//===- LoopVersioning.cpp - Utility to version a loop ---------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines a utility class to perform loop versioning. The versioned // loop speculates that otherwise may-aliasing memory accesses don't overlap and // emits checks to prove this. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Utils/LoopVersioning.h" #include "llvm/Analysis/LoopAccessAnalysis.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/ScalarEvolutionExpander.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/MDBuilder.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Transforms/Utils/Cloning.h" using namespace llvm; static cl::opt<bool> AnnotateNoAlias("loop-version-annotate-no-alias", cl::init(true), cl::Hidden, cl::desc("Add no-alias annotation for instructions that " "are disambiguated by memchecks")); LoopVersioning::LoopVersioning(const LoopAccessInfo &LAI, Loop *L, LoopInfo *LI, DominatorTree *DT, ScalarEvolution *SE, bool UseLAIChecks) : VersionedLoop(L), NonVersionedLoop(nullptr), LAI(LAI), LI(LI), DT(DT), SE(SE) { assert(L->getExitBlock() && "No single exit block"); assert(L->getLoopPreheader() && "No preheader"); if (UseLAIChecks) { setAliasChecks(LAI.getRuntimePointerChecking()->getChecks()); setSCEVChecks(LAI.getPSE().getUnionPredicate()); } } void LoopVersioning::setAliasChecks( SmallVector<RuntimePointerChecking::PointerCheck, 4> Checks) { AliasChecks = std::move(Checks); } void LoopVersioning::setSCEVChecks(SCEVUnionPredicate Check) { Preds = std::move(Check); } void LoopVersioning::versionLoop( const SmallVectorImpl<Instruction *> &DefsUsedOutside) { Instruction *FirstCheckInst; Instruction *MemRuntimeCheck; Value *SCEVRuntimeCheck; Value *RuntimeCheck = nullptr; // Add the memcheck in the original preheader (this is empty initially). BasicBlock *RuntimeCheckBB = VersionedLoop->getLoopPreheader(); std::tie(FirstCheckInst, MemRuntimeCheck) = LAI.addRuntimeChecks(RuntimeCheckBB->getTerminator(), AliasChecks); const SCEVUnionPredicate &Pred = LAI.getPSE().getUnionPredicate(); SCEVExpander Exp(*SE, RuntimeCheckBB->getModule()->getDataLayout(), "scev.check"); SCEVRuntimeCheck = Exp.expandCodeForPredicate(&Pred, RuntimeCheckBB->getTerminator()); auto *CI = dyn_cast<ConstantInt>(SCEVRuntimeCheck); // Discard the SCEV runtime check if it is always true. if (CI && CI->isZero()) SCEVRuntimeCheck = nullptr; if (MemRuntimeCheck && SCEVRuntimeCheck) { RuntimeCheck = BinaryOperator::Create(Instruction::Or, MemRuntimeCheck, SCEVRuntimeCheck, "lver.safe"); if (auto *I = dyn_cast<Instruction>(RuntimeCheck)) I->insertBefore(RuntimeCheckBB->getTerminator()); } else RuntimeCheck = MemRuntimeCheck ? MemRuntimeCheck : SCEVRuntimeCheck; assert(RuntimeCheck && "called even though we don't need " "any runtime checks"); // Rename the block to make the IR more readable. RuntimeCheckBB->setName(VersionedLoop->getHeader()->getName() + ".lver.check"); // Create empty preheader for the loop (and after cloning for the // non-versioned loop). BasicBlock *PH = SplitBlock(RuntimeCheckBB, RuntimeCheckBB->getTerminator(), DT, LI); PH->setName(VersionedLoop->getHeader()->getName() + ".ph"); // Clone the loop including the preheader. // // FIXME: This does not currently preserve SimplifyLoop because the exit // block is a join between the two loops. SmallVector<BasicBlock *, 8> NonVersionedLoopBlocks; NonVersionedLoop = cloneLoopWithPreheader(PH, RuntimeCheckBB, VersionedLoop, VMap, ".lver.orig", LI, DT, NonVersionedLoopBlocks); remapInstructionsInBlocks(NonVersionedLoopBlocks, VMap); // Insert the conditional branch based on the result of the memchecks. Instruction *OrigTerm = RuntimeCheckBB->getTerminator(); BranchInst::Create(NonVersionedLoop->getLoopPreheader(), VersionedLoop->getLoopPreheader(), RuntimeCheck, OrigTerm); OrigTerm->eraseFromParent(); // The loops merge in the original exit block. This is now dominated by the // memchecking block. DT->changeImmediateDominator(VersionedLoop->getExitBlock(), RuntimeCheckBB); // Adds the necessary PHI nodes for the versioned loops based on the // loop-defined values used outside of the loop. addPHINodes(DefsUsedOutside); } void LoopVersioning::addPHINodes( const SmallVectorImpl<Instruction *> &DefsUsedOutside) { BasicBlock *PHIBlock = VersionedLoop->getExitBlock(); assert(PHIBlock && "No single successor to loop exit block"); PHINode *PN; // First add a single-operand PHI for each DefsUsedOutside if one does not // exists yet. for (auto *Inst : DefsUsedOutside) { // See if we have a single-operand PHI with the value defined by the // original loop. for (auto I = PHIBlock->begin(); (PN = dyn_cast<PHINode>(I)); ++I) { if (PN->getIncomingValue(0) == Inst) break; } // If not create it. if (!PN) { PN = PHINode::Create(Inst->getType(), 2, Inst->getName() + ".lver", &PHIBlock->front()); for (auto *User : Inst->users()) if (!VersionedLoop->contains(cast<Instruction>(User)->getParent())) User->replaceUsesOfWith(Inst, PN); PN->addIncoming(Inst, VersionedLoop->getExitingBlock()); } } // Then for each PHI add the operand for the edge from the cloned loop. for (auto I = PHIBlock->begin(); (PN = dyn_cast<PHINode>(I)); ++I) { assert(PN->getNumOperands() == 1 && "Exit block should only have on predecessor"); // If the definition was cloned used that otherwise use the same value. Value *ClonedValue = PN->getIncomingValue(0); auto Mapped = VMap.find(ClonedValue); if (Mapped != VMap.end()) ClonedValue = Mapped->second; PN->addIncoming(ClonedValue, NonVersionedLoop->getExitingBlock()); } } void LoopVersioning::prepareNoAliasMetadata() { // We need to turn the no-alias relation between pointer checking groups into // no-aliasing annotations between instructions. // // We accomplish this by mapping each pointer checking group (a set of // pointers memchecked together) to an alias scope and then also mapping each // group to the list of scopes it can't alias. const RuntimePointerChecking *RtPtrChecking = LAI.getRuntimePointerChecking(); LLVMContext &Context = VersionedLoop->getHeader()->getContext(); // First allocate an aliasing scope for each pointer checking group. // // While traversing through the checking groups in the loop, also create a // reverse map from pointers to the pointer checking group they were assigned // to. MDBuilder MDB(Context); MDNode *Domain = MDB.createAnonymousAliasScopeDomain("LVerDomain"); for (const auto &Group : RtPtrChecking->CheckingGroups) { GroupToScope[&Group] = MDB.createAnonymousAliasScope(Domain); for (unsigned PtrIdx : Group.Members) PtrToGroup[RtPtrChecking->getPointerInfo(PtrIdx).PointerValue] = &Group; } // Go through the checks and for each pointer group, collect the scopes for // each non-aliasing pointer group. DenseMap<const RuntimePointerChecking::CheckingPtrGroup *, SmallVector<Metadata *, 4>> GroupToNonAliasingScopes; for (const auto &Check : AliasChecks) GroupToNonAliasingScopes[Check.first].push_back(GroupToScope[Check.second]); // Finally, transform the above to actually map to scope list which is what // the metadata uses. for (auto Pair : GroupToNonAliasingScopes) GroupToNonAliasingScopeList[Pair.first] = MDNode::get(Context, Pair.second); } void LoopVersioning::annotateLoopWithNoAlias() { if (!AnnotateNoAlias) return; // First prepare the maps. prepareNoAliasMetadata(); // Add the scope and no-alias metadata to the instructions. for (Instruction *I : LAI.getDepChecker().getMemoryInstructions()) { annotateInstWithNoAlias(I); } } void LoopVersioning::annotateInstWithNoAlias(Instruction *VersionedInst, const Instruction *OrigInst) { if (!AnnotateNoAlias) return; LLVMContext &Context = VersionedLoop->getHeader()->getContext(); const Value *Ptr = isa<LoadInst>(OrigInst) ? cast<LoadInst>(OrigInst)->getPointerOperand() : cast<StoreInst>(OrigInst)->getPointerOperand(); // Find the group for the pointer and then add the scope metadata. auto Group = PtrToGroup.find(Ptr); if (Group != PtrToGroup.end()) { VersionedInst->setMetadata( LLVMContext::MD_alias_scope, MDNode::concatenate( VersionedInst->getMetadata(LLVMContext::MD_alias_scope), MDNode::get(Context, GroupToScope[Group->second]))); // Add the no-alias metadata. auto NonAliasingScopeList = GroupToNonAliasingScopeList.find(Group->second); if (NonAliasingScopeList != GroupToNonAliasingScopeList.end()) VersionedInst->setMetadata( LLVMContext::MD_noalias, MDNode::concatenate( VersionedInst->getMetadata(LLVMContext::MD_noalias), NonAliasingScopeList->second)); } } namespace { /// \brief Also expose this is a pass. Currently this is only used for /// unit-testing. It adds all memchecks necessary to remove all may-aliasing /// array accesses from the loop. class LoopVersioningPass : public FunctionPass { public: LoopVersioningPass() : FunctionPass(ID) { initializeLoopVersioningPassPass(*PassRegistry::getPassRegistry()); } bool runOnFunction(Function &F) override { auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); auto *LAA = &getAnalysis<LoopAccessLegacyAnalysis>(); auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); // Build up a worklist of inner-loops to version. This is necessary as the // act of versioning a loop creates new loops and can invalidate iterators // across the loops. SmallVector<Loop *, 8> Worklist; for (Loop *TopLevelLoop : *LI) for (Loop *L : depth_first(TopLevelLoop)) // We only handle inner-most loops. if (L->empty()) Worklist.push_back(L); // Now walk the identified inner loops. bool Changed = false; for (Loop *L : Worklist) { const LoopAccessInfo &LAI = LAA->getInfo(L); if (LAI.getNumRuntimePointerChecks() || !LAI.getPSE().getUnionPredicate().isAlwaysTrue()) { LoopVersioning LVer(LAI, L, LI, DT, SE); LVer.versionLoop(); LVer.annotateLoopWithNoAlias(); Changed = true; } } return Changed; } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addRequired<LoopInfoWrapperPass>(); AU.addPreserved<LoopInfoWrapperPass>(); AU.addRequired<LoopAccessLegacyAnalysis>(); AU.addRequired<DominatorTreeWrapperPass>(); AU.addPreserved<DominatorTreeWrapperPass>(); AU.addRequired<ScalarEvolutionWrapperPass>(); } static char ID; }; } #define LVER_OPTION "loop-versioning" #define DEBUG_TYPE LVER_OPTION char LoopVersioningPass::ID; static const char LVer_name[] = "Loop Versioning"; INITIALIZE_PASS_BEGIN(LoopVersioningPass, LVER_OPTION, LVer_name, false, false) INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis) INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) INITIALIZE_PASS_END(LoopVersioningPass, LVER_OPTION, LVer_name, false, false) namespace llvm { FunctionPass *createLoopVersioningPass() { return new LoopVersioningPass(); } }