//===-- LoopUtils.cpp - Loop Utility functions -------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines common loop utility functions. // //===----------------------------------------------------------------------===// #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/BasicAliasAnalysis.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/GlobalsModRef.h" #include "llvm/Analysis/ScalarEvolution.h" #include "llvm/Analysis/ScalarEvolutionExpander.h" #include "llvm/Analysis/ScalarEvolutionExpressions.h" #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/Module.h" #include "llvm/IR/PatternMatch.h" #include "llvm/IR/ValueHandle.h" #include "llvm/Pass.h" #include "llvm/Support/Debug.h" #include "llvm/Transforms/Utils/LoopUtils.h" using namespace llvm; using namespace llvm::PatternMatch; #define DEBUG_TYPE "loop-utils" bool RecurrenceDescriptor::areAllUsesIn(Instruction *I, SmallPtrSetImpl<Instruction *> &Set) { for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use) if (!Set.count(dyn_cast<Instruction>(*Use))) return false; return true; } bool RecurrenceDescriptor::isIntegerRecurrenceKind(RecurrenceKind Kind) { switch (Kind) { default: break; case RK_IntegerAdd: case RK_IntegerMult: case RK_IntegerOr: case RK_IntegerAnd: case RK_IntegerXor: case RK_IntegerMinMax: return true; } return false; } bool RecurrenceDescriptor::isFloatingPointRecurrenceKind(RecurrenceKind Kind) { return (Kind != RK_NoRecurrence) && !isIntegerRecurrenceKind(Kind); } bool RecurrenceDescriptor::isArithmeticRecurrenceKind(RecurrenceKind Kind) { switch (Kind) { default: break; case RK_IntegerAdd: case RK_IntegerMult: case RK_FloatAdd: case RK_FloatMult: return true; } return false; } Instruction * RecurrenceDescriptor::lookThroughAnd(PHINode *Phi, Type *&RT, SmallPtrSetImpl<Instruction *> &Visited, SmallPtrSetImpl<Instruction *> &CI) { if (!Phi->hasOneUse()) return Phi; const APInt *M = nullptr; Instruction *I, *J = cast<Instruction>(Phi->use_begin()->getUser()); // Matches either I & 2^x-1 or 2^x-1 & I. If we find a match, we update RT // with a new integer type of the corresponding bit width. if (match(J, m_CombineOr(m_And(m_Instruction(I), m_APInt(M)), m_And(m_APInt(M), m_Instruction(I))))) { int32_t Bits = (*M + 1).exactLogBase2(); if (Bits > 0) { RT = IntegerType::get(Phi->getContext(), Bits); Visited.insert(Phi); CI.insert(J); return J; } } return Phi; } bool RecurrenceDescriptor::getSourceExtensionKind( Instruction *Start, Instruction *Exit, Type *RT, bool &IsSigned, SmallPtrSetImpl<Instruction *> &Visited, SmallPtrSetImpl<Instruction *> &CI) { SmallVector<Instruction *, 8> Worklist; bool FoundOneOperand = false; unsigned DstSize = RT->getPrimitiveSizeInBits(); Worklist.push_back(Exit); // Traverse the instructions in the reduction expression, beginning with the // exit value. while (!Worklist.empty()) { Instruction *I = Worklist.pop_back_val(); for (Use &U : I->operands()) { // Terminate the traversal if the operand is not an instruction, or we // reach the starting value. Instruction *J = dyn_cast<Instruction>(U.get()); if (!J || J == Start) continue; // Otherwise, investigate the operation if it is also in the expression. if (Visited.count(J)) { Worklist.push_back(J); continue; } // If the operand is not in Visited, it is not a reduction operation, but // it does feed into one. Make sure it is either a single-use sign- or // zero-extend instruction. CastInst *Cast = dyn_cast<CastInst>(J); bool IsSExtInst = isa<SExtInst>(J); if (!Cast || !Cast->hasOneUse() || !(isa<ZExtInst>(J) || IsSExtInst)) return false; // Ensure the source type of the extend is no larger than the reduction // type. It is not necessary for the types to be identical. unsigned SrcSize = Cast->getSrcTy()->getPrimitiveSizeInBits(); if (SrcSize > DstSize) return false; // Furthermore, ensure that all such extends are of the same kind. if (FoundOneOperand) { if (IsSigned != IsSExtInst) return false; } else { FoundOneOperand = true; IsSigned = IsSExtInst; } // Lastly, if the source type of the extend matches the reduction type, // add the extend to CI so that we can avoid accounting for it in the // cost model. if (SrcSize == DstSize) CI.insert(Cast); } } return true; } bool RecurrenceDescriptor::AddReductionVar(PHINode *Phi, RecurrenceKind Kind, Loop *TheLoop, bool HasFunNoNaNAttr, RecurrenceDescriptor &RedDes) { if (Phi->getNumIncomingValues() != 2) return false; // Reduction variables are only found in the loop header block. if (Phi->getParent() != TheLoop->getHeader()) return false; // Obtain the reduction start value from the value that comes from the loop // preheader. Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader()); // ExitInstruction is the single value which is used outside the loop. // We only allow for a single reduction value to be used outside the loop. // This includes users of the reduction, variables (which form a cycle // which ends in the phi node). Instruction *ExitInstruction = nullptr; // Indicates that we found a reduction operation in our scan. bool FoundReduxOp = false; // We start with the PHI node and scan for all of the users of this // instruction. All users must be instructions that can be used as reduction // variables (such as ADD). We must have a single out-of-block user. The cycle // must include the original PHI. bool FoundStartPHI = false; // To recognize min/max patterns formed by a icmp select sequence, we store // the number of instruction we saw from the recognized min/max pattern, // to make sure we only see exactly the two instructions. unsigned NumCmpSelectPatternInst = 0; InstDesc ReduxDesc(false, nullptr); // Data used for determining if the recurrence has been type-promoted. Type *RecurrenceType = Phi->getType(); SmallPtrSet<Instruction *, 4> CastInsts; Instruction *Start = Phi; bool IsSigned = false; SmallPtrSet<Instruction *, 8> VisitedInsts; SmallVector<Instruction *, 8> Worklist; // Return early if the recurrence kind does not match the type of Phi. If the // recurrence kind is arithmetic, we attempt to look through AND operations // resulting from the type promotion performed by InstCombine. Vector // operations are not limited to the legal integer widths, so we may be able // to evaluate the reduction in the narrower width. if (RecurrenceType->isFloatingPointTy()) { if (!isFloatingPointRecurrenceKind(Kind)) return false; } else { if (!isIntegerRecurrenceKind(Kind)) return false; if (isArithmeticRecurrenceKind(Kind)) Start = lookThroughAnd(Phi, RecurrenceType, VisitedInsts, CastInsts); } Worklist.push_back(Start); VisitedInsts.insert(Start); // A value in the reduction can be used: // - By the reduction: // - Reduction operation: // - One use of reduction value (safe). // - Multiple use of reduction value (not safe). // - PHI: // - All uses of the PHI must be the reduction (safe). // - Otherwise, not safe. // - By one instruction outside of the loop (safe). // - By further instructions outside of the loop (not safe). // - By an instruction that is not part of the reduction (not safe). // This is either: // * An instruction type other than PHI or the reduction operation. // * A PHI in the header other than the initial PHI. while (!Worklist.empty()) { Instruction *Cur = Worklist.back(); Worklist.pop_back(); // No Users. // If the instruction has no users then this is a broken chain and can't be // a reduction variable. if (Cur->use_empty()) return false; bool IsAPhi = isa<PHINode>(Cur); // A header PHI use other than the original PHI. if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent()) return false; // Reductions of instructions such as Div, and Sub is only possible if the // LHS is the reduction variable. if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) && !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) && !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0)))) return false; // Any reduction instruction must be of one of the allowed kinds. We ignore // the starting value (the Phi or an AND instruction if the Phi has been // type-promoted). if (Cur != Start) { ReduxDesc = isRecurrenceInstr(Cur, Kind, ReduxDesc, HasFunNoNaNAttr); if (!ReduxDesc.isRecurrence()) return false; } // A reduction operation must only have one use of the reduction value. if (!IsAPhi && Kind != RK_IntegerMinMax && Kind != RK_FloatMinMax && hasMultipleUsesOf(Cur, VisitedInsts)) return false; // All inputs to a PHI node must be a reduction value. if (IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts)) return false; if (Kind == RK_IntegerMinMax && (isa<ICmpInst>(Cur) || isa<SelectInst>(Cur))) ++NumCmpSelectPatternInst; if (Kind == RK_FloatMinMax && (isa<FCmpInst>(Cur) || isa<SelectInst>(Cur))) ++NumCmpSelectPatternInst; // Check whether we found a reduction operator. FoundReduxOp |= !IsAPhi && Cur != Start; // Process users of current instruction. Push non-PHI nodes after PHI nodes // onto the stack. This way we are going to have seen all inputs to PHI // nodes once we get to them. SmallVector<Instruction *, 8> NonPHIs; SmallVector<Instruction *, 8> PHIs; for (User *U : Cur->users()) { Instruction *UI = cast<Instruction>(U); // Check if we found the exit user. BasicBlock *Parent = UI->getParent(); if (!TheLoop->contains(Parent)) { // Exit if you find multiple outside users or if the header phi node is // being used. In this case the user uses the value of the previous // iteration, in which case we would loose "VF-1" iterations of the // reduction operation if we vectorize. if (ExitInstruction != nullptr || Cur == Phi) return false; // The instruction used by an outside user must be the last instruction // before we feed back to the reduction phi. Otherwise, we loose VF-1 // operations on the value. if (std::find(Phi->op_begin(), Phi->op_end(), Cur) == Phi->op_end()) return false; ExitInstruction = Cur; continue; } // Process instructions only once (termination). Each reduction cycle // value must only be used once, except by phi nodes and min/max // reductions which are represented as a cmp followed by a select. InstDesc IgnoredVal(false, nullptr); if (VisitedInsts.insert(UI).second) { if (isa<PHINode>(UI)) PHIs.push_back(UI); else NonPHIs.push_back(UI); } else if (!isa<PHINode>(UI) && ((!isa<FCmpInst>(UI) && !isa<ICmpInst>(UI) && !isa<SelectInst>(UI)) || !isMinMaxSelectCmpPattern(UI, IgnoredVal).isRecurrence())) return false; // Remember that we completed the cycle. if (UI == Phi) FoundStartPHI = true; } Worklist.append(PHIs.begin(), PHIs.end()); Worklist.append(NonPHIs.begin(), NonPHIs.end()); } // This means we have seen one but not the other instruction of the // pattern or more than just a select and cmp. if ((Kind == RK_IntegerMinMax || Kind == RK_FloatMinMax) && NumCmpSelectPatternInst != 2) return false; if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction) return false; // If we think Phi may have been type-promoted, we also need to ensure that // all source operands of the reduction are either SExtInsts or ZEstInsts. If // so, we will be able to evaluate the reduction in the narrower bit width. if (Start != Phi) if (!getSourceExtensionKind(Start, ExitInstruction, RecurrenceType, IsSigned, VisitedInsts, CastInsts)) return false; // We found a reduction var if we have reached the original phi node and we // only have a single instruction with out-of-loop users. // The ExitInstruction(Instruction which is allowed to have out-of-loop users) // is saved as part of the RecurrenceDescriptor. // Save the description of this reduction variable. RecurrenceDescriptor RD( RdxStart, ExitInstruction, Kind, ReduxDesc.getMinMaxKind(), ReduxDesc.getUnsafeAlgebraInst(), RecurrenceType, IsSigned, CastInsts); RedDes = RD; return true; } /// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction /// pattern corresponding to a min(X, Y) or max(X, Y). RecurrenceDescriptor::InstDesc RecurrenceDescriptor::isMinMaxSelectCmpPattern(Instruction *I, InstDesc &Prev) { assert((isa<ICmpInst>(I) || isa<FCmpInst>(I) || isa<SelectInst>(I)) && "Expect a select instruction"); Instruction *Cmp = nullptr; SelectInst *Select = nullptr; // We must handle the select(cmp()) as a single instruction. Advance to the // select. if ((Cmp = dyn_cast<ICmpInst>(I)) || (Cmp = dyn_cast<FCmpInst>(I))) { if (!Cmp->hasOneUse() || !(Select = dyn_cast<SelectInst>(*I->user_begin()))) return InstDesc(false, I); return InstDesc(Select, Prev.getMinMaxKind()); } // Only handle single use cases for now. if (!(Select = dyn_cast<SelectInst>(I))) return InstDesc(false, I); if (!(Cmp = dyn_cast<ICmpInst>(I->getOperand(0))) && !(Cmp = dyn_cast<FCmpInst>(I->getOperand(0)))) return InstDesc(false, I); if (!Cmp->hasOneUse()) return InstDesc(false, I); Value *CmpLeft; Value *CmpRight; // Look for a min/max pattern. if (m_UMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) return InstDesc(Select, MRK_UIntMin); else if (m_UMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) return InstDesc(Select, MRK_UIntMax); else if (m_SMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) return InstDesc(Select, MRK_SIntMax); else if (m_SMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) return InstDesc(Select, MRK_SIntMin); else if (m_OrdFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) return InstDesc(Select, MRK_FloatMin); else if (m_OrdFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) return InstDesc(Select, MRK_FloatMax); else if (m_UnordFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) return InstDesc(Select, MRK_FloatMin); else if (m_UnordFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select)) return InstDesc(Select, MRK_FloatMax); return InstDesc(false, I); } RecurrenceDescriptor::InstDesc RecurrenceDescriptor::isRecurrenceInstr(Instruction *I, RecurrenceKind Kind, InstDesc &Prev, bool HasFunNoNaNAttr) { bool FP = I->getType()->isFloatingPointTy(); Instruction *UAI = Prev.getUnsafeAlgebraInst(); if (!UAI && FP && !I->hasUnsafeAlgebra()) UAI = I; // Found an unsafe (unvectorizable) algebra instruction. switch (I->getOpcode()) { default: return InstDesc(false, I); case Instruction::PHI: return InstDesc(I, Prev.getMinMaxKind(), Prev.getUnsafeAlgebraInst()); case Instruction::Sub: case Instruction::Add: return InstDesc(Kind == RK_IntegerAdd, I); case Instruction::Mul: return InstDesc(Kind == RK_IntegerMult, I); case Instruction::And: return InstDesc(Kind == RK_IntegerAnd, I); case Instruction::Or: return InstDesc(Kind == RK_IntegerOr, I); case Instruction::Xor: return InstDesc(Kind == RK_IntegerXor, I); case Instruction::FMul: return InstDesc(Kind == RK_FloatMult, I, UAI); case Instruction::FSub: case Instruction::FAdd: return InstDesc(Kind == RK_FloatAdd, I, UAI); case Instruction::FCmp: case Instruction::ICmp: case Instruction::Select: if (Kind != RK_IntegerMinMax && (!HasFunNoNaNAttr || Kind != RK_FloatMinMax)) return InstDesc(false, I); return isMinMaxSelectCmpPattern(I, Prev); } } bool RecurrenceDescriptor::hasMultipleUsesOf( Instruction *I, SmallPtrSetImpl<Instruction *> &Insts) { unsigned NumUses = 0; for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use) { if (Insts.count(dyn_cast<Instruction>(*Use))) ++NumUses; if (NumUses > 1) return true; } return false; } bool RecurrenceDescriptor::isReductionPHI(PHINode *Phi, Loop *TheLoop, RecurrenceDescriptor &RedDes) { BasicBlock *Header = TheLoop->getHeader(); Function &F = *Header->getParent(); bool HasFunNoNaNAttr = F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true"; if (AddReductionVar(Phi, RK_IntegerAdd, TheLoop, HasFunNoNaNAttr, RedDes)) { DEBUG(dbgs() << "Found an ADD reduction PHI." << *Phi << "\n"); return true; } if (AddReductionVar(Phi, RK_IntegerMult, TheLoop, HasFunNoNaNAttr, RedDes)) { DEBUG(dbgs() << "Found a MUL reduction PHI." << *Phi << "\n"); return true; } if (AddReductionVar(Phi, RK_IntegerOr, TheLoop, HasFunNoNaNAttr, RedDes)) { DEBUG(dbgs() << "Found an OR reduction PHI." << *Phi << "\n"); return true; } if (AddReductionVar(Phi, RK_IntegerAnd, TheLoop, HasFunNoNaNAttr, RedDes)) { DEBUG(dbgs() << "Found an AND reduction PHI." << *Phi << "\n"); return true; } if (AddReductionVar(Phi, RK_IntegerXor, TheLoop, HasFunNoNaNAttr, RedDes)) { DEBUG(dbgs() << "Found a XOR reduction PHI." << *Phi << "\n"); return true; } if (AddReductionVar(Phi, RK_IntegerMinMax, TheLoop, HasFunNoNaNAttr, RedDes)) { DEBUG(dbgs() << "Found a MINMAX reduction PHI." << *Phi << "\n"); return true; } if (AddReductionVar(Phi, RK_FloatMult, TheLoop, HasFunNoNaNAttr, RedDes)) { DEBUG(dbgs() << "Found an FMult reduction PHI." << *Phi << "\n"); return true; } if (AddReductionVar(Phi, RK_FloatAdd, TheLoop, HasFunNoNaNAttr, RedDes)) { DEBUG(dbgs() << "Found an FAdd reduction PHI." << *Phi << "\n"); return true; } if (AddReductionVar(Phi, RK_FloatMinMax, TheLoop, HasFunNoNaNAttr, RedDes)) { DEBUG(dbgs() << "Found an float MINMAX reduction PHI." << *Phi << "\n"); return true; } // Not a reduction of known type. return false; } bool RecurrenceDescriptor::isFirstOrderRecurrence(PHINode *Phi, Loop *TheLoop, DominatorTree *DT) { // Ensure the phi node is in the loop header and has two incoming values. if (Phi->getParent() != TheLoop->getHeader() || Phi->getNumIncomingValues() != 2) return false; // Ensure the loop has a preheader and a single latch block. The loop // vectorizer will need the latch to set up the next iteration of the loop. auto *Preheader = TheLoop->getLoopPreheader(); auto *Latch = TheLoop->getLoopLatch(); if (!Preheader || !Latch) return false; // Ensure the phi node's incoming blocks are the loop preheader and latch. if (Phi->getBasicBlockIndex(Preheader) < 0 || Phi->getBasicBlockIndex(Latch) < 0) return false; // Get the previous value. The previous value comes from the latch edge while // the initial value comes form the preheader edge. auto *Previous = dyn_cast<Instruction>(Phi->getIncomingValueForBlock(Latch)); if (!Previous || !TheLoop->contains(Previous) || isa<PHINode>(Previous)) return false; // Ensure every user of the phi node is dominated by the previous value. The // dominance requirement ensures the loop vectorizer will not need to // vectorize the initial value prior to the first iteration of the loop. for (User *U : Phi->users()) if (auto *I = dyn_cast<Instruction>(U)) if (!DT->dominates(Previous, I)) return false; return true; } /// This function returns the identity element (or neutral element) for /// the operation K. Constant *RecurrenceDescriptor::getRecurrenceIdentity(RecurrenceKind K, Type *Tp) { switch (K) { case RK_IntegerXor: case RK_IntegerAdd: case RK_IntegerOr: // Adding, Xoring, Oring zero to a number does not change it. return ConstantInt::get(Tp, 0); case RK_IntegerMult: // Multiplying a number by 1 does not change it. return ConstantInt::get(Tp, 1); case RK_IntegerAnd: // AND-ing a number with an all-1 value does not change it. return ConstantInt::get(Tp, -1, true); case RK_FloatMult: // Multiplying a number by 1 does not change it. return ConstantFP::get(Tp, 1.0L); case RK_FloatAdd: // Adding zero to a number does not change it. return ConstantFP::get(Tp, 0.0L); default: llvm_unreachable("Unknown recurrence kind"); } } /// This function translates the recurrence kind to an LLVM binary operator. unsigned RecurrenceDescriptor::getRecurrenceBinOp(RecurrenceKind Kind) { switch (Kind) { case RK_IntegerAdd: return Instruction::Add; case RK_IntegerMult: return Instruction::Mul; case RK_IntegerOr: return Instruction::Or; case RK_IntegerAnd: return Instruction::And; case RK_IntegerXor: return Instruction::Xor; case RK_FloatMult: return Instruction::FMul; case RK_FloatAdd: return Instruction::FAdd; case RK_IntegerMinMax: return Instruction::ICmp; case RK_FloatMinMax: return Instruction::FCmp; default: llvm_unreachable("Unknown recurrence operation"); } } Value *RecurrenceDescriptor::createMinMaxOp(IRBuilder<> &Builder, MinMaxRecurrenceKind RK, Value *Left, Value *Right) { CmpInst::Predicate P = CmpInst::ICMP_NE; switch (RK) { default: llvm_unreachable("Unknown min/max recurrence kind"); case MRK_UIntMin: P = CmpInst::ICMP_ULT; break; case MRK_UIntMax: P = CmpInst::ICMP_UGT; break; case MRK_SIntMin: P = CmpInst::ICMP_SLT; break; case MRK_SIntMax: P = CmpInst::ICMP_SGT; break; case MRK_FloatMin: P = CmpInst::FCMP_OLT; break; case MRK_FloatMax: P = CmpInst::FCMP_OGT; break; } // We only match FP sequences with unsafe algebra, so we can unconditionally // set it on any generated instructions. IRBuilder<>::FastMathFlagGuard FMFG(Builder); FastMathFlags FMF; FMF.setUnsafeAlgebra(); Builder.setFastMathFlags(FMF); Value *Cmp; if (RK == MRK_FloatMin || RK == MRK_FloatMax) Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp"); else Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp"); Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select"); return Select; } InductionDescriptor::InductionDescriptor(Value *Start, InductionKind K, const SCEV *Step) : StartValue(Start), IK(K), Step(Step) { assert(IK != IK_NoInduction && "Not an induction"); // Start value type should match the induction kind and the value // itself should not be null. assert(StartValue && "StartValue is null"); assert((IK != IK_PtrInduction || StartValue->getType()->isPointerTy()) && "StartValue is not a pointer for pointer induction"); assert((IK != IK_IntInduction || StartValue->getType()->isIntegerTy()) && "StartValue is not an integer for integer induction"); // Check the Step Value. It should be non-zero integer value. assert((!getConstIntStepValue() || !getConstIntStepValue()->isZero()) && "Step value is zero"); assert((IK != IK_PtrInduction || getConstIntStepValue()) && "Step value should be constant for pointer induction"); assert(Step->getType()->isIntegerTy() && "StepValue is not an integer"); } int InductionDescriptor::getConsecutiveDirection() const { ConstantInt *ConstStep = getConstIntStepValue(); if (ConstStep && (ConstStep->isOne() || ConstStep->isMinusOne())) return ConstStep->getSExtValue(); return 0; } ConstantInt *InductionDescriptor::getConstIntStepValue() const { if (isa<SCEVConstant>(Step)) return dyn_cast<ConstantInt>(cast<SCEVConstant>(Step)->getValue()); return nullptr; } Value *InductionDescriptor::transform(IRBuilder<> &B, Value *Index, ScalarEvolution *SE, const DataLayout& DL) const { SCEVExpander Exp(*SE, DL, "induction"); switch (IK) { case IK_IntInduction: { assert(Index->getType() == StartValue->getType() && "Index type does not match StartValue type"); // FIXME: Theoretically, we can call getAddExpr() of ScalarEvolution // and calculate (Start + Index * Step) for all cases, without // special handling for "isOne" and "isMinusOne". // But in the real life the result code getting worse. We mix SCEV // expressions and ADD/SUB operations and receive redundant // intermediate values being calculated in different ways and // Instcombine is unable to reduce them all. if (getConstIntStepValue() && getConstIntStepValue()->isMinusOne()) return B.CreateSub(StartValue, Index); if (getConstIntStepValue() && getConstIntStepValue()->isOne()) return B.CreateAdd(StartValue, Index); const SCEV *S = SE->getAddExpr(SE->getSCEV(StartValue), SE->getMulExpr(Step, SE->getSCEV(Index))); return Exp.expandCodeFor(S, StartValue->getType(), &*B.GetInsertPoint()); } case IK_PtrInduction: { assert(Index->getType() == Step->getType() && "Index type does not match StepValue type"); assert(isa<SCEVConstant>(Step) && "Expected constant step for pointer induction"); const SCEV *S = SE->getMulExpr(SE->getSCEV(Index), Step); Index = Exp.expandCodeFor(S, Index->getType(), &*B.GetInsertPoint()); return B.CreateGEP(nullptr, StartValue, Index); } case IK_NoInduction: return nullptr; } llvm_unreachable("invalid enum"); } bool InductionDescriptor::isInductionPHI(PHINode *Phi, PredicatedScalarEvolution &PSE, InductionDescriptor &D, bool Assume) { Type *PhiTy = Phi->getType(); // We only handle integer and pointer inductions variables. if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy()) return false; const SCEV *PhiScev = PSE.getSCEV(Phi); const auto *AR = dyn_cast<SCEVAddRecExpr>(PhiScev); // We need this expression to be an AddRecExpr. if (Assume && !AR) AR = PSE.getAsAddRec(Phi); if (!AR) { DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n"); return false; } return isInductionPHI(Phi, PSE.getSE(), D, AR); } bool InductionDescriptor::isInductionPHI(PHINode *Phi, ScalarEvolution *SE, InductionDescriptor &D, const SCEV *Expr) { Type *PhiTy = Phi->getType(); // We only handle integer and pointer inductions variables. if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy()) return false; // Check that the PHI is consecutive. const SCEV *PhiScev = Expr ? Expr : SE->getSCEV(Phi); const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev); if (!AR) { DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n"); return false; } assert(AR->getLoop()->getHeader() == Phi->getParent() && "PHI is an AddRec for a different loop?!"); Value *StartValue = Phi->getIncomingValueForBlock(AR->getLoop()->getLoopPreheader()); const SCEV *Step = AR->getStepRecurrence(*SE); // Calculate the pointer stride and check if it is consecutive. // The stride may be a constant or a loop invariant integer value. const SCEVConstant *ConstStep = dyn_cast<SCEVConstant>(Step); if (!ConstStep && !SE->isLoopInvariant(Step, AR->getLoop())) return false; if (PhiTy->isIntegerTy()) { D = InductionDescriptor(StartValue, IK_IntInduction, Step); return true; } assert(PhiTy->isPointerTy() && "The PHI must be a pointer"); // Pointer induction should be a constant. if (!ConstStep) return false; ConstantInt *CV = ConstStep->getValue(); Type *PointerElementType = PhiTy->getPointerElementType(); // The pointer stride cannot be determined if the pointer element type is not // sized. if (!PointerElementType->isSized()) return false; const DataLayout &DL = Phi->getModule()->getDataLayout(); int64_t Size = static_cast<int64_t>(DL.getTypeAllocSize(PointerElementType)); if (!Size) return false; int64_t CVSize = CV->getSExtValue(); if (CVSize % Size) return false; auto *StepValue = SE->getConstant(CV->getType(), CVSize / Size, true /* signed */); D = InductionDescriptor(StartValue, IK_PtrInduction, StepValue); return true; } /// \brief Returns the instructions that use values defined in the loop. SmallVector<Instruction *, 8> llvm::findDefsUsedOutsideOfLoop(Loop *L) { SmallVector<Instruction *, 8> UsedOutside; for (auto *Block : L->getBlocks()) // FIXME: I believe that this could use copy_if if the Inst reference could // be adapted into a pointer. for (auto &Inst : *Block) { auto Users = Inst.users(); if (std::any_of(Users.begin(), Users.end(), [&](User *U) { auto *Use = cast<Instruction>(U); return !L->contains(Use->getParent()); })) UsedOutside.push_back(&Inst); } return UsedOutside; } void llvm::getLoopAnalysisUsage(AnalysisUsage &AU) { // By definition, all loop passes need the LoopInfo analysis and the // Dominator tree it depends on. Because they all participate in the loop // pass manager, they must also preserve these. AU.addRequired<DominatorTreeWrapperPass>(); AU.addPreserved<DominatorTreeWrapperPass>(); AU.addRequired<LoopInfoWrapperPass>(); AU.addPreserved<LoopInfoWrapperPass>(); // We must also preserve LoopSimplify and LCSSA. We locally access their IDs // here because users shouldn't directly get them from this header. extern char &LoopSimplifyID; extern char &LCSSAID; AU.addRequiredID(LoopSimplifyID); AU.addPreservedID(LoopSimplifyID); AU.addRequiredID(LCSSAID); AU.addPreservedID(LCSSAID); // Loop passes are designed to run inside of a loop pass manager which means // that any function analyses they require must be required by the first loop // pass in the manager (so that it is computed before the loop pass manager // runs) and preserved by all loop pasess in the manager. To make this // reasonably robust, the set needed for most loop passes is maintained here. // If your loop pass requires an analysis not listed here, you will need to // carefully audit the loop pass manager nesting structure that results. AU.addRequired<AAResultsWrapperPass>(); AU.addPreserved<AAResultsWrapperPass>(); AU.addPreserved<BasicAAWrapperPass>(); AU.addPreserved<GlobalsAAWrapperPass>(); AU.addPreserved<SCEVAAWrapperPass>(); AU.addRequired<ScalarEvolutionWrapperPass>(); AU.addPreserved<ScalarEvolutionWrapperPass>(); } /// Manually defined generic "LoopPass" dependency initialization. This is used /// to initialize the exact set of passes from above in \c /// getLoopAnalysisUsage. It can be used within a loop pass's initialization /// with: /// /// INITIALIZE_PASS_DEPENDENCY(LoopPass) /// /// As-if "LoopPass" were a pass. void llvm::initializeLoopPassPass(PassRegistry &Registry) { INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) INITIALIZE_PASS_DEPENDENCY(LoopSimplify) INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass) INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass) INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) } /// \brief Find string metadata for loop /// /// If it has a value (e.g. {"llvm.distribute", 1} return the value as an /// operand or null otherwise. If the string metadata is not found return /// Optional's not-a-value. Optional<const MDOperand *> llvm::findStringMetadataForLoop(Loop *TheLoop, StringRef Name) { MDNode *LoopID = TheLoop->getLoopID(); // Return none if LoopID is false. if (!LoopID) return None; // First operand should refer to the loop id itself. assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); // Iterate over LoopID operands and look for MDString Metadata for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) { MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); if (!MD) continue; MDString *S = dyn_cast<MDString>(MD->getOperand(0)); if (!S) continue; // Return true if MDString holds expected MetaData. if (Name.equals(S->getString())) switch (MD->getNumOperands()) { case 1: return nullptr; case 2: return &MD->getOperand(1); default: llvm_unreachable("loop metadata has 0 or 1 operand"); } } return None; } /// Returns true if the instruction in a loop is guaranteed to execute at least /// once. bool llvm::isGuaranteedToExecute(const Instruction &Inst, const DominatorTree *DT, const Loop *CurLoop, const LoopSafetyInfo *SafetyInfo) { // We have to check to make sure that the instruction dominates all // of the exit blocks. If it doesn't, then there is a path out of the loop // which does not execute this instruction, so we can't hoist it. // If the instruction is in the header block for the loop (which is very // common), it is always guaranteed to dominate the exit blocks. Since this // is a common case, and can save some work, check it now. if (Inst.getParent() == CurLoop->getHeader()) // If there's a throw in the header block, we can't guarantee we'll reach // Inst. return !SafetyInfo->HeaderMayThrow; // Somewhere in this loop there is an instruction which may throw and make us // exit the loop. if (SafetyInfo->MayThrow) return false; // Get the exit blocks for the current loop. SmallVector<BasicBlock *, 8> ExitBlocks; CurLoop->getExitBlocks(ExitBlocks); // Verify that the block dominates each of the exit blocks of the loop. for (BasicBlock *ExitBlock : ExitBlocks) if (!DT->dominates(Inst.getParent(), ExitBlock)) return false; // As a degenerate case, if the loop is statically infinite then we haven't // proven anything since there are no exit blocks. if (ExitBlocks.empty()) return false; // FIXME: In general, we have to prove that the loop isn't an infinite loop. // See http::llvm.org/PR24078 . (The "ExitBlocks.empty()" check above is // just a special case of this.) return true; }