//===-- MemorySSA.cpp - Memory SSA Builder---------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------===// // // This file implements the MemorySSA class. // //===----------------------------------------------------------------===// #include "llvm/Transforms/Utils/MemorySSA.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/DepthFirstIterator.h" #include "llvm/ADT/GraphTraits.h" #include "llvm/ADT/PostOrderIterator.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/CFG.h" #include "llvm/Analysis/GlobalsModRef.h" #include "llvm/Analysis/IteratedDominanceFrontier.h" #include "llvm/Analysis/MemoryLocation.h" #include "llvm/Analysis/PHITransAddr.h" #include "llvm/IR/AssemblyAnnotationWriter.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/GlobalVariable.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Metadata.h" #include "llvm/IR/Module.h" #include "llvm/IR/PatternMatch.h" #include "llvm/Support/Debug.h" #include "llvm/Support/FormattedStream.h" #include "llvm/Transforms/Scalar.h" #include <algorithm> #define DEBUG_TYPE "memoryssa" using namespace llvm; STATISTIC(NumClobberCacheLookups, "Number of Memory SSA version cache lookups"); STATISTIC(NumClobberCacheHits, "Number of Memory SSA version cache hits"); STATISTIC(NumClobberCacheInserts, "Number of MemorySSA version cache inserts"); INITIALIZE_PASS_BEGIN(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false, true) INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) INITIALIZE_PASS_END(MemorySSAWrapperPass, "memoryssa", "Memory SSA", false, true) INITIALIZE_PASS_BEGIN(MemorySSAPrinterLegacyPass, "print-memoryssa", "Memory SSA Printer", false, false) INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) INITIALIZE_PASS_END(MemorySSAPrinterLegacyPass, "print-memoryssa", "Memory SSA Printer", false, false) static cl::opt<bool> VerifyMemorySSA("verify-memoryssa", cl::init(false), cl::Hidden, cl::desc("Verify MemorySSA in legacy printer pass.")); namespace llvm { /// \brief An assembly annotator class to print Memory SSA information in /// comments. class MemorySSAAnnotatedWriter : public AssemblyAnnotationWriter { friend class MemorySSA; const MemorySSA *MSSA; public: MemorySSAAnnotatedWriter(const MemorySSA *M) : MSSA(M) {} virtual void emitBasicBlockStartAnnot(const BasicBlock *BB, formatted_raw_ostream &OS) { if (MemoryAccess *MA = MSSA->getMemoryAccess(BB)) OS << "; " << *MA << "\n"; } virtual void emitInstructionAnnot(const Instruction *I, formatted_raw_ostream &OS) { if (MemoryAccess *MA = MSSA->getMemoryAccess(I)) OS << "; " << *MA << "\n"; } }; /// \brief A MemorySSAWalker that does AA walks and caching of lookups to /// disambiguate accesses. /// /// FIXME: The current implementation of this can take quadratic space in rare /// cases. This can be fixed, but it is something to note until it is fixed. /// /// In order to trigger this behavior, you need to store to N distinct locations /// (that AA can prove don't alias), perform M stores to other memory /// locations that AA can prove don't alias any of the initial N locations, and /// then load from all of the N locations. In this case, we insert M cache /// entries for each of the N loads. /// /// For example: /// define i32 @foo() { /// %a = alloca i32, align 4 /// %b = alloca i32, align 4 /// store i32 0, i32* %a, align 4 /// store i32 0, i32* %b, align 4 /// /// ; Insert M stores to other memory that doesn't alias %a or %b here /// /// %c = load i32, i32* %a, align 4 ; Caches M entries in /// ; CachedUpwardsClobberingAccess for the /// ; MemoryLocation %a /// %d = load i32, i32* %b, align 4 ; Caches M entries in /// ; CachedUpwardsClobberingAccess for the /// ; MemoryLocation %b /// /// ; For completeness' sake, loading %a or %b again would not cache *another* /// ; M entries. /// %r = add i32 %c, %d /// ret i32 %r /// } class MemorySSA::CachingWalker final : public MemorySSAWalker { public: CachingWalker(MemorySSA *, AliasAnalysis *, DominatorTree *); ~CachingWalker() override; MemoryAccess *getClobberingMemoryAccess(const Instruction *) override; MemoryAccess *getClobberingMemoryAccess(MemoryAccess *, MemoryLocation &) override; void invalidateInfo(MemoryAccess *) override; protected: struct UpwardsMemoryQuery; MemoryAccess *doCacheLookup(const MemoryAccess *, const UpwardsMemoryQuery &, const MemoryLocation &); void doCacheInsert(const MemoryAccess *, MemoryAccess *, const UpwardsMemoryQuery &, const MemoryLocation &); void doCacheRemove(const MemoryAccess *, const UpwardsMemoryQuery &, const MemoryLocation &); private: MemoryAccessPair UpwardsDFSWalk(MemoryAccess *, const MemoryLocation &, UpwardsMemoryQuery &, bool); MemoryAccess *getClobberingMemoryAccess(MemoryAccess *, UpwardsMemoryQuery &); bool instructionClobbersQuery(const MemoryDef *, UpwardsMemoryQuery &, const MemoryLocation &Loc) const; void verifyRemoved(MemoryAccess *); SmallDenseMap<ConstMemoryAccessPair, MemoryAccess *> CachedUpwardsClobberingAccess; DenseMap<const MemoryAccess *, MemoryAccess *> CachedUpwardsClobberingCall; AliasAnalysis *AA; DominatorTree *DT; }; } namespace { struct RenamePassData { DomTreeNode *DTN; DomTreeNode::const_iterator ChildIt; MemoryAccess *IncomingVal; RenamePassData(DomTreeNode *D, DomTreeNode::const_iterator It, MemoryAccess *M) : DTN(D), ChildIt(It), IncomingVal(M) {} void swap(RenamePassData &RHS) { std::swap(DTN, RHS.DTN); std::swap(ChildIt, RHS.ChildIt); std::swap(IncomingVal, RHS.IncomingVal); } }; } namespace llvm { /// \brief Rename a single basic block into MemorySSA form. /// Uses the standard SSA renaming algorithm. /// \returns The new incoming value. MemoryAccess *MemorySSA::renameBlock(BasicBlock *BB, MemoryAccess *IncomingVal) { auto It = PerBlockAccesses.find(BB); // Skip most processing if the list is empty. if (It != PerBlockAccesses.end()) { AccessList *Accesses = It->second.get(); for (MemoryAccess &L : *Accesses) { switch (L.getValueID()) { case Value::MemoryUseVal: cast<MemoryUse>(&L)->setDefiningAccess(IncomingVal); break; case Value::MemoryDefVal: // We can't legally optimize defs, because we only allow single // memory phis/uses on operations, and if we optimize these, we can // end up with multiple reaching defs. Uses do not have this // problem, since they do not produce a value cast<MemoryDef>(&L)->setDefiningAccess(IncomingVal); IncomingVal = &L; break; case Value::MemoryPhiVal: IncomingVal = &L; break; } } } // Pass through values to our successors for (const BasicBlock *S : successors(BB)) { auto It = PerBlockAccesses.find(S); // Rename the phi nodes in our successor block if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front())) continue; AccessList *Accesses = It->second.get(); auto *Phi = cast<MemoryPhi>(&Accesses->front()); Phi->addIncoming(IncomingVal, BB); } return IncomingVal; } /// \brief This is the standard SSA renaming algorithm. /// /// We walk the dominator tree in preorder, renaming accesses, and then filling /// in phi nodes in our successors. void MemorySSA::renamePass(DomTreeNode *Root, MemoryAccess *IncomingVal, SmallPtrSet<BasicBlock *, 16> &Visited) { SmallVector<RenamePassData, 32> WorkStack; IncomingVal = renameBlock(Root->getBlock(), IncomingVal); WorkStack.push_back({Root, Root->begin(), IncomingVal}); Visited.insert(Root->getBlock()); while (!WorkStack.empty()) { DomTreeNode *Node = WorkStack.back().DTN; DomTreeNode::const_iterator ChildIt = WorkStack.back().ChildIt; IncomingVal = WorkStack.back().IncomingVal; if (ChildIt == Node->end()) { WorkStack.pop_back(); } else { DomTreeNode *Child = *ChildIt; ++WorkStack.back().ChildIt; BasicBlock *BB = Child->getBlock(); Visited.insert(BB); IncomingVal = renameBlock(BB, IncomingVal); WorkStack.push_back({Child, Child->begin(), IncomingVal}); } } } /// \brief Compute dominator levels, used by the phi insertion algorithm above. void MemorySSA::computeDomLevels(DenseMap<DomTreeNode *, unsigned> &DomLevels) { for (auto DFI = df_begin(DT->getRootNode()), DFE = df_end(DT->getRootNode()); DFI != DFE; ++DFI) DomLevels[*DFI] = DFI.getPathLength() - 1; } /// \brief This handles unreachable block accesses by deleting phi nodes in /// unreachable blocks, and marking all other unreachable MemoryAccess's as /// being uses of the live on entry definition. void MemorySSA::markUnreachableAsLiveOnEntry(BasicBlock *BB) { assert(!DT->isReachableFromEntry(BB) && "Reachable block found while handling unreachable blocks"); // Make sure phi nodes in our reachable successors end up with a // LiveOnEntryDef for our incoming edge, even though our block is forward // unreachable. We could just disconnect these blocks from the CFG fully, // but we do not right now. for (const BasicBlock *S : successors(BB)) { if (!DT->isReachableFromEntry(S)) continue; auto It = PerBlockAccesses.find(S); // Rename the phi nodes in our successor block if (It == PerBlockAccesses.end() || !isa<MemoryPhi>(It->second->front())) continue; AccessList *Accesses = It->second.get(); auto *Phi = cast<MemoryPhi>(&Accesses->front()); Phi->addIncoming(LiveOnEntryDef.get(), BB); } auto It = PerBlockAccesses.find(BB); if (It == PerBlockAccesses.end()) return; auto &Accesses = It->second; for (auto AI = Accesses->begin(), AE = Accesses->end(); AI != AE;) { auto Next = std::next(AI); // If we have a phi, just remove it. We are going to replace all // users with live on entry. if (auto *UseOrDef = dyn_cast<MemoryUseOrDef>(AI)) UseOrDef->setDefiningAccess(LiveOnEntryDef.get()); else Accesses->erase(AI); AI = Next; } } MemorySSA::MemorySSA(Function &Func, AliasAnalysis *AA, DominatorTree *DT) : AA(AA), DT(DT), F(Func), LiveOnEntryDef(nullptr), Walker(nullptr), NextID(0) { buildMemorySSA(); } MemorySSA::MemorySSA(MemorySSA &&MSSA) : AA(MSSA.AA), DT(MSSA.DT), F(MSSA.F), ValueToMemoryAccess(std::move(MSSA.ValueToMemoryAccess)), PerBlockAccesses(std::move(MSSA.PerBlockAccesses)), LiveOnEntryDef(std::move(MSSA.LiveOnEntryDef)), Walker(std::move(MSSA.Walker)), NextID(MSSA.NextID) { // Update the Walker MSSA pointer so it doesn't point to the moved-from MSSA // object any more. Walker->MSSA = this; } MemorySSA::~MemorySSA() { // Drop all our references for (const auto &Pair : PerBlockAccesses) for (MemoryAccess &MA : *Pair.second) MA.dropAllReferences(); } MemorySSA::AccessList *MemorySSA::getOrCreateAccessList(const BasicBlock *BB) { auto Res = PerBlockAccesses.insert(std::make_pair(BB, nullptr)); if (Res.second) Res.first->second = make_unique<AccessList>(); return Res.first->second.get(); } void MemorySSA::buildMemorySSA() { // We create an access to represent "live on entry", for things like // arguments or users of globals, where the memory they use is defined before // the beginning of the function. We do not actually insert it into the IR. // We do not define a live on exit for the immediate uses, and thus our // semantics do *not* imply that something with no immediate uses can simply // be removed. BasicBlock &StartingPoint = F.getEntryBlock(); LiveOnEntryDef = make_unique<MemoryDef>(F.getContext(), nullptr, nullptr, &StartingPoint, NextID++); // We maintain lists of memory accesses per-block, trading memory for time. We // could just look up the memory access for every possible instruction in the // stream. SmallPtrSet<BasicBlock *, 32> DefiningBlocks; SmallPtrSet<BasicBlock *, 32> DefUseBlocks; // Go through each block, figure out where defs occur, and chain together all // the accesses. for (BasicBlock &B : F) { bool InsertIntoDef = false; AccessList *Accesses = nullptr; for (Instruction &I : B) { MemoryUseOrDef *MUD = createNewAccess(&I); if (!MUD) continue; InsertIntoDef |= isa<MemoryDef>(MUD); if (!Accesses) Accesses = getOrCreateAccessList(&B); Accesses->push_back(MUD); } if (InsertIntoDef) DefiningBlocks.insert(&B); if (Accesses) DefUseBlocks.insert(&B); } // Compute live-in. // Live in is normally defined as "all the blocks on the path from each def to // each of it's uses". // MemoryDef's are implicit uses of previous state, so they are also uses. // This means we don't really have def-only instructions. The only // MemoryDef's that are not really uses are those that are of the LiveOnEntry // variable (because LiveOnEntry can reach anywhere, and every def is a // must-kill of LiveOnEntry). // In theory, you could precisely compute live-in by using alias-analysis to // disambiguate defs and uses to see which really pair up with which. // In practice, this would be really expensive and difficult. So we simply // assume all defs are also uses that need to be kept live. // Because of this, the end result of this live-in computation will be "the // entire set of basic blocks that reach any use". SmallPtrSet<BasicBlock *, 32> LiveInBlocks; SmallVector<BasicBlock *, 64> LiveInBlockWorklist(DefUseBlocks.begin(), DefUseBlocks.end()); // Now that we have a set of blocks where a value is live-in, recursively add // predecessors until we find the full region the value is live. while (!LiveInBlockWorklist.empty()) { BasicBlock *BB = LiveInBlockWorklist.pop_back_val(); // The block really is live in here, insert it into the set. If already in // the set, then it has already been processed. if (!LiveInBlocks.insert(BB).second) continue; // Since the value is live into BB, it is either defined in a predecessor or // live into it to. LiveInBlockWorklist.append(pred_begin(BB), pred_end(BB)); } // Determine where our MemoryPhi's should go ForwardIDFCalculator IDFs(*DT); IDFs.setDefiningBlocks(DefiningBlocks); IDFs.setLiveInBlocks(LiveInBlocks); SmallVector<BasicBlock *, 32> IDFBlocks; IDFs.calculate(IDFBlocks); // Now place MemoryPhi nodes. for (auto &BB : IDFBlocks) { // Insert phi node AccessList *Accesses = getOrCreateAccessList(BB); MemoryPhi *Phi = new MemoryPhi(BB->getContext(), BB, NextID++); ValueToMemoryAccess.insert(std::make_pair(BB, Phi)); // Phi's always are placed at the front of the block. Accesses->push_front(Phi); } // Now do regular SSA renaming on the MemoryDef/MemoryUse. Visited will get // filled in with all blocks. SmallPtrSet<BasicBlock *, 16> Visited; renamePass(DT->getRootNode(), LiveOnEntryDef.get(), Visited); MemorySSAWalker *Walker = getWalker(); // Now optimize the MemoryUse's defining access to point to the nearest // dominating clobbering def. // This ensures that MemoryUse's that are killed by the same store are // immediate users of that store, one of the invariants we guarantee. for (auto DomNode : depth_first(DT)) { BasicBlock *BB = DomNode->getBlock(); auto AI = PerBlockAccesses.find(BB); if (AI == PerBlockAccesses.end()) continue; AccessList *Accesses = AI->second.get(); for (auto &MA : *Accesses) { if (auto *MU = dyn_cast<MemoryUse>(&MA)) { Instruction *Inst = MU->getMemoryInst(); MU->setDefiningAccess(Walker->getClobberingMemoryAccess(Inst)); } } } // Mark the uses in unreachable blocks as live on entry, so that they go // somewhere. for (auto &BB : F) if (!Visited.count(&BB)) markUnreachableAsLiveOnEntry(&BB); } MemorySSAWalker *MemorySSA::getWalker() { if (Walker) return Walker.get(); Walker = make_unique<CachingWalker>(this, AA, DT); return Walker.get(); } MemoryPhi *MemorySSA::createMemoryPhi(BasicBlock *BB) { assert(!getMemoryAccess(BB) && "MemoryPhi already exists for this BB"); AccessList *Accesses = getOrCreateAccessList(BB); MemoryPhi *Phi = new MemoryPhi(BB->getContext(), BB, NextID++); ValueToMemoryAccess.insert(std::make_pair(BB, Phi)); // Phi's always are placed at the front of the block. Accesses->push_front(Phi); return Phi; } MemoryUseOrDef *MemorySSA::createDefinedAccess(Instruction *I, MemoryAccess *Definition) { assert(!isa<PHINode>(I) && "Cannot create a defined access for a PHI"); MemoryUseOrDef *NewAccess = createNewAccess(I); assert( NewAccess != nullptr && "Tried to create a memory access for a non-memory touching instruction"); NewAccess->setDefiningAccess(Definition); return NewAccess; } MemoryAccess *MemorySSA::createMemoryAccessInBB(Instruction *I, MemoryAccess *Definition, const BasicBlock *BB, InsertionPlace Point) { MemoryUseOrDef *NewAccess = createDefinedAccess(I, Definition); auto *Accesses = getOrCreateAccessList(BB); if (Point == Beginning) { // It goes after any phi nodes auto AI = std::find_if( Accesses->begin(), Accesses->end(), [](const MemoryAccess &MA) { return !isa<MemoryPhi>(MA); }); Accesses->insert(AI, NewAccess); } else { Accesses->push_back(NewAccess); } return NewAccess; } MemoryAccess *MemorySSA::createMemoryAccessBefore(Instruction *I, MemoryAccess *Definition, MemoryAccess *InsertPt) { assert(I->getParent() == InsertPt->getBlock() && "New and old access must be in the same block"); MemoryUseOrDef *NewAccess = createDefinedAccess(I, Definition); auto *Accesses = getOrCreateAccessList(InsertPt->getBlock()); Accesses->insert(AccessList::iterator(InsertPt), NewAccess); return NewAccess; } MemoryAccess *MemorySSA::createMemoryAccessAfter(Instruction *I, MemoryAccess *Definition, MemoryAccess *InsertPt) { assert(I->getParent() == InsertPt->getBlock() && "New and old access must be in the same block"); MemoryUseOrDef *NewAccess = createDefinedAccess(I, Definition); auto *Accesses = getOrCreateAccessList(InsertPt->getBlock()); Accesses->insertAfter(AccessList::iterator(InsertPt), NewAccess); return NewAccess; } /// \brief Helper function to create new memory accesses MemoryUseOrDef *MemorySSA::createNewAccess(Instruction *I) { // The assume intrinsic has a control dependency which we model by claiming // that it writes arbitrarily. Ignore that fake memory dependency here. // FIXME: Replace this special casing with a more accurate modelling of // assume's control dependency. if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) if (II->getIntrinsicID() == Intrinsic::assume) return nullptr; // Find out what affect this instruction has on memory. ModRefInfo ModRef = AA->getModRefInfo(I); bool Def = bool(ModRef & MRI_Mod); bool Use = bool(ModRef & MRI_Ref); // It's possible for an instruction to not modify memory at all. During // construction, we ignore them. if (!Def && !Use) return nullptr; assert((Def || Use) && "Trying to create a memory access with a non-memory instruction"); MemoryUseOrDef *MUD; if (Def) MUD = new MemoryDef(I->getContext(), nullptr, I, I->getParent(), NextID++); else MUD = new MemoryUse(I->getContext(), nullptr, I, I->getParent()); ValueToMemoryAccess.insert(std::make_pair(I, MUD)); return MUD; } MemoryAccess *MemorySSA::findDominatingDef(BasicBlock *UseBlock, enum InsertionPlace Where) { // Handle the initial case if (Where == Beginning) // The only thing that could define us at the beginning is a phi node if (MemoryPhi *Phi = getMemoryAccess(UseBlock)) return Phi; DomTreeNode *CurrNode = DT->getNode(UseBlock); // Need to be defined by our dominator if (Where == Beginning) CurrNode = CurrNode->getIDom(); Where = End; while (CurrNode) { auto It = PerBlockAccesses.find(CurrNode->getBlock()); if (It != PerBlockAccesses.end()) { auto &Accesses = It->second; for (MemoryAccess &RA : reverse(*Accesses)) { if (isa<MemoryDef>(RA) || isa<MemoryPhi>(RA)) return &RA; } } CurrNode = CurrNode->getIDom(); } return LiveOnEntryDef.get(); } /// \brief Returns true if \p Replacer dominates \p Replacee . bool MemorySSA::dominatesUse(const MemoryAccess *Replacer, const MemoryAccess *Replacee) const { if (isa<MemoryUseOrDef>(Replacee)) return DT->dominates(Replacer->getBlock(), Replacee->getBlock()); const auto *MP = cast<MemoryPhi>(Replacee); // For a phi node, the use occurs in the predecessor block of the phi node. // Since we may occur multiple times in the phi node, we have to check each // operand to ensure Replacer dominates each operand where Replacee occurs. for (const Use &Arg : MP->operands()) { if (Arg.get() != Replacee && !DT->dominates(Replacer->getBlock(), MP->getIncomingBlock(Arg))) return false; } return true; } /// \brief If all arguments of a MemoryPHI are defined by the same incoming /// argument, return that argument. static MemoryAccess *onlySingleValue(MemoryPhi *MP) { MemoryAccess *MA = nullptr; for (auto &Arg : MP->operands()) { if (!MA) MA = cast<MemoryAccess>(Arg); else if (MA != Arg) return nullptr; } return MA; } /// \brief Properly remove \p MA from all of MemorySSA's lookup tables. /// /// Because of the way the intrusive list and use lists work, it is important to /// do removal in the right order. void MemorySSA::removeFromLookups(MemoryAccess *MA) { assert(MA->use_empty() && "Trying to remove memory access that still has uses"); if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(MA)) MUD->setDefiningAccess(nullptr); // Invalidate our walker's cache if necessary if (!isa<MemoryUse>(MA)) Walker->invalidateInfo(MA); // The call below to erase will destroy MA, so we can't change the order we // are doing things here Value *MemoryInst; if (MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(MA)) { MemoryInst = MUD->getMemoryInst(); } else { MemoryInst = MA->getBlock(); } ValueToMemoryAccess.erase(MemoryInst); auto AccessIt = PerBlockAccesses.find(MA->getBlock()); std::unique_ptr<AccessList> &Accesses = AccessIt->second; Accesses->erase(MA); if (Accesses->empty()) PerBlockAccesses.erase(AccessIt); } void MemorySSA::removeMemoryAccess(MemoryAccess *MA) { assert(!isLiveOnEntryDef(MA) && "Trying to remove the live on entry def"); // We can only delete phi nodes if they have no uses, or we can replace all // uses with a single definition. MemoryAccess *NewDefTarget = nullptr; if (MemoryPhi *MP = dyn_cast<MemoryPhi>(MA)) { // Note that it is sufficient to know that all edges of the phi node have // the same argument. If they do, by the definition of dominance frontiers // (which we used to place this phi), that argument must dominate this phi, // and thus, must dominate the phi's uses, and so we will not hit the assert // below. NewDefTarget = onlySingleValue(MP); assert((NewDefTarget || MP->use_empty()) && "We can't delete this memory phi"); } else { NewDefTarget = cast<MemoryUseOrDef>(MA)->getDefiningAccess(); } // Re-point the uses at our defining access if (!MA->use_empty()) MA->replaceAllUsesWith(NewDefTarget); // The call below to erase will destroy MA, so we can't change the order we // are doing things here removeFromLookups(MA); } void MemorySSA::print(raw_ostream &OS) const { MemorySSAAnnotatedWriter Writer(this); F.print(OS, &Writer); } void MemorySSA::dump() const { MemorySSAAnnotatedWriter Writer(this); F.print(dbgs(), &Writer); } void MemorySSA::verifyMemorySSA() const { verifyDefUses(F); verifyDomination(F); verifyOrdering(F); } /// \brief Verify that the order and existence of MemoryAccesses matches the /// order and existence of memory affecting instructions. void MemorySSA::verifyOrdering(Function &F) const { // Walk all the blocks, comparing what the lookups think and what the access // lists think, as well as the order in the blocks vs the order in the access // lists. SmallVector<MemoryAccess *, 32> ActualAccesses; for (BasicBlock &B : F) { const AccessList *AL = getBlockAccesses(&B); MemoryAccess *Phi = getMemoryAccess(&B); if (Phi) ActualAccesses.push_back(Phi); for (Instruction &I : B) { MemoryAccess *MA = getMemoryAccess(&I); assert((!MA || AL) && "We have memory affecting instructions " "in this block but they are not in the " "access list"); if (MA) ActualAccesses.push_back(MA); } // Either we hit the assert, really have no accesses, or we have both // accesses and an access list if (!AL) continue; assert(AL->size() == ActualAccesses.size() && "We don't have the same number of accesses in the block as on the " "access list"); auto ALI = AL->begin(); auto AAI = ActualAccesses.begin(); while (ALI != AL->end() && AAI != ActualAccesses.end()) { assert(&*ALI == *AAI && "Not the same accesses in the same order"); ++ALI; ++AAI; } ActualAccesses.clear(); } } /// \brief Verify the domination properties of MemorySSA by checking that each /// definition dominates all of its uses. void MemorySSA::verifyDomination(Function &F) const { for (BasicBlock &B : F) { // Phi nodes are attached to basic blocks if (MemoryPhi *MP = getMemoryAccess(&B)) { for (User *U : MP->users()) { BasicBlock *UseBlock; // Phi operands are used on edges, we simulate the right domination by // acting as if the use occurred at the end of the predecessor block. if (MemoryPhi *P = dyn_cast<MemoryPhi>(U)) { for (const auto &Arg : P->operands()) { if (Arg == MP) { UseBlock = P->getIncomingBlock(Arg); break; } } } else { UseBlock = cast<MemoryAccess>(U)->getBlock(); } (void)UseBlock; assert(DT->dominates(MP->getBlock(), UseBlock) && "Memory PHI does not dominate it's uses"); } } for (Instruction &I : B) { MemoryAccess *MD = dyn_cast_or_null<MemoryDef>(getMemoryAccess(&I)); if (!MD) continue; for (User *U : MD->users()) { BasicBlock *UseBlock; (void)UseBlock; // Things are allowed to flow to phi nodes over their predecessor edge. if (auto *P = dyn_cast<MemoryPhi>(U)) { for (const auto &Arg : P->operands()) { if (Arg == MD) { UseBlock = P->getIncomingBlock(Arg); break; } } } else { UseBlock = cast<MemoryAccess>(U)->getBlock(); } assert(DT->dominates(MD->getBlock(), UseBlock) && "Memory Def does not dominate it's uses"); } } } } /// \brief Verify the def-use lists in MemorySSA, by verifying that \p Use /// appears in the use list of \p Def. /// /// llvm_unreachable is used instead of asserts because this may be called in /// a build without asserts. In that case, we don't want this to turn into a /// nop. void MemorySSA::verifyUseInDefs(MemoryAccess *Def, MemoryAccess *Use) const { // The live on entry use may cause us to get a NULL def here if (!Def) { if (!isLiveOnEntryDef(Use)) llvm_unreachable("Null def but use not point to live on entry def"); } else if (std::find(Def->user_begin(), Def->user_end(), Use) == Def->user_end()) { llvm_unreachable("Did not find use in def's use list"); } } /// \brief Verify the immediate use information, by walking all the memory /// accesses and verifying that, for each use, it appears in the /// appropriate def's use list void MemorySSA::verifyDefUses(Function &F) const { for (BasicBlock &B : F) { // Phi nodes are attached to basic blocks if (MemoryPhi *Phi = getMemoryAccess(&B)) { assert(Phi->getNumOperands() == static_cast<unsigned>(std::distance( pred_begin(&B), pred_end(&B))) && "Incomplete MemoryPhi Node"); for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) verifyUseInDefs(Phi->getIncomingValue(I), Phi); } for (Instruction &I : B) { if (MemoryAccess *MA = getMemoryAccess(&I)) { assert(isa<MemoryUseOrDef>(MA) && "Found a phi node not attached to a bb"); verifyUseInDefs(cast<MemoryUseOrDef>(MA)->getDefiningAccess(), MA); } } } } MemoryAccess *MemorySSA::getMemoryAccess(const Value *I) const { return ValueToMemoryAccess.lookup(I); } MemoryPhi *MemorySSA::getMemoryAccess(const BasicBlock *BB) const { return cast_or_null<MemoryPhi>(getMemoryAccess((const Value *)BB)); } /// \brief Determine, for two memory accesses in the same block, /// whether \p Dominator dominates \p Dominatee. /// \returns True if \p Dominator dominates \p Dominatee. bool MemorySSA::locallyDominates(const MemoryAccess *Dominator, const MemoryAccess *Dominatee) const { assert((Dominator->getBlock() == Dominatee->getBlock()) && "Asking for local domination when accesses are in different blocks!"); // A node dominates itself. if (Dominatee == Dominator) return true; // When Dominatee is defined on function entry, it is not dominated by another // memory access. if (isLiveOnEntryDef(Dominatee)) return false; // When Dominator is defined on function entry, it dominates the other memory // access. if (isLiveOnEntryDef(Dominator)) return true; // Get the access list for the block const AccessList *AccessList = getBlockAccesses(Dominator->getBlock()); AccessList::const_reverse_iterator It(Dominator->getIterator()); // If we hit the beginning of the access list before we hit dominatee, we must // dominate it return std::none_of(It, AccessList->rend(), [&](const MemoryAccess &MA) { return &MA == Dominatee; }); } const static char LiveOnEntryStr[] = "liveOnEntry"; void MemoryDef::print(raw_ostream &OS) const { MemoryAccess *UO = getDefiningAccess(); OS << getID() << " = MemoryDef("; if (UO && UO->getID()) OS << UO->getID(); else OS << LiveOnEntryStr; OS << ')'; } void MemoryPhi::print(raw_ostream &OS) const { bool First = true; OS << getID() << " = MemoryPhi("; for (const auto &Op : operands()) { BasicBlock *BB = getIncomingBlock(Op); MemoryAccess *MA = cast<MemoryAccess>(Op); if (!First) OS << ','; else First = false; OS << '{'; if (BB->hasName()) OS << BB->getName(); else BB->printAsOperand(OS, false); OS << ','; if (unsigned ID = MA->getID()) OS << ID; else OS << LiveOnEntryStr; OS << '}'; } OS << ')'; } MemoryAccess::~MemoryAccess() {} void MemoryUse::print(raw_ostream &OS) const { MemoryAccess *UO = getDefiningAccess(); OS << "MemoryUse("; if (UO && UO->getID()) OS << UO->getID(); else OS << LiveOnEntryStr; OS << ')'; } void MemoryAccess::dump() const { print(dbgs()); dbgs() << "\n"; } char MemorySSAPrinterLegacyPass::ID = 0; MemorySSAPrinterLegacyPass::MemorySSAPrinterLegacyPass() : FunctionPass(ID) { initializeMemorySSAPrinterLegacyPassPass(*PassRegistry::getPassRegistry()); } void MemorySSAPrinterLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesAll(); AU.addRequired<MemorySSAWrapperPass>(); AU.addPreserved<MemorySSAWrapperPass>(); } bool MemorySSAPrinterLegacyPass::runOnFunction(Function &F) { auto &MSSA = getAnalysis<MemorySSAWrapperPass>().getMSSA(); MSSA.print(dbgs()); if (VerifyMemorySSA) MSSA.verifyMemorySSA(); return false; } char MemorySSAAnalysis::PassID; MemorySSA MemorySSAAnalysis::run(Function &F, AnalysisManager<Function> &AM) { auto &DT = AM.getResult<DominatorTreeAnalysis>(F); auto &AA = AM.getResult<AAManager>(F); return MemorySSA(F, &AA, &DT); } PreservedAnalyses MemorySSAPrinterPass::run(Function &F, FunctionAnalysisManager &AM) { OS << "MemorySSA for function: " << F.getName() << "\n"; AM.getResult<MemorySSAAnalysis>(F).print(OS); return PreservedAnalyses::all(); } PreservedAnalyses MemorySSAVerifierPass::run(Function &F, FunctionAnalysisManager &AM) { AM.getResult<MemorySSAAnalysis>(F).verifyMemorySSA(); return PreservedAnalyses::all(); } char MemorySSAWrapperPass::ID = 0; MemorySSAWrapperPass::MemorySSAWrapperPass() : FunctionPass(ID) { initializeMemorySSAWrapperPassPass(*PassRegistry::getPassRegistry()); } void MemorySSAWrapperPass::releaseMemory() { MSSA.reset(); } void MemorySSAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesAll(); AU.addRequiredTransitive<DominatorTreeWrapperPass>(); AU.addRequiredTransitive<AAResultsWrapperPass>(); } bool MemorySSAWrapperPass::runOnFunction(Function &F) { auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); MSSA.reset(new MemorySSA(F, &AA, &DT)); return false; } void MemorySSAWrapperPass::verifyAnalysis() const { MSSA->verifyMemorySSA(); } void MemorySSAWrapperPass::print(raw_ostream &OS, const Module *M) const { MSSA->print(OS); } MemorySSAWalker::MemorySSAWalker(MemorySSA *M) : MSSA(M) {} MemorySSA::CachingWalker::CachingWalker(MemorySSA *M, AliasAnalysis *A, DominatorTree *D) : MemorySSAWalker(M), AA(A), DT(D) {} MemorySSA::CachingWalker::~CachingWalker() {} struct MemorySSA::CachingWalker::UpwardsMemoryQuery { // True if we saw a phi whose predecessor was a backedge bool SawBackedgePhi; // True if our original query started off as a call bool IsCall; // The pointer location we started the query with. This will be empty if // IsCall is true. MemoryLocation StartingLoc; // This is the instruction we were querying about. const Instruction *Inst; // Set of visited Instructions for this query. DenseSet<MemoryAccessPair> Visited; // Vector of visited call accesses for this query. This is separated out // because you can always cache and lookup the result of call queries (IE when // IsCall == true) for every call in the chain. The calls have no AA location // associated with them with them, and thus, no context dependence. SmallVector<const MemoryAccess *, 32> VisitedCalls; // The MemoryAccess we actually got called with, used to test local domination const MemoryAccess *OriginalAccess; UpwardsMemoryQuery() : SawBackedgePhi(false), IsCall(false), Inst(nullptr), OriginalAccess(nullptr) {} UpwardsMemoryQuery(const Instruction *Inst, const MemoryAccess *Access) : SawBackedgePhi(false), IsCall(ImmutableCallSite(Inst)), Inst(Inst), OriginalAccess(Access) {} }; void MemorySSA::CachingWalker::invalidateInfo(MemoryAccess *MA) { // TODO: We can do much better cache invalidation with differently stored // caches. For now, for MemoryUses, we simply remove them // from the cache, and kill the entire call/non-call cache for everything // else. The problem is for phis or defs, currently we'd need to follow use // chains down and invalidate anything below us in the chain that currently // terminates at this access. // See if this is a MemoryUse, if so, just remove the cached info. MemoryUse // is by definition never a barrier, so nothing in the cache could point to // this use. In that case, we only need invalidate the info for the use // itself. if (MemoryUse *MU = dyn_cast<MemoryUse>(MA)) { UpwardsMemoryQuery Q; Instruction *I = MU->getMemoryInst(); Q.IsCall = bool(ImmutableCallSite(I)); Q.Inst = I; if (!Q.IsCall) Q.StartingLoc = MemoryLocation::get(I); doCacheRemove(MA, Q, Q.StartingLoc); } else { // If it is not a use, the best we can do right now is destroy the cache. CachedUpwardsClobberingCall.clear(); CachedUpwardsClobberingAccess.clear(); } #ifdef EXPENSIVE_CHECKS // Run this only when expensive checks are enabled. verifyRemoved(MA); #endif } void MemorySSA::CachingWalker::doCacheRemove(const MemoryAccess *M, const UpwardsMemoryQuery &Q, const MemoryLocation &Loc) { if (Q.IsCall) CachedUpwardsClobberingCall.erase(M); else CachedUpwardsClobberingAccess.erase({M, Loc}); } void MemorySSA::CachingWalker::doCacheInsert(const MemoryAccess *M, MemoryAccess *Result, const UpwardsMemoryQuery &Q, const MemoryLocation &Loc) { // This is fine for Phis, since there are times where we can't optimize them. // Making a def its own clobber is never correct, though. assert((Result != M || isa<MemoryPhi>(M)) && "Something can't clobber itself!"); ++NumClobberCacheInserts; if (Q.IsCall) CachedUpwardsClobberingCall[M] = Result; else CachedUpwardsClobberingAccess[{M, Loc}] = Result; } MemoryAccess * MemorySSA::CachingWalker::doCacheLookup(const MemoryAccess *M, const UpwardsMemoryQuery &Q, const MemoryLocation &Loc) { ++NumClobberCacheLookups; MemoryAccess *Result; if (Q.IsCall) Result = CachedUpwardsClobberingCall.lookup(M); else Result = CachedUpwardsClobberingAccess.lookup({M, Loc}); if (Result) ++NumClobberCacheHits; return Result; } bool MemorySSA::CachingWalker::instructionClobbersQuery( const MemoryDef *MD, UpwardsMemoryQuery &Q, const MemoryLocation &Loc) const { Instruction *DefMemoryInst = MD->getMemoryInst(); assert(DefMemoryInst && "Defining instruction not actually an instruction"); if (!Q.IsCall) return AA->getModRefInfo(DefMemoryInst, Loc) & MRI_Mod; // If this is a call, mark it for caching if (ImmutableCallSite(DefMemoryInst)) Q.VisitedCalls.push_back(MD); ModRefInfo I = AA->getModRefInfo(DefMemoryInst, ImmutableCallSite(Q.Inst)); return I != MRI_NoModRef; } MemoryAccessPair MemorySSA::CachingWalker::UpwardsDFSWalk( MemoryAccess *StartingAccess, const MemoryLocation &Loc, UpwardsMemoryQuery &Q, bool FollowingBackedge) { MemoryAccess *ModifyingAccess = nullptr; auto DFI = df_begin(StartingAccess); for (auto DFE = df_end(StartingAccess); DFI != DFE;) { MemoryAccess *CurrAccess = *DFI; if (MSSA->isLiveOnEntryDef(CurrAccess)) return {CurrAccess, Loc}; // If this is a MemoryDef, check whether it clobbers our current query. This // needs to be done before consulting the cache, because the cache reports // the clobber for CurrAccess. If CurrAccess is a clobber for this query, // and we ask the cache for information first, then we might skip this // clobber, which is bad. if (auto *MD = dyn_cast<MemoryDef>(CurrAccess)) { // If we hit the top, stop following this path. // While we can do lookups, we can't sanely do inserts here unless we were // to track everything we saw along the way, since we don't know where we // will stop. if (instructionClobbersQuery(MD, Q, Loc)) { ModifyingAccess = CurrAccess; break; } } if (auto CacheResult = doCacheLookup(CurrAccess, Q, Loc)) return {CacheResult, Loc}; // We need to know whether it is a phi so we can track backedges. // Otherwise, walk all upward defs. if (!isa<MemoryPhi>(CurrAccess)) { ++DFI; continue; } #ifndef NDEBUG // The loop below visits the phi's children for us. Because phis are the // only things with multiple edges, skipping the children should always lead // us to the end of the loop. // // Use a copy of DFI because skipChildren would kill our search stack, which // would make caching anything on the way back impossible. auto DFICopy = DFI; assert(DFICopy.skipChildren() == DFE && "Skipping phi's children doesn't end the DFS?"); #endif const MemoryAccessPair PHIPair(CurrAccess, Loc); // Don't try to optimize this phi again if we've already tried to do so. if (!Q.Visited.insert(PHIPair).second) { ModifyingAccess = CurrAccess; break; } std::size_t InitialVisitedCallSize = Q.VisitedCalls.size(); // Recurse on PHI nodes, since we need to change locations. // TODO: Allow graphtraits on pairs, which would turn this whole function // into a normal single depth first walk. MemoryAccess *FirstDef = nullptr; for (auto MPI = upward_defs_begin(PHIPair), MPE = upward_defs_end(); MPI != MPE; ++MPI) { bool Backedge = !FollowingBackedge && DT->dominates(CurrAccess->getBlock(), MPI.getPhiArgBlock()); MemoryAccessPair CurrentPair = UpwardsDFSWalk(MPI->first, MPI->second, Q, Backedge); // All the phi arguments should reach the same point if we can bypass // this phi. The alternative is that they hit this phi node, which // means we can skip this argument. if (FirstDef && CurrentPair.first != PHIPair.first && CurrentPair.first != FirstDef) { ModifyingAccess = CurrAccess; break; } if (!FirstDef) FirstDef = CurrentPair.first; } // If we exited the loop early, go with the result it gave us. if (!ModifyingAccess) { assert(FirstDef && "Found a Phi with no upward defs?"); ModifyingAccess = FirstDef; } else { // If we can't optimize this Phi, then we can't safely cache any of the // calls we visited when trying to optimize it. Wipe them out now. Q.VisitedCalls.resize(InitialVisitedCallSize); } break; } if (!ModifyingAccess) return {MSSA->getLiveOnEntryDef(), Q.StartingLoc}; const BasicBlock *OriginalBlock = StartingAccess->getBlock(); assert(DFI.getPathLength() > 0 && "We dropped our path?"); unsigned N = DFI.getPathLength(); // If we found a clobbering def, the last element in the path will be our // clobber, so we don't want to cache that to itself. OTOH, if we optimized a // phi, we can add the last thing in the path to the cache, since that won't // be the result. if (DFI.getPath(N - 1) == ModifyingAccess) --N; for (; N > 1; --N) { MemoryAccess *CacheAccess = DFI.getPath(N - 1); BasicBlock *CurrBlock = CacheAccess->getBlock(); if (!FollowingBackedge) doCacheInsert(CacheAccess, ModifyingAccess, Q, Loc); if (DT->dominates(CurrBlock, OriginalBlock) && (CurrBlock != OriginalBlock || !FollowingBackedge || MSSA->locallyDominates(CacheAccess, StartingAccess))) break; } // Cache everything else on the way back. The caller should cache // StartingAccess for us. for (; N > 1; --N) { MemoryAccess *CacheAccess = DFI.getPath(N - 1); doCacheInsert(CacheAccess, ModifyingAccess, Q, Loc); } assert(Q.Visited.size() < 1000 && "Visited too much"); return {ModifyingAccess, Loc}; } /// \brief Walk the use-def chains starting at \p MA and find /// the MemoryAccess that actually clobbers Loc. /// /// \returns our clobbering memory access MemoryAccess *MemorySSA::CachingWalker::getClobberingMemoryAccess( MemoryAccess *StartingAccess, UpwardsMemoryQuery &Q) { return UpwardsDFSWalk(StartingAccess, Q.StartingLoc, Q, false).first; } MemoryAccess *MemorySSA::CachingWalker::getClobberingMemoryAccess( MemoryAccess *StartingAccess, MemoryLocation &Loc) { if (isa<MemoryPhi>(StartingAccess)) return StartingAccess; auto *StartingUseOrDef = cast<MemoryUseOrDef>(StartingAccess); if (MSSA->isLiveOnEntryDef(StartingUseOrDef)) return StartingUseOrDef; Instruction *I = StartingUseOrDef->getMemoryInst(); // Conservatively, fences are always clobbers, so don't perform the walk if we // hit a fence. if (isa<FenceInst>(I)) return StartingUseOrDef; UpwardsMemoryQuery Q; Q.OriginalAccess = StartingUseOrDef; Q.StartingLoc = Loc; Q.Inst = StartingUseOrDef->getMemoryInst(); Q.IsCall = false; if (auto CacheResult = doCacheLookup(StartingUseOrDef, Q, Q.StartingLoc)) return CacheResult; // Unlike the other function, do not walk to the def of a def, because we are // handed something we already believe is the clobbering access. MemoryAccess *DefiningAccess = isa<MemoryUse>(StartingUseOrDef) ? StartingUseOrDef->getDefiningAccess() : StartingUseOrDef; MemoryAccess *Clobber = getClobberingMemoryAccess(DefiningAccess, Q); // Only cache this if it wouldn't make Clobber point to itself. if (Clobber != StartingAccess) doCacheInsert(Q.OriginalAccess, Clobber, Q, Q.StartingLoc); DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is "); DEBUG(dbgs() << *StartingUseOrDef << "\n"); DEBUG(dbgs() << "Final Memory SSA clobber for " << *I << " is "); DEBUG(dbgs() << *Clobber << "\n"); return Clobber; } MemoryAccess * MemorySSA::CachingWalker::getClobberingMemoryAccess(const Instruction *I) { // There should be no way to lookup an instruction and get a phi as the // access, since we only map BB's to PHI's. So, this must be a use or def. auto *StartingAccess = cast<MemoryUseOrDef>(MSSA->getMemoryAccess(I)); // We can't sanely do anything with a FenceInst, they conservatively // clobber all memory, and have no locations to get pointers from to // try to disambiguate if (isa<FenceInst>(I)) return StartingAccess; UpwardsMemoryQuery Q; Q.OriginalAccess = StartingAccess; Q.IsCall = bool(ImmutableCallSite(I)); if (!Q.IsCall) Q.StartingLoc = MemoryLocation::get(I); Q.Inst = I; if (auto CacheResult = doCacheLookup(StartingAccess, Q, Q.StartingLoc)) return CacheResult; // Start with the thing we already think clobbers this location MemoryAccess *DefiningAccess = StartingAccess->getDefiningAccess(); // At this point, DefiningAccess may be the live on entry def. // If it is, we will not get a better result. if (MSSA->isLiveOnEntryDef(DefiningAccess)) return DefiningAccess; MemoryAccess *Result = getClobberingMemoryAccess(DefiningAccess, Q); // DFS won't cache a result for DefiningAccess. So, if DefiningAccess isn't // our clobber, be sure that it gets a cache entry, too. if (Result != DefiningAccess) doCacheInsert(DefiningAccess, Result, Q, Q.StartingLoc); doCacheInsert(Q.OriginalAccess, Result, Q, Q.StartingLoc); // TODO: When this implementation is more mature, we may want to figure out // what this additional caching buys us. It's most likely A Good Thing. if (Q.IsCall) for (const MemoryAccess *MA : Q.VisitedCalls) if (MA != Result) doCacheInsert(MA, Result, Q, Q.StartingLoc); DEBUG(dbgs() << "Starting Memory SSA clobber for " << *I << " is "); DEBUG(dbgs() << *DefiningAccess << "\n"); DEBUG(dbgs() << "Final Memory SSA clobber for " << *I << " is "); DEBUG(dbgs() << *Result << "\n"); return Result; } // Verify that MA doesn't exist in any of the caches. void MemorySSA::CachingWalker::verifyRemoved(MemoryAccess *MA) { #ifndef NDEBUG for (auto &P : CachedUpwardsClobberingAccess) assert(P.first.first != MA && P.second != MA && "Found removed MemoryAccess in cache."); for (auto &P : CachedUpwardsClobberingCall) assert(P.first != MA && P.second != MA && "Found removed MemoryAccess in cache."); #endif // !NDEBUG } MemoryAccess * DoNothingMemorySSAWalker::getClobberingMemoryAccess(const Instruction *I) { MemoryAccess *MA = MSSA->getMemoryAccess(I); if (auto *Use = dyn_cast<MemoryUseOrDef>(MA)) return Use->getDefiningAccess(); return MA; } MemoryAccess *DoNothingMemorySSAWalker::getClobberingMemoryAccess( MemoryAccess *StartingAccess, MemoryLocation &) { if (auto *Use = dyn_cast<MemoryUseOrDef>(StartingAccess)) return Use->getDefiningAccess(); return StartingAccess; } }