//===- LoopSimplify.cpp - Loop Canonicalization Pass ----------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass performs several transformations to transform natural loops into a // simpler form, which makes subsequent analyses and transformations simpler and // more effective. // // Loop pre-header insertion guarantees that there is a single, non-critical // entry edge from outside of the loop to the loop header. This simplifies a // number of analyses and transformations, such as LICM. // // Loop exit-block insertion guarantees that all exit blocks from the loop // (blocks which are outside of the loop that have predecessors inside of the // loop) only have predecessors from inside of the loop (and are thus dominated // by the loop header). This simplifies transformations such as store-sinking // that are built into LICM. // // This pass also guarantees that loops will have exactly one backedge. // // Indirectbr instructions introduce several complications. If the loop // contains or is entered by an indirectbr instruction, it may not be possible // to transform the loop and make these guarantees. Client code should check // that these conditions are true before relying on them. // // Note that the simplifycfg pass will clean up blocks which are split out but // end up being unnecessary, so usage of this pass should not pessimize // generated code. // // This pass obviously modifies the CFG, but updates loop information and // dominator information. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Utils/LoopSimplify.h" #include "llvm/Transforms/Scalar.h" #include "llvm/ADT/DepthFirstIterator.h" #include "llvm/ADT/SetOperations.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/BasicAliasAnalysis.h" #include "llvm/Analysis/AssumptionCache.h" #include "llvm/Analysis/DependenceAnalysis.h" #include "llvm/Analysis/GlobalsModRef.h" #include "llvm/Analysis/InstructionSimplify.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/ScalarEvolution.h" #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" #include "llvm/IR/CFG.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/Function.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Module.h" #include "llvm/IR/Type.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Transforms/Utils/Local.h" #include "llvm/Transforms/Utils/LoopUtils.h" using namespace llvm; #define DEBUG_TYPE "loop-simplify" STATISTIC(NumInserted, "Number of pre-header or exit blocks inserted"); STATISTIC(NumNested , "Number of nested loops split out"); // If the block isn't already, move the new block to right after some 'outside // block' block. This prevents the preheader from being placed inside the loop // body, e.g. when the loop hasn't been rotated. static void placeSplitBlockCarefully(BasicBlock *NewBB, SmallVectorImpl<BasicBlock *> &SplitPreds, Loop *L) { // Check to see if NewBB is already well placed. Function::iterator BBI = --NewBB->getIterator(); for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) { if (&*BBI == SplitPreds[i]) return; } // If it isn't already after an outside block, move it after one. This is // always good as it makes the uncond branch from the outside block into a // fall-through. // Figure out *which* outside block to put this after. Prefer an outside // block that neighbors a BB actually in the loop. BasicBlock *FoundBB = nullptr; for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) { Function::iterator BBI = SplitPreds[i]->getIterator(); if (++BBI != NewBB->getParent()->end() && L->contains(&*BBI)) { FoundBB = SplitPreds[i]; break; } } // If our heuristic for a *good* bb to place this after doesn't find // anything, just pick something. It's likely better than leaving it within // the loop. if (!FoundBB) FoundBB = SplitPreds[0]; NewBB->moveAfter(FoundBB); } /// InsertPreheaderForLoop - Once we discover that a loop doesn't have a /// preheader, this method is called to insert one. This method has two phases: /// preheader insertion and analysis updating. /// BasicBlock *llvm::InsertPreheaderForLoop(Loop *L, DominatorTree *DT, LoopInfo *LI, bool PreserveLCSSA) { BasicBlock *Header = L->getHeader(); // Compute the set of predecessors of the loop that are not in the loop. SmallVector<BasicBlock*, 8> OutsideBlocks; for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header); PI != PE; ++PI) { BasicBlock *P = *PI; if (!L->contains(P)) { // Coming in from outside the loop? // If the loop is branched to from an indirect branch, we won't // be able to fully transform the loop, because it prohibits // edge splitting. if (isa<IndirectBrInst>(P->getTerminator())) return nullptr; // Keep track of it. OutsideBlocks.push_back(P); } } // Split out the loop pre-header. BasicBlock *PreheaderBB; PreheaderBB = SplitBlockPredecessors(Header, OutsideBlocks, ".preheader", DT, LI, PreserveLCSSA); if (!PreheaderBB) return nullptr; DEBUG(dbgs() << "LoopSimplify: Creating pre-header " << PreheaderBB->getName() << "\n"); // Make sure that NewBB is put someplace intelligent, which doesn't mess up // code layout too horribly. placeSplitBlockCarefully(PreheaderBB, OutsideBlocks, L); return PreheaderBB; } /// \brief Ensure that the loop preheader dominates all exit blocks. /// /// This method is used to split exit blocks that have predecessors outside of /// the loop. static BasicBlock *rewriteLoopExitBlock(Loop *L, BasicBlock *Exit, DominatorTree *DT, LoopInfo *LI, bool PreserveLCSSA) { SmallVector<BasicBlock*, 8> LoopBlocks; for (pred_iterator I = pred_begin(Exit), E = pred_end(Exit); I != E; ++I) { BasicBlock *P = *I; if (L->contains(P)) { // Don't do this if the loop is exited via an indirect branch. if (isa<IndirectBrInst>(P->getTerminator())) return nullptr; LoopBlocks.push_back(P); } } assert(!LoopBlocks.empty() && "No edges coming in from outside the loop?"); BasicBlock *NewExitBB = nullptr; NewExitBB = SplitBlockPredecessors(Exit, LoopBlocks, ".loopexit", DT, LI, PreserveLCSSA); if (!NewExitBB) return nullptr; DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block " << NewExitBB->getName() << "\n"); return NewExitBB; } /// Add the specified block, and all of its predecessors, to the specified set, /// if it's not already in there. Stop predecessor traversal when we reach /// StopBlock. static void addBlockAndPredsToSet(BasicBlock *InputBB, BasicBlock *StopBlock, std::set<BasicBlock*> &Blocks) { SmallVector<BasicBlock *, 8> Worklist; Worklist.push_back(InputBB); do { BasicBlock *BB = Worklist.pop_back_val(); if (Blocks.insert(BB).second && BB != StopBlock) // If BB is not already processed and it is not a stop block then // insert its predecessor in the work list for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) { BasicBlock *WBB = *I; Worklist.push_back(WBB); } } while (!Worklist.empty()); } /// \brief The first part of loop-nestification is to find a PHI node that tells /// us how to partition the loops. static PHINode *findPHIToPartitionLoops(Loop *L, DominatorTree *DT, AssumptionCache *AC) { const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ) { PHINode *PN = cast<PHINode>(I); ++I; if (Value *V = SimplifyInstruction(PN, DL, nullptr, DT, AC)) { // This is a degenerate PHI already, don't modify it! PN->replaceAllUsesWith(V); PN->eraseFromParent(); continue; } // Scan this PHI node looking for a use of the PHI node by itself. for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) if (PN->getIncomingValue(i) == PN && L->contains(PN->getIncomingBlock(i))) // We found something tasty to remove. return PN; } return nullptr; } /// \brief If this loop has multiple backedges, try to pull one of them out into /// a nested loop. /// /// This is important for code that looks like /// this: /// /// Loop: /// ... /// br cond, Loop, Next /// ... /// br cond2, Loop, Out /// /// To identify this common case, we look at the PHI nodes in the header of the /// loop. PHI nodes with unchanging values on one backedge correspond to values /// that change in the "outer" loop, but not in the "inner" loop. /// /// If we are able to separate out a loop, return the new outer loop that was /// created. /// static Loop *separateNestedLoop(Loop *L, BasicBlock *Preheader, DominatorTree *DT, LoopInfo *LI, ScalarEvolution *SE, bool PreserveLCSSA, AssumptionCache *AC) { // Don't try to separate loops without a preheader. if (!Preheader) return nullptr; // The header is not a landing pad; preheader insertion should ensure this. BasicBlock *Header = L->getHeader(); assert(!Header->isEHPad() && "Can't insert backedge to EH pad"); PHINode *PN = findPHIToPartitionLoops(L, DT, AC); if (!PN) return nullptr; // No known way to partition. // Pull out all predecessors that have varying values in the loop. This // handles the case when a PHI node has multiple instances of itself as // arguments. SmallVector<BasicBlock*, 8> OuterLoopPreds; for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { if (PN->getIncomingValue(i) != PN || !L->contains(PN->getIncomingBlock(i))) { // We can't split indirectbr edges. if (isa<IndirectBrInst>(PN->getIncomingBlock(i)->getTerminator())) return nullptr; OuterLoopPreds.push_back(PN->getIncomingBlock(i)); } } DEBUG(dbgs() << "LoopSimplify: Splitting out a new outer loop\n"); // If ScalarEvolution is around and knows anything about values in // this loop, tell it to forget them, because we're about to // substantially change it. if (SE) SE->forgetLoop(L); BasicBlock *NewBB = SplitBlockPredecessors(Header, OuterLoopPreds, ".outer", DT, LI, PreserveLCSSA); // Make sure that NewBB is put someplace intelligent, which doesn't mess up // code layout too horribly. placeSplitBlockCarefully(NewBB, OuterLoopPreds, L); // Create the new outer loop. Loop *NewOuter = new Loop(); // Change the parent loop to use the outer loop as its child now. if (Loop *Parent = L->getParentLoop()) Parent->replaceChildLoopWith(L, NewOuter); else LI->changeTopLevelLoop(L, NewOuter); // L is now a subloop of our outer loop. NewOuter->addChildLoop(L); for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); I != E; ++I) NewOuter->addBlockEntry(*I); // Now reset the header in L, which had been moved by // SplitBlockPredecessors for the outer loop. L->moveToHeader(Header); // Determine which blocks should stay in L and which should be moved out to // the Outer loop now. std::set<BasicBlock*> BlocksInL; for (pred_iterator PI=pred_begin(Header), E = pred_end(Header); PI!=E; ++PI) { BasicBlock *P = *PI; if (DT->dominates(Header, P)) addBlockAndPredsToSet(P, Header, BlocksInL); } // Scan all of the loop children of L, moving them to OuterLoop if they are // not part of the inner loop. const std::vector<Loop*> &SubLoops = L->getSubLoops(); for (size_t I = 0; I != SubLoops.size(); ) if (BlocksInL.count(SubLoops[I]->getHeader())) ++I; // Loop remains in L else NewOuter->addChildLoop(L->removeChildLoop(SubLoops.begin() + I)); // Now that we know which blocks are in L and which need to be moved to // OuterLoop, move any blocks that need it. for (unsigned i = 0; i != L->getBlocks().size(); ++i) { BasicBlock *BB = L->getBlocks()[i]; if (!BlocksInL.count(BB)) { // Move this block to the parent, updating the exit blocks sets L->removeBlockFromLoop(BB); if ((*LI)[BB] == L) LI->changeLoopFor(BB, NewOuter); --i; } } return NewOuter; } /// \brief This method is called when the specified loop has more than one /// backedge in it. /// /// If this occurs, revector all of these backedges to target a new basic block /// and have that block branch to the loop header. This ensures that loops /// have exactly one backedge. static BasicBlock *insertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader, DominatorTree *DT, LoopInfo *LI) { assert(L->getNumBackEdges() > 1 && "Must have > 1 backedge!"); // Get information about the loop BasicBlock *Header = L->getHeader(); Function *F = Header->getParent(); // Unique backedge insertion currently depends on having a preheader. if (!Preheader) return nullptr; // The header is not an EH pad; preheader insertion should ensure this. assert(!Header->isEHPad() && "Can't insert backedge to EH pad"); // Figure out which basic blocks contain back-edges to the loop header. std::vector<BasicBlock*> BackedgeBlocks; for (pred_iterator I = pred_begin(Header), E = pred_end(Header); I != E; ++I){ BasicBlock *P = *I; // Indirectbr edges cannot be split, so we must fail if we find one. if (isa<IndirectBrInst>(P->getTerminator())) return nullptr; if (P != Preheader) BackedgeBlocks.push_back(P); } // Create and insert the new backedge block... BasicBlock *BEBlock = BasicBlock::Create(Header->getContext(), Header->getName() + ".backedge", F); BranchInst *BETerminator = BranchInst::Create(Header, BEBlock); BETerminator->setDebugLoc(Header->getFirstNonPHI()->getDebugLoc()); DEBUG(dbgs() << "LoopSimplify: Inserting unique backedge block " << BEBlock->getName() << "\n"); // Move the new backedge block to right after the last backedge block. Function::iterator InsertPos = ++BackedgeBlocks.back()->getIterator(); F->getBasicBlockList().splice(InsertPos, F->getBasicBlockList(), BEBlock); // Now that the block has been inserted into the function, create PHI nodes in // the backedge block which correspond to any PHI nodes in the header block. for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { PHINode *PN = cast<PHINode>(I); PHINode *NewPN = PHINode::Create(PN->getType(), BackedgeBlocks.size(), PN->getName()+".be", BETerminator); // Loop over the PHI node, moving all entries except the one for the // preheader over to the new PHI node. unsigned PreheaderIdx = ~0U; bool HasUniqueIncomingValue = true; Value *UniqueValue = nullptr; for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { BasicBlock *IBB = PN->getIncomingBlock(i); Value *IV = PN->getIncomingValue(i); if (IBB == Preheader) { PreheaderIdx = i; } else { NewPN->addIncoming(IV, IBB); if (HasUniqueIncomingValue) { if (!UniqueValue) UniqueValue = IV; else if (UniqueValue != IV) HasUniqueIncomingValue = false; } } } // Delete all of the incoming values from the old PN except the preheader's assert(PreheaderIdx != ~0U && "PHI has no preheader entry??"); if (PreheaderIdx != 0) { PN->setIncomingValue(0, PN->getIncomingValue(PreheaderIdx)); PN->setIncomingBlock(0, PN->getIncomingBlock(PreheaderIdx)); } // Nuke all entries except the zero'th. for (unsigned i = 0, e = PN->getNumIncomingValues()-1; i != e; ++i) PN->removeIncomingValue(e-i, false); // Finally, add the newly constructed PHI node as the entry for the BEBlock. PN->addIncoming(NewPN, BEBlock); // As an optimization, if all incoming values in the new PhiNode (which is a // subset of the incoming values of the old PHI node) have the same value, // eliminate the PHI Node. if (HasUniqueIncomingValue) { NewPN->replaceAllUsesWith(UniqueValue); BEBlock->getInstList().erase(NewPN); } } // Now that all of the PHI nodes have been inserted and adjusted, modify the // backedge blocks to just to the BEBlock instead of the header. for (unsigned i = 0, e = BackedgeBlocks.size(); i != e; ++i) { TerminatorInst *TI = BackedgeBlocks[i]->getTerminator(); for (unsigned Op = 0, e = TI->getNumSuccessors(); Op != e; ++Op) if (TI->getSuccessor(Op) == Header) TI->setSuccessor(Op, BEBlock); } //===--- Update all analyses which we must preserve now -----------------===// // Update Loop Information - we know that this block is now in the current // loop and all parent loops. L->addBasicBlockToLoop(BEBlock, *LI); // Update dominator information DT->splitBlock(BEBlock); return BEBlock; } /// \brief Simplify one loop and queue further loops for simplification. static bool simplifyOneLoop(Loop *L, SmallVectorImpl<Loop *> &Worklist, DominatorTree *DT, LoopInfo *LI, ScalarEvolution *SE, AssumptionCache *AC, bool PreserveLCSSA) { bool Changed = false; ReprocessLoop: // Check to see that no blocks (other than the header) in this loop have // predecessors that are not in the loop. This is not valid for natural // loops, but can occur if the blocks are unreachable. Since they are // unreachable we can just shamelessly delete those CFG edges! for (Loop::block_iterator BB = L->block_begin(), E = L->block_end(); BB != E; ++BB) { if (*BB == L->getHeader()) continue; SmallPtrSet<BasicBlock*, 4> BadPreds; for (pred_iterator PI = pred_begin(*BB), PE = pred_end(*BB); PI != PE; ++PI) { BasicBlock *P = *PI; if (!L->contains(P)) BadPreds.insert(P); } // Delete each unique out-of-loop (and thus dead) predecessor. for (BasicBlock *P : BadPreds) { DEBUG(dbgs() << "LoopSimplify: Deleting edge from dead predecessor " << P->getName() << "\n"); // Zap the dead pred's terminator and replace it with unreachable. TerminatorInst *TI = P->getTerminator(); changeToUnreachable(TI, /*UseLLVMTrap=*/false); Changed = true; } } // If there are exiting blocks with branches on undef, resolve the undef in // the direction which will exit the loop. This will help simplify loop // trip count computations. SmallVector<BasicBlock*, 8> ExitingBlocks; L->getExitingBlocks(ExitingBlocks); for (BasicBlock *ExitingBlock : ExitingBlocks) if (BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator())) if (BI->isConditional()) { if (UndefValue *Cond = dyn_cast<UndefValue>(BI->getCondition())) { DEBUG(dbgs() << "LoopSimplify: Resolving \"br i1 undef\" to exit in " << ExitingBlock->getName() << "\n"); BI->setCondition(ConstantInt::get(Cond->getType(), !L->contains(BI->getSuccessor(0)))); // This may make the loop analyzable, force SCEV recomputation. if (SE) SE->forgetLoop(L); Changed = true; } } // Does the loop already have a preheader? If so, don't insert one. BasicBlock *Preheader = L->getLoopPreheader(); if (!Preheader) { Preheader = InsertPreheaderForLoop(L, DT, LI, PreserveLCSSA); if (Preheader) { ++NumInserted; Changed = true; } } // Next, check to make sure that all exit nodes of the loop only have // predecessors that are inside of the loop. This check guarantees that the // loop preheader/header will dominate the exit blocks. If the exit block has // predecessors from outside of the loop, split the edge now. SmallVector<BasicBlock*, 8> ExitBlocks; L->getExitBlocks(ExitBlocks); SmallSetVector<BasicBlock *, 8> ExitBlockSet(ExitBlocks.begin(), ExitBlocks.end()); for (BasicBlock *ExitBlock : ExitBlockSet) { for (pred_iterator PI = pred_begin(ExitBlock), PE = pred_end(ExitBlock); PI != PE; ++PI) // Must be exactly this loop: no subloops, parent loops, or non-loop preds // allowed. if (!L->contains(*PI)) { if (rewriteLoopExitBlock(L, ExitBlock, DT, LI, PreserveLCSSA)) { ++NumInserted; Changed = true; } break; } } // If the header has more than two predecessors at this point (from the // preheader and from multiple backedges), we must adjust the loop. BasicBlock *LoopLatch = L->getLoopLatch(); if (!LoopLatch) { // If this is really a nested loop, rip it out into a child loop. Don't do // this for loops with a giant number of backedges, just factor them into a // common backedge instead. if (L->getNumBackEdges() < 8) { if (Loop *OuterL = separateNestedLoop(L, Preheader, DT, LI, SE, PreserveLCSSA, AC)) { ++NumNested; // Enqueue the outer loop as it should be processed next in our // depth-first nest walk. Worklist.push_back(OuterL); // This is a big restructuring change, reprocess the whole loop. Changed = true; // GCC doesn't tail recursion eliminate this. // FIXME: It isn't clear we can't rely on LLVM to TRE this. goto ReprocessLoop; } } // If we either couldn't, or didn't want to, identify nesting of the loops, // insert a new block that all backedges target, then make it jump to the // loop header. LoopLatch = insertUniqueBackedgeBlock(L, Preheader, DT, LI); if (LoopLatch) { ++NumInserted; Changed = true; } } const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); // Scan over the PHI nodes in the loop header. Since they now have only two // incoming values (the loop is canonicalized), we may have simplified the PHI // down to 'X = phi [X, Y]', which should be replaced with 'Y'. PHINode *PN; for (BasicBlock::iterator I = L->getHeader()->begin(); (PN = dyn_cast<PHINode>(I++)); ) if (Value *V = SimplifyInstruction(PN, DL, nullptr, DT, AC)) { if (SE) SE->forgetValue(PN); PN->replaceAllUsesWith(V); PN->eraseFromParent(); } // If this loop has multiple exits and the exits all go to the same // block, attempt to merge the exits. This helps several passes, such // as LoopRotation, which do not support loops with multiple exits. // SimplifyCFG also does this (and this code uses the same utility // function), however this code is loop-aware, where SimplifyCFG is // not. That gives it the advantage of being able to hoist // loop-invariant instructions out of the way to open up more // opportunities, and the disadvantage of having the responsibility // to preserve dominator information. bool UniqueExit = true; if (!ExitBlocks.empty()) for (unsigned i = 1, e = ExitBlocks.size(); i != e; ++i) if (ExitBlocks[i] != ExitBlocks[0]) { UniqueExit = false; break; } if (UniqueExit) { for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { BasicBlock *ExitingBlock = ExitingBlocks[i]; if (!ExitingBlock->getSinglePredecessor()) continue; BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); if (!BI || !BI->isConditional()) continue; CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition()); if (!CI || CI->getParent() != ExitingBlock) continue; // Attempt to hoist out all instructions except for the // comparison and the branch. bool AllInvariant = true; bool AnyInvariant = false; for (BasicBlock::iterator I = ExitingBlock->begin(); &*I != BI; ) { Instruction *Inst = &*I++; // Skip debug info intrinsics. if (isa<DbgInfoIntrinsic>(Inst)) continue; if (Inst == CI) continue; if (!L->makeLoopInvariant(Inst, AnyInvariant, Preheader ? Preheader->getTerminator() : nullptr)) { AllInvariant = false; break; } } if (AnyInvariant) { Changed = true; // The loop disposition of all SCEV expressions that depend on any // hoisted values have also changed. if (SE) SE->forgetLoopDispositions(L); } if (!AllInvariant) continue; // The block has now been cleared of all instructions except for // a comparison and a conditional branch. SimplifyCFG may be able // to fold it now. if (!FoldBranchToCommonDest(BI)) continue; // Success. The block is now dead, so remove it from the loop, // update the dominator tree and delete it. DEBUG(dbgs() << "LoopSimplify: Eliminating exiting block " << ExitingBlock->getName() << "\n"); // Notify ScalarEvolution before deleting this block. Currently assume the // parent loop doesn't change (spliting edges doesn't count). If blocks, // CFG edges, or other values in the parent loop change, then we need call // to forgetLoop() for the parent instead. if (SE) SE->forgetLoop(L); assert(pred_begin(ExitingBlock) == pred_end(ExitingBlock)); Changed = true; LI->removeBlock(ExitingBlock); DomTreeNode *Node = DT->getNode(ExitingBlock); const std::vector<DomTreeNodeBase<BasicBlock> *> &Children = Node->getChildren(); while (!Children.empty()) { DomTreeNode *Child = Children.front(); DT->changeImmediateDominator(Child, Node->getIDom()); } DT->eraseNode(ExitingBlock); BI->getSuccessor(0)->removePredecessor( ExitingBlock, /* DontDeleteUselessPHIs */ PreserveLCSSA); BI->getSuccessor(1)->removePredecessor( ExitingBlock, /* DontDeleteUselessPHIs */ PreserveLCSSA); ExitingBlock->eraseFromParent(); } } return Changed; } bool llvm::simplifyLoop(Loop *L, DominatorTree *DT, LoopInfo *LI, ScalarEvolution *SE, AssumptionCache *AC, bool PreserveLCSSA) { bool Changed = false; // Worklist maintains our depth-first queue of loops in this nest to process. SmallVector<Loop *, 4> Worklist; Worklist.push_back(L); // Walk the worklist from front to back, pushing newly found sub loops onto // the back. This will let us process loops from back to front in depth-first // order. We can use this simple process because loops form a tree. for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) { Loop *L2 = Worklist[Idx]; Worklist.append(L2->begin(), L2->end()); } while (!Worklist.empty()) Changed |= simplifyOneLoop(Worklist.pop_back_val(), Worklist, DT, LI, SE, AC, PreserveLCSSA); return Changed; } namespace { struct LoopSimplify : public FunctionPass { static char ID; // Pass identification, replacement for typeid LoopSimplify() : FunctionPass(ID) { initializeLoopSimplifyPass(*PassRegistry::getPassRegistry()); } bool runOnFunction(Function &F) override; void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addRequired<AssumptionCacheTracker>(); // We need loop information to identify the loops... AU.addRequired<DominatorTreeWrapperPass>(); AU.addPreserved<DominatorTreeWrapperPass>(); AU.addRequired<LoopInfoWrapperPass>(); AU.addPreserved<LoopInfoWrapperPass>(); AU.addPreserved<BasicAAWrapperPass>(); AU.addPreserved<AAResultsWrapperPass>(); AU.addPreserved<GlobalsAAWrapperPass>(); AU.addPreserved<ScalarEvolutionWrapperPass>(); AU.addPreserved<SCEVAAWrapperPass>(); AU.addPreservedID(LCSSAID); AU.addPreserved<DependenceAnalysisWrapperPass>(); AU.addPreservedID(BreakCriticalEdgesID); // No critical edges added. } /// verifyAnalysis() - Verify LoopSimplifyForm's guarantees. void verifyAnalysis() const override; }; } char LoopSimplify::ID = 0; INITIALIZE_PASS_BEGIN(LoopSimplify, "loop-simplify", "Canonicalize natural loops", false, false) INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) INITIALIZE_PASS_END(LoopSimplify, "loop-simplify", "Canonicalize natural loops", false, false) // Publicly exposed interface to pass... char &llvm::LoopSimplifyID = LoopSimplify::ID; Pass *llvm::createLoopSimplifyPass() { return new LoopSimplify(); } /// runOnFunction - Run down all loops in the CFG (recursively, but we could do /// it in any convenient order) inserting preheaders... /// bool LoopSimplify::runOnFunction(Function &F) { bool Changed = false; LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>(); ScalarEvolution *SE = SEWP ? &SEWP->getSE() : nullptr; AssumptionCache *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID); #ifndef NDEBUG if (PreserveLCSSA) { assert(DT && "DT not available."); assert(LI && "LI not available."); bool InLCSSA = all_of(*LI, [&](Loop *L) { return L->isRecursivelyLCSSAForm(*DT); }); assert(InLCSSA && "Requested to preserve LCSSA, but it's already broken."); } #endif // Simplify each loop nest in the function. for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) Changed |= simplifyLoop(*I, DT, LI, SE, AC, PreserveLCSSA); #ifndef NDEBUG if (PreserveLCSSA) { bool InLCSSA = all_of(*LI, [&](Loop *L) { return L->isRecursivelyLCSSAForm(*DT); }); assert(InLCSSA && "LCSSA is broken after loop-simplify."); } #endif return Changed; } PreservedAnalyses LoopSimplifyPass::run(Function &F, AnalysisManager<Function> &AM) { bool Changed = false; LoopInfo *LI = &AM.getResult<LoopAnalysis>(F); DominatorTree *DT = &AM.getResult<DominatorTreeAnalysis>(F); ScalarEvolution *SE = AM.getCachedResult<ScalarEvolutionAnalysis>(F); AssumptionCache *AC = &AM.getResult<AssumptionAnalysis>(F); // FIXME: This pass should verify that the loops on which it's operating // are in canonical SSA form, and that the pass itself preserves this form. for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) Changed |= simplifyLoop(*I, DT, LI, SE, AC, true /* PreserveLCSSA */); if (!Changed) return PreservedAnalyses::all(); PreservedAnalyses PA; PA.preserve<DominatorTreeAnalysis>(); PA.preserve<LoopAnalysis>(); PA.preserve<BasicAA>(); PA.preserve<GlobalsAA>(); PA.preserve<SCEVAA>(); PA.preserve<ScalarEvolutionAnalysis>(); PA.preserve<DependenceAnalysis>(); return PA; } // FIXME: Restore this code when we re-enable verification in verifyAnalysis // below. #if 0 static void verifyLoop(Loop *L) { // Verify subloops. for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) verifyLoop(*I); // It used to be possible to just assert L->isLoopSimplifyForm(), however // with the introduction of indirectbr, there are now cases where it's // not possible to transform a loop as necessary. We can at least check // that there is an indirectbr near any time there's trouble. // Indirectbr can interfere with preheader and unique backedge insertion. if (!L->getLoopPreheader() || !L->getLoopLatch()) { bool HasIndBrPred = false; for (pred_iterator PI = pred_begin(L->getHeader()), PE = pred_end(L->getHeader()); PI != PE; ++PI) if (isa<IndirectBrInst>((*PI)->getTerminator())) { HasIndBrPred = true; break; } assert(HasIndBrPred && "LoopSimplify has no excuse for missing loop header info!"); (void)HasIndBrPred; } // Indirectbr can interfere with exit block canonicalization. if (!L->hasDedicatedExits()) { bool HasIndBrExiting = false; SmallVector<BasicBlock*, 8> ExitingBlocks; L->getExitingBlocks(ExitingBlocks); for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { if (isa<IndirectBrInst>((ExitingBlocks[i])->getTerminator())) { HasIndBrExiting = true; break; } } assert(HasIndBrExiting && "LoopSimplify has no excuse for missing exit block info!"); (void)HasIndBrExiting; } } #endif void LoopSimplify::verifyAnalysis() const { // FIXME: This routine is being called mid-way through the loop pass manager // as loop passes destroy this analysis. That's actually fine, but we have no // way of expressing that here. Once all of the passes that destroy this are // hoisted out of the loop pass manager we can add back verification here. #if 0 for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) verifyLoop(*I); #endif }