_back(ExternalUser(Scalar, U, Lane)); } } } } void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) { bool SameTy = allConstant(VL) || getSameType(VL); (void)SameTy; bool isAltShuffle = false; assert(SameTy && "Invalid types!"); if (Depth == RecursionMaxDepth) { DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n"); newTreeEntry(VL, false); return; } // Don't handle vectors. if (VL[0]->getType()->isVectorTy()) { DEBUG(dbgs() << "SLP: Gathering due to vector type.\n"); newTreeEntry(VL, false); return; } if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) if (SI->getValueOperand()->getType()->isVectorTy()) { DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n"); newTreeEntry(VL, false); return; } unsigned Opcode = getSameOpcode(VL); // Check that this shuffle vector refers to the alternate // sequence of opcodes. if (Opcode == Instruction::ShuffleVector) { Instruction *I0 = dyn_cast<Instruction>(VL[0]); unsigned Op = I0->getOpcode(); if (Op != Instruction::ShuffleVector) isAltShuffle = true; } // If all of the operands are identical or constant we have a simple solution. if (allConstant(VL) || isSplat(VL) || !getSameBlock(VL) || !Opcode) { DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n"); newTreeEntry(VL, false); return; } // We now know that this is a vector of instructions of the same type from // the same block. // Don't vectorize ephemeral values. for (unsigned i = 0, e = VL.size(); i != e; ++i) { if (EphValues.count(VL[i])) { DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] << ") is ephemeral.\n"); newTreeEntry(VL, false); return; } } // Check if this is a duplicate of another entry. if (ScalarToTreeEntry.count(VL[0])) { int Idx = ScalarToTreeEntry[VL[0]]; TreeEntry *E = &VectorizableTree[Idx]; for (unsigned i = 0, e = VL.size(); i != e; ++i) { DEBUG(dbgs() << "SLP: \tChecking bundle: " << *VL[i] << ".\n"); if (E->Scalars[i] != VL[i]) { DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n"); newTreeEntry(VL, false); return; } } DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *VL[0] << ".\n"); return; } // Check that none of the instructions in the bundle are already in the tree. for (unsigned i = 0, e = VL.size(); i != e; ++i) { if (ScalarToTreeEntry.count(VL[i])) { DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] << ") is already in tree.\n"); newTreeEntry(VL, false); return; } } // If any of the scalars is marked as a value that needs to stay scalar then // we need to gather the scalars. for (unsigned i = 0, e = VL.size(); i != e; ++i) { if (MustGather.count(VL[i])) { DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n"); newTreeEntry(VL, false); return; } } // Check that all of the users of the scalars that we want to vectorize are // schedulable. Instruction *VL0 = cast<Instruction>(VL[0]); BasicBlock *BB = cast<Instruction>(VL0)->getParent(); if (!DT->isReachableFromEntry(BB)) { // Don't go into unreachable blocks. They may contain instructions with // dependency cycles which confuse the final scheduling. DEBUG(dbgs() << "SLP: bundle in unreachable block.\n"); newTreeEntry(VL, false); return; } // Check that every instructions appears once in this bundle. for (unsigned i = 0, e = VL.size(); i < e; ++i) for (unsigned j = i+1; j < e; ++j) if (VL[i] == VL[j]) { DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n"); newTreeEntry(VL, false); return; } auto &BSRef = BlocksSchedules[BB]; if (!BSRef) { BSRef = llvm::make_unique<BlockScheduling>(BB); } BlockScheduling &BS = *BSRef.get(); if (!BS.tryScheduleBundle(VL, this)) { DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n"); assert((!BS.getScheduleData(VL[0]) || !BS.getScheduleData(VL[0])->isPartOfBundle()) && "tryScheduleBundle should cancelScheduling on failure"); newTreeEntry(VL, false); return; } DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n"); switch (Opcode) { case Instruction::PHI: { PHINode *PH = dyn_cast<PHINode>(VL0); // Check for terminator values (e.g. invoke). for (unsigned j = 0; j < VL.size(); ++j) for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { TerminatorInst *Term = dyn_cast<TerminatorInst>( cast<PHINode>(VL[j])->getIncomingValueForBlock(PH->getIncomingBlock(i))); if (Term) { DEBUG(dbgs() << "SLP: Need to swizzle PHINodes (TerminatorInst use).\n"); BS.cancelScheduling(VL); newTreeEntry(VL, false); return; } } newTreeEntry(VL, true); DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n"); for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { ValueList Operands; // Prepare the operand vector. for (Value *j : VL) Operands.push_back(cast<PHINode>(j)->getIncomingValueForBlock( PH->getIncomingBlock(i))); buildTree_rec(Operands, Depth + 1); } return; } case Instruction::ExtractValue: case Instruction::ExtractElement: { bool Reuse = canReuseExtract(VL, Opcode); if (Reuse) { DEBUG(dbgs() << "SLP: Reusing extract sequence.\n"); } else { BS.cancelScheduling(VL); } newTreeEntry(VL, Reuse); return; } case Instruction::Load: { // Check that a vectorized load would load the same memory as a scalar // load. // For example we don't want vectorize loads that are smaller than 8 bit. // Even though we have a packed struct {<i2, i2, i2, i2>} LLVM treats // loading/storing it as an i8 struct. If we vectorize loads/stores from // such a struct we read/write packed bits disagreeing with the // unvectorized version. Type *ScalarTy = VL[0]->getType(); if (DL->getTypeSizeInBits(ScalarTy) != DL->getTypeAllocSizeInBits(ScalarTy)) { BS.cancelScheduling(VL); newTreeEntry(VL, false); DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n"); return; } // Check if the loads are consecutive or of we need to swizzle them. for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) { LoadInst *L = cast<LoadInst>(VL[i]); if (!L->isSimple()) { BS.cancelScheduling(VL); newTreeEntry(VL, false); DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n"); return; } if (!isConsecutiveAccess(VL[i], VL[i + 1], *DL, *SE)) { if (VL.size() == 2 && isConsecutiveAccess(VL[1], VL[0], *DL, *SE)) { ++NumLoadsWantToChangeOrder; } BS.cancelScheduling(VL); newTreeEntry(VL, false); DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n"); return; } } ++NumLoadsWantToKeepOrder; newTreeEntry(VL, true); DEBUG(dbgs() << "SLP: added a vector of loads.\n"); return; } case Instruction::ZExt: case Instruction::SExt: case Instruction::FPToUI: case Instruction::FPToSI: case Instruction::FPExt: case Instruction::PtrToInt: case Instruction::IntToPtr: case Instruction::SIToFP: case Instruction::UIToFP: case Instruction::Trunc: case Instruction::FPTrunc: case Instruction::BitCast: { Type *SrcTy = VL0->getOperand(0)->getType(); for (unsigned i = 0; i < VL.size(); ++i) { Type *Ty = cast<Instruction>(VL[i])->getOperand(0)->getType(); if (Ty != SrcTy || !isValidElementType(Ty)) { BS.cancelScheduling(VL); newTreeEntry(VL, false); DEBUG(dbgs() << "SLP: Gathering casts with different src types.\n"); return; } } newTreeEntry(VL, true); DEBUG(dbgs() << "SLP: added a vector of casts.\n"); for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { ValueList Operands; // Prepare the operand vector. for (Value *j : VL) Operands.push_back(cast<Instruction>(j)->getOperand(i)); buildTree_rec(Operands, Depth+1); } return; } case Instruction::ICmp: case Instruction::FCmp: { // Check that all of the compares have the same predicate. CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); Type *ComparedTy = cast<Instruction>(VL[0])->getOperand(0)->getType(); for (unsigned i = 1, e = VL.size(); i < e; ++i) { CmpInst *Cmp = cast<CmpInst>(VL[i]); if (Cmp->getPredicate() != P0 || Cmp->getOperand(0)->getType() != ComparedTy) { BS.cancelScheduling(VL); newTreeEntry(VL, false); DEBUG(dbgs() << "SLP: Gathering cmp with different predicate.\n"); return; } } newTreeEntry(VL, true); DEBUG(dbgs() << "SLP: added a vector of compares.\n"); for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { ValueList Operands; // Prepare the operand vector. for (Value *j : VL) Operands.push_back(cast<Instruction>(j)->getOperand(i)); buildTree_rec(Operands, Depth+1); } return; } case Instruction::Select: case Instruction::Add: case Instruction::FAdd: case Instruction::Sub: case Instruction::FSub: case Instruction::Mul: case Instruction::FMul: case Instruction::UDiv: case Instruction::SDiv: case Instruction::FDiv: case Instruction::URem: case Instruction::SRem: case Instruction::FRem: case Instruction::Shl: case Instruction::LShr: case Instruction::AShr: case Instruction::And: case Instruction::Or: case Instruction::Xor: { newTreeEntry(VL, true); DEBUG(dbgs() << "SLP: added a vector of bin op.\n"); // Sort operands of the instructions so that each side is more likely to // have the same opcode. if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) { ValueList Left, Right; reorderInputsAccordingToOpcode(VL, Left, Right); buildTree_rec(Left, Depth + 1); buildTree_rec(Right, Depth + 1); return; } for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { ValueList Operands; // Prepare the operand vector. for (Value *j : VL) Operands.push_back(cast<Instruction>(j)->getOperand(i)); buildTree_rec(Operands, Depth+1); } return; } case Instruction::GetElementPtr: { // We don't combine GEPs with complicated (nested) indexing. for (unsigned j = 0; j < VL.size(); ++j) { if (cast<Instruction>(VL[j])->getNumOperands() != 2) { DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"); BS.cancelScheduling(VL); newTreeEntry(VL, false); return; } } // We can't combine several GEPs into one vector if they operate on // different types. Type *Ty0 = cast<Instruction>(VL0)->getOperand(0)->getType(); for (unsigned j = 0; j < VL.size(); ++j) { Type *CurTy = cast<Instruction>(VL[j])->getOperand(0)->getType(); if (Ty0 != CurTy) { DEBUG(dbgs() << "SLP: not-vectorizable GEP (different types).\n"); BS.cancelScheduling(VL); newTreeEntry(VL, false); return; } } // We don't combine GEPs with non-constant indexes. for (unsigned j = 0; j < VL.size(); ++j) { auto Op = cast<Instruction>(VL[j])->getOperand(1); if (!isa<ConstantInt>(Op)) { DEBUG( dbgs() << "SLP: not-vectorizable GEP (non-constant indexes).\n"); BS.cancelScheduling(VL); newTreeEntry(VL, false); return; } } newTreeEntry(VL, true); DEBUG(dbgs() << "SLP: added a vector of GEPs.\n"); for (unsigned i = 0, e = 2; i < e; ++i) { ValueList Operands; // Prepare the operand vector. for (Value *j : VL) Operands.push_back(cast<Instruction>(j)->getOperand(i)); buildTree_rec(Operands, Depth + 1); } return; } case Instruction::Store: { // Check if the stores are consecutive or of we need to swizzle them. for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) if (!isConsecutiveAccess(VL[i], VL[i + 1], *DL, *SE)) { BS.cancelScheduling(VL); newTreeEntry(VL, false); DEBUG(dbgs() << "SLP: Non-consecutive store.\n"); return; } newTreeEntry(VL, true); DEBUG(dbgs() << "SLP: added a vector of stores.\n"); ValueList Operands; for (Value *j : VL) Operands.push_back(cast<Instruction>(j)->getOperand(0)); buildTree_rec(Operands, Depth + 1); return; } case Instruction::Call: { // Check if the calls are all to the same vectorizable intrinsic. CallInst *CI = cast<CallInst>(VL[0]); // Check if this is an Intrinsic call or something that can be // represented by an intrinsic call Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); if (!isTriviallyVectorizable(ID)) { BS.cancelScheduling(VL); newTreeEntry(VL, false); DEBUG(dbgs() << "SLP: Non-vectorizable call.\n"); return; } Function *Int = CI->getCalledFunction(); Value *A1I = nullptr; if (hasVectorInstrinsicScalarOpd(ID, 1)) A1I = CI->getArgOperand(1); for (unsigned i = 1, e = VL.size(); i != e; ++i) { CallInst *CI2 = dyn_cast<CallInst>(VL[i]); if (!CI2 || CI2->getCalledFunction() != Int || getVectorIntrinsicIDForCall(CI2, TLI) != ID || !CI->hasIdenticalOperandBundleSchema(*CI2)) { BS.cancelScheduling(VL); newTreeEntry(VL, false); DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *VL[i] << "\n"); return; } // ctlz,cttz and powi are special intrinsics whose second argument // should be same in order for them to be vectorized. if (hasVectorInstrinsicScalarOpd(ID, 1)) { Value *A1J = CI2->getArgOperand(1); if (A1I != A1J) { BS.cancelScheduling(VL); newTreeEntry(VL, false); DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI << " argument "<< A1I<<"!=" << A1J << "\n"); return; } } // Verify that the bundle operands are identical between the two calls. if (CI->hasOperandBundles() && !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(), CI->op_begin() + CI->getBundleOperandsEndIndex(), CI2->op_begin() + CI2->getBundleOperandsStartIndex())) { BS.cancelScheduling(VL); newTreeEntry(VL, false); DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" << *CI << "!=" << *VL[i] << '\n'); return; } } newTreeEntry(VL, true); for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) { ValueList Operands; // Prepare the operand vector. for (Value *j : VL) { CallInst *CI2 = dyn_cast<CallInst>(j); Operands.push_back(CI2->getArgOperand(i)); } buildTree_rec(Operands, Depth + 1); } return; } case Instruction::ShuffleVector: { // If this is not an alternate sequence of opcode like add-sub // then do not vectorize this instruction. if (!isAltShuffle) { BS.cancelScheduling(VL); newTreeEntry(VL, false); DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n"); return; } newTreeEntry(VL, true); DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n"); // Reorder operands if reordering would enable vectorization. if (isa<BinaryOperator>(VL0)) { ValueList Left, Right; reorderAltShuffleOperands(VL, Left, Right); buildTree_rec(Left, Depth + 1); buildTree_rec(Right, Depth + 1); return; } for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) { ValueList Operands; // Prepare the operand vector. for (Value *j : VL) Operands.push_back(cast<Instruction>(j)->getOperand(i)); buildTree_rec(Operands, Depth + 1); } return; } default: BS.cancelScheduling(VL); newTreeEntry(VL, false); DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n"); return; } } unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const { unsigned N; Type *EltTy; auto *ST = dyn_cast<StructType>(T); if (ST) { N = ST->getNumElements(); EltTy = *ST->element_begin(); } else { N = cast<ArrayType>(T)->getNumElements(); EltTy = cast<ArrayType>(T)->getElementType(); } if (!isValidElementType(EltTy)) return 0; uint64_t VTSize = DL.getTypeStoreSizeInBits(VectorType::get(EltTy, N)); if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T)) return 0; if (ST) { // Check that struct is homogeneous. for (const auto *Ty : ST->elements()) if (Ty != EltTy) return 0; } return N; } bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, unsigned Opcode) const { assert(Opcode == Instruction::ExtractElement || Opcode == Instruction::ExtractValue); assert(Opcode == getSameOpcode(VL) && "Invalid opcode"); // Check if all of the extracts come from the same vector and from the // correct offset. Value *VL0 = VL[0]; Instruction *E0 = cast<Instruction>(VL0); Value *Vec = E0->getOperand(0); // We have to extract from a vector/aggregate with the same number of elements. unsigned NElts; if (Opcode == Instruction::ExtractValue) { const DataLayout &DL = E0->getModule()->getDataLayout(); NElts = canMapToVector(Vec->getType(), DL); if (!NElts) return false; // Check if load can be rewritten as load of vector. LoadInst *LI = dyn_cast<LoadInst>(Vec); if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size())) return false; } else { NElts = Vec->getType()->getVectorNumElements(); } if (NElts != VL.size()) return false; // Check that all of the indices extract from the correct offset. if (!matchExtractIndex(E0, 0, Opcode)) return false; for (unsigned i = 1, e = VL.size(); i < e; ++i) { Instruction *E = cast<Instruction>(VL[i]); if (!matchExtractIndex(E, i, Opcode)) return false; if (E->getOperand(0) != Vec) return false; } return true; } int BoUpSLP::getEntryCost(TreeEntry *E) { ArrayRef<Value*> VL = E->Scalars; Type *ScalarTy = VL[0]->getType(); if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) ScalarTy = SI->getValueOperand()->getType(); VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); // If we have computed a smaller type for the expression, update VecTy so // that the costs will be accurate. if (MinBWs.count(VL[0])) VecTy = VectorType::get(IntegerType::get(F->getContext(), MinBWs[VL[0]]), VL.size()); if (E->NeedToGather) { if (allConstant(VL)) return 0; if (isSplat(VL)) { return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0); } return getGatherCost(E->Scalars); } unsigned Opcode = getSameOpcode(VL); assert(Opcode && getSameType(VL) && getSameBlock(VL) && "Invalid VL"); Instruction *VL0 = cast<Instruction>(VL[0]); switch (Opcode) { case Instruction::PHI: { return 0; } case Instruction::ExtractValue: case Instruction::ExtractElement: { if (canReuseExtract(VL, Opcode)) { int DeadCost = 0; for (unsigned i = 0, e = VL.size(); i < e; ++i) { Instruction *E = cast<Instruction>(VL[i]); if (E->hasOneUse()) // Take credit for instruction that will become dead. DeadCost += TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, i); } return -DeadCost; } return getGatherCost(VecTy); } case Instruction::ZExt: case Instruction::SExt: case Instruction::FPToUI: case Instruction::FPToSI: case Instruction::FPExt: case Instruction::PtrToInt: case Instruction::IntToPtr: case Instruction::SIToFP: case Instruction::UIToFP: case Instruction::Trunc: case Instruction::FPTrunc: case Instruction::BitCast: { Type *SrcTy = VL0->getOperand(0)->getType(); // Calculate the cost of this instruction. int ScalarCost = VL.size() * TTI->getCastInstrCost(VL0->getOpcode(), VL0->getType(), SrcTy); VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size()); int VecCost = TTI->getCastInstrCost(VL0->getOpcode(), VecTy, SrcVecTy); return VecCost - ScalarCost; } case Instruction::FCmp: case Instruction::ICmp: case Instruction::Select: { // Calculate the cost of this instruction. VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size()); int ScalarCost = VecTy->getNumElements() * TTI->getCmpSelInstrCost(Opcode, ScalarTy, Builder.getInt1Ty()); int VecCost = TTI->getCmpSelInstrCost(Opcode, VecTy, MaskTy); return VecCost - ScalarCost; } case Instruction::Add: case Instruction::FAdd: case Instruction::Sub: case Instruction::FSub: case Instruction::Mul: case Instruction::FMul: case Instruction::UDiv: case Instruction::SDiv: case Instruction::FDiv: case Instruction::URem: case Instruction::SRem: case Instruction::FRem: case Instruction::Shl: case Instruction::LShr: case Instruction::AShr: case Instruction::And: case Instruction::Or: case Instruction::Xor: { // Certain instructions can be cheaper to vectorize if they have a // constant second vector operand. TargetTransformInfo::OperandValueKind Op1VK = TargetTransformInfo::OK_AnyValue; TargetTransformInfo::OperandValueKind Op2VK = TargetTransformInfo::OK_UniformConstantValue; TargetTransformInfo::OperandValueProperties Op1VP = TargetTransformInfo::OP_None; TargetTransformInfo::OperandValueProperties Op2VP = TargetTransformInfo::OP_None; // If all operands are exactly the same ConstantInt then set the // operand kind to OK_UniformConstantValue. // If instead not all operands are constants, then set the operand kind // to OK_AnyValue. If all operands are constants but not the same, // then set the operand kind to OK_NonUniformConstantValue. ConstantInt *CInt = nullptr; for (unsigned i = 0; i < VL.size(); ++i) { const Instruction *I = cast<Instruction>(VL[i]); if (!isa<ConstantInt>(I->getOperand(1))) { Op2VK = TargetTransformInfo::OK_AnyValue; break; } if (i == 0) { CInt = cast<ConstantInt>(I->getOperand(1)); continue; } if (Op2VK == TargetTransformInfo::OK_UniformConstantValue && CInt != cast<ConstantInt>(I->getOperand(1))) Op2VK = TargetTransformInfo::OK_NonUniformConstantValue; } // FIXME: Currently cost of model modification for division by power of // 2 is handled for X86 and AArch64. Add support for other targets. if (Op2VK == TargetTransformInfo::OK_UniformConstantValue && CInt && CInt->getValue().isPowerOf2()) Op2VP = TargetTransformInfo::OP_PowerOf2; int ScalarCost = VecTy->getNumElements() * TTI->getArithmeticInstrCost(Opcode, ScalarTy, Op1VK, Op2VK, Op1VP, Op2VP); int VecCost = TTI->getArithmeticInstrCost(Opcode, VecTy, Op1VK, Op2VK, Op1VP, Op2VP); return VecCost - ScalarCost; } case Instruction::GetElementPtr: { TargetTransformInfo::OperandValueKind Op1VK = TargetTransformInfo::OK_AnyValue; TargetTransformInfo::OperandValueKind Op2VK = TargetTransformInfo::OK_UniformConstantValue; int ScalarCost = VecTy->getNumElements() * TTI->getArithmeticInstrCost(Instruction::Add, ScalarTy, Op1VK, Op2VK); int VecCost = TTI->getArithmeticInstrCost(Instruction::Add, VecTy, Op1VK, Op2VK); return VecCost - ScalarCost; } case Instruction::Load: { // Cost of wide load - cost of scalar loads. unsigned alignment = dyn_cast<LoadInst>(VL0)->getAlignment(); int ScalarLdCost = VecTy->getNumElements() * TTI->getMemoryOpCost(Instruction::Load, ScalarTy, alignment, 0); int VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, alignment, 0); return VecLdCost - ScalarLdCost; } case Instruction::Store: { // We know that we can merge the stores. Calculate the cost. unsigned alignment = dyn_cast<StoreInst>(VL0)->getAlignment(); int ScalarStCost = VecTy->getNumElements() * TTI->getMemoryOpCost(Instruction::Store, ScalarTy, alignment, 0); int VecStCost = TTI->getMemoryOpCost(Instruction::Store, VecTy, alignment, 0); return VecStCost - ScalarStCost; } case Instruction::Call: { CallInst *CI = cast<CallInst>(VL0); Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); // Calculate the cost of the scalar and vector calls. SmallVector<Type*, 4> ScalarTys, VecTys; for (unsigned op = 0, opc = CI->getNumArgOperands(); op!= opc; ++op) { ScalarTys.push_back(CI->getArgOperand(op)->getType()); VecTys.push_back(VectorType::get(CI->getArgOperand(op)->getType(), VecTy->getNumElements())); } FastMathFlags FMF; if (auto *FPMO = dyn_cast<FPMathOperator>(CI)) FMF = FPMO->getFastMathFlags(); int ScalarCallCost = VecTy->getNumElements() * TTI->getIntrinsicInstrCost(ID, ScalarTy, ScalarTys, FMF); int VecCallCost = TTI->getIntrinsicInstrCost(ID, VecTy, VecTys, FMF); DEBUG(dbgs() << "SLP: Call cost "<< VecCallCost - ScalarCallCost << " (" << VecCallCost << "-" << ScalarCallCost << ")" << " for " << *CI << "\n"); return VecCallCost - ScalarCallCost; } case Instruction::ShuffleVector: { TargetTransformInfo::OperandValueKind Op1VK = TargetTransformInfo::OK_AnyValue; TargetTransformInfo::OperandValueKind Op2VK = TargetTransformInfo::OK_AnyValue; int ScalarCost = 0; int VecCost = 0; for (Value *i : VL) { Instruction *I = cast<Instruction>(i); if (!I) break; ScalarCost += TTI->getArithmeticInstrCost(I->getOpcode(), ScalarTy, Op1VK, Op2VK); } // VecCost is equal to sum of the cost of creating 2 vectors // and the cost of creating shuffle. Instruction *I0 = cast<Instruction>(VL[0]); VecCost = TTI->getArithmeticInstrCost(I0->getOpcode(), VecTy, Op1VK, Op2VK); Instruction *I1 = cast<Instruction>(VL[1]); VecCost += TTI->getArithmeticInstrCost(I1->getOpcode(), VecTy, Op1VK, Op2VK); VecCost += TTI->getShuffleCost(TargetTransformInfo::SK_Alternate, VecTy, 0); return VecCost - ScalarCost; } default: llvm_unreachable("Unknown instruction"); } } bool BoUpSLP::isFullyVectorizableTinyTree() { DEBUG(dbgs() << "SLP: Check whether the tree with height " << VectorizableTree.size() << " is fully vectorizable .\n"); // We only handle trees of height 2. if (VectorizableTree.size() != 2) return false; // Handle splat and all-constants stores. if (!VectorizableTree[0].NeedToGather && (allConstant(VectorizableTree[1].Scalars) || isSplat(VectorizableTree[1].Scalars))) return true; // Gathering cost would be too much for tiny trees. if (VectorizableTree[0].NeedToGather || VectorizableTree[1].NeedToGather) return false; return true; } int BoUpSLP::getSpillCost() { // Walk from the bottom of the tree to the top, tracking which values are // live. When we see a call instruction that is not part of our tree, // query TTI to see if there is a cost to keeping values live over it // (for example, if spills and fills are required). unsigned BundleWidth = VectorizableTree.front().Scalars.size(); int Cost = 0; SmallPtrSet<Instruction*, 4> LiveValues; Instruction *PrevInst = nullptr; for (const auto &N : VectorizableTree) { Instruction *Inst = dyn_cast<Instruction>(N.Scalars[0]); if (!Inst) continue; if (!PrevInst) { PrevInst = Inst; continue; } // Update LiveValues. LiveValues.erase(PrevInst); for (auto &J : PrevInst->operands()) { if (isa<Instruction>(&*J) && ScalarToTreeEntry.count(&*J)) LiveValues.insert(cast<Instruction>(&*J)); } DEBUG( dbgs() << "SLP: #LV: " << LiveValues.size(); for (auto *X : LiveValues) dbgs() << " " << X->getName(); dbgs() << ", Looking at "; Inst->dump(); ); // Now find the sequence of instructions between PrevInst and Inst. BasicBlock::reverse_iterator InstIt(Inst->getIterator()), PrevInstIt(PrevInst->getIterator()); --PrevInstIt; while (InstIt != PrevInstIt) { if (PrevInstIt == PrevInst->getParent()->rend()) { PrevInstIt = Inst->getParent()->rbegin(); continue; } if (isa<CallInst>(&*PrevInstIt) && &*PrevInstIt != PrevInst) { SmallVector<Type*, 4> V; for (auto *II : LiveValues) V.push_back(VectorType::get(II->getType(), BundleWidth)); Cost += TTI->getCostOfKeepingLiveOverCall(V); } ++PrevInstIt; } PrevInst = Inst; } return Cost; } int BoUpSLP::getTreeCost() { int Cost = 0; DEBUG(dbgs() << "SLP: Calculating cost for tree of size " << VectorizableTree.size() << ".\n"); // We only vectorize tiny trees if it is fully vectorizable. if (VectorizableTree.size() < 3 && !isFullyVectorizableTinyTree()) { if (VectorizableTree.empty()) { assert(!ExternalUses.size() && "We should not have any external users"); } return INT_MAX; } unsigned BundleWidth = VectorizableTree[0].Scalars.size(); for (TreeEntry &TE : VectorizableTree) { int C = getEntryCost(&TE); DEBUG(dbgs() << "SLP: Adding cost " << C << " for bundle that starts with " << *TE.Scalars[0] << ".\n"); Cost += C; } SmallSet<Value *, 16> ExtractCostCalculated; int ExtractCost = 0; for (ExternalUser &EU : ExternalUses) { // We only add extract cost once for the same scalar. if (!ExtractCostCalculated.insert(EU.Scalar).second) continue; // Uses by ephemeral values are free (because the ephemeral value will be // removed prior to code generation, and so the extraction will be // removed as well). if (EphValues.count(EU.User)) continue; // If we plan to rewrite the tree in a smaller type, we will need to sign // extend the extracted value back to the original type. Here, we account // for the extract and the added cost of the sign extend if needed. auto *VecTy = VectorType::get(EU.Scalar->getType(), BundleWidth); auto *ScalarRoot = VectorizableTree[0].Scalars[0]; if (MinBWs.count(ScalarRoot)) { auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot]); VecTy = VectorType::get(MinTy, BundleWidth); ExtractCost += TTI->getExtractWithExtendCost( Instruction::SExt, EU.Scalar->getType(), VecTy, EU.Lane); } else { ExtractCost += TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane); } } int SpillCost = getSpillCost(); Cost += SpillCost + ExtractCost; DEBUG(dbgs() << "SLP: Spill Cost = " << SpillCost << ".\n" << "SLP: Extract Cost = " << ExtractCost << ".\n" << "SLP: Total Cost = " << Cost << ".\n"); return Cost; } int BoUpSLP::getGatherCost(Type *Ty) { int Cost = 0; for (unsigned i = 0, e = cast<VectorType>(Ty)->getNumElements(); i < e; ++i) Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i); return Cost; } int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) { // Find the type of the operands in VL. Type *ScalarTy = VL[0]->getType(); if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) ScalarTy = SI->getValueOperand()->getType(); VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); // Find the cost of inserting/extracting values from the vector. return getGatherCost(VecTy); } // Reorder commutative operations in alternate shuffle if the resulting vectors // are consecutive loads. This would allow us to vectorize the tree. // If we have something like- // load a[0] - load b[0] // load b[1] + load a[1] // load a[2] - load b[2] // load a[3] + load b[3] // Reordering the second load b[1] load a[1] would allow us to vectorize this // code. void BoUpSLP::reorderAltShuffleOperands(ArrayRef<Value *> VL, SmallVectorImpl<Value *> &Left, SmallVectorImpl<Value *> &Right) { // Push left and right operands of binary operation into Left and Right for (Value *i : VL) { Left.push_back(cast<Instruction>(i)->getOperand(0)); Right.push_back(cast<Instruction>(i)->getOperand(1)); } // Reorder if we have a commutative operation and consecutive access // are on either side of the alternate instructions. for (unsigned j = 0; j < VL.size() - 1; ++j) { if (LoadInst *L = dyn_cast<LoadInst>(Left[j])) { if (LoadInst *L1 = dyn_cast<LoadInst>(Right[j + 1])) { Instruction *VL1 = cast<Instruction>(VL[j]); Instruction *VL2 = cast<Instruction>(VL[j + 1]); if (VL1->isCommutative() && isConsecutiveAccess(L, L1, *DL, *SE)) { std::swap(Left[j], Right[j]); continue; } else if (VL2->isCommutative() && isConsecutiveAccess(L, L1, *DL, *SE)) { std::swap(Left[j + 1], Right[j + 1]); continue; } // else unchanged } } if (LoadInst *L = dyn_cast<LoadInst>(Right[j])) { if (LoadInst *L1 = dyn_cast<LoadInst>(Left[j + 1])) { Instruction *VL1 = cast<Instruction>(VL[j]); Instruction *VL2 = cast<Instruction>(VL[j + 1]); if (VL1->isCommutative() && isConsecutiveAccess(L, L1, *DL, *SE)) { std::swap(Left[j], Right[j]); continue; } else if (VL2->isCommutative() && isConsecutiveAccess(L, L1, *DL, *SE)) { std::swap(Left[j + 1], Right[j + 1]); continue; } // else unchanged } } } } // Return true if I should be commuted before adding it's left and right // operands to the arrays Left and Right. // // The vectorizer is trying to either have all elements one side being // instruction with the same opcode to enable further vectorization, or having // a splat to lower the vectorizing cost. static bool shouldReorderOperands(int i, Instruction &I, SmallVectorImpl<Value *> &Left, SmallVectorImpl<Value *> &Right, bool AllSameOpcodeLeft, bool AllSameOpcodeRight, bool SplatLeft, bool SplatRight) { Value *VLeft = I.getOperand(0); Value *VRight = I.getOperand(1); // If we have "SplatRight", try to see if commuting is needed to preserve it. if (SplatRight) { if (VRight == Right[i - 1]) // Preserve SplatRight return false; if (VLeft == Right[i - 1]) { // Commuting would preserve SplatRight, but we don't want to break // SplatLeft either, i.e. preserve the original order if possible. // (FIXME: why do we care?) if (SplatLeft && VLeft == Left[i - 1]) return false; return true; } } // Symmetrically handle Right side. if (SplatLeft) { if (VLeft == Left[i - 1]) // Preserve SplatLeft return false; if (VRight == Left[i - 1]) return true; } Instruction *ILeft = dyn_cast<Instruction>(VLeft); Instruction *IRight = dyn_cast<Instruction>(VRight); // If we have "AllSameOpcodeRight", try to see if the left operands preserves // it and not the right, in this case we want to commute. if (AllSameOpcodeRight) { unsigned RightPrevOpcode = cast<Instruction>(Right[i - 1])->getOpcode(); if (IRight && RightPrevOpcode == IRight->getOpcode()) // Do not commute, a match on the right preserves AllSameOpcodeRight return false; if (ILeft && RightPrevOpcode == ILeft->getOpcode()) { // We have a match and may want to commute, but first check if there is // not also a match on the existing operands on the Left to preserve // AllSameOpcodeLeft, i.e. preserve the original order if possible. // (FIXME: why do we care?) if (AllSameOpcodeLeft && ILeft && cast<Instruction>(Left[i - 1])->getOpcode() == ILeft->getOpcode()) return false; return true; } } // Symmetrically handle Left side. if (AllSameOpcodeLeft) { unsigned LeftPrevOpcode = cast<Instruction>(Left[i - 1])->getOpcode(); if (ILeft && LeftPrevOpcode == ILeft->getOpcode()) return false; if (IRight && LeftPrevOpcode == IRight->getOpcode()) return true; } return false; } void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL, SmallVectorImpl<Value *> &Left, SmallVectorImpl<Value *> &Right) { if (VL.size()) { // Peel the first iteration out of the loop since there's nothing // interesting to do anyway and it simplifies the checks in the loop. auto VLeft = cast<Instruction>(VL[0])->getOperand(0); auto VRight = cast<Instruction>(VL[0])->getOperand(1); if (!isa<Instruction>(VRight) && isa<Instruction>(VLeft)) // Favor having instruction to the right. FIXME: why? std::swap(VLeft, VRight); Left.push_back(VLeft); Right.push_back(VRight); } // Keep track if we have instructions with all the same opcode on one side. bool AllSameOpcodeLeft = isa<Instruction>(Left[0]); bool AllSameOpcodeRight = isa<Instruction>(Right[0]); // Keep track if we have one side with all the same value (broadcast). bool SplatLeft = true; bool SplatRight = true; for (unsigned i = 1, e = VL.size(); i != e; ++i) { Instruction *I = cast<Instruction>(VL[i]); assert(I->isCommutative() && "Can only process commutative instruction"); // Commute to favor either a splat or maximizing having the same opcodes on // one side. if (shouldReorderOperands(i, *I, Left, Right, AllSameOpcodeLeft, AllSameOpcodeRight, SplatLeft, SplatRight)) { Left.push_back(I->getOperand(1)); Right.push_back(I->getOperand(0)); } else { Left.push_back(I->getOperand(0)); Right.push_back(I->getOperand(1)); } // Update Splat* and AllSameOpcode* after the insertion. SplatRight = SplatRight && (Right[i - 1] == Right[i]); SplatLeft = SplatLeft && (Left[i - 1] == Left[i]); AllSameOpcodeLeft = AllSameOpcodeLeft && isa<Instruction>(Left[i]) && (cast<Instruction>(Left[i - 1])->getOpcode() == cast<Instruction>(Left[i])->getOpcode()); AllSameOpcodeRight = AllSameOpcodeRight && isa<Instruction>(Right[i]) && (cast<Instruction>(Right[i - 1])->getOpcode() == cast<Instruction>(Right[i])->getOpcode()); } // If one operand end up being broadcast, return this operand order. if (SplatRight || SplatLeft) return; // Finally check if we can get longer vectorizable chain by reordering // without breaking the good operand order detected above. // E.g. If we have something like- // load a[0] load b[0] // load b[1] load a[1] // load a[2] load b[2] // load a[3] load b[3] // Reordering the second load b[1] load a[1] would allow us to vectorize // this code and we still retain AllSameOpcode property. // FIXME: This load reordering might break AllSameOpcode in some rare cases // such as- // add a[0],c[0] load b[0] // add a[1],c[2] load b[1] // b[2] load b[2] // add a[3],c[3] load b[3] for (unsigned j = 0; j < VL.size() - 1; ++j) { if (LoadInst *L = dyn_cast<LoadInst>(Left[j])) { if (LoadInst *L1 = dyn_cast<LoadInst>(Right[j + 1])) { if (isConsecutiveAccess(L, L1, *DL, *SE)) { std::swap(Left[j + 1], Right[j + 1]); continue; } } } if (LoadInst *L = dyn_cast<LoadInst>(Right[j])) { if (LoadInst *L1 = dyn_cast<LoadInst>(Left[j + 1])) { if (isConsecutiveAccess(L, L1, *DL, *SE)) { std::swap(Left[j + 1], Right[j + 1]); continue; } } } // else unchanged } } void BoUpSLP::setInsertPointAfterBundle(ArrayRef<Value *> VL) { Instruction *VL0 = cast<Instruction>(VL[0]); BasicBlock::iterator NextInst(VL0); ++NextInst; Builder.SetInsertPoint(VL0->getParent(), NextInst); Builder.SetCurrentDebugLocation(VL0->getDebugLoc()); } Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) { Value *Vec = UndefValue::get(Ty); // Generate the 'InsertElement' instruction. for (unsigned i = 0; i < Ty->getNumElements(); ++i) { Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i)); if (Instruction *Insrt = dyn_cast<Instruction>(Vec)) { GatherSeq.insert(Insrt); CSEBlocks.insert(Insrt->getParent()); // Add to our 'need-to-extract' list. if (ScalarToTreeEntry.count(VL[i])) { int Idx = ScalarToTreeEntry[VL[i]]; TreeEntry *E = &VectorizableTree[Idx]; // Find which lane we need to extract. int FoundLane = -1; for (unsigned Lane = 0, LE = VL.size(); Lane != LE; ++Lane) { // Is this the lane of the scalar that we are looking for ? if (E->Scalars[Lane] == VL[i]) { FoundLane = Lane; break; } } assert(FoundLane >= 0 && "Could not find the correct lane"); ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane)); } } } return Vec; } Value *BoUpSLP::alreadyVectorized(ArrayRef<Value *> VL) const { SmallDenseMap<Value*, int>::const_iterator Entry = ScalarToTreeEntry.find(VL[0]); if (Entry != ScalarToTreeEntry.end()) { int Idx = Entry->second; const TreeEntry *En = &VectorizableTree[Idx]; if (En->isSame(VL) && En->VectorizedValue) return En->VectorizedValue; } return nullptr; } Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) { if (ScalarToTreeEntry.count(VL[0])) { int Idx = ScalarToTreeEntry[VL[0]]; TreeEntry *E = &VectorizableTree[Idx]; if (E->isSame(VL)) return vectorizeTree(E); } Type *ScalarTy = VL[0]->getType(); if (StoreInst *SI = dyn_cast<StoreInst>(VL[0])) ScalarTy = SI->getValueOperand()->getType(); VectorType *VecTy = VectorType::get(ScalarTy, VL.size()); return Gather(VL, VecTy); } Value *BoUpSLP::vectorizeTree(TreeEntry *E) { IRBuilder<>::InsertPointGuard Guard(Builder); if (E->VectorizedValue) { DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n"); return E->VectorizedValue; } Instruction *VL0 = cast<Instruction>(E->Scalars[0]); Type *ScalarTy = VL0->getType(); if (StoreInst *SI = dyn_cast<StoreInst>(VL0)) ScalarTy = SI->getValueOperand()->getType(); VectorType *VecTy = VectorType::get(ScalarTy, E->Scalars.size()); if (E->NeedToGather) { setInsertPointAfterBundle(E->Scalars); return Gather(E->Scalars, VecTy); } unsigned Opcode = getSameOpcode(E->Scalars); switch (Opcode) { case Instruction::PHI: { PHINode *PH = dyn_cast<PHINode>(VL0); Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI()); Builder.SetCurrentDebugLocation(PH->getDebugLoc()); PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues()); E->VectorizedValue = NewPhi; // PHINodes may have multiple entries from the same block. We want to // visit every block once. SmallSet<BasicBlock*, 4> VisitedBBs; for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) { ValueList Operands; BasicBlock *IBB = PH->getIncomingBlock(i); if (!VisitedBBs.insert(IBB).second) { NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB); continue; } // Prepare the operand vector. for (Value *V : E->Scalars) Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock(IBB)); Builder.SetInsertPoint(IBB->getTerminator()); Builder.SetCurrentDebugLocation(PH->getDebugLoc()); Value *Vec = vectorizeTree(Operands); NewPhi->addIncoming(Vec, IBB); } assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && "Invalid number of incoming values"); return NewPhi; } case Instruction::ExtractElement: { if (canReuseExtract(E->Scalars, Instruction::ExtractElement)) { Value *V = VL0->getOperand(0); E->VectorizedValue = V; return V; } return Gather(E->Scalars, VecTy); } case Instruction::ExtractValue: { if (canReuseExtract(E->Scalars, Instruction::ExtractValue)) { LoadInst *LI = cast<LoadInst>(VL0->getOperand(0)); Builder.SetInsertPoint(LI); PointerType *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace()); Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy); LoadInst *V = Builder.CreateAlignedLoad(Ptr, LI->getAlignment()); E->VectorizedValue = V; return propagateMetadata(V, E->Scalars); } return Gather(E->Scalars, VecTy); } case Instruction::ZExt: case Instruction::SExt: case Instruction::FPToUI: case Instruction::FPToSI: case Instruction::FPExt: case Instruction::PtrToInt: case Instruction::IntToPtr: case Instruction::SIToFP: case Instruction::UIToFP: case Instruction::Trunc: case Instruction::FPTrunc: case Instruction::BitCast: { ValueList INVL; for (Value *V : E->Scalars) INVL.push_back(cast<Instruction>(V)->getOperand(0)); setInsertPointAfterBundle(E->Scalars); Value *InVec = vectorizeTree(INVL); if (Value *V = alreadyVectorized(E->Scalars)) return V; CastInst *CI = dyn_cast<CastInst>(VL0); Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy); E->VectorizedValue = V; ++NumVectorInstructions; return V; } case Instruction::FCmp: case Instruction::ICmp: { ValueList LHSV, RHSV; for (Value *V : E->Scalars) { LHSV.push_back(cast<Instruction>(V)->getOperand(0)); RHSV.push_back(cast<Instruction>(V)->getOperand(1)); } setInsertPointAfterBundle(E->Scalars); Value *L = vectorizeTree(LHSV); Value *R = vectorizeTree(RHSV); if (Value *V = alreadyVectorized(E->Scalars)) return V; CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate(); Value *V; if (Opcode == Instruction::FCmp) V = Builder.CreateFCmp(P0, L, R); else V = Builder.CreateICmp(P0, L, R); E->VectorizedValue = V; ++NumVectorInstructions; return V; } case Instruction::Select: { ValueList TrueVec, FalseVec, CondVec; for (Value *V : E->Scalars) { CondVec.push_back(cast<Instruction>(V)->getOperand(0)); TrueVec.push_back(cast<Instruction>(V)->getOperand(1)); FalseVec.push_back(cast<Instruction>(V)->getOperand(2)); } setInsertPointAfterBundle(E->Scalars); Value *Cond = vectorizeTree(CondVec); Value *True = vectorizeTree(TrueVec); Value *False = vectorizeTree(FalseVec); if (Value *V = alreadyVectorized(E->Scalars)) return V; Value *V = Builder.CreateSelect(Cond, True, False); E->VectorizedValue = V; ++NumVectorInstructions; return V; } case Instruction::Add: case Instruction::FAdd: case Instruction::Sub: case Instruction::FSub: case Instruction::Mul: case Instruction::FMul: case Instruction::UDiv: case Instruction::SDiv: case Instruction::FDiv: case Instruction::URem: case Instruction::SRem: case Instruction::FRem: case Instruction::Shl: case Instruction::LShr: case Instruction::AShr: case Instruction::And: case Instruction::Or: case Instruction::Xor: { ValueList LHSVL, RHSVL; if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) reorderInputsAccordingToOpcode(E->Scalars, LHSVL, RHSVL); else for (Value *V : E->Scalars) { LHSVL.push_back(cast<Instruction>(V)->getOperand(0)); RHSVL.push_back(cast<Instruction>(V)->getOperand(1)); } setInsertPointAfterBundle(E->Scalars); Value *LHS = vectorizeTree(LHSVL); Value *RHS = vectorizeTree(RHSVL); if (LHS == RHS && isa<Instruction>(LHS)) { assert((VL0->getOperand(0) == VL0->getOperand(1)) && "Invalid order"); } if (Value *V = alreadyVectorized(E->Scalars)) return V; BinaryOperator *BinOp = cast<BinaryOperator>(VL0); Value *V = Builder.CreateBinOp(BinOp->getOpcode(), LHS, RHS); E->VectorizedValue = V; propagateIRFlags(E->VectorizedValue, E->Scalars); ++NumVectorInstructions; if (Instruction *I = dyn_cast<Instruction>(V)) return propagateMetadata(I, E->Scalars); return V; } case Instruction::Load: { // Loads are inserted at the head of the tree because we don't want to // sink them all the way down past store instructions. setInsertPointAfterBundle(E->Scalars); LoadInst *LI = cast<LoadInst>(VL0); Type *ScalarLoadTy = LI->getType(); unsigned AS = LI->getPointerAddressSpace(); Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(), VecTy->getPointerTo(AS)); // The pointer operand uses an in-tree scalar so we add the new BitCast to // ExternalUses list to make sure that an extract will be generated in the // future. if (ScalarToTreeEntry.count(LI->getPointerOperand())) ExternalUses.push_back( ExternalUser(LI->getPointerOperand(), cast<User>(VecPtr), 0)); unsigned Alignment = LI->getAlignment(); LI = Builder.CreateLoad(VecPtr); if (!Alignment) { Alignment = DL->getABITypeAlignment(ScalarLoadTy); } LI->setAlignment(Alignment); E->VectorizedValue = LI; ++NumVectorInstructions; return propagateMetadata(LI, E->Scalars); } case Instruction::Store: { StoreInst *SI = cast<StoreInst>(VL0); unsigned Alignment = SI->getAlignment(); unsigned AS = SI->getPointerAddressSpace(); ValueList ValueOp; for (Value *V : E->Scalars) ValueOp.push_back(cast<StoreInst>(V)->getValueOperand()); setInsertPointAfterBundle(E->Scalars); Value *VecValue = vectorizeTree(ValueOp); Value *VecPtr = Builder.CreateBitCast(SI->getPointerOperand(), VecTy->getPointerTo(AS)); StoreInst *S = Builder.CreateStore(VecValue, VecPtr); // The pointer operand uses an in-tree scalar so we add the new BitCast to // ExternalUses list to make sure that an extract will be generated in the // future. if (ScalarToTreeEntry.count(SI->getPointerOperand())) ExternalUses.push_back( ExternalUser(SI->getPointerOperand(), cast<User>(VecPtr), 0)); if (!Alignment) { Alignment = DL->getABITypeAlignment(SI->getValueOperand()->getType()); } S->setAlignment(Alignment); E->VectorizedValue = S; ++NumVectorInstructions; return propagateMetadata(S, E->Scalars); } case Instruction::GetElementPtr: { setInsertPointAfterBundle(E->Scalars); ValueList Op0VL; for (Value *V : E->Scalars) Op0VL.push_back(cast<GetElementPtrInst>(V)->getOperand(0)); Value *Op0 = vectorizeTree(Op0VL); std::vector<Value *> OpVecs; for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e; ++j) { ValueList OpVL; for (Value *V : E->Scalars) OpVL.push_back(cast<GetElementPtrInst>(V)->getOperand(j)); Value *OpVec = vectorizeTree(OpVL); OpVecs.push_back(OpVec); } Value *V = Builder.CreateGEP( cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs); E->VectorizedValue = V; ++NumVectorInstructions; if (Instruction *I = dyn_cast<Instruction>(V)) return propagateMetadata(I, E->Scalars); return V; } case Instruction::Call: { CallInst *CI = cast<CallInst>(VL0); setInsertPointAfterBundle(E->Scalars); Function *FI; Intrinsic::ID IID = Intrinsic::not_intrinsic; Value *ScalarArg = nullptr; if (CI && (FI = CI->getCalledFunction())) { IID = FI->getIntrinsicID(); } std::vector<Value *> OpVecs; for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) { ValueList OpVL; // ctlz,cttz and powi are special intrinsics whose second argument is // a scalar. This argument should not be vectorized. if (hasVectorInstrinsicScalarOpd(IID, 1) && j == 1) { CallInst *CEI = cast<CallInst>(E->Scalars[0]); ScalarArg = CEI->getArgOperand(j); OpVecs.push_back(CEI->getArgOperand(j)); continue; } for (Value *V : E->Scalars) { CallInst *CEI = cast<CallInst>(V); OpVL.push_back(CEI->getArgOperand(j)); } Value *OpVec = vectorizeTree(OpVL); DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n"); OpVecs.push_back(OpVec); } Module *M = F->getParent(); Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI); Type *Tys[] = { VectorType::get(CI->getType(), E->Scalars.size()) }; Function *CF = Intrinsic::getDeclaration(M, ID, Tys); SmallVector<OperandBundleDef, 1> OpBundles; CI->getOperandBundlesAsDefs(OpBundles); Value *V = Builder.CreateCall(CF, OpVecs, OpBundles); // The scalar argument uses an in-tree scalar so we add the new vectorized // call to ExternalUses list to make sure that an extract will be // generated in the future. if (ScalarArg && ScalarToTreeEntry.count(ScalarArg)) ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0)); E->VectorizedValue = V; ++NumVectorInstructions; return V; } case Instruction::ShuffleVector: { ValueList LHSVL, RHSVL; assert(isa<BinaryOperator>(VL0) && "Invalid Shuffle Vector Operand"); reorderAltShuffleOperands(E->Scalars, LHSVL, RHSVL); setInsertPointAfterBundle(E->Scalars); Value *LHS = vectorizeTree(LHSVL); Value *RHS = vectorizeTree(RHSVL); if (Value *V = alreadyVectorized(E->Scalars)) return V; // Create a vector of LHS op1 RHS BinaryOperator *BinOp0 = cast<BinaryOperator>(VL0); Value *V0 = Builder.CreateBinOp(BinOp0->getOpcode(), LHS, RHS); // Create a vector of LHS op2 RHS Instruction *VL1 = cast<Instruction>(E->Scalars[1]); BinaryOperator *BinOp1 = cast<BinaryOperator>(VL1); Value *V1 = Builder.CreateBinOp(BinOp1->getOpcode(), LHS, RHS); // Create shuffle to take alternate operations from the vector. // Also, gather up odd and even scalar ops to propagate IR flags to // each vector operation. ValueList OddScalars, EvenScalars; unsigned e = E->Scalars.size(); SmallVector<Constant *, 8> Mask(e); for (unsigned i = 0; i < e; ++i) { if (i & 1) { Mask[i] = Builder.getInt32(e + i); OddScalars.push_back(E->Scalars[i]); } else { Mask[i] = Builder.getInt32(i); EvenScalars.push_back(E->Scalars[i]); } } Value *ShuffleMask = ConstantVector::get(Mask); propagateIRFlags(V0, EvenScalars); propagateIRFlags(V1, OddScalars); Value *V = Builder.CreateShuffleVector(V0, V1, ShuffleMask); E->VectorizedValue = V; ++NumVectorInstructions; if (Instruction *I = dyn_cast<Instruction>(V)) return propagateMetadata(I, E->Scalars); return V; } default: llvm_unreachable("unknown inst"); } return nullptr; } Value *BoUpSLP::vectorizeTree() { // All blocks must be scheduled before any instructions are inserted. for (auto &BSIter : BlocksSchedules) { scheduleBlock(BSIter.second.get()); } Builder.SetInsertPoint(&F->getEntryBlock().front()); auto *VectorRoot = vectorizeTree(&VectorizableTree[0]); // If the vectorized tree can be rewritten in a smaller type, we truncate the // vectorized root. InstCombine will then rewrite the entire expression. We // sign extend the extracted values below. auto *ScalarRoot = VectorizableTree[0].Scalars[0]; if (MinBWs.count(ScalarRoot)) { if (auto *I = dyn_cast<Instruction>(VectorRoot)) Builder.SetInsertPoint(&*++BasicBlock::iterator(I)); auto BundleWidth = VectorizableTree[0].Scalars.size(); auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot]); auto *VecTy = VectorType::get(MinTy, BundleWidth); auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy); VectorizableTree[0].VectorizedValue = Trunc; } DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() << " values .\n"); // Extract all of the elements with the external uses. for (const auto &ExternalUse : ExternalUses) { Value *Scalar = ExternalUse.Scalar; llvm::User *User = ExternalUse.User; // Skip users that we already RAUW. This happens when one instruction // has multiple uses of the same value. if (std::find(Scalar->user_begin(), Scalar->user_end(), User) == Scalar->user_end()) continue; assert(ScalarToTreeEntry.count(Scalar) && "Invalid scalar"); int Idx = ScalarToTreeEntry[Scalar]; TreeEntry *E = &VectorizableTree[Idx]; assert(!E->NeedToGather && "Extracting from a gather list"); Value *Vec = E->VectorizedValue; assert(Vec && "Can't find vectorizable value"); Value *Lane = Builder.getInt32(ExternalUse.Lane); // Generate extracts for out-of-tree users. // Find the insertion point for the extractelement lane. if (auto *VecI = dyn_cast<Instruction>(Vec)) { if (PHINode *PH = dyn_cast<PHINode>(User)) { for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) { if (PH->getIncomingValue(i) == Scalar) { TerminatorInst *IncomingTerminator = PH->getIncomingBlock(i)->getTerminator(); if (isa<CatchSwitchInst>(IncomingTerminator)) { Builder.SetInsertPoint(VecI->getParent(), std::next(VecI->getIterator())); } else { Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator()); } Value *Ex = Builder.CreateExtractElement(Vec, Lane); if (MinBWs.count(ScalarRoot)) Ex = Builder.CreateSExt(Ex, Scalar->getType()); CSEBlocks.insert(PH->getIncomingBlock(i)); PH->setOperand(i, Ex); } } } else { Builder.SetInsertPoint(cast<Instruction>(User)); Value *Ex = Builder.CreateExtractElement(Vec, Lane); if (MinBWs.count(ScalarRoot)) Ex = Builder.CreateSExt(Ex, Scalar->getType()); CSEBlocks.insert(cast<Instruction>(User)->getParent()); User->replaceUsesOfWith(Scalar, Ex); } } else { Builder.SetInsertPoint(&F->getEntryBlock().front()); Value *Ex = Builder.CreateExtractElement(Vec, Lane); if (MinBWs.count(ScalarRoot)) Ex = Builder.CreateSExt(Ex, Scalar->getType()); CSEBlocks.insert(&F->getEntryBlock()); User->replaceUsesOfWith(Scalar, Ex); } DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n"); } // For each vectorized value: for (TreeEntry &EIdx : VectorizableTree) { TreeEntry *Entry = &EIdx; // For each lane: for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) { Value *Scalar = Entry->Scalars[Lane]; // No need to handle users of gathered values. if (Entry->NeedToGather) continue; assert(Entry->VectorizedValue && "Can't find vectorizable value"); Type *Ty = Scalar->getType(); if (!Ty->isVoidTy()) { #ifndef NDEBUG for (User *U : Scalar->users()) { DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n"); assert((ScalarToTreeEntry.count(U) || // It is legal to replace users in the ignorelist by undef. (std::find(UserIgnoreList.begin(), UserIgnoreList.end(), U) != UserIgnoreList.end())) && "Replacing out-of-tree value with undef"); } #endif Value *Undef = UndefValue::get(Ty); Scalar->replaceAllUsesWith(Undef); } DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n"); eraseInstruction(cast<Instruction>(Scalar)); } } Builder.ClearInsertionPoint(); return VectorizableTree[0].VectorizedValue; } void BoUpSLP::optimizeGatherSequence() { DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size() << " gather sequences instructions.\n"); // LICM InsertElementInst sequences. for (Instruction *it : GatherSeq) { InsertElementInst *Insert = dyn_cast<InsertElementInst>(it); if (!Insert) continue; // Check if this block is inside a loop. Loop *L = LI->getLoopFor(Insert->getParent()); if (!L) continue; // Check if it has a preheader. BasicBlock *PreHeader = L->getLoopPreheader(); if (!PreHeader) continue; // If the vector or the element that we insert into it are // instructions that are defined in this basic block then we can't // hoist this instruction. Instruction *CurrVec = dyn_cast<Instruction>(Insert->getOperand(0)); Instruction *NewElem = dyn_cast<Instruction>(Insert->getOperand(1)); if (CurrVec && L->contains(CurrVec)) continue; if (NewElem && L->contains(NewElem)) continue; // We can hoist this instruction. Move it to the pre-header. Insert->moveBefore(PreHeader->getTerminator()); } // Make a list of all reachable blocks in our CSE queue. SmallVector<const DomTreeNode *, 8> CSEWorkList; CSEWorkList.reserve(CSEBlocks.size()); for (BasicBlock *BB : CSEBlocks) if (DomTreeNode *N = DT->getNode(BB)) { assert(DT->isReachableFromEntry(N)); CSEWorkList.push_back(N); } // Sort blocks by domination. This ensures we visit a block after all blocks // dominating it are visited. std::stable_sort(CSEWorkList.begin(), CSEWorkList.end(), [this](const DomTreeNode *A, const DomTreeNode *B) { return DT->properlyDominates(A, B); }); // Perform O(N^2) search over the gather sequences and merge identical // instructions. TODO: We can further optimize this scan if we split the // instructions into different buckets based on the insert lane. SmallVector<Instruction *, 16> Visited; for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) { assert((I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && "Worklist not sorted properly!"); BasicBlock *BB = (*I)->getBlock(); // For all instructions in blocks containing gather sequences: for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) { Instruction *In = &*it++; if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In)) continue; // Check if we can replace this instruction with any of the // visited instructions. for (Instruction *v : Visited) { if (In->isIdenticalTo(v) && DT->dominates(v->getParent(), In->getParent())) { In->replaceAllUsesWith(v); eraseInstruction(In); In = nullptr; break; } } if (In) { assert(std::find(Visited.begin(), Visited.end(), In) == Visited.end()); Visited.push_back(In); } } } CSEBlocks.clear(); GatherSeq.clear(); } // Groups the instructions to a bundle (which is then a single scheduling entity) // and schedules instructions until the bundle gets ready. bool BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP) { if (isa<PHINode>(VL[0])) return true; // Initialize the instruction bundle. Instruction *OldScheduleEnd = ScheduleEnd; ScheduleData *PrevInBundle = nullptr; ScheduleData *Bundle = nullptr; bool ReSchedule = false; DEBUG(dbgs() << "SLP: bundle: " << *VL[0] << "\n"); // Make sure that the scheduling region contains all // instructions of the bundle. for (Value *V : VL) { if (!extendSchedulingRegion(V)) return false; } for (Value *V : VL) { ScheduleData *BundleMember = getScheduleData(V); assert(BundleMember && "no ScheduleData for bundle member (maybe not in same basic block)"); if (BundleMember->IsScheduled) { // A bundle member was scheduled as single instruction before and now // needs to be scheduled as part of the bundle. We just get rid of the // existing schedule. DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember << " was already scheduled\n"); ReSchedule = true; } assert(BundleMember->isSchedulingEntity() && "bundle member already part of other bundle"); if (PrevInBundle) { PrevInBundle->NextInBundle = BundleMember; } else { Bundle = BundleMember; } BundleMember->UnscheduledDepsInBundle = 0; Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps; // Group the instructions to a bundle. BundleMember->FirstInBundle = Bundle; PrevInBundle = BundleMember; } if (ScheduleEnd != OldScheduleEnd) { // The scheduling region got new instructions at the lower end (or it is a // new region for the first bundle). This makes it necessary to // recalculate all dependencies. // It is seldom that this needs to be done a second time after adding the // initial bundle to the region. for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { ScheduleData *SD = getScheduleData(I); SD->clearDependencies(); } ReSchedule = true; } if (ReSchedule) { resetSchedule(); initialFillReadyList(ReadyInsts); } DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block " << BB->getName() << "\n"); calculateDependencies(Bundle, true, SLP); // Now try to schedule the new bundle. As soon as the bundle is "ready" it // means that there are no cyclic dependencies and we can schedule it. // Note that's important that we don't "schedule" the bundle yet (see // cancelScheduling). while (!Bundle->isReady() && !ReadyInsts.empty()) { ScheduleData *pickedSD = ReadyInsts.back(); ReadyInsts.pop_back(); if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) { schedule(pickedSD, ReadyInsts); } } if (!Bundle->isReady()) { cancelScheduling(VL); return false; } return true; } void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL) { if (isa<PHINode>(VL[0])) return; ScheduleData *Bundle = getScheduleData(VL[0]); DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n"); assert(!Bundle->IsScheduled && "Can't cancel bundle which is already scheduled"); assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && "tried to unbundle something which is not a bundle"); // Un-bundle: make single instructions out of the bundle. ScheduleData *BundleMember = Bundle; while (BundleMember) { assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links"); BundleMember->FirstInBundle = BundleMember; ScheduleData *Next = BundleMember->NextInBundle; BundleMember->NextInBundle = nullptr; BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps; if (BundleMember->UnscheduledDepsInBundle == 0) { ReadyInsts.insert(BundleMember); } BundleMember = Next; } } bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V) { if (getScheduleData(V)) return true; Instruction *I = dyn_cast<Instruction>(V); assert(I && "bundle member must be an instruction"); assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled"); if (!ScheduleStart) { // It's the first instruction in the new region. initScheduleData(I, I->getNextNode(), nullptr, nullptr); ScheduleStart = I; ScheduleEnd = I->getNextNode(); assert(ScheduleEnd && "tried to vectorize a TerminatorInst?"); DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n"); return true; } // Search up and down at the same time, because we don't know if the new // instruction is above or below the existing scheduling region. BasicBlock::reverse_iterator UpIter(ScheduleStart->getIterator()); BasicBlock::reverse_iterator UpperEnd = BB->rend(); BasicBlock::iterator DownIter(ScheduleEnd); BasicBlock::iterator LowerEnd = BB->end(); for (;;) { if (++ScheduleRegionSize > ScheduleRegionSizeLimit) { DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n"); return false; } if (UpIter != UpperEnd) { if (&*UpIter == I) { initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion); ScheduleStart = I; DEBUG(dbgs() << "SLP: extend schedule region start to " << *I << "\n"); return true; } UpIter++; } if (DownIter != LowerEnd) { if (&*DownIter == I) { initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion, nullptr); ScheduleEnd = I->getNextNode(); assert(ScheduleEnd && "tried to vectorize a TerminatorInst?"); DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n"); return true; } DownIter++; } assert((UpIter != UpperEnd || DownIter != LowerEnd) && "instruction not found in block"); } return true; } void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI, Instruction *ToI, ScheduleData *PrevLoadStore, ScheduleData *NextLoadStore) { ScheduleData *CurrentLoadStore = PrevLoadStore; for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) { ScheduleData *SD = ScheduleDataMap[I]; if (!SD) { // Allocate a new ScheduleData for the instruction. if (ChunkPos >= ChunkSize) { ScheduleDataChunks.push_back( llvm::make_unique<ScheduleData[]>(ChunkSize)); ChunkPos = 0; } SD = &(ScheduleDataChunks.back()[ChunkPos++]); ScheduleDataMap[I] = SD; SD->Inst = I; } assert(!isInSchedulingRegion(SD) && "new ScheduleData already in scheduling region"); SD->init(SchedulingRegionID); if (I->mayReadOrWriteMemory()) { // Update the linked list of memory accessing instructions. if (CurrentLoadStore) { CurrentLoadStore->NextLoadStore = SD; } else { FirstLoadStoreInRegion = SD; } CurrentLoadStore = SD; } } if (NextLoadStore) { if (CurrentLoadStore) CurrentLoadStore->NextLoadStore = NextLoadStore; } else { LastLoadStoreInRegion = CurrentLoadStore; } } void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD, bool InsertInReadyList, BoUpSLP *SLP) { assert(SD->isSchedulingEntity()); SmallVector<ScheduleData *, 10> WorkList; WorkList.push_back(SD); while (!WorkList.empty()) { ScheduleData *SD = WorkList.back(); WorkList.pop_back(); ScheduleData *BundleMember = SD; while (BundleMember) { assert(isInSchedulingRegion(BundleMember)); if (!BundleMember->hasValidDependencies()) { DEBUG(dbgs() << "SLP: update deps of " << *BundleMember << "\n"); BundleMember->Dependencies = 0; BundleMember->resetUnscheduledDeps(); // Handle def-use chain dependencies. for (User *U : BundleMember->Inst->users()) { if (isa<Instruction>(U)) { ScheduleData *UseSD = getScheduleData(U); if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) { BundleMember->Dependencies++; ScheduleData *DestBundle = UseSD->FirstInBundle; if (!DestBundle->IsScheduled) { BundleMember->incrementUnscheduledDeps(1); } if (!DestBundle->hasValidDependencies()) { WorkList.push_back(DestBundle); } } } else { // I'm not sure if this can ever happen. But we need to be safe. // This lets the instruction/bundle never be scheduled and // eventually disable vectorization. BundleMember->Dependencies++; BundleMember->incrementUnscheduledDeps(1); } } // Handle the memory dependencies. ScheduleData *DepDest = BundleMember->NextLoadStore; if (DepDest) { Instruction *SrcInst = BundleMember->Inst; MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA); bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory(); unsigned numAliased = 0; unsigned DistToSrc = 1; while (DepDest) { assert(isInSchedulingRegion(DepDest)); // We have two limits to reduce the complexity: // 1) AliasedCheckLimit: It's a small limit to reduce calls to // SLP->isAliased (which is the expensive part in this loop). // 2) MaxMemDepDistance: It's for very large blocks and it aborts // the whole loop (even if the loop is fast, it's quadratic). // It's important for the loop break condition (see below) to // check this limit even between two read-only instructions. if (DistToSrc >= MaxMemDepDistance || ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) && (numAliased >= AliasedCheckLimit || SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) { // We increment the counter only if the locations are aliased // (instead of counting all alias checks). This gives a better // balance between reduced runtime and accurate dependencies. numAliased++; DepDest->MemoryDependencies.push_back(BundleMember); BundleMember->Dependencies++; ScheduleData *DestBundle = DepDest->FirstInBundle; if (!DestBundle->IsScheduled) { BundleMember->incrementUnscheduledDeps(1); } if (!DestBundle->hasValidDependencies()) { WorkList.push_back(DestBundle); } } DepDest = DepDest->NextLoadStore; // Example, explaining the loop break condition: Let's assume our // starting instruction is i0 and MaxMemDepDistance = 3. // // +--------v--v--v // i0,i1,i2,i3,i4,i5,i6,i7,i8 // +--------^--^--^ // // MaxMemDepDistance let us stop alias-checking at i3 and we add // dependencies from i0 to i3,i4,.. (even if they are not aliased). // Previously we already added dependencies from i3 to i6,i7,i8 // (because of MaxMemDepDistance). As we added a dependency from // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8 // and we can abort this loop at i6. if (DistToSrc >= 2 * MaxMemDepDistance) break; DistToSrc++; } } } BundleMember = BundleMember->NextInBundle; } if (InsertInReadyList && SD->isReady()) { ReadyInsts.push_back(SD); DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst << "\n"); } } } void BoUpSLP::BlockScheduling::resetSchedule() { assert(ScheduleStart && "tried to reset schedule on block which has not been scheduled"); for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) { ScheduleData *SD = getScheduleData(I); assert(isInSchedulingRegion(SD)); SD->IsScheduled = false; SD->resetUnscheduledDeps(); } ReadyInsts.clear(); } void BoUpSLP::scheduleBlock(BlockScheduling *BS) { if (!BS->ScheduleStart) return; DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n"); BS->resetSchedule(); // For the real scheduling we use a more sophisticated ready-list: it is // sorted by the original instruction location. This lets the final schedule // be as close as possible to the original instruction order. struct ScheduleDataCompare { bool operator()(ScheduleData *SD1, ScheduleData *SD2) { return SD2->SchedulingPriority < SD1->SchedulingPriority; } }; std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts; // Ensure that all dependency data is updated and fill the ready-list with // initial instructions. int Idx = 0; int NumToSchedule = 0; for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd; I = I->getNextNode()) { ScheduleData *SD = BS->getScheduleData(I); assert( SD->isPartOfBundle() == (ScalarToTreeEntry.count(SD->Inst) != 0) && "scheduler and vectorizer have different opinion on what is a bundle"); SD->FirstInBundle->SchedulingPriority = Idx++; if (SD->isSchedulingEntity()) { BS->calculateDependencies(SD, false, this); NumToSchedule++; } } BS->initialFillReadyList(ReadyInsts); Instruction *LastScheduledInst = BS->ScheduleEnd; // Do the "real" scheduling. while (!ReadyInsts.empty()) { ScheduleData *picked = *ReadyInsts.begin(); ReadyInsts.erase(ReadyInsts.begin()); // Move the scheduled instruction(s) to their dedicated places, if not // there yet. ScheduleData *BundleMember = picked; while (BundleMember) { Instruction *pickedInst = BundleMember->Inst; if (LastScheduledInst->getNextNode() != pickedInst) { BS->BB->getInstList().remove(pickedInst); BS->BB->getInstList().insert(LastScheduledInst->getIterator(), pickedInst); } LastScheduledInst = pickedInst; BundleMember = BundleMember->NextInBundle; } BS->schedule(picked, ReadyInsts); NumToSchedule--; } assert(NumToSchedule == 0 && "could not schedule all instructions"); // Avoid duplicate scheduling of the block. BS->ScheduleStart = nullptr; } unsigned BoUpSLP::getVectorElementSize(Value *V) { // If V is a store, just return the width of the stored value without // traversing the expression tree. This is the common case. if (auto *Store = dyn_cast<StoreInst>(V)) return DL->getTypeSizeInBits(Store->getValueOperand()->getType()); // If V is not a store, we can traverse the expression tree to find loads // that feed it. The type of the loaded value may indicate a more suitable // width than V's type. We want to base the vector element size on the width // of memory operations where possible. SmallVector<Instruction *, 16> Worklist; SmallPtrSet<Instruction *, 16> Visited; if (auto *I = dyn_cast<Instruction>(V)) Worklist.push_back(I); // Traverse the expression tree in bottom-up order looking for loads. If we // encounter an instruciton we don't yet handle, we give up. auto MaxWidth = 0u; auto FoundUnknownInst = false; while (!Worklist.empty() && !FoundUnknownInst) { auto *I = Worklist.pop_back_val(); Visited.insert(I); // We should only be looking at scalar instructions here. If the current // instruction has a vector type, give up. auto *Ty = I->getType(); if (isa<VectorType>(Ty)) FoundUnknownInst = true; // If the current instruction is a load, update MaxWidth to reflect the // width of the loaded value. else if (isa<LoadInst>(I)) MaxWidth = std::max<unsigned>(MaxWidth, DL->getTypeSizeInBits(Ty)); // Otherwise, we need to visit the operands of the instruction. We only // handle the interesting cases from buildTree here. If an operand is an // instruction we haven't yet visited, we add it to the worklist. else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I)) { for (Use &U : I->operands()) if (auto *J = dyn_cast<Instruction>(U.get())) if (!Visited.count(J)) Worklist.push_back(J); } // If we don't yet handle the instruction, give up. else FoundUnknownInst = true; } // If we didn't encounter a memory access in the expression tree, or if we // gave up for some reason, just return the width of V. if (!MaxWidth || FoundUnknownInst) return DL->getTypeSizeInBits(V->getType()); // Otherwise, return the maximum width we found. return MaxWidth; } // Determine if a value V in a vectorizable expression Expr can be demoted to a // smaller type with a truncation. We collect the values that will be demoted // in ToDemote and additional roots that require investigating in Roots. static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr, SmallVectorImpl<Value *> &ToDemote, SmallVectorImpl<Value *> &Roots) { // We can always demote constants. if (isa<Constant>(V)) { ToDemote.push_back(V); return true; } // If the value is not an instruction in the expression with only one use, it // cannot be demoted. auto *I = dyn_cast<Instruction>(V); if (!I || !I->hasOneUse() || !Expr.count(I)) return false; switch (I->getOpcode()) { // We can always demote truncations and extensions. Since truncations can // seed additional demotion, we save the truncated value. case Instruction::Trunc: Roots.push_back(I->getOperand(0)); case Instruction::ZExt: case Instruction::SExt: break; // We can demote certain binary operations if we can demote both of their // operands. case Instruction::Add: case Instruction::Sub: case Instruction::Mul: case Instruction::And: case Instruction::Or: case Instruction::Xor: if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) || !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots)) return false; break; // We can demote selects if we can demote their true and false values. case Instruction::Select: { SelectInst *SI = cast<SelectInst>(I); if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) || !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots)) return false; break; } // We can demote phis if we can demote all their incoming operands. Note that // we don't need to worry about cycles since we ensure single use above. case Instruction::PHI: { PHINode *PN = cast<PHINode>(I); for (Value *IncValue : PN->incoming_values()) if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots)) return false; break; } // Otherwise, conservatively give up. default: return false; } // Record the value that we can demote. ToDemote.push_back(V); return true; } void BoUpSLP::computeMinimumValueSizes() { // If there are no external uses, the expression tree must be rooted by a // store. We can't demote in-memory values, so there is nothing to do here. if (ExternalUses.empty()) return; // We only attempt to truncate integer expressions. auto &TreeRoot = VectorizableTree[0].Scalars; auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType()); if (!TreeRootIT) return; // If the expression is not rooted by a store, these roots should have // external uses. We will rely on InstCombine to rewrite the expression in // the narrower type. However, InstCombine only rewrites single-use values. // This means that if a tree entry other than a root is used externally, it // must have multiple uses and InstCombine will not rewrite it. The code // below ensures that only the roots are used externally. SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end()); for (auto &EU : ExternalUses) if (!Expr.erase(EU.Scalar)) return; if (!Expr.empty()) return; // Collect the scalar values of the vectorizable expression. We will use this // context to determine which values can be demoted. If we see a truncation, // we mark it as seeding another demotion. for (auto &Entry : VectorizableTree) Expr.insert(Entry.Scalars.begin(), Entry.Scalars.end()); // Ensure the roots of the vectorizable tree don't form a cycle. They must // have a single external user that is not in the vectorizable tree. for (auto *Root : TreeRoot) if (!Root->hasOneUse() || Expr.count(*Root->user_begin())) return; // Conservatively determine if we can actually truncate the roots of the // expression. Collect the values that can be demoted in ToDemote and // additional roots that require investigating in Roots. SmallVector<Value *, 32> ToDemote; SmallVector<Value *, 4> Roots; for (auto *Root : TreeRoot) if (!collectValuesToDemote(Root, Expr, ToDemote, Roots)) return; // The maximum bit width required to represent all the values that can be // demoted without loss of precision. It would be safe to truncate the roots // of the expression to this width. auto MaxBitWidth = 8u; // We first check if all the bits of the roots are demanded. If they're not, // we can truncate the roots to this narrower type. for (auto *Root : TreeRoot) { auto Mask = DB->getDemandedBits(cast<Instruction>(Root)); MaxBitWidth = std::max<unsigned>( Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth); } // If all the bits of the roots are demanded, we can try a little harder to // compute a narrower type. This can happen, for example, if the roots are // getelementptr indices. InstCombine promotes these indices to the pointer // width. Thus, all their bits are technically demanded even though the // address computation might be vectorized in a smaller type. // // We start by looking at each entry that can be demoted. We compute the // maximum bit width required to store the scalar by using ValueTracking to // compute the number of high-order bits we can truncate. if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType())) { MaxBitWidth = 8u; for (auto *Scalar : ToDemote) { auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, 0, DT); auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType()); MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth); } } // Round MaxBitWidth up to the next power-of-two. if (!isPowerOf2_64(MaxBitWidth)) MaxBitWidth = NextPowerOf2(MaxBitWidth); // If the maximum bit width we compute is less than the with of the roots' // type, we can proceed with the narrowing. Otherwise, do nothing. if (MaxBitWidth >= TreeRootIT->getBitWidth()) return; // If we can truncate the root, we must collect additional values that might // be demoted as a result. That is, those seeded by truncations we will // modify. while (!Roots.empty()) collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots); // Finally, map the values we can demote to the maximum bit with we computed. for (auto *Scalar : ToDemote) MinBWs[Scalar] = MaxBitWidth; } namespace { /// The SLPVectorizer Pass. struct SLPVectorizer : public FunctionPass { SLPVectorizerPass Impl; /// Pass identification, replacement for typeid static char ID; explicit SLPVectorizer() : FunctionPass(ID) { initializeSLPVectorizerPass(*PassRegistry::getPassRegistry()); } bool doInitialization(Module &M) override { return false; } bool runOnFunction(Function &F) override { if (skipFunction(F)) return false; auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits(); return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB); } void getAnalysisUsage(AnalysisUsage &AU) const override { FunctionPass::getAnalysisUsage(AU); AU.addRequired<AssumptionCacheTracker>(); AU.addRequired<ScalarEvolutionWrapperPass>(); AU.addRequired<AAResultsWrapperPass>(); AU.addRequired<TargetTransformInfoWrapperPass>(); AU.addRequired<LoopInfoWrapperPass>(); AU.addRequired<DominatorTreeWrapperPass>(); AU.addRequired<DemandedBitsWrapperPass>(); AU.addPreserved<LoopInfoWrapperPass>(); AU.addPreserved<DominatorTreeWrapperPass>(); AU.addPreserved<AAResultsWrapperPass>(); AU.addPreserved<GlobalsAAWrapperPass>(); AU.setPreservesCFG(); } }; } // end anonymous namespace PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) { auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F); auto *TTI = &AM.getResult<TargetIRAnalysis>(F); auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F); auto *AA = &AM.getResult<AAManager>(F); auto *LI = &AM.getResult<LoopAnalysis>(F); auto *DT = &AM.getResult<DominatorTreeAnalysis>(F); auto *AC = &AM.getResult<AssumptionAnalysis>(F); auto *DB = &AM.getResult<DemandedBitsAnalysis>(F); bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB); if (!Changed) return PreservedAnalyses::all(); PreservedAnalyses PA; PA.preserve<LoopAnalysis>(); PA.preserve<DominatorTreeAnalysis>(); PA.preserve<AAManager>(); PA.preserve<GlobalsAA>(); return PA; } bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_, TargetTransformInfo *TTI_, TargetLibraryInfo *TLI_, AliasAnalysis *AA_, LoopInfo *LI_, DominatorTree *DT_, AssumptionCache *AC_, DemandedBits *DB_) { SE = SE_; TTI = TTI_; TLI = TLI_; AA = AA_; LI = LI_; DT = DT_; AC = AC_; DB = DB_; DL = &F.getParent()->getDataLayout(); Stores.clear(); GEPs.clear(); bool Changed = false; // If the target claims to have no vector registers don't attempt // vectorization. if (!TTI->getNumberOfRegisters(true)) return false; // Don't vectorize when the attribute NoImplicitFloat is used. if (F.hasFnAttribute(Attribute::NoImplicitFloat)) return false; DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n"); // Use the bottom up slp vectorizer to construct chains that start with // store instructions. BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL); // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to // delete instructions. // Scan the blocks in the function in post order. for (auto BB : post_order(&F.getEntryBlock())) { collectSeedInstructions(BB); // Vectorize trees that end at stores. if (!Stores.empty()) { DEBUG(dbgs() << "SLP: Found stores for " << Stores.size() << " underlying objects.\n"); Changed |= vectorizeStoreChains(R); } // Vectorize trees that end at reductions. Changed |= vectorizeChainsInBlock(BB, R); // Vectorize the index computations of getelementptr instructions. This // is primarily intended to catch gather-like idioms ending at // non-consecutive loads. if (!GEPs.empty()) { DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size() << " underlying objects.\n"); Changed |= vectorizeGEPIndices(BB, R); } } if (Changed) { R.optimizeGatherSequence(); DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n"); DEBUG(verifyFunction(F)); } return Changed; } /// \brief Check that the Values in the slice in VL array are still existent in /// the WeakVH array. /// Vectorization of part of the VL array may cause later values in the VL array /// to become invalid. We track when this has happened in the WeakVH array. static bool hasValueBeenRAUWed(ArrayRef<Value *> VL, ArrayRef<WeakVH> VH, unsigned SliceBegin, unsigned SliceSize) { VL = VL.slice(SliceBegin, SliceSize); VH = VH.slice(SliceBegin, SliceSize); return !std::equal(VL.begin(), VL.end(), VH.begin()); } bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, int CostThreshold, BoUpSLP &R, unsigned VecRegSize) { unsigned ChainLen = Chain.size(); DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << ChainLen << "\n"); unsigned Sz = R.getVectorElementSize(Chain[0]); unsigned VF = VecRegSize / Sz; if (!isPowerOf2_32(Sz) || VF < 2) return false; // Keep track of values that were deleted by vectorizing in the loop below. SmallVector<WeakVH, 8> TrackValues(Chain.begin(), Chain.end()); bool Changed = false; // Look for profitable vectorizable trees at all offsets, starting at zero. for (unsigned i = 0, e = ChainLen; i < e; ++i) { if (i + VF > e) break; // Check that a previous iteration of this loop did not delete the Value. if (hasValueBeenRAUWed(Chain, TrackValues, i, VF)) continue; DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << i << "\n"); ArrayRef<Value *> Operands = Chain.slice(i, VF); R.buildTree(Operands); R.computeMinimumValueSizes(); int Cost = R.getTreeCost(); DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF << "\n"); if (Cost < CostThreshold) { DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n"); R.vectorizeTree(); // Move to the next bundle. i += VF - 1; Changed = true; } } return Changed; } bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores, int costThreshold, BoUpSLP &R) { SetVector<StoreInst *> Heads, Tails; SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain; // We may run into multiple chains that merge into a single chain. We mark the // stores that we vectorized so that we don't visit the same store twice. BoUpSLP::ValueSet VectorizedStores; bool Changed = false; // Do a quadratic search on all of the given stores and find // all of the pairs of stores that follow each other. SmallVector<unsigned, 16> IndexQueue; for (unsigned i = 0, e = Stores.size(); i < e; ++i) { IndexQueue.clear(); // If a store has multiple consecutive store candidates, search Stores // array according to the sequence: from i+1 to e, then from i-1 to 0. // This is because usually pairing with immediate succeeding or preceding // candidate create the best chance to find slp vectorization opportunity. unsigned j = 0; for (j = i + 1; j < e; ++j) IndexQueue.push_back(j); for (j = i; j > 0; --j) IndexQueue.push_back(j - 1); for (auto &k : IndexQueue) { if (isConsecutiveAccess(Stores[i], Stores[k], *DL, *SE)) { Tails.insert(Stores[k]); Heads.insert(Stores[i]); ConsecutiveChain[Stores[i]] = Stores[k]; break; } } } // For stores that start but don't end a link in the chain: for (SetVector<StoreInst *>::iterator it = Heads.begin(), e = Heads.end(); it != e; ++it) { if (Tails.count(*it)) continue; // We found a store instr that starts a chain. Now follow the chain and try // to vectorize it. BoUpSLP::ValueList Operands; StoreInst *I = *it; // Collect the chain into a list. while (Tails.count(I) || Heads.count(I)) { if (VectorizedStores.count(I)) break; Operands.push_back(I); // Move to the next value in the chain. I = ConsecutiveChain[I]; } // FIXME: Is division-by-2 the correct step? Should we assert that the // register size is a power-of-2? for (unsigned Size = R.getMaxVecRegSize(); Size >= R.getMinVecRegSize(); Size /= 2) { if (vectorizeStoreChain(Operands, costThreshold, R, Size)) { // Mark the vectorized stores so that we don't vectorize them again. VectorizedStores.insert(Operands.begin(), Operands.end()); Changed = true; break; } } } return Changed; } void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) { // Initialize the collections. We will make a single pass over the block. Stores.clear(); GEPs.clear(); // Visit the store and getelementptr instructions in BB and organize them in // Stores and GEPs according to the underlying objects of their pointer // operands. for (Instruction &I : *BB) { // Ignore store instructions that are volatile or have a pointer operand // that doesn't point to a scalar type. if (auto *SI = dyn_cast<StoreInst>(&I)) { if (!SI->isSimple()) continue; if (!isValidElementType(SI->getValueOperand()->getType())) continue; Stores[GetUnderlyingObject(SI->getPointerOperand(), *DL)].push_back(SI); } // Ignore getelementptr instructions that have more than one index, a // constant index, or a pointer operand that doesn't point to a scalar // type. else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { auto Idx = GEP->idx_begin()->get(); if (GEP->getNumIndices() > 1 || isa<Constant>(Idx)) continue; if (!isValidElementType(Idx->getType())) continue; if (GEP->getType()->isVectorTy()) continue; GEPs[GetUnderlyingObject(GEP->getPointerOperand(), *DL)].push_back(GEP); } } } bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) { if (!A || !B) return false; Value *VL[] = { A, B }; return tryToVectorizeList(VL, R, None, true); } bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, ArrayRef<Value *> BuildVector, bool allowReorder) { if (VL.size() < 2) return false; DEBUG(dbgs() << "SLP: Vectorizing a list of length = " << VL.size() << ".\n"); // Check that all of the parts are scalar instructions of the same type. Instruction *I0 = dyn_cast<Instruction>(VL[0]); if (!I0) return false; unsigned Opcode0 = I0->getOpcode(); // FIXME: Register size should be a parameter to this function, so we can // try different vectorization factors. unsigned Sz = R.getVectorElementSize(I0); unsigned VF = R.getMinVecRegSize() / Sz; for (Value *V : VL) { Type *Ty = V->getType(); if (!isValidElementType(Ty)) return false; Instruction *Inst = dyn_cast<Instruction>(V); if (!Inst || Inst->getOpcode() != Opcode0) return false; } bool Changed = false; // Keep track of values that were deleted by vectorizing in the loop below. SmallVector<WeakVH, 8> TrackValues(VL.begin(), VL.end()); for (unsigned i = 0, e = VL.size(); i < e; ++i) { unsigned OpsWidth = 0; if (i + VF > e) OpsWidth = e - i; else OpsWidth = VF; if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2) break; // Check that a previous iteration of this loop did not delete the Value. if (hasValueBeenRAUWed(VL, TrackValues, i, OpsWidth)) continue; DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations " << "\n"); ArrayRef<Value *> Ops = VL.slice(i, OpsWidth); ArrayRef<Value *> BuildVectorSlice; if (!BuildVector.empty()) BuildVectorSlice = BuildVector.slice(i, OpsWidth); R.buildTree(Ops, BuildVectorSlice); // TODO: check if we can allow reordering also for other cases than // tryToVectorizePair() if (allowReorder && R.shouldReorder()) { assert(Ops.size() == 2); assert(BuildVectorSlice.empty()); Value *ReorderedOps[] = { Ops[1], Ops[0] }; R.buildTree(ReorderedOps, None); } R.computeMinimumValueSizes(); int Cost = R.getTreeCost(); if (Cost < -SLPCostThreshold) { DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n"); Value *VectorizedRoot = R.vectorizeTree(); // Reconstruct the build vector by extracting the vectorized root. This // way we handle the case where some elements of the vector are undefined. // (return (inserelt <4 xi32> (insertelt undef (opd0) 0) (opd1) 2)) if (!BuildVectorSlice.empty()) { // The insert point is the last build vector instruction. The vectorized // root will precede it. This guarantees that we get an instruction. The // vectorized tree could have been constant folded. Instruction *InsertAfter = cast<Instruction>(BuildVectorSlice.back()); unsigned VecIdx = 0; for (auto &V : BuildVectorSlice) { IRBuilder<NoFolder> Builder(InsertAfter->getParent(), ++BasicBlock::iterator(InsertAfter)); Instruction *I = cast<Instruction>(V); assert(isa<InsertElementInst>(I) || isa<InsertValueInst>(I)); Instruction *Extract = cast<Instruction>(Builder.CreateExtractElement( VectorizedRoot, Builder.getInt32(VecIdx++))); I->setOperand(1, Extract); I->removeFromParent(); I->insertAfter(Extract); InsertAfter = I; } } // Move to the next bundle. i += VF - 1; Changed = true; } } return Changed; } bool SLPVectorizerPass::tryToVectorize(BinaryOperator *V, BoUpSLP &R) { if (!V) return false; // Try to vectorize V. if (tryToVectorizePair(V->getOperand(0), V->getOperand(1), R)) return true; BinaryOperator *A = dyn_cast<BinaryOperator>(V->getOperand(0)); BinaryOperator *B = dyn_cast<BinaryOperator>(V->getOperand(1)); // Try to skip B. if (B && B->hasOneUse()) { BinaryOperator *B0 = dyn_cast<BinaryOperator>(B->getOperand(0)); BinaryOperator *B1 = dyn_cast<BinaryOperator>(B->getOperand(1)); if (tryToVectorizePair(A, B0, R)) { return true; } if (tryToVectorizePair(A, B1, R)) { return true; } } // Try to skip A. if (A && A->hasOneUse()) { BinaryOperator *A0 = dyn_cast<BinaryOperator>(A->getOperand(0)); BinaryOperator *A1 = dyn_cast<BinaryOperator>(A->getOperand(1)); if (tryToVectorizePair(A0, B, R)) { return true; } if (tryToVectorizePair(A1, B, R)) { return true; } } return 0; } /// \brief Generate a shuffle mask to be used in a reduction tree. /// /// \param VecLen The length of the vector to be reduced. /// \param NumEltsToRdx The number of elements that should be reduced in the /// vector. /// \param IsPairwise Whether the reduction is a pairwise or splitting /// reduction. A pairwise reduction will generate a mask of /// <0,2,...> or <1,3,..> while a splitting reduction will generate /// <2,3, undef,undef> for a vector of 4 and NumElts = 2. /// \param IsLeft True will generate a mask of even elements, odd otherwise. static Value *createRdxShuffleMask(unsigned VecLen, unsigned NumEltsToRdx, bool IsPairwise, bool IsLeft, IRBuilder<> &Builder) { assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask"); SmallVector<Constant *, 32> ShuffleMask( VecLen, UndefValue::get(Builder.getInt32Ty())); if (IsPairwise) // Build a mask of 0, 2, ... (left) or 1, 3, ... (right). for (unsigned i = 0; i != NumEltsToRdx; ++i) ShuffleMask[i] = Builder.getInt32(2 * i + !IsLeft); else // Move the upper half of the vector to the lower half. for (unsigned i = 0; i != NumEltsToRdx; ++i) ShuffleMask[i] = Builder.getInt32(NumEltsToRdx + i); return ConstantVector::get(ShuffleMask); } /// Model horizontal reductions. /// /// A horizontal reduction is a tree of reduction operations (currently add and /// fadd) that has operations that can be put into a vector as its leaf. /// For example, this tree: /// /// mul mul mul mul /// \ / \ / /// + + /// \ / /// + /// This tree has "mul" as its reduced values and "+" as its reduction /// operations. A reduction might be feeding into a store or a binary operation /// feeding a phi. /// ... /// \ / /// + /// | /// phi += /// /// Or: /// ... /// \ / /// + /// | /// *p = /// class HorizontalReduction { SmallVector<Value *, 16> ReductionOps; SmallVector<Value *, 32> ReducedVals; BinaryOperator *ReductionRoot; PHINode *ReductionPHI; /// The opcode of the reduction. unsigned ReductionOpcode; /// The opcode of the values we perform a reduction on. unsigned ReducedValueOpcode; /// Should we model this reduction as a pairwise reduction tree or a tree that /// splits the vector in halves and adds those halves. bool IsPairwiseReduction; public: /// The width of one full horizontal reduction operation. unsigned ReduxWidth; /// Minimal width of available vector registers. It's used to determine /// ReduxWidth. unsigned MinVecRegSize; HorizontalReduction(unsigned MinVecRegSize) : ReductionRoot(nullptr), ReductionPHI(nullptr), ReductionOpcode(0), ReducedValueOpcode(0), IsPairwiseReduction(false), ReduxWidth(0), MinVecRegSize(MinVecRegSize) {} /// \brief Try to find a reduction tree. bool matchAssociativeReduction(PHINode *Phi, BinaryOperator *B) { assert((!Phi || std::find(Phi->op_begin(), Phi->op_end(), B) != Phi->op_end()) && "Thi phi needs to use the binary operator"); // We could have a initial reductions that is not an add. // r *= v1 + v2 + v3 + v4 // In such a case start looking for a tree rooted in the first '+'. if (Phi) { if (B->getOperand(0) == Phi) { Phi = nullptr; B = dyn_cast<BinaryOperator>(B->getOperand(1)); } else if (B->getOperand(1) == Phi) { Phi = nullptr; B = dyn_cast<BinaryOperator>(B->getOperand(0)); } } if (!B) return false; Type *Ty = B->getType(); if (!isValidElementType(Ty)) return false; const DataLayout &DL = B->getModule()->getDataLayout(); ReductionOpcode = B->getOpcode(); ReducedValueOpcode = 0; // FIXME: Register size should be a parameter to this function, so we can // try different vectorization factors. ReduxWidth = MinVecRegSize / DL.getTypeSizeInBits(Ty); ReductionRoot = B; ReductionPHI = Phi; if (ReduxWidth < 4) return false; // We currently only support adds. if (ReductionOpcode != Instruction::Add && ReductionOpcode != Instruction::FAdd) return false; // Post order traverse the reduction tree starting at B. We only handle true // trees containing only binary operators or selects. SmallVector<std::pair<Instruction *, unsigned>, 32> Stack; Stack.push_back(std::make_pair(B, 0)); while (!Stack.empty()) { Instruction *TreeN = Stack.back().first; unsigned EdgeToVist = Stack.back().second++; bool IsReducedValue = TreeN->getOpcode() != ReductionOpcode; // Only handle trees in the current basic block. if (TreeN->getParent() != B->getParent()) return false; // Each tree node needs to have one user except for the ultimate // reduction. if (!TreeN->hasOneUse() && TreeN != B) return false; // Postorder vist. if (EdgeToVist == 2 || IsReducedValue) { if (IsReducedValue) { // Make sure that the opcodes of the operations that we are going to // reduce match. if (!ReducedValueOpcode) ReducedValueOpcode = TreeN->getOpcode(); else if (ReducedValueOpcode != TreeN->getOpcode()) return false; ReducedVals.push_back(TreeN); } else { // We need to be able to reassociate the adds. if (!TreeN->isAssociative()) return false; ReductionOps.push_back(TreeN); } // Retract. Stack.pop_back(); continue; } // Visit left or right. Value *NextV = TreeN->getOperand(EdgeToVist); // We currently only allow BinaryOperator's and SelectInst's as reduction // values in our tree. if (isa<BinaryOperator>(NextV) || isa<SelectInst>(NextV)) Stack.push_back(std::make_pair(cast<Instruction>(NextV), 0)); else if (NextV != Phi) return false; } return true; } /// \brief Attempt to vectorize the tree found by /// matchAssociativeReduction. bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) { if (ReducedVals.empty()) return false; unsigned NumReducedVals = ReducedVals.size(); if (NumReducedVals < ReduxWidth) return false; Value *VectorizedTree = nullptr; IRBuilder<> Builder(ReductionRoot); FastMathFlags Unsafe; Unsafe.setUnsafeAlgebra(); Builder.setFastMathFlags(Unsafe); unsigned i = 0; for (; i < NumReducedVals - ReduxWidth + 1; i += ReduxWidth) { V.buildTree(makeArrayRef(&ReducedVals[i], ReduxWidth), ReductionOps); V.computeMinimumValueSizes(); // Estimate cost. int Cost = V.getTreeCost() + getReductionCost(TTI, ReducedVals[i]); if (Cost >= -SLPCostThreshold) break; DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" << Cost << ". (HorRdx)\n"); // Vectorize a tree. DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc(); Value *VectorizedRoot = V.vectorizeTree(); // Emit a reduction. Value *ReducedSubTree = emitReduction(VectorizedRoot, Builder); if (VectorizedTree) { Builder.SetCurrentDebugLocation(Loc); VectorizedTree = createBinOp(Builder, ReductionOpcode, VectorizedTree, ReducedSubTree, "bin.rdx"); } else VectorizedTree = ReducedSubTree; } if (VectorizedTree) { // Finish the reduction. for (; i < NumReducedVals; ++i) { Builder.SetCurrentDebugLocation( cast<Instruction>(ReducedVals[i])->getDebugLoc()); VectorizedTree = createBinOp(Builder, ReductionOpcode, VectorizedTree, ReducedVals[i]); } // Update users. if (ReductionPHI) { assert(ReductionRoot && "Need a reduction operation"); ReductionRoot->setOperand(0, VectorizedTree); ReductionRoot->setOperand(1, ReductionPHI); } else ReductionRoot->replaceAllUsesWith(VectorizedTree); } return VectorizedTree != nullptr; } unsigned numReductionValues() const { return ReducedVals.size(); } private: /// \brief Calculate the cost of a reduction. int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal) { Type *ScalarTy = FirstReducedVal->getType(); Type *VecTy = VectorType::get(ScalarTy, ReduxWidth); int PairwiseRdxCost = TTI->getReductionCost(ReductionOpcode, VecTy, true); int SplittingRdxCost = TTI->getReductionCost(ReductionOpcode, VecTy, false); IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost; int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost; int ScalarReduxCost = ReduxWidth * TTI->getArithmeticInstrCost(ReductionOpcode, VecTy); DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost << " for reduction that starts with " << *FirstReducedVal << " (It is a " << (IsPairwiseReduction ? "pairwise" : "splitting") << " reduction)\n"); return VecReduxCost - ScalarReduxCost; } static Value *createBinOp(IRBuilder<> &Builder, unsigned Opcode, Value *L, Value *R, const Twine &Name = "") { if (Opcode == Instruction::FAdd) return Builder.CreateFAdd(L, R, Name); return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, L, R, Name); } /// \brief Emit a horizontal reduction of the vectorized value. Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder) { assert(VectorizedValue && "Need to have a vectorized tree node"); assert(isPowerOf2_32(ReduxWidth) && "We only handle power-of-two reductions for now"); Value *TmpVec = VectorizedValue; for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) { if (IsPairwiseReduction) { Value *LeftMask = createRdxShuffleMask(ReduxWidth, i, true, true, Builder); Value *RightMask = createRdxShuffleMask(ReduxWidth, i, true, false, Builder); Value *LeftShuf = Builder.CreateShuffleVector( TmpVec, UndefValue::get(TmpVec->getType()), LeftMask, "rdx.shuf.l"); Value *RightShuf = Builder.CreateShuffleVector( TmpVec, UndefValue::get(TmpVec->getType()), (RightMask), "rdx.shuf.r"); TmpVec = createBinOp(Builder, ReductionOpcode, LeftShuf, RightShuf, "bin.rdx"); } else { Value *UpperHalf = createRdxShuffleMask(ReduxWidth, i, false, false, Builder); Value *Shuf = Builder.CreateShuffleVector( TmpVec, UndefValue::get(TmpVec->getType()), UpperHalf, "rdx.shuf"); TmpVec = createBinOp(Builder, ReductionOpcode, TmpVec, Shuf, "bin.rdx"); } } // The result is in the first element of the vector. return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); } }; /// \brief Recognize construction of vectors like /// %ra = insertelement <4 x float> undef, float %s0, i32 0 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3 /// /// Returns true if it matches /// static bool findBuildVector(InsertElementInst *FirstInsertElem, SmallVectorImpl<Value *> &BuildVector, SmallVectorImpl<Value *> &BuildVectorOpds) { if (!isa<UndefValue>(FirstInsertElem->getOperand(0))) return false; InsertElementInst *IE = FirstInsertElem; while (true) { BuildVector.push_back(IE); BuildVectorOpds.push_back(IE->getOperand(1)); if (IE->use_empty()) return false; InsertElementInst *NextUse = dyn_cast<InsertElementInst>(IE->user_back()); if (!NextUse) return true; // If this isn't the final use, make sure the next insertelement is the only // use. It's OK if the final constructed vector is used multiple times if (!IE->hasOneUse()) return false; IE = NextUse; } return false; } /// \brief Like findBuildVector, but looks backwards for construction of aggregate. /// /// \return true if it matches. static bool findBuildAggregate(InsertValueInst *IV, SmallVectorImpl<Value *> &BuildVector, SmallVectorImpl<Value *> &BuildVectorOpds) { if (!IV->hasOneUse()) return false; Value *V = IV->getAggregateOperand(); if (!isa<UndefValue>(V)) { InsertValueInst *I = dyn_cast<InsertValueInst>(V); if (!I || !findBuildAggregate(I, BuildVector, BuildVectorOpds)) return false; } BuildVector.push_back(IV); BuildVectorOpds.push_back(IV->getInsertedValueOperand()); return true; } static bool PhiTypeSorterFunc(Value *V, Value *V2) { return V->getType() < V2->getType(); } /// \brief Try and get a reduction value from a phi node. /// /// Given a phi node \p P in a block \p ParentBB, consider possible reductions /// if they come from either \p ParentBB or a containing loop latch. /// /// \returns A candidate reduction value if possible, or \code nullptr \endcode /// if not possible. static Value *getReductionValue(const DominatorTree *DT, PHINode *P, BasicBlock *ParentBB, LoopInfo *LI) { // There are situations where the reduction value is not dominated by the // reduction phi. Vectorizing such cases has been reported to cause // miscompiles. See PR25787. auto DominatedReduxValue = [&](Value *R) { return ( dyn_cast<Instruction>(R) && DT->dominates(P->getParent(), dyn_cast<Instruction>(R)->getParent())); }; Value *Rdx = nullptr; // Return the incoming value if it comes from the same BB as the phi node. if (P->getIncomingBlock(0) == ParentBB) { Rdx = P->getIncomingValue(0); } else if (P->getIncomingBlock(1) == ParentBB) { Rdx = P->getIncomingValue(1); } if (Rdx && DominatedReduxValue(Rdx)) return Rdx; // Otherwise, check whether we have a loop latch to look at. Loop *BBL = LI->getLoopFor(ParentBB); if (!BBL) return nullptr; BasicBlock *BBLatch = BBL->getLoopLatch(); if (!BBLatch) return nullptr; // There is a loop latch, return the incoming value if it comes from // that. This reduction pattern occassionaly turns up. if (P->getIncomingBlock(0) == BBLatch) { Rdx = P->getIncomingValue(0); } else if (P->getIncomingBlock(1) == BBLatch) { Rdx = P->getIncomingValue(1); } if (Rdx && DominatedReduxValue(Rdx)) return Rdx; return nullptr; } /// \brief Attempt to reduce a horizontal reduction. /// If it is legal to match a horizontal reduction feeding /// the phi node P with reduction operators BI, then check if it /// can be done. /// \returns true if a horizontal reduction was matched and reduced. /// \returns false if a horizontal reduction was not matched. static bool canMatchHorizontalReduction(PHINode *P, BinaryOperator *BI, BoUpSLP &R, TargetTransformInfo *TTI, unsigned MinRegSize) { if (!ShouldVectorizeHor) return false; HorizontalReduction HorRdx(MinRegSize); if (!HorRdx.matchAssociativeReduction(P, BI)) return false; // If there is a sufficient number of reduction values, reduce // to a nearby power-of-2. Can safely generate oversized // vectors and rely on the backend to split them to legal sizes. HorRdx.ReduxWidth = std::max((uint64_t)4, PowerOf2Floor(HorRdx.numReductionValues())); return HorRdx.tryToReduce(R, TTI); } bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) { bool Changed = false; SmallVector<Value *, 4> Incoming; SmallSet<Value *, 16> VisitedInstrs; bool HaveVectorizedPhiNodes = true; while (HaveVectorizedPhiNodes) { HaveVectorizedPhiNodes = false; // Collect the incoming values from the PHIs. Incoming.clear(); for (Instruction &I : *BB) { PHINode *P = dyn_cast<PHINode>(&I); if (!P) break; if (!VisitedInstrs.count(P)) Incoming.push_back(P); } // Sort by type. std::stable_sort(Incoming.begin(), Incoming.end(), PhiTypeSorterFunc); // Try to vectorize elements base on their type. for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(), E = Incoming.end(); IncIt != E;) { // Look for the next elements with the same type. SmallVector<Value *, 4>::iterator SameTypeIt = IncIt; while (SameTypeIt != E && (*SameTypeIt)->getType() == (*IncIt)->getType()) { VisitedInstrs.insert(*SameTypeIt); ++SameTypeIt; } // Try to vectorize them. unsigned NumElts = (SameTypeIt - IncIt); DEBUG(errs() << "SLP: Trying to vectorize starting at PHIs (" << NumElts << ")\n"); if (NumElts > 1 && tryToVectorizeList(makeArrayRef(IncIt, NumElts), R)) { // Success start over because instructions might have been changed. HaveVectorizedPhiNodes = true; Changed = true; break; } // Start over at the next instruction of a different type (or the end). IncIt = SameTypeIt; } } VisitedInstrs.clear(); for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; it++) { // We may go through BB multiple times so skip the one we have checked. if (!VisitedInstrs.insert(&*it).second) continue; if (isa<DbgInfoIntrinsic>(it)) continue; // Try to vectorize reductions that use PHINodes. if (PHINode *P = dyn_cast<PHINode>(it)) { // Check that the PHI is a reduction PHI. if (P->getNumIncomingValues() != 2) return Changed; Value *Rdx = getReductionValue(DT, P, BB, LI); // Check if this is a Binary Operator. BinaryOperator *BI = dyn_cast_or_null<BinaryOperator>(Rdx); if (!BI) continue; // Try to match and vectorize a horizontal reduction. if (canMatchHorizontalReduction(P, BI, R, TTI, R.getMinVecRegSize())) { Changed = true; it = BB->begin(); e = BB->end(); continue; } Value *Inst = BI->getOperand(0); if (Inst == P) Inst = BI->getOperand(1); if (tryToVectorize(dyn_cast<BinaryOperator>(Inst), R)) { // We would like to start over since some instructions are deleted // and the iterator may become invalid value. Changed = true; it = BB->begin(); e = BB->end(); continue; } continue; } if (ShouldStartVectorizeHorAtStore) if (StoreInst *SI = dyn_cast<StoreInst>(it)) if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(SI->getValueOperand())) { if (canMatchHorizontalReduction(nullptr, BinOp, R, TTI, R.getMinVecRegSize()) || tryToVectorize(BinOp, R)) { Changed = true; it = BB->begin(); e = BB->end(); continue; } } // Try to vectorize horizontal reductions feeding into a return. if (ReturnInst *RI = dyn_cast<ReturnInst>(it)) if (RI->getNumOperands() != 0) if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(RI->getOperand(0))) { DEBUG(dbgs() << "SLP: Found a return to vectorize.\n"); if (tryToVectorizePair(BinOp->getOperand(0), BinOp->getOperand(1), R)) { Changed = true; it = BB->begin(); e = BB->end(); continue; } } // Try to vectorize trees that start at compare instructions. if (CmpInst *CI = dyn_cast<CmpInst>(it)) { if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) { Changed = true; // We would like to start over since some instructions are deleted // and the iterator may become invalid value. it = BB->begin(); e = BB->end(); continue; } for (int i = 0; i < 2; ++i) { if (BinaryOperator *BI = dyn_cast<BinaryOperator>(CI->getOperand(i))) { if (tryToVectorizePair(BI->getOperand(0), BI->getOperand(1), R)) { Changed = true; // We would like to start over since some instructions are deleted // and the iterator may become invalid value. it = BB->begin(); e = BB->end(); break; } } } continue; } // Try to vectorize trees that start at insertelement instructions. if (InsertElementInst *FirstInsertElem = dyn_cast<InsertElementInst>(it)) { SmallVector<Value *, 16> BuildVector; SmallVector<Value *, 16> BuildVectorOpds; if (!findBuildVector(FirstInsertElem, BuildVector, BuildVectorOpds)) continue; // Vectorize starting with the build vector operands ignoring the // BuildVector instructions for the purpose of scheduling and user // extraction. if (tryToVectorizeList(BuildVectorOpds, R, BuildVector)) { Changed = true; it = BB->begin(); e = BB->end(); } continue; } // Try to vectorize trees that start at insertvalue instructions feeding into // a store. if (StoreInst *SI = dyn_cast<StoreInst>(it)) { if (InsertValueInst *LastInsertValue = dyn_cast<InsertValueInst>(SI->getValueOperand())) { const DataLayout &DL = BB->getModule()->getDataLayout(); if (R.canMapToVector(SI->getValueOperand()->getType(), DL)) { SmallVector<Value *, 16> BuildVector; SmallVector<Value *, 16> BuildVectorOpds; if (!findBuildAggregate(LastInsertValue, BuildVector, BuildVectorOpds)) continue; DEBUG(dbgs() << "SLP: store of array mappable to vector: " << *SI << "\n"); if (tryToVectorizeList(BuildVectorOpds, R, BuildVector, false)) { Changed = true; it = BB->begin(); e = BB->end(); } continue; } } } } return Changed; } bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) { auto Changed = false; for (auto &Entry : GEPs) { // If the getelementptr list has fewer than two elements, there's nothing // to do. if (Entry.second.size() < 2) continue; DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length " << Entry.second.size() << ".\n"); // We process the getelementptr list in chunks of 16 (like we do for // stores) to minimize compile-time. for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += 16) { auto Len = std::min<unsigned>(BE - BI, 16); auto GEPList = makeArrayRef(&Entry.second[BI], Len); // Initialize a set a candidate getelementptrs. Note that we use a // SetVector here to preserve program order. If the index computations // are vectorizable and begin with loads, we want to minimize the chance // of having to reorder them later. SetVector<Value *> Candidates(GEPList.begin(), GEPList.end()); // Some of the candidates may have already been vectorized after we // initially collected them. If so, the WeakVHs will have nullified the // values, so remove them from the set of candidates. Candidates.remove(nullptr); // Remove from the set of candidates all pairs of getelementptrs with // constant differences. Such getelementptrs are likely not good // candidates for vectorization in a bottom-up phase since one can be // computed from the other. We also ensure all candidate getelementptr // indices are unique. for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) { auto *GEPI = cast<GetElementPtrInst>(GEPList[I]); if (!Candidates.count(GEPI)) continue; auto *SCEVI = SE->getSCEV(GEPList[I]); for (int J = I + 1; J < E && Candidates.size() > 1; ++J) { auto *GEPJ = cast<GetElementPtrInst>(GEPList[J]); auto *SCEVJ = SE->getSCEV(GEPList[J]); if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) { Candidates.remove(GEPList[I]); Candidates.remove(GEPList[J]); } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) { Candidates.remove(GEPList[J]); } } } // We break out of the above computation as soon as we know there are // fewer than two candidates remaining. if (Candidates.size() < 2) continue; // Add the single, non-constant index of each candidate to the bundle. We // ensured the indices met these constraints when we originally collected // the getelementptrs. SmallVector<Value *, 16> Bundle(Candidates.size()); auto BundleIndex = 0u; for (auto *V : Candidates) { auto *GEP = cast<GetElementPtrInst>(V); auto *GEPIdx = GEP->idx_begin()->get(); assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)); Bundle[BundleIndex++] = GEPIdx; } // Try and vectorize the indices. We are currently only interested in // gather-like cases of the form: // // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ... // // where the loads of "a", the loads of "b", and the subtractions can be // performed in parallel. It's likely that detecting this pattern in a // bottom-up phase will be simpler and less costly than building a // full-blown top-down phase beginning at the consecutive loads. Changed |= tryToVectorizeList(Bundle, R); } } return Changed; } bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) { bool Changed = false; // Attempt to sort and vectorize each of the store-groups. for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e; ++it) { if (it->second.size() < 2) continue; DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << it->second.size() << ".\n"); // Process the stores in chunks of 16. // TODO: The limit of 16 inhibits greater vectorization factors. // For example, AVX2 supports v32i8. Increasing this limit, however, // may cause a significant compile-time increase. for (unsigned CI = 0, CE = it->second.size(); CI < CE; CI+=16) { unsigned Len = std::min<unsigned>(CE - CI, 16); Changed |= vectorizeStores(makeArrayRef(&it->second[CI], Len), -SLPCostThreshold, R); } } return Changed; } char SLPVectorizer::ID = 0; static const char lv_name[] = "SLP Vectorizer"; INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false) INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) INITIALIZE_PASS_DEPENDENCY(LoopSimplify) INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass) INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false) namespace llvm { Pass *createSLPVectorizerPass() { return new SLPVectorizer(); } }