//===- InstructionCombining.cpp - Combine multiple instructions -----------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // InstructionCombining - Combine instructions to form fewer, simple // instructions. This pass does not modify the CFG. This pass is where // algebraic simplification happens. // // This pass combines things like: // %Y = add i32 %X, 1 // %Z = add i32 %Y, 1 // into: // %Z = add i32 %X, 2 // // This is a simple worklist driven algorithm. // // This pass guarantees that the following canonicalizations are performed on // the program: // 1. If a binary operator has a constant operand, it is moved to the RHS // 2. Bitwise operators with constant operands are always grouped so that // shifts are performed first, then or's, then and's, then xor's. // 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible // 4. All cmp instructions on boolean values are replaced with logical ops // 5. add X, X is represented as (X*2) => (X << 1) // 6. Multiplies with a power-of-two constant argument are transformed into // shifts. // ... etc. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/InstCombine/InstCombine.h" #include "InstCombineInternal.h" #include "llvm-c/Initialization.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/StringSwitch.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/AssumptionCache.h" #include "llvm/Analysis/BasicAliasAnalysis.h" #include "llvm/Analysis/CFG.h" #include "llvm/Analysis/ConstantFolding.h" #include "llvm/Analysis/EHPersonalities.h" #include "llvm/Analysis/GlobalsModRef.h" #include "llvm/Analysis/InstructionSimplify.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/MemoryBuiltins.h" #include "llvm/Analysis/TargetLibraryInfo.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/IR/CFG.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/GetElementPtrTypeIterator.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/PatternMatch.h" #include "llvm/IR/ValueHandle.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Transforms/Scalar.h" #include "llvm/Transforms/Utils/Local.h" #include <algorithm> #include <climits> using namespace llvm; using namespace llvm::PatternMatch; #define DEBUG_TYPE "instcombine" STATISTIC(NumCombined , "Number of insts combined"); STATISTIC(NumConstProp, "Number of constant folds"); STATISTIC(NumDeadInst , "Number of dead inst eliminated"); STATISTIC(NumSunkInst , "Number of instructions sunk"); STATISTIC(NumExpand, "Number of expansions"); STATISTIC(NumFactor , "Number of factorizations"); STATISTIC(NumReassoc , "Number of reassociations"); static cl::opt<bool> EnableExpensiveCombines("expensive-combines", cl::desc("Enable expensive instruction combines")); Value *InstCombiner::EmitGEPOffset(User *GEP) { return llvm::EmitGEPOffset(Builder, DL, GEP); } /// Return true if it is desirable to convert an integer computation from a /// given bit width to a new bit width. /// We don't want to convert from a legal to an illegal type for example or from /// a smaller to a larger illegal type. bool InstCombiner::ShouldChangeType(unsigned FromWidth, unsigned ToWidth) const { bool FromLegal = DL.isLegalInteger(FromWidth); bool ToLegal = DL.isLegalInteger(ToWidth); // If this is a legal integer from type, and the result would be an illegal // type, don't do the transformation. if (FromLegal && !ToLegal) return false; // Otherwise, if both are illegal, do not increase the size of the result. We // do allow things like i160 -> i64, but not i64 -> i160. if (!FromLegal && !ToLegal && ToWidth > FromWidth) return false; return true; } /// Return true if it is desirable to convert a computation from 'From' to 'To'. /// We don't want to convert from a legal to an illegal type for example or from /// a smaller to a larger illegal type. bool InstCombiner::ShouldChangeType(Type *From, Type *To) const { assert(From->isIntegerTy() && To->isIntegerTy()); unsigned FromWidth = From->getPrimitiveSizeInBits(); unsigned ToWidth = To->getPrimitiveSizeInBits(); return ShouldChangeType(FromWidth, ToWidth); } // Return true, if No Signed Wrap should be maintained for I. // The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C", // where both B and C should be ConstantInts, results in a constant that does // not overflow. This function only handles the Add and Sub opcodes. For // all other opcodes, the function conservatively returns false. static bool MaintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) { OverflowingBinaryOperator *OBO = dyn_cast<OverflowingBinaryOperator>(&I); if (!OBO || !OBO->hasNoSignedWrap()) return false; // We reason about Add and Sub Only. Instruction::BinaryOps Opcode = I.getOpcode(); if (Opcode != Instruction::Add && Opcode != Instruction::Sub) return false; const APInt *BVal, *CVal; if (!match(B, m_APInt(BVal)) || !match(C, m_APInt(CVal))) return false; bool Overflow = false; if (Opcode == Instruction::Add) BVal->sadd_ov(*CVal, Overflow); else BVal->ssub_ov(*CVal, Overflow); return !Overflow; } /// Conservatively clears subclassOptionalData after a reassociation or /// commutation. We preserve fast-math flags when applicable as they can be /// preserved. static void ClearSubclassDataAfterReassociation(BinaryOperator &I) { FPMathOperator *FPMO = dyn_cast<FPMathOperator>(&I); if (!FPMO) { I.clearSubclassOptionalData(); return; } FastMathFlags FMF = I.getFastMathFlags(); I.clearSubclassOptionalData(); I.setFastMathFlags(FMF); } /// This performs a few simplifications for operators that are associative or /// commutative: /// /// Commutative operators: /// /// 1. Order operands such that they are listed from right (least complex) to /// left (most complex). This puts constants before unary operators before /// binary operators. /// /// Associative operators: /// /// 2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies. /// 3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies. /// /// Associative and commutative operators: /// /// 4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies. /// 5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies. /// 6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)" /// if C1 and C2 are constants. bool InstCombiner::SimplifyAssociativeOrCommutative(BinaryOperator &I) { Instruction::BinaryOps Opcode = I.getOpcode(); bool Changed = false; do { // Order operands such that they are listed from right (least complex) to // left (most complex). This puts constants before unary operators before // binary operators. if (I.isCommutative() && getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) Changed = !I.swapOperands(); BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0)); BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1)); if (I.isAssociative()) { // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies. if (Op0 && Op0->getOpcode() == Opcode) { Value *A = Op0->getOperand(0); Value *B = Op0->getOperand(1); Value *C = I.getOperand(1); // Does "B op C" simplify? if (Value *V = SimplifyBinOp(Opcode, B, C, DL)) { // It simplifies to V. Form "A op V". I.setOperand(0, A); I.setOperand(1, V); // Conservatively clear the optional flags, since they may not be // preserved by the reassociation. if (MaintainNoSignedWrap(I, B, C) && (!Op0 || (isa<BinaryOperator>(Op0) && Op0->hasNoSignedWrap()))) { // Note: this is only valid because SimplifyBinOp doesn't look at // the operands to Op0. I.clearSubclassOptionalData(); I.setHasNoSignedWrap(true); } else { ClearSubclassDataAfterReassociation(I); } Changed = true; ++NumReassoc; continue; } } // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies. if (Op1 && Op1->getOpcode() == Opcode) { Value *A = I.getOperand(0); Value *B = Op1->getOperand(0); Value *C = Op1->getOperand(1); // Does "A op B" simplify? if (Value *V = SimplifyBinOp(Opcode, A, B, DL)) { // It simplifies to V. Form "V op C". I.setOperand(0, V); I.setOperand(1, C); // Conservatively clear the optional flags, since they may not be // preserved by the reassociation. ClearSubclassDataAfterReassociation(I); Changed = true; ++NumReassoc; continue; } } } if (I.isAssociative() && I.isCommutative()) { // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies. if (Op0 && Op0->getOpcode() == Opcode) { Value *A = Op0->getOperand(0); Value *B = Op0->getOperand(1); Value *C = I.getOperand(1); // Does "C op A" simplify? if (Value *V = SimplifyBinOp(Opcode, C, A, DL)) { // It simplifies to V. Form "V op B". I.setOperand(0, V); I.setOperand(1, B); // Conservatively clear the optional flags, since they may not be // preserved by the reassociation. ClearSubclassDataAfterReassociation(I); Changed = true; ++NumReassoc; continue; } } // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies. if (Op1 && Op1->getOpcode() == Opcode) { Value *A = I.getOperand(0); Value *B = Op1->getOperand(0); Value *C = Op1->getOperand(1); // Does "C op A" simplify? if (Value *V = SimplifyBinOp(Opcode, C, A, DL)) { // It simplifies to V. Form "B op V". I.setOperand(0, B); I.setOperand(1, V); // Conservatively clear the optional flags, since they may not be // preserved by the reassociation. ClearSubclassDataAfterReassociation(I); Changed = true; ++NumReassoc; continue; } } // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)" // if C1 and C2 are constants. if (Op0 && Op1 && Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode && isa<Constant>(Op0->getOperand(1)) && isa<Constant>(Op1->getOperand(1)) && Op0->hasOneUse() && Op1->hasOneUse()) { Value *A = Op0->getOperand(0); Constant *C1 = cast<Constant>(Op0->getOperand(1)); Value *B = Op1->getOperand(0); Constant *C2 = cast<Constant>(Op1->getOperand(1)); Constant *Folded = ConstantExpr::get(Opcode, C1, C2); BinaryOperator *New = BinaryOperator::Create(Opcode, A, B); if (isa<FPMathOperator>(New)) { FastMathFlags Flags = I.getFastMathFlags(); Flags &= Op0->getFastMathFlags(); Flags &= Op1->getFastMathFlags(); New->setFastMathFlags(Flags); } InsertNewInstWith(New, I); New->takeName(Op1); I.setOperand(0, New); I.setOperand(1, Folded); // Conservatively clear the optional flags, since they may not be // preserved by the reassociation. ClearSubclassDataAfterReassociation(I); Changed = true; continue; } } // No further simplifications. return Changed; } while (1); } /// Return whether "X LOp (Y ROp Z)" is always equal to /// "(X LOp Y) ROp (X LOp Z)". static bool LeftDistributesOverRight(Instruction::BinaryOps LOp, Instruction::BinaryOps ROp) { switch (LOp) { default: return false; case Instruction::And: // And distributes over Or and Xor. switch (ROp) { default: return false; case Instruction::Or: case Instruction::Xor: return true; } case Instruction::Mul: // Multiplication distributes over addition and subtraction. switch (ROp) { default: return false; case Instruction::Add: case Instruction::Sub: return true; } case Instruction::Or: // Or distributes over And. switch (ROp) { default: return false; case Instruction::And: return true; } } } /// Return whether "(X LOp Y) ROp Z" is always equal to /// "(X ROp Z) LOp (Y ROp Z)". static bool RightDistributesOverLeft(Instruction::BinaryOps LOp, Instruction::BinaryOps ROp) { if (Instruction::isCommutative(ROp)) return LeftDistributesOverRight(ROp, LOp); switch (LOp) { default: return false; // (X >> Z) & (Y >> Z) -> (X&Y) >> Z for all shifts. // (X >> Z) | (Y >> Z) -> (X|Y) >> Z for all shifts. // (X >> Z) ^ (Y >> Z) -> (X^Y) >> Z for all shifts. case Instruction::And: case Instruction::Or: case Instruction::Xor: switch (ROp) { default: return false; case Instruction::Shl: case Instruction::LShr: case Instruction::AShr: return true; } } // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z", // but this requires knowing that the addition does not overflow and other // such subtleties. return false; } /// This function returns identity value for given opcode, which can be used to /// factor patterns like (X * 2) + X ==> (X * 2) + (X * 1) ==> X * (2 + 1). static Value *getIdentityValue(Instruction::BinaryOps OpCode, Value *V) { if (isa<Constant>(V)) return nullptr; if (OpCode == Instruction::Mul) return ConstantInt::get(V->getType(), 1); // TODO: We can handle other cases e.g. Instruction::And, Instruction::Or etc. return nullptr; } /// This function factors binary ops which can be combined using distributive /// laws. This function tries to transform 'Op' based TopLevelOpcode to enable /// factorization e.g for ADD(SHL(X , 2), MUL(X, 5)), When this function called /// with TopLevelOpcode == Instruction::Add and Op = SHL(X, 2), transforms /// SHL(X, 2) to MUL(X, 4) i.e. returns Instruction::Mul with LHS set to 'X' and /// RHS to 4. static Instruction::BinaryOps getBinOpsForFactorization(Instruction::BinaryOps TopLevelOpcode, BinaryOperator *Op, Value *&LHS, Value *&RHS) { if (!Op) return Instruction::BinaryOpsEnd; LHS = Op->getOperand(0); RHS = Op->getOperand(1); switch (TopLevelOpcode) { default: return Op->getOpcode(); case Instruction::Add: case Instruction::Sub: if (Op->getOpcode() == Instruction::Shl) { if (Constant *CST = dyn_cast<Constant>(Op->getOperand(1))) { // The multiplier is really 1 << CST. RHS = ConstantExpr::getShl(ConstantInt::get(Op->getType(), 1), CST); return Instruction::Mul; } } return Op->getOpcode(); } // TODO: We can add other conversions e.g. shr => div etc. } /// This tries to simplify binary operations by factorizing out common terms /// (e. g. "(A*B)+(A*C)" -> "A*(B+C)"). static Value *tryFactorization(InstCombiner::BuilderTy *Builder, const DataLayout &DL, BinaryOperator &I, Instruction::BinaryOps InnerOpcode, Value *A, Value *B, Value *C, Value *D) { // If any of A, B, C, D are null, we can not factor I, return early. // Checking A and C should be enough. if (!A || !C || !B || !D) return nullptr; Value *V = nullptr; Value *SimplifiedInst = nullptr; Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); Instruction::BinaryOps TopLevelOpcode = I.getOpcode(); // Does "X op' Y" always equal "Y op' X"? bool InnerCommutative = Instruction::isCommutative(InnerOpcode); // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"? if (LeftDistributesOverRight(InnerOpcode, TopLevelOpcode)) // Does the instruction have the form "(A op' B) op (A op' D)" or, in the // commutative case, "(A op' B) op (C op' A)"? if (A == C || (InnerCommutative && A == D)) { if (A != C) std::swap(C, D); // Consider forming "A op' (B op D)". // If "B op D" simplifies then it can be formed with no cost. V = SimplifyBinOp(TopLevelOpcode, B, D, DL); // If "B op D" doesn't simplify then only go on if both of the existing // operations "A op' B" and "C op' D" will be zapped as no longer used. if (!V && LHS->hasOneUse() && RHS->hasOneUse()) V = Builder->CreateBinOp(TopLevelOpcode, B, D, RHS->getName()); if (V) { SimplifiedInst = Builder->CreateBinOp(InnerOpcode, A, V); } } // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"? if (!SimplifiedInst && RightDistributesOverLeft(TopLevelOpcode, InnerOpcode)) // Does the instruction have the form "(A op' B) op (C op' B)" or, in the // commutative case, "(A op' B) op (B op' D)"? if (B == D || (InnerCommutative && B == C)) { if (B != D) std::swap(C, D); // Consider forming "(A op C) op' B". // If "A op C" simplifies then it can be formed with no cost. V = SimplifyBinOp(TopLevelOpcode, A, C, DL); // If "A op C" doesn't simplify then only go on if both of the existing // operations "A op' B" and "C op' D" will be zapped as no longer used. if (!V && LHS->hasOneUse() && RHS->hasOneUse()) V = Builder->CreateBinOp(TopLevelOpcode, A, C, LHS->getName()); if (V) { SimplifiedInst = Builder->CreateBinOp(InnerOpcode, V, B); } } if (SimplifiedInst) { ++NumFactor; SimplifiedInst->takeName(&I); // Check if we can add NSW flag to SimplifiedInst. If so, set NSW flag. // TODO: Check for NUW. if (BinaryOperator *BO = dyn_cast<BinaryOperator>(SimplifiedInst)) { if (isa<OverflowingBinaryOperator>(SimplifiedInst)) { bool HasNSW = false; if (isa<OverflowingBinaryOperator>(&I)) HasNSW = I.hasNoSignedWrap(); if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS)) if (isa<OverflowingBinaryOperator>(Op0)) HasNSW &= Op0->hasNoSignedWrap(); if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS)) if (isa<OverflowingBinaryOperator>(Op1)) HasNSW &= Op1->hasNoSignedWrap(); // We can propagate 'nsw' if we know that // %Y = mul nsw i16 %X, C // %Z = add nsw i16 %Y, %X // => // %Z = mul nsw i16 %X, C+1 // // iff C+1 isn't INT_MIN const APInt *CInt; if (TopLevelOpcode == Instruction::Add && InnerOpcode == Instruction::Mul) if (match(V, m_APInt(CInt)) && !CInt->isMinSignedValue()) BO->setHasNoSignedWrap(HasNSW); } } } return SimplifiedInst; } /// This tries to simplify binary operations which some other binary operation /// distributes over either by factorizing out common terms /// (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this results in /// simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is a win). /// Returns the simplified value, or null if it didn't simplify. Value *InstCombiner::SimplifyUsingDistributiveLaws(BinaryOperator &I) { Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); // Factorization. Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; auto TopLevelOpcode = I.getOpcode(); auto LHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op0, A, B); auto RHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op1, C, D); // The instruction has the form "(A op' B) op (C op' D)". Try to factorize // a common term. if (LHSOpcode == RHSOpcode) { if (Value *V = tryFactorization(Builder, DL, I, LHSOpcode, A, B, C, D)) return V; } // The instruction has the form "(A op' B) op (C)". Try to factorize common // term. if (Value *V = tryFactorization(Builder, DL, I, LHSOpcode, A, B, RHS, getIdentityValue(LHSOpcode, RHS))) return V; // The instruction has the form "(B) op (C op' D)". Try to factorize common // term. if (Value *V = tryFactorization(Builder, DL, I, RHSOpcode, LHS, getIdentityValue(RHSOpcode, LHS), C, D)) return V; // Expansion. if (Op0 && RightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) { // The instruction has the form "(A op' B) op C". See if expanding it out // to "(A op C) op' (B op C)" results in simplifications. Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS; Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op' // Do "A op C" and "B op C" both simplify? if (Value *L = SimplifyBinOp(TopLevelOpcode, A, C, DL)) if (Value *R = SimplifyBinOp(TopLevelOpcode, B, C, DL)) { // They do! Return "L op' R". ++NumExpand; // If "L op' R" equals "A op' B" then "L op' R" is just the LHS. if ((L == A && R == B) || (Instruction::isCommutative(InnerOpcode) && L == B && R == A)) return Op0; // Otherwise return "L op' R" if it simplifies. if (Value *V = SimplifyBinOp(InnerOpcode, L, R, DL)) return V; // Otherwise, create a new instruction. C = Builder->CreateBinOp(InnerOpcode, L, R); C->takeName(&I); return C; } } if (Op1 && LeftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) { // The instruction has the form "A op (B op' C)". See if expanding it out // to "(A op B) op' (A op C)" results in simplifications. Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1); Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op' // Do "A op B" and "A op C" both simplify? if (Value *L = SimplifyBinOp(TopLevelOpcode, A, B, DL)) if (Value *R = SimplifyBinOp(TopLevelOpcode, A, C, DL)) { // They do! Return "L op' R". ++NumExpand; // If "L op' R" equals "B op' C" then "L op' R" is just the RHS. if ((L == B && R == C) || (Instruction::isCommutative(InnerOpcode) && L == C && R == B)) return Op1; // Otherwise return "L op' R" if it simplifies. if (Value *V = SimplifyBinOp(InnerOpcode, L, R, DL)) return V; // Otherwise, create a new instruction. A = Builder->CreateBinOp(InnerOpcode, L, R); A->takeName(&I); return A; } } // (op (select (a, c, b)), (select (a, d, b))) -> (select (a, (op c, d), 0)) // (op (select (a, b, c)), (select (a, b, d))) -> (select (a, 0, (op c, d))) if (auto *SI0 = dyn_cast<SelectInst>(LHS)) { if (auto *SI1 = dyn_cast<SelectInst>(RHS)) { if (SI0->getCondition() == SI1->getCondition()) { Value *SI = nullptr; if (Value *V = SimplifyBinOp(TopLevelOpcode, SI0->getFalseValue(), SI1->getFalseValue(), DL, TLI, DT, AC)) SI = Builder->CreateSelect(SI0->getCondition(), Builder->CreateBinOp(TopLevelOpcode, SI0->getTrueValue(), SI1->getTrueValue()), V); if (Value *V = SimplifyBinOp(TopLevelOpcode, SI0->getTrueValue(), SI1->getTrueValue(), DL, TLI, DT, AC)) SI = Builder->CreateSelect( SI0->getCondition(), V, Builder->CreateBinOp(TopLevelOpcode, SI0->getFalseValue(), SI1->getFalseValue())); if (SI) { SI->takeName(&I); return SI; } } } } return nullptr; } /// Given a 'sub' instruction, return the RHS of the instruction if the LHS is a /// constant zero (which is the 'negate' form). Value *InstCombiner::dyn_castNegVal(Value *V) const { if (BinaryOperator::isNeg(V)) return BinaryOperator::getNegArgument(V); // Constants can be considered to be negated values if they can be folded. if (ConstantInt *C = dyn_cast<ConstantInt>(V)) return ConstantExpr::getNeg(C); if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V)) if (C->getType()->getElementType()->isIntegerTy()) return ConstantExpr::getNeg(C); return nullptr; } /// Given a 'fsub' instruction, return the RHS of the instruction if the LHS is /// a constant negative zero (which is the 'negate' form). Value *InstCombiner::dyn_castFNegVal(Value *V, bool IgnoreZeroSign) const { if (BinaryOperator::isFNeg(V, IgnoreZeroSign)) return BinaryOperator::getFNegArgument(V); // Constants can be considered to be negated values if they can be folded. if (ConstantFP *C = dyn_cast<ConstantFP>(V)) return ConstantExpr::getFNeg(C); if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V)) if (C->getType()->getElementType()->isFloatingPointTy()) return ConstantExpr::getFNeg(C); return nullptr; } static Value *FoldOperationIntoSelectOperand(Instruction &I, Value *SO, InstCombiner *IC) { if (CastInst *CI = dyn_cast<CastInst>(&I)) { return IC->Builder->CreateCast(CI->getOpcode(), SO, I.getType()); } // Figure out if the constant is the left or the right argument. bool ConstIsRHS = isa<Constant>(I.getOperand(1)); Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS)); if (Constant *SOC = dyn_cast<Constant>(SO)) { if (ConstIsRHS) return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand); return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC); } Value *Op0 = SO, *Op1 = ConstOperand; if (!ConstIsRHS) std::swap(Op0, Op1); if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I)) { Value *RI = IC->Builder->CreateBinOp(BO->getOpcode(), Op0, Op1, SO->getName()+".op"); Instruction *FPInst = dyn_cast<Instruction>(RI); if (FPInst && isa<FPMathOperator>(FPInst)) FPInst->copyFastMathFlags(BO); return RI; } if (ICmpInst *CI = dyn_cast<ICmpInst>(&I)) return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1, SO->getName()+".cmp"); if (FCmpInst *CI = dyn_cast<FCmpInst>(&I)) return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1, SO->getName()+".cmp"); llvm_unreachable("Unknown binary instruction type!"); } /// Given an instruction with a select as one operand and a constant as the /// other operand, try to fold the binary operator into the select arguments. /// This also works for Cast instructions, which obviously do not have a second /// operand. Instruction *InstCombiner::FoldOpIntoSelect(Instruction &Op, SelectInst *SI) { // Don't modify shared select instructions if (!SI->hasOneUse()) return nullptr; Value *TV = SI->getOperand(1); Value *FV = SI->getOperand(2); if (isa<Constant>(TV) || isa<Constant>(FV)) { // Bool selects with constant operands can be folded to logical ops. if (SI->getType()->isIntegerTy(1)) return nullptr; // If it's a bitcast involving vectors, make sure it has the same number of // elements on both sides. if (BitCastInst *BC = dyn_cast<BitCastInst>(&Op)) { VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy()); VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy()); // Verify that either both or neither are vectors. if ((SrcTy == nullptr) != (DestTy == nullptr)) return nullptr; // If vectors, verify that they have the same number of elements. if (SrcTy && SrcTy->getNumElements() != DestTy->getNumElements()) return nullptr; } // Test if a CmpInst instruction is used exclusively by a select as // part of a minimum or maximum operation. If so, refrain from doing // any other folding. This helps out other analyses which understand // non-obfuscated minimum and maximum idioms, such as ScalarEvolution // and CodeGen. And in this case, at least one of the comparison // operands has at least one user besides the compare (the select), // which would often largely negate the benefit of folding anyway. if (auto *CI = dyn_cast<CmpInst>(SI->getCondition())) { if (CI->hasOneUse()) { Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1); if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) || (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1)) return nullptr; } } Value *SelectTrueVal = FoldOperationIntoSelectOperand(Op, TV, this); Value *SelectFalseVal = FoldOperationIntoSelectOperand(Op, FV, this); return SelectInst::Create(SI->getCondition(), SelectTrueVal, SelectFalseVal); } return nullptr; } /// Given a binary operator, cast instruction, or select which has a PHI node as /// operand #0, see if we can fold the instruction into the PHI (which is only /// possible if all operands to the PHI are constants). Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) { PHINode *PN = cast<PHINode>(I.getOperand(0)); unsigned NumPHIValues = PN->getNumIncomingValues(); if (NumPHIValues == 0) return nullptr; // We normally only transform phis with a single use. However, if a PHI has // multiple uses and they are all the same operation, we can fold *all* of the // uses into the PHI. if (!PN->hasOneUse()) { // Walk the use list for the instruction, comparing them to I. for (User *U : PN->users()) { Instruction *UI = cast<Instruction>(U); if (UI != &I && !I.isIdenticalTo(UI)) return nullptr; } // Otherwise, we can replace *all* users with the new PHI we form. } // Check to see if all of the operands of the PHI are simple constants // (constantint/constantfp/undef). If there is one non-constant value, // remember the BB it is in. If there is more than one or if *it* is a PHI, // bail out. We don't do arbitrary constant expressions here because moving // their computation can be expensive without a cost model. BasicBlock *NonConstBB = nullptr; for (unsigned i = 0; i != NumPHIValues; ++i) { Value *InVal = PN->getIncomingValue(i); if (isa<Constant>(InVal) && !isa<ConstantExpr>(InVal)) continue; if (isa<PHINode>(InVal)) return nullptr; // Itself a phi. if (NonConstBB) return nullptr; // More than one non-const value. NonConstBB = PN->getIncomingBlock(i); // If the InVal is an invoke at the end of the pred block, then we can't // insert a computation after it without breaking the edge. if (InvokeInst *II = dyn_cast<InvokeInst>(InVal)) if (II->getParent() == NonConstBB) return nullptr; // If the incoming non-constant value is in I's block, we will remove one // instruction, but insert another equivalent one, leading to infinite // instcombine. if (isPotentiallyReachable(I.getParent(), NonConstBB, DT, LI)) return nullptr; } // If there is exactly one non-constant value, we can insert a copy of the // operation in that block. However, if this is a critical edge, we would be // inserting the computation on some other paths (e.g. inside a loop). Only // do this if the pred block is unconditionally branching into the phi block. if (NonConstBB != nullptr) { BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator()); if (!BI || !BI->isUnconditional()) return nullptr; } // Okay, we can do the transformation: create the new PHI node. PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues()); InsertNewInstBefore(NewPN, *PN); NewPN->takeName(PN); // If we are going to have to insert a new computation, do so right before the // predecessor's terminator. if (NonConstBB) Builder->SetInsertPoint(NonConstBB->getTerminator()); // Next, add all of the operands to the PHI. if (SelectInst *SI = dyn_cast<SelectInst>(&I)) { // We only currently try to fold the condition of a select when it is a phi, // not the true/false values. Value *TrueV = SI->getTrueValue(); Value *FalseV = SI->getFalseValue(); BasicBlock *PhiTransBB = PN->getParent(); for (unsigned i = 0; i != NumPHIValues; ++i) { BasicBlock *ThisBB = PN->getIncomingBlock(i); Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB); Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB); Value *InV = nullptr; // Beware of ConstantExpr: it may eventually evaluate to getNullValue, // even if currently isNullValue gives false. Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)); if (InC && !isa<ConstantExpr>(InC)) InV = InC->isNullValue() ? FalseVInPred : TrueVInPred; else InV = Builder->CreateSelect(PN->getIncomingValue(i), TrueVInPred, FalseVInPred, "phitmp"); NewPN->addIncoming(InV, ThisBB); } } else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) { Constant *C = cast<Constant>(I.getOperand(1)); for (unsigned i = 0; i != NumPHIValues; ++i) { Value *InV = nullptr; if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C); else if (isa<ICmpInst>(CI)) InV = Builder->CreateICmp(CI->getPredicate(), PN->getIncomingValue(i), C, "phitmp"); else InV = Builder->CreateFCmp(CI->getPredicate(), PN->getIncomingValue(i), C, "phitmp"); NewPN->addIncoming(InV, PN->getIncomingBlock(i)); } } else if (I.getNumOperands() == 2) { Constant *C = cast<Constant>(I.getOperand(1)); for (unsigned i = 0; i != NumPHIValues; ++i) { Value *InV = nullptr; if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) InV = ConstantExpr::get(I.getOpcode(), InC, C); else InV = Builder->CreateBinOp(cast<BinaryOperator>(I).getOpcode(), PN->getIncomingValue(i), C, "phitmp"); NewPN->addIncoming(InV, PN->getIncomingBlock(i)); } } else { CastInst *CI = cast<CastInst>(&I); Type *RetTy = CI->getType(); for (unsigned i = 0; i != NumPHIValues; ++i) { Value *InV; if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy); else InV = Builder->CreateCast(CI->getOpcode(), PN->getIncomingValue(i), I.getType(), "phitmp"); NewPN->addIncoming(InV, PN->getIncomingBlock(i)); } } for (auto UI = PN->user_begin(), E = PN->user_end(); UI != E;) { Instruction *User = cast<Instruction>(*UI++); if (User == &I) continue; replaceInstUsesWith(*User, NewPN); eraseInstFromFunction(*User); } return replaceInstUsesWith(I, NewPN); } /// Given a pointer type and a constant offset, determine whether or not there /// is a sequence of GEP indices into the pointed type that will land us at the /// specified offset. If so, fill them into NewIndices and return the resultant /// element type, otherwise return null. Type *InstCombiner::FindElementAtOffset(PointerType *PtrTy, int64_t Offset, SmallVectorImpl<Value *> &NewIndices) { Type *Ty = PtrTy->getElementType(); if (!Ty->isSized()) return nullptr; // Start with the index over the outer type. Note that the type size // might be zero (even if the offset isn't zero) if the indexed type // is something like [0 x {int, int}] Type *IntPtrTy = DL.getIntPtrType(PtrTy); int64_t FirstIdx = 0; if (int64_t TySize = DL.getTypeAllocSize(Ty)) { FirstIdx = Offset/TySize; Offset -= FirstIdx*TySize; // Handle hosts where % returns negative instead of values [0..TySize). if (Offset < 0) { --FirstIdx; Offset += TySize; assert(Offset >= 0); } assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset"); } NewIndices.push_back(ConstantInt::get(IntPtrTy, FirstIdx)); // Index into the types. If we fail, set OrigBase to null. while (Offset) { // Indexing into tail padding between struct/array elements. if (uint64_t(Offset * 8) >= DL.getTypeSizeInBits(Ty)) return nullptr; if (StructType *STy = dyn_cast<StructType>(Ty)) { const StructLayout *SL = DL.getStructLayout(STy); assert(Offset < (int64_t)SL->getSizeInBytes() && "Offset must stay within the indexed type"); unsigned Elt = SL->getElementContainingOffset(Offset); NewIndices.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()), Elt)); Offset -= SL->getElementOffset(Elt); Ty = STy->getElementType(Elt); } else if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) { uint64_t EltSize = DL.getTypeAllocSize(AT->getElementType()); assert(EltSize && "Cannot index into a zero-sized array"); NewIndices.push_back(ConstantInt::get(IntPtrTy,Offset/EltSize)); Offset %= EltSize; Ty = AT->getElementType(); } else { // Otherwise, we can't index into the middle of this atomic type, bail. return nullptr; } } return Ty; } static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) { // If this GEP has only 0 indices, it is the same pointer as // Src. If Src is not a trivial GEP too, don't combine // the indices. if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() && !Src.hasOneUse()) return false; return true; } /// Return a value X such that Val = X * Scale, or null if none. /// If the multiplication is known not to overflow, then NoSignedWrap is set. Value *InstCombiner::Descale(Value *Val, APInt Scale, bool &NoSignedWrap) { assert(isa<IntegerType>(Val->getType()) && "Can only descale integers!"); assert(cast<IntegerType>(Val->getType())->getBitWidth() == Scale.getBitWidth() && "Scale not compatible with value!"); // If Val is zero or Scale is one then Val = Val * Scale. if (match(Val, m_Zero()) || Scale == 1) { NoSignedWrap = true; return Val; } // If Scale is zero then it does not divide Val. if (Scale.isMinValue()) return nullptr; // Look through chains of multiplications, searching for a constant that is // divisible by Scale. For example, descaling X*(Y*(Z*4)) by a factor of 4 // will find the constant factor 4 and produce X*(Y*Z). Descaling X*(Y*8) by // a factor of 4 will produce X*(Y*2). The principle of operation is to bore // down from Val: // // Val = M1 * X || Analysis starts here and works down // M1 = M2 * Y || Doesn't descend into terms with more // M2 = Z * 4 \/ than one use // // Then to modify a term at the bottom: // // Val = M1 * X // M1 = Z * Y || Replaced M2 with Z // // Then to work back up correcting nsw flags. // Op - the term we are currently analyzing. Starts at Val then drills down. // Replaced with its descaled value before exiting from the drill down loop. Value *Op = Val; // Parent - initially null, but after drilling down notes where Op came from. // In the example above, Parent is (Val, 0) when Op is M1, because M1 is the // 0'th operand of Val. std::pair<Instruction*, unsigned> Parent; // Set if the transform requires a descaling at deeper levels that doesn't // overflow. bool RequireNoSignedWrap = false; // Log base 2 of the scale. Negative if not a power of 2. int32_t logScale = Scale.exactLogBase2(); for (;; Op = Parent.first->getOperand(Parent.second)) { // Drill down if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { // If Op is a constant divisible by Scale then descale to the quotient. APInt Quotient(Scale), Remainder(Scale); // Init ensures right bitwidth. APInt::sdivrem(CI->getValue(), Scale, Quotient, Remainder); if (!Remainder.isMinValue()) // Not divisible by Scale. return nullptr; // Replace with the quotient in the parent. Op = ConstantInt::get(CI->getType(), Quotient); NoSignedWrap = true; break; } if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) { if (BO->getOpcode() == Instruction::Mul) { // Multiplication. NoSignedWrap = BO->hasNoSignedWrap(); if (RequireNoSignedWrap && !NoSignedWrap) return nullptr; // There are three cases for multiplication: multiplication by exactly // the scale, multiplication by a constant different to the scale, and // multiplication by something else. Value *LHS = BO->getOperand(0); Value *RHS = BO->getOperand(1); if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { // Multiplication by a constant. if (CI->getValue() == Scale) { // Multiplication by exactly the scale, replace the multiplication // by its left-hand side in the parent. Op = LHS; break; } // Otherwise drill down into the constant. if (!Op->hasOneUse()) return nullptr; Parent = std::make_pair(BO, 1); continue; } // Multiplication by something else. Drill down into the left-hand side // since that's where the reassociate pass puts the good stuff. if (!Op->hasOneUse()) return nullptr; Parent = std::make_pair(BO, 0); continue; } if (logScale > 0 && BO->getOpcode() == Instruction::Shl && isa<ConstantInt>(BO->getOperand(1))) { // Multiplication by a power of 2. NoSignedWrap = BO->hasNoSignedWrap(); if (RequireNoSignedWrap && !NoSignedWrap) return nullptr; Value *LHS = BO->getOperand(0); int32_t Amt = cast<ConstantInt>(BO->getOperand(1))-> getLimitedValue(Scale.getBitWidth()); // Op = LHS << Amt. if (Amt == logScale) { // Multiplication by exactly the scale, replace the multiplication // by its left-hand side in the parent. Op = LHS; break; } if (Amt < logScale || !Op->hasOneUse()) return nullptr; // Multiplication by more than the scale. Reduce the multiplying amount // by the scale in the parent. Parent = std::make_pair(BO, 1); Op = ConstantInt::get(BO->getType(), Amt - logScale); break; } } if (!Op->hasOneUse()) return nullptr; if (CastInst *Cast = dyn_cast<CastInst>(Op)) { if (Cast->getOpcode() == Instruction::SExt) { // Op is sign-extended from a smaller type, descale in the smaller type. unsigned SmallSize = Cast->getSrcTy()->getPrimitiveSizeInBits(); APInt SmallScale = Scale.trunc(SmallSize); // Suppose Op = sext X, and we descale X as Y * SmallScale. We want to // descale Op as (sext Y) * Scale. In order to have // sext (Y * SmallScale) = (sext Y) * Scale // some conditions need to hold however: SmallScale must sign-extend to // Scale and the multiplication Y * SmallScale should not overflow. if (SmallScale.sext(Scale.getBitWidth()) != Scale) // SmallScale does not sign-extend to Scale. return nullptr; assert(SmallScale.exactLogBase2() == logScale); // Require that Y * SmallScale must not overflow. RequireNoSignedWrap = true; // Drill down through the cast. Parent = std::make_pair(Cast, 0); Scale = SmallScale; continue; } if (Cast->getOpcode() == Instruction::Trunc) { // Op is truncated from a larger type, descale in the larger type. // Suppose Op = trunc X, and we descale X as Y * sext Scale. Then // trunc (Y * sext Scale) = (trunc Y) * Scale // always holds. However (trunc Y) * Scale may overflow even if // trunc (Y * sext Scale) does not, so nsw flags need to be cleared // from this point up in the expression (see later). if (RequireNoSignedWrap) return nullptr; // Drill down through the cast. unsigned LargeSize = Cast->getSrcTy()->getPrimitiveSizeInBits(); Parent = std::make_pair(Cast, 0); Scale = Scale.sext(LargeSize); if (logScale + 1 == (int32_t)Cast->getType()->getPrimitiveSizeInBits()) logScale = -1; assert(Scale.exactLogBase2() == logScale); continue; } } // Unsupported expression, bail out. return nullptr; } // If Op is zero then Val = Op * Scale. if (match(Op, m_Zero())) { NoSignedWrap = true; return Op; } // We know that we can successfully descale, so from here on we can safely // modify the IR. Op holds the descaled version of the deepest term in the // expression. NoSignedWrap is 'true' if multiplying Op by Scale is known // not to overflow. if (!Parent.first) // The expression only had one term. return Op; // Rewrite the parent using the descaled version of its operand. assert(Parent.first->hasOneUse() && "Drilled down when more than one use!"); assert(Op != Parent.first->getOperand(Parent.second) && "Descaling was a no-op?"); Parent.first->setOperand(Parent.second, Op); Worklist.Add(Parent.first); // Now work back up the expression correcting nsw flags. The logic is based // on the following observation: if X * Y is known not to overflow as a signed // multiplication, and Y is replaced by a value Z with smaller absolute value, // then X * Z will not overflow as a signed multiplication either. As we work // our way up, having NoSignedWrap 'true' means that the descaled value at the // current level has strictly smaller absolute value than the original. Instruction *Ancestor = Parent.first; do { if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Ancestor)) { // If the multiplication wasn't nsw then we can't say anything about the // value of the descaled multiplication, and we have to clear nsw flags // from this point on up. bool OpNoSignedWrap = BO->hasNoSignedWrap(); NoSignedWrap &= OpNoSignedWrap; if (NoSignedWrap != OpNoSignedWrap) { BO->setHasNoSignedWrap(NoSignedWrap); Worklist.Add(Ancestor); } } else if (Ancestor->getOpcode() == Instruction::Trunc) { // The fact that the descaled input to the trunc has smaller absolute // value than the original input doesn't tell us anything useful about // the absolute values of the truncations. NoSignedWrap = false; } assert((Ancestor->getOpcode() != Instruction::SExt || NoSignedWrap) && "Failed to keep proper track of nsw flags while drilling down?"); if (Ancestor == Val) // Got to the top, all done! return Val; // Move up one level in the expression. assert(Ancestor->hasOneUse() && "Drilled down when more than one use!"); Ancestor = Ancestor->user_back(); } while (1); } /// \brief Creates node of binary operation with the same attributes as the /// specified one but with other operands. static Value *CreateBinOpAsGiven(BinaryOperator &Inst, Value *LHS, Value *RHS, InstCombiner::BuilderTy *B) { Value *BO = B->CreateBinOp(Inst.getOpcode(), LHS, RHS); // If LHS and RHS are constant, BO won't be a binary operator. if (BinaryOperator *NewBO = dyn_cast<BinaryOperator>(BO)) NewBO->copyIRFlags(&Inst); return BO; } /// \brief Makes transformation of binary operation specific for vector types. /// \param Inst Binary operator to transform. /// \return Pointer to node that must replace the original binary operator, or /// null pointer if no transformation was made. Value *InstCombiner::SimplifyVectorOp(BinaryOperator &Inst) { if (!Inst.getType()->isVectorTy()) return nullptr; // It may not be safe to reorder shuffles and things like div, urem, etc. // because we may trap when executing those ops on unknown vector elements. // See PR20059. if (!isSafeToSpeculativelyExecute(&Inst)) return nullptr; unsigned VWidth = cast<VectorType>(Inst.getType())->getNumElements(); Value *LHS = Inst.getOperand(0), *RHS = Inst.getOperand(1); assert(cast<VectorType>(LHS->getType())->getNumElements() == VWidth); assert(cast<VectorType>(RHS->getType())->getNumElements() == VWidth); // If both arguments of binary operation are shuffles, which use the same // mask and shuffle within a single vector, it is worthwhile to move the // shuffle after binary operation: // Op(shuffle(v1, m), shuffle(v2, m)) -> shuffle(Op(v1, v2), m) if (isa<ShuffleVectorInst>(LHS) && isa<ShuffleVectorInst>(RHS)) { ShuffleVectorInst *LShuf = cast<ShuffleVectorInst>(LHS); ShuffleVectorInst *RShuf = cast<ShuffleVectorInst>(RHS); if (isa<UndefValue>(LShuf->getOperand(1)) && isa<UndefValue>(RShuf->getOperand(1)) && LShuf->getOperand(0)->getType() == RShuf->getOperand(0)->getType() && LShuf->getMask() == RShuf->getMask()) { Value *NewBO = CreateBinOpAsGiven(Inst, LShuf->getOperand(0), RShuf->getOperand(0), Builder); return Builder->CreateShuffleVector(NewBO, UndefValue::get(NewBO->getType()), LShuf->getMask()); } } // If one argument is a shuffle within one vector, the other is a constant, // try moving the shuffle after the binary operation. ShuffleVectorInst *Shuffle = nullptr; Constant *C1 = nullptr; if (isa<ShuffleVectorInst>(LHS)) Shuffle = cast<ShuffleVectorInst>(LHS); if (isa<ShuffleVectorInst>(RHS)) Shuffle = cast<ShuffleVectorInst>(RHS); if (isa<Constant>(LHS)) C1 = cast<Constant>(LHS); if (isa<Constant>(RHS)) C1 = cast<Constant>(RHS); if (Shuffle && C1 && (isa<ConstantVector>(C1) || isa<ConstantDataVector>(C1)) && isa<UndefValue>(Shuffle->getOperand(1)) && Shuffle->getType() == Shuffle->getOperand(0)->getType()) { SmallVector<int, 16> ShMask = Shuffle->getShuffleMask(); // Find constant C2 that has property: // shuffle(C2, ShMask) = C1 // If such constant does not exist (example: ShMask=<0,0> and C1=<1,2>) // reorder is not possible. SmallVector<Constant*, 16> C2M(VWidth, UndefValue::get(C1->getType()->getScalarType())); bool MayChange = true; for (unsigned I = 0; I < VWidth; ++I) { if (ShMask[I] >= 0) { assert(ShMask[I] < (int)VWidth); if (!isa<UndefValue>(C2M[ShMask[I]])) { MayChange = false; break; } C2M[ShMask[I]] = C1->getAggregateElement(I); } } if (MayChange) { Constant *C2 = ConstantVector::get(C2M); Value *NewLHS = isa<Constant>(LHS) ? C2 : Shuffle->getOperand(0); Value *NewRHS = isa<Constant>(LHS) ? Shuffle->getOperand(0) : C2; Value *NewBO = CreateBinOpAsGiven(Inst, NewLHS, NewRHS, Builder); return Builder->CreateShuffleVector(NewBO, UndefValue::get(Inst.getType()), Shuffle->getMask()); } } return nullptr; } Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) { SmallVector<Value*, 8> Ops(GEP.op_begin(), GEP.op_end()); if (Value *V = SimplifyGEPInst(GEP.getSourceElementType(), Ops, DL, TLI, DT, AC)) return replaceInstUsesWith(GEP, V); Value *PtrOp = GEP.getOperand(0); // Eliminate unneeded casts for indices, and replace indices which displace // by multiples of a zero size type with zero. bool MadeChange = false; Type *IntPtrTy = DL.getIntPtrType(GEP.getPointerOperandType()->getScalarType()); gep_type_iterator GTI = gep_type_begin(GEP); for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); I != E; ++I, ++GTI) { // Skip indices into struct types. if (isa<StructType>(*GTI)) continue; // Index type should have the same width as IntPtr Type *IndexTy = (*I)->getType(); Type *NewIndexType = IndexTy->isVectorTy() ? VectorType::get(IntPtrTy, IndexTy->getVectorNumElements()) : IntPtrTy; // If the element type has zero size then any index over it is equivalent // to an index of zero, so replace it with zero if it is not zero already. Type *EltTy = GTI.getIndexedType(); if (EltTy->isSized() && DL.getTypeAllocSize(EltTy) == 0) if (!isa<Constant>(*I) || !cast<Constant>(*I)->isNullValue()) { *I = Constant::getNullValue(NewIndexType); MadeChange = true; } if (IndexTy != NewIndexType) { // If we are using a wider index than needed for this platform, shrink // it to what we need. If narrower, sign-extend it to what we need. // This explicit cast can make subsequent optimizations more obvious. *I = Builder->CreateIntCast(*I, NewIndexType, true); MadeChange = true; } } if (MadeChange) return &GEP; // Check to see if the inputs to the PHI node are getelementptr instructions. if (PHINode *PN = dyn_cast<PHINode>(PtrOp)) { GetElementPtrInst *Op1 = dyn_cast<GetElementPtrInst>(PN->getOperand(0)); if (!Op1) return nullptr; // Don't fold a GEP into itself through a PHI node. This can only happen // through the back-edge of a loop. Folding a GEP into itself means that // the value of the previous iteration needs to be stored in the meantime, // thus requiring an additional register variable to be live, but not // actually achieving anything (the GEP still needs to be executed once per // loop iteration). if (Op1 == &GEP) return nullptr; int DI = -1; for (auto I = PN->op_begin()+1, E = PN->op_end(); I !=E; ++I) { GetElementPtrInst *Op2 = dyn_cast<GetElementPtrInst>(*I); if (!Op2 || Op1->getNumOperands() != Op2->getNumOperands()) return nullptr; // As for Op1 above, don't try to fold a GEP into itself. if (Op2 == &GEP) return nullptr; // Keep track of the type as we walk the GEP. Type *CurTy = nullptr; for (unsigned J = 0, F = Op1->getNumOperands(); J != F; ++J) { if (Op1->getOperand(J)->getType() != Op2->getOperand(J)->getType()) return nullptr; if (Op1->getOperand(J) != Op2->getOperand(J)) { if (DI == -1) { // We have not seen any differences yet in the GEPs feeding the // PHI yet, so we record this one if it is allowed to be a // variable. // The first two arguments can vary for any GEP, the rest have to be // static for struct slots if (J > 1 && CurTy->isStructTy()) return nullptr; DI = J; } else { // The GEP is different by more than one input. While this could be // extended to support GEPs that vary by more than one variable it // doesn't make sense since it greatly increases the complexity and // would result in an R+R+R addressing mode which no backend // directly supports and would need to be broken into several // simpler instructions anyway. return nullptr; } } // Sink down a layer of the type for the next iteration. if (J > 0) { if (J == 1) { CurTy = Op1->getSourceElementType(); } else if (CompositeType *CT = dyn_cast<CompositeType>(CurTy)) { CurTy = CT->getTypeAtIndex(Op1->getOperand(J)); } else { CurTy = nullptr; } } } } // If not all GEPs are identical we'll have to create a new PHI node. // Check that the old PHI node has only one use so that it will get // removed. if (DI != -1 && !PN->hasOneUse()) return nullptr; GetElementPtrInst *NewGEP = cast<GetElementPtrInst>(Op1->clone()); if (DI == -1) { // All the GEPs feeding the PHI are identical. Clone one down into our // BB so that it can be merged with the current GEP. GEP.getParent()->getInstList().insert( GEP.getParent()->getFirstInsertionPt(), NewGEP); } else { // All the GEPs feeding the PHI differ at a single offset. Clone a GEP // into the current block so it can be merged, and create a new PHI to // set that index. PHINode *NewPN; { IRBuilderBase::InsertPointGuard Guard(*Builder); Builder->SetInsertPoint(PN); NewPN = Builder->CreatePHI(Op1->getOperand(DI)->getType(), PN->getNumOperands()); } for (auto &I : PN->operands()) NewPN->addIncoming(cast<GEPOperator>(I)->getOperand(DI), PN->getIncomingBlock(I)); NewGEP->setOperand(DI, NewPN); GEP.getParent()->getInstList().insert( GEP.getParent()->getFirstInsertionPt(), NewGEP); NewGEP->setOperand(DI, NewPN); } GEP.setOperand(0, NewGEP); PtrOp = NewGEP; } // Combine Indices - If the source pointer to this getelementptr instruction // is a getelementptr instruction, combine the indices of the two // getelementptr instructions into a single instruction. // if (GEPOperator *Src = dyn_cast<GEPOperator>(PtrOp)) { if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src)) return nullptr; // Note that if our source is a gep chain itself then we wait for that // chain to be resolved before we perform this transformation. This // avoids us creating a TON of code in some cases. if (GEPOperator *SrcGEP = dyn_cast<GEPOperator>(Src->getOperand(0))) if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP)) return nullptr; // Wait until our source is folded to completion. SmallVector<Value*, 8> Indices; // Find out whether the last index in the source GEP is a sequential idx. bool EndsWithSequential = false; for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src); I != E; ++I) EndsWithSequential = !(*I)->isStructTy(); // Can we combine the two pointer arithmetics offsets? if (EndsWithSequential) { // Replace: gep (gep %P, long B), long A, ... // With: T = long A+B; gep %P, T, ... // Value *Sum; Value *SO1 = Src->getOperand(Src->getNumOperands()-1); Value *GO1 = GEP.getOperand(1); if (SO1 == Constant::getNullValue(SO1->getType())) { Sum = GO1; } else if (GO1 == Constant::getNullValue(GO1->getType())) { Sum = SO1; } else { // If they aren't the same type, then the input hasn't been processed // by the loop above yet (which canonicalizes sequential index types to // intptr_t). Just avoid transforming this until the input has been // normalized. if (SO1->getType() != GO1->getType()) return nullptr; // Only do the combine when GO1 and SO1 are both constants. Only in // this case, we are sure the cost after the merge is never more than // that before the merge. if (!isa<Constant>(GO1) || !isa<Constant>(SO1)) return nullptr; Sum = Builder->CreateAdd(SO1, GO1, PtrOp->getName()+".sum"); } // Update the GEP in place if possible. if (Src->getNumOperands() == 2) { GEP.setOperand(0, Src->getOperand(0)); GEP.setOperand(1, Sum); return &GEP; } Indices.append(Src->op_begin()+1, Src->op_end()-1); Indices.push_back(Sum); Indices.append(GEP.op_begin()+2, GEP.op_end()); } else if (isa<Constant>(*GEP.idx_begin()) && cast<Constant>(*GEP.idx_begin())->isNullValue() && Src->getNumOperands() != 1) { // Otherwise we can do the fold if the first index of the GEP is a zero Indices.append(Src->op_begin()+1, Src->op_end()); Indices.append(GEP.idx_begin()+1, GEP.idx_end()); } if (!Indices.empty()) return GEP.isInBounds() && Src->isInBounds() ? GetElementPtrInst::CreateInBounds( Src->getSourceElementType(), Src->getOperand(0), Indices, GEP.getName()) : GetElementPtrInst::Create(Src->getSourceElementType(), Src->getOperand(0), Indices, GEP.getName()); } if (GEP.getNumIndices() == 1) { unsigned AS = GEP.getPointerAddressSpace(); if (GEP.getOperand(1)->getType()->getScalarSizeInBits() == DL.getPointerSizeInBits(AS)) { Type *Ty = GEP.getSourceElementType(); uint64_t TyAllocSize = DL.getTypeAllocSize(Ty); bool Matched = false; uint64_t C; Value *V = nullptr; if (TyAllocSize == 1) { V = GEP.getOperand(1); Matched = true; } else if (match(GEP.getOperand(1), m_AShr(m_Value(V), m_ConstantInt(C)))) { if (TyAllocSize == 1ULL << C) Matched = true; } else if (match(GEP.getOperand(1), m_SDiv(m_Value(V), m_ConstantInt(C)))) { if (TyAllocSize == C) Matched = true; } if (Matched) { // Canonicalize (gep i8* X, -(ptrtoint Y)) // to (inttoptr (sub (ptrtoint X), (ptrtoint Y))) // The GEP pattern is emitted by the SCEV expander for certain kinds of // pointer arithmetic. if (match(V, m_Neg(m_PtrToInt(m_Value())))) { Operator *Index = cast<Operator>(V); Value *PtrToInt = Builder->CreatePtrToInt(PtrOp, Index->getType()); Value *NewSub = Builder->CreateSub(PtrToInt, Index->getOperand(1)); return CastInst::Create(Instruction::IntToPtr, NewSub, GEP.getType()); } // Canonicalize (gep i8* X, (ptrtoint Y)-(ptrtoint X)) // to (bitcast Y) Value *Y; if (match(V, m_Sub(m_PtrToInt(m_Value(Y)), m_PtrToInt(m_Specific(GEP.getOperand(0)))))) { return CastInst::CreatePointerBitCastOrAddrSpaceCast(Y, GEP.getType()); } } } } // Handle gep(bitcast x) and gep(gep x, 0, 0, 0). Value *StrippedPtr = PtrOp->stripPointerCasts(); PointerType *StrippedPtrTy = dyn_cast<PointerType>(StrippedPtr->getType()); // We do not handle pointer-vector geps here. if (!StrippedPtrTy) return nullptr; if (StrippedPtr != PtrOp) { bool HasZeroPointerIndex = false; if (ConstantInt *C = dyn_cast<ConstantInt>(GEP.getOperand(1))) HasZeroPointerIndex = C->isZero(); // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... // into : GEP [10 x i8]* X, i32 0, ... // // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ... // into : GEP i8* X, ... // // This occurs when the program declares an array extern like "int X[];" if (HasZeroPointerIndex) { if (ArrayType *CATy = dyn_cast<ArrayType>(GEP.getSourceElementType())) { // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ? if (CATy->getElementType() == StrippedPtrTy->getElementType()) { // -> GEP i8* X, ... SmallVector<Value*, 8> Idx(GEP.idx_begin()+1, GEP.idx_end()); GetElementPtrInst *Res = GetElementPtrInst::Create( StrippedPtrTy->getElementType(), StrippedPtr, Idx, GEP.getName()); Res->setIsInBounds(GEP.isInBounds()); if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) return Res; // Insert Res, and create an addrspacecast. // e.g., // GEP (addrspacecast i8 addrspace(1)* X to [0 x i8]*), i32 0, ... // -> // %0 = GEP i8 addrspace(1)* X, ... // addrspacecast i8 addrspace(1)* %0 to i8* return new AddrSpaceCastInst(Builder->Insert(Res), GEP.getType()); } if (ArrayType *XATy = dyn_cast<ArrayType>(StrippedPtrTy->getElementType())){ // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ? if (CATy->getElementType() == XATy->getElementType()) { // -> GEP [10 x i8]* X, i32 0, ... // At this point, we know that the cast source type is a pointer // to an array of the same type as the destination pointer // array. Because the array type is never stepped over (there // is a leading zero) we can fold the cast into this GEP. if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) { GEP.setOperand(0, StrippedPtr); GEP.setSourceElementType(XATy); return &GEP; } // Cannot replace the base pointer directly because StrippedPtr's // address space is different. Instead, create a new GEP followed by // an addrspacecast. // e.g., // GEP (addrspacecast [10 x i8] addrspace(1)* X to [0 x i8]*), // i32 0, ... // -> // %0 = GEP [10 x i8] addrspace(1)* X, ... // addrspacecast i8 addrspace(1)* %0 to i8* SmallVector<Value*, 8> Idx(GEP.idx_begin(), GEP.idx_end()); Value *NewGEP = GEP.isInBounds() ? Builder->CreateInBoundsGEP( nullptr, StrippedPtr, Idx, GEP.getName()) : Builder->CreateGEP(nullptr, StrippedPtr, Idx, GEP.getName()); return new AddrSpaceCastInst(NewGEP, GEP.getType()); } } } } else if (GEP.getNumOperands() == 2) { // Transform things like: // %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V // into: %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast Type *SrcElTy = StrippedPtrTy->getElementType(); Type *ResElTy = GEP.getSourceElementType(); if (SrcElTy->isArrayTy() && DL.getTypeAllocSize(SrcElTy->getArrayElementType()) == DL.getTypeAllocSize(ResElTy)) { Type *IdxType = DL.getIntPtrType(GEP.getType()); Value *Idx[2] = { Constant::getNullValue(IdxType), GEP.getOperand(1) }; Value *NewGEP = GEP.isInBounds() ? Builder->CreateInBoundsGEP(nullptr, StrippedPtr, Idx, GEP.getName()) : Builder->CreateGEP(nullptr, StrippedPtr, Idx, GEP.getName()); // V and GEP are both pointer types --> BitCast return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, GEP.getType()); } // Transform things like: // %V = mul i64 %N, 4 // %t = getelementptr i8* bitcast (i32* %arr to i8*), i32 %V // into: %t1 = getelementptr i32* %arr, i32 %N; bitcast if (ResElTy->isSized() && SrcElTy->isSized()) { // Check that changing the type amounts to dividing the index by a scale // factor. uint64_t ResSize = DL.getTypeAllocSize(ResElTy); uint64_t SrcSize = DL.getTypeAllocSize(SrcElTy); if (ResSize && SrcSize % ResSize == 0) { Value *Idx = GEP.getOperand(1); unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits(); uint64_t Scale = SrcSize / ResSize; // Earlier transforms ensure that the index has type IntPtrType, which // considerably simplifies the logic by eliminating implicit casts. assert(Idx->getType() == DL.getIntPtrType(GEP.getType()) && "Index not cast to pointer width?"); bool NSW; if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) { // Successfully decomposed Idx as NewIdx * Scale, form a new GEP. // If the multiplication NewIdx * Scale may overflow then the new // GEP may not be "inbounds". Value *NewGEP = GEP.isInBounds() && NSW ? Builder->CreateInBoundsGEP(nullptr, StrippedPtr, NewIdx, GEP.getName()) : Builder->CreateGEP(nullptr, StrippedPtr, NewIdx, GEP.getName()); // The NewGEP must be pointer typed, so must the old one -> BitCast return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, GEP.getType()); } } } // Similarly, transform things like: // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp // (where tmp = 8*tmp2) into: // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast if (ResElTy->isSized() && SrcElTy->isSized() && SrcElTy->isArrayTy()) { // Check that changing to the array element type amounts to dividing the // index by a scale factor. uint64_t ResSize = DL.getTypeAllocSize(ResElTy); uint64_t ArrayEltSize = DL.getTypeAllocSize(SrcElTy->getArrayElementType()); if (ResSize && ArrayEltSize % ResSize == 0) { Value *Idx = GEP.getOperand(1); unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits(); uint64_t Scale = ArrayEltSize / ResSize; // Earlier transforms ensure that the index has type IntPtrType, which // considerably simplifies the logic by eliminating implicit casts. assert(Idx->getType() == DL.getIntPtrType(GEP.getType()) && "Index not cast to pointer width?"); bool NSW; if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) { // Successfully decomposed Idx as NewIdx * Scale, form a new GEP. // If the multiplication NewIdx * Scale may overflow then the new // GEP may not be "inbounds". Value *Off[2] = { Constant::getNullValue(DL.getIntPtrType(GEP.getType())), NewIdx}; Value *NewGEP = GEP.isInBounds() && NSW ? Builder->CreateInBoundsGEP( SrcElTy, StrippedPtr, Off, GEP.getName()) : Builder->CreateGEP(SrcElTy, StrippedPtr, Off, GEP.getName()); // The NewGEP must be pointer typed, so must the old one -> BitCast return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP, GEP.getType()); } } } } } // addrspacecast between types is canonicalized as a bitcast, then an // addrspacecast. To take advantage of the below bitcast + struct GEP, look // through the addrspacecast. if (AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(PtrOp)) { // X = bitcast A addrspace(1)* to B addrspace(1)* // Y = addrspacecast A addrspace(1)* to B addrspace(2)* // Z = gep Y, <...constant indices...> // Into an addrspacecasted GEP of the struct. if (BitCastInst *BC = dyn_cast<BitCastInst>(ASC->getOperand(0))) PtrOp = BC; } /// See if we can simplify: /// X = bitcast A* to B* /// Y = gep X, <...constant indices...> /// into a gep of the original struct. This is important for SROA and alias /// analysis of unions. If "A" is also a bitcast, wait for A/X to be merged. if (BitCastInst *BCI = dyn_cast<BitCastInst>(PtrOp)) { Value *Operand = BCI->getOperand(0); PointerType *OpType = cast<PointerType>(Operand->getType()); unsigned OffsetBits = DL.getPointerTypeSizeInBits(GEP.getType()); APInt Offset(OffsetBits, 0); if (!isa<BitCastInst>(Operand) && GEP.accumulateConstantOffset(DL, Offset)) { // If this GEP instruction doesn't move the pointer, just replace the GEP // with a bitcast of the real input to the dest type. if (!Offset) { // If the bitcast is of an allocation, and the allocation will be // converted to match the type of the cast, don't touch this. if (isa<AllocaInst>(Operand) || isAllocationFn(Operand, TLI)) { // See if the bitcast simplifies, if so, don't nuke this GEP yet. if (Instruction *I = visitBitCast(*BCI)) { if (I != BCI) { I->takeName(BCI); BCI->getParent()->getInstList().insert(BCI->getIterator(), I); replaceInstUsesWith(*BCI, I); } return &GEP; } } if (Operand->getType()->getPointerAddressSpace() != GEP.getAddressSpace()) return new AddrSpaceCastInst(Operand, GEP.getType()); return new BitCastInst(Operand, GEP.getType()); } // Otherwise, if the offset is non-zero, we need to find out if there is a // field at Offset in 'A's type. If so, we can pull the cast through the // GEP. SmallVector<Value*, 8> NewIndices; if (FindElementAtOffset(OpType, Offset.getSExtValue(), NewIndices)) { Value *NGEP = GEP.isInBounds() ? Builder->CreateInBoundsGEP(nullptr, Operand, NewIndices) : Builder->CreateGEP(nullptr, Operand, NewIndices); if (NGEP->getType() == GEP.getType()) return replaceInstUsesWith(GEP, NGEP); NGEP->takeName(&GEP); if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace()) return new AddrSpaceCastInst(NGEP, GEP.getType()); return new BitCastInst(NGEP, GEP.getType()); } } } return nullptr; } static bool isNeverEqualToUnescapedAlloc(Value *V, const TargetLibraryInfo *TLI, Instruction *AI) { if (isa<ConstantPointerNull>(V)) return true; if (auto *LI = dyn_cast<LoadInst>(V)) return isa<GlobalVariable>(LI->getPointerOperand()); // Two distinct allocations will never be equal. // We rely on LookThroughBitCast in isAllocLikeFn being false, since looking // through bitcasts of V can cause // the result statement below to be true, even when AI and V (ex: // i8* ->i32* ->i8* of AI) are the same allocations. return isAllocLikeFn(V, TLI) && V != AI; } static bool isAllocSiteRemovable(Instruction *AI, SmallVectorImpl<WeakVH> &Users, const TargetLibraryInfo *TLI) { SmallVector<Instruction*, 4> Worklist; Worklist.push_back(AI); do { Instruction *PI = Worklist.pop_back_val(); for (User *U : PI->users()) { Instruction *I = cast<Instruction>(U); switch (I->getOpcode()) { default: // Give up the moment we see something we can't handle. return false; case Instruction::BitCast: case Instruction::GetElementPtr: Users.emplace_back(I); Worklist.push_back(I); continue; case Instruction::ICmp: { ICmpInst *ICI = cast<ICmpInst>(I); // We can fold eq/ne comparisons with null to false/true, respectively. // We also fold comparisons in some conditions provided the alloc has // not escaped (see isNeverEqualToUnescapedAlloc). if (!ICI->isEquality()) return false; unsigned OtherIndex = (ICI->getOperand(0) == PI) ? 1 : 0; if (!isNeverEqualToUnescapedAlloc(ICI->getOperand(OtherIndex), TLI, AI)) return false; Users.emplace_back(I); continue; } case Instruction::Call: // Ignore no-op and store intrinsics. if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { switch (II->getIntrinsicID()) { default: return false; case Intrinsic::memmove: case Intrinsic::memcpy: case Intrinsic::memset: { MemIntrinsic *MI = cast<MemIntrinsic>(II); if (MI->isVolatile() || MI->getRawDest() != PI) return false; } // fall through case Intrinsic::dbg_declare: case Intrinsic::dbg_value: case Intrinsic::invariant_start: case Intrinsic::invariant_end: case Intrinsic::lifetime_start: case Intrinsic::lifetime_end: case Intrinsic::objectsize: Users.emplace_back(I); continue; } } if (isFreeCall(I, TLI)) { Users.emplace_back(I); continue; } return false; case Instruction::Store: { StoreInst *SI = cast<StoreInst>(I); if (SI->isVolatile() || SI->getPointerOperand() != PI) return false; Users.emplace_back(I); continue; } } llvm_unreachable("missing a return?"); } } while (!Worklist.empty()); return true; } Instruction *InstCombiner::visitAllocSite(Instruction &MI) { // If we have a malloc call which is only used in any amount of comparisons // to null and free calls, delete the calls and replace the comparisons with // true or false as appropriate. SmallVector<WeakVH, 64> Users; if (isAllocSiteRemovable(&MI, Users, TLI)) { for (unsigned i = 0, e = Users.size(); i != e; ++i) { // Lowering all @llvm.objectsize calls first because they may // use a bitcast/GEP of the alloca we are removing. if (!Users[i]) continue; Instruction *I = cast<Instruction>(&*Users[i]); if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { if (II->getIntrinsicID() == Intrinsic::objectsize) { uint64_t Size; if (!getObjectSize(II->getArgOperand(0), Size, DL, TLI)) { ConstantInt *CI = cast<ConstantInt>(II->getArgOperand(1)); Size = CI->isZero() ? -1ULL : 0; } replaceInstUsesWith(*I, ConstantInt::get(I->getType(), Size)); eraseInstFromFunction(*I); Users[i] = nullptr; // Skip examining in the next loop. } } } for (unsigned i = 0, e = Users.size(); i != e; ++i) { if (!Users[i]) continue; Instruction *I = cast<Instruction>(&*Users[i]); if (ICmpInst *C = dyn_cast<ICmpInst>(I)) { replaceInstUsesWith(*C, ConstantInt::get(Type::getInt1Ty(C->getContext()), C->isFalseWhenEqual())); } else if (isa<BitCastInst>(I) || isa<GetElementPtrInst>(I)) { replaceInstUsesWith(*I, UndefValue::get(I->getType())); } eraseInstFromFunction(*I); } if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) { // Replace invoke with a NOP intrinsic to maintain the original CFG Module *M = II->getModule(); Function *F = Intrinsic::getDeclaration(M, Intrinsic::donothing); InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(), None, "", II->getParent()); } return eraseInstFromFunction(MI); } return nullptr; } /// \brief Move the call to free before a NULL test. /// /// Check if this free is accessed after its argument has been test /// against NULL (property 0). /// If yes, it is legal to move this call in its predecessor block. /// /// The move is performed only if the block containing the call to free /// will be removed, i.e.: /// 1. it has only one predecessor P, and P has two successors /// 2. it contains the call and an unconditional branch /// 3. its successor is the same as its predecessor's successor /// /// The profitability is out-of concern here and this function should /// be called only if the caller knows this transformation would be /// profitable (e.g., for code size). static Instruction * tryToMoveFreeBeforeNullTest(CallInst &FI) { Value *Op = FI.getArgOperand(0); BasicBlock *FreeInstrBB = FI.getParent(); BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor(); // Validate part of constraint #1: Only one predecessor // FIXME: We can extend the number of predecessor, but in that case, we // would duplicate the call to free in each predecessor and it may // not be profitable even for code size. if (!PredBB) return nullptr; // Validate constraint #2: Does this block contains only the call to // free and an unconditional branch? // FIXME: We could check if we can speculate everything in the // predecessor block if (FreeInstrBB->size() != 2) return nullptr; BasicBlock *SuccBB; if (!match(FreeInstrBB->getTerminator(), m_UnconditionalBr(SuccBB))) return nullptr; // Validate the rest of constraint #1 by matching on the pred branch. TerminatorInst *TI = PredBB->getTerminator(); BasicBlock *TrueBB, *FalseBB; ICmpInst::Predicate Pred; if (!match(TI, m_Br(m_ICmp(Pred, m_Specific(Op), m_Zero()), TrueBB, FalseBB))) return nullptr; if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE) return nullptr; // Validate constraint #3: Ensure the null case just falls through. if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB)) return nullptr; assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) && "Broken CFG: missing edge from predecessor to successor"); FI.moveBefore(TI); return &FI; } Instruction *InstCombiner::visitFree(CallInst &FI) { Value *Op = FI.getArgOperand(0); // free undef -> unreachable. if (isa<UndefValue>(Op)) { // Insert a new store to null because we cannot modify the CFG here. Builder->CreateStore(ConstantInt::getTrue(FI.getContext()), UndefValue::get(Type::getInt1PtrTy(FI.getContext()))); return eraseInstFromFunction(FI); } // If we have 'free null' delete the instruction. This can happen in stl code // when lots of inlining happens. if (isa<ConstantPointerNull>(Op)) return eraseInstFromFunction(FI); // If we optimize for code size, try to move the call to free before the null // test so that simplify cfg can remove the empty block and dead code // elimination the branch. I.e., helps to turn something like: // if (foo) free(foo); // into // free(foo); if (MinimizeSize) if (Instruction *I = tryToMoveFreeBeforeNullTest(FI)) return I; return nullptr; } Instruction *InstCombiner::visitReturnInst(ReturnInst &RI) { if (RI.getNumOperands() == 0) // ret void return nullptr; Value *ResultOp = RI.getOperand(0); Type *VTy = ResultOp->getType(); if (!VTy->isIntegerTy()) return nullptr; // There might be assume intrinsics dominating this return that completely // determine the value. If so, constant fold it. unsigned BitWidth = VTy->getPrimitiveSizeInBits(); APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); computeKnownBits(ResultOp, KnownZero, KnownOne, 0, &RI); if ((KnownZero|KnownOne).isAllOnesValue()) RI.setOperand(0, Constant::getIntegerValue(VTy, KnownOne)); return nullptr; } Instruction *InstCombiner::visitBranchInst(BranchInst &BI) { // Change br (not X), label True, label False to: br X, label False, True Value *X = nullptr; BasicBlock *TrueDest; BasicBlock *FalseDest; if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) && !isa<Constant>(X)) { // Swap Destinations and condition... BI.setCondition(X); BI.swapSuccessors(); return &BI; } // If the condition is irrelevant, remove the use so that other // transforms on the condition become more effective. if (BI.isConditional() && BI.getSuccessor(0) == BI.getSuccessor(1) && !isa<UndefValue>(BI.getCondition())) { BI.setCondition(UndefValue::get(BI.getCondition()->getType())); return &BI; } // Canonicalize fcmp_one -> fcmp_oeq FCmpInst::Predicate FPred; Value *Y; if (match(&BI, m_Br(m_FCmp(FPred, m_Value(X), m_Value(Y)), TrueDest, FalseDest)) && BI.getCondition()->hasOneUse()) if (FPred == FCmpInst::FCMP_ONE || FPred == FCmpInst::FCMP_OLE || FPred == FCmpInst::FCMP_OGE) { FCmpInst *Cond = cast<FCmpInst>(BI.getCondition()); Cond->setPredicate(FCmpInst::getInversePredicate(FPred)); // Swap Destinations and condition. BI.swapSuccessors(); Worklist.Add(Cond); return &BI; } // Canonicalize icmp_ne -> icmp_eq ICmpInst::Predicate IPred; if (match(&BI, m_Br(m_ICmp(IPred, m_Value(X), m_Value(Y)), TrueDest, FalseDest)) && BI.getCondition()->hasOneUse()) if (IPred == ICmpInst::ICMP_NE || IPred == ICmpInst::ICMP_ULE || IPred == ICmpInst::ICMP_SLE || IPred == ICmpInst::ICMP_UGE || IPred == ICmpInst::ICMP_SGE) { ICmpInst *Cond = cast<ICmpInst>(BI.getCondition()); Cond->setPredicate(ICmpInst::getInversePredicate(IPred)); // Swap Destinations and condition. BI.swapSuccessors(); Worklist.Add(Cond); return &BI; } return nullptr; } Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) { Value *Cond = SI.getCondition(); unsigned BitWidth = cast<IntegerType>(Cond->getType())->getBitWidth(); APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); computeKnownBits(Cond, KnownZero, KnownOne, 0, &SI); unsigned LeadingKnownZeros = KnownZero.countLeadingOnes(); unsigned LeadingKnownOnes = KnownOne.countLeadingOnes(); // Compute the number of leading bits we can ignore. // TODO: A better way to determine this would use ComputeNumSignBits(). for (auto &C : SI.cases()) { LeadingKnownZeros = std::min( LeadingKnownZeros, C.getCaseValue()->getValue().countLeadingZeros()); LeadingKnownOnes = std::min( LeadingKnownOnes, C.getCaseValue()->getValue().countLeadingOnes()); } unsigned NewWidth = BitWidth - std::max(LeadingKnownZeros, LeadingKnownOnes); // Shrink the condition operand if the new type is smaller than the old type. // This may produce a non-standard type for the switch, but that's ok because // the backend should extend back to a legal type for the target. bool TruncCond = false; if (NewWidth > 0 && NewWidth < BitWidth) { TruncCond = true; IntegerType *Ty = IntegerType::get(SI.getContext(), NewWidth); Builder->SetInsertPoint(&SI); Value *NewCond = Builder->CreateTrunc(Cond, Ty, "trunc"); SI.setCondition(NewCond); for (auto &C : SI.cases()) static_cast<SwitchInst::CaseIt *>(&C)->setValue(ConstantInt::get( SI.getContext(), C.getCaseValue()->getValue().trunc(NewWidth))); } ConstantInt *AddRHS = nullptr; if (match(Cond, m_Add(m_Value(), m_ConstantInt(AddRHS)))) { Instruction *I = cast<Instruction>(Cond); // Change 'switch (X+4) case 1:' into 'switch (X) case -3'. for (SwitchInst::CaseIt i = SI.case_begin(), e = SI.case_end(); i != e; ++i) { ConstantInt *CaseVal = i.getCaseValue(); Constant *LHS = CaseVal; if (TruncCond) { LHS = LeadingKnownZeros ? ConstantExpr::getZExt(CaseVal, Cond->getType()) : ConstantExpr::getSExt(CaseVal, Cond->getType()); } Constant *NewCaseVal = ConstantExpr::getSub(LHS, AddRHS); assert(isa<ConstantInt>(NewCaseVal) && "Result of expression should be constant"); i.setValue(cast<ConstantInt>(NewCaseVal)); } SI.setCondition(I->getOperand(0)); Worklist.Add(I); return &SI; } return TruncCond ? &SI : nullptr; } Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) { Value *Agg = EV.getAggregateOperand(); if (!EV.hasIndices()) return replaceInstUsesWith(EV, Agg); if (Value *V = SimplifyExtractValueInst(Agg, EV.getIndices(), DL, TLI, DT, AC)) return replaceInstUsesWith(EV, V); if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) { // We're extracting from an insertvalue instruction, compare the indices const unsigned *exti, *exte, *insi, *inse; for (exti = EV.idx_begin(), insi = IV->idx_begin(), exte = EV.idx_end(), inse = IV->idx_end(); exti != exte && insi != inse; ++exti, ++insi) { if (*insi != *exti) // The insert and extract both reference distinctly different elements. // This means the extract is not influenced by the insert, and we can // replace the aggregate operand of the extract with the aggregate // operand of the insert. i.e., replace // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1 // %E = extractvalue { i32, { i32 } } %I, 0 // with // %E = extractvalue { i32, { i32 } } %A, 0 return ExtractValueInst::Create(IV->getAggregateOperand(), EV.getIndices()); } if (exti == exte && insi == inse) // Both iterators are at the end: Index lists are identical. Replace // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0 // %C = extractvalue { i32, { i32 } } %B, 1, 0 // with "i32 42" return replaceInstUsesWith(EV, IV->getInsertedValueOperand()); if (exti == exte) { // The extract list is a prefix of the insert list. i.e. replace // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0 // %E = extractvalue { i32, { i32 } } %I, 1 // with // %X = extractvalue { i32, { i32 } } %A, 1 // %E = insertvalue { i32 } %X, i32 42, 0 // by switching the order of the insert and extract (though the // insertvalue should be left in, since it may have other uses). Value *NewEV = Builder->CreateExtractValue(IV->getAggregateOperand(), EV.getIndices()); return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(), makeArrayRef(insi, inse)); } if (insi == inse) // The insert list is a prefix of the extract list // We can simply remove the common indices from the extract and make it // operate on the inserted value instead of the insertvalue result. // i.e., replace // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1 // %E = extractvalue { i32, { i32 } } %I, 1, 0 // with // %E extractvalue { i32 } { i32 42 }, 0 return ExtractValueInst::Create(IV->getInsertedValueOperand(), makeArrayRef(exti, exte)); } if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Agg)) { // We're extracting from an intrinsic, see if we're the only user, which // allows us to simplify multiple result intrinsics to simpler things that // just get one value. if (II->hasOneUse()) { // Check if we're grabbing the overflow bit or the result of a 'with // overflow' intrinsic. If it's the latter we can remove the intrinsic // and replace it with a traditional binary instruction. switch (II->getIntrinsicID()) { case Intrinsic::uadd_with_overflow: case Intrinsic::sadd_with_overflow: if (*EV.idx_begin() == 0) { // Normal result. Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1); replaceInstUsesWith(*II, UndefValue::get(II->getType())); eraseInstFromFunction(*II); return BinaryOperator::CreateAdd(LHS, RHS); } // If the normal result of the add is dead, and the RHS is a constant, // we can transform this into a range comparison. // overflow = uadd a, -4 --> overflow = icmp ugt a, 3 if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow) if (ConstantInt *CI = dyn_cast<ConstantInt>(II->getArgOperand(1))) return new ICmpInst(ICmpInst::ICMP_UGT, II->getArgOperand(0), ConstantExpr::getNot(CI)); break; case Intrinsic::usub_with_overflow: case Intrinsic::ssub_with_overflow: if (*EV.idx_begin() == 0) { // Normal result. Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1); replaceInstUsesWith(*II, UndefValue::get(II->getType())); eraseInstFromFunction(*II); return BinaryOperator::CreateSub(LHS, RHS); } break; case Intrinsic::umul_with_overflow: case Intrinsic::smul_with_overflow: if (*EV.idx_begin() == 0) { // Normal result. Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1); replaceInstUsesWith(*II, UndefValue::get(II->getType())); eraseInstFromFunction(*II); return BinaryOperator::CreateMul(LHS, RHS); } break; default: break; } } } if (LoadInst *L = dyn_cast<LoadInst>(Agg)) // If the (non-volatile) load only has one use, we can rewrite this to a // load from a GEP. This reduces the size of the load. If a load is used // only by extractvalue instructions then this either must have been // optimized before, or it is a struct with padding, in which case we // don't want to do the transformation as it loses padding knowledge. if (L->isSimple() && L->hasOneUse()) { // extractvalue has integer indices, getelementptr has Value*s. Convert. SmallVector<Value*, 4> Indices; // Prefix an i32 0 since we need the first element. Indices.push_back(Builder->getInt32(0)); for (ExtractValueInst::idx_iterator I = EV.idx_begin(), E = EV.idx_end(); I != E; ++I) Indices.push_back(Builder->getInt32(*I)); // We need to insert these at the location of the old load, not at that of // the extractvalue. Builder->SetInsertPoint(L); Value *GEP = Builder->CreateInBoundsGEP(L->getType(), L->getPointerOperand(), Indices); // Returning the load directly will cause the main loop to insert it in // the wrong spot, so use replaceInstUsesWith(). return replaceInstUsesWith(EV, Builder->CreateLoad(GEP)); } // We could simplify extracts from other values. Note that nested extracts may // already be simplified implicitly by the above: extract (extract (insert) ) // will be translated into extract ( insert ( extract ) ) first and then just // the value inserted, if appropriate. Similarly for extracts from single-use // loads: extract (extract (load)) will be translated to extract (load (gep)) // and if again single-use then via load (gep (gep)) to load (gep). // However, double extracts from e.g. function arguments or return values // aren't handled yet. return nullptr; } /// Return 'true' if the given typeinfo will match anything. static bool isCatchAll(EHPersonality Personality, Constant *TypeInfo) { switch (Personality) { case EHPersonality::GNU_C: case EHPersonality::GNU_C_SjLj: case EHPersonality::Rust: // The GCC C EH and Rust personality only exists to support cleanups, so // it's not clear what the semantics of catch clauses are. return false; case EHPersonality::Unknown: return false; case EHPersonality::GNU_Ada: // While __gnat_all_others_value will match any Ada exception, it doesn't // match foreign exceptions (or didn't, before gcc-4.7). return false; case EHPersonality::GNU_CXX: case EHPersonality::GNU_CXX_SjLj: case EHPersonality::GNU_ObjC: case EHPersonality::MSVC_X86SEH: case EHPersonality::MSVC_Win64SEH: case EHPersonality::MSVC_CXX: case EHPersonality::CoreCLR: return TypeInfo->isNullValue(); } llvm_unreachable("invalid enum"); } static bool shorter_filter(const Value *LHS, const Value *RHS) { return cast<ArrayType>(LHS->getType())->getNumElements() < cast<ArrayType>(RHS->getType())->getNumElements(); } Instruction *InstCombiner::visitLandingPadInst(LandingPadInst &LI) { // The logic here should be correct for any real-world personality function. // However if that turns out not to be true, the offending logic can always // be conditioned on the personality function, like the catch-all logic is. EHPersonality Personality = classifyEHPersonality(LI.getParent()->getParent()->getPersonalityFn()); // Simplify the list of clauses, eg by removing repeated catch clauses // (these are often created by inlining). bool MakeNewInstruction = false; // If true, recreate using the following: SmallVector<Constant *, 16> NewClauses; // - Clauses for the new instruction; bool CleanupFlag = LI.isCleanup(); // - The new instruction is a cleanup. SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already. for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) { bool isLastClause = i + 1 == e; if (LI.isCatch(i)) { // A catch clause. Constant *CatchClause = LI.getClause(i); Constant *TypeInfo = CatchClause->stripPointerCasts(); // If we already saw this clause, there is no point in having a second // copy of it. if (AlreadyCaught.insert(TypeInfo).second) { // This catch clause was not already seen. NewClauses.push_back(CatchClause); } else { // Repeated catch clause - drop the redundant copy. MakeNewInstruction = true; } // If this is a catch-all then there is no point in keeping any following // clauses or marking the landingpad as having a cleanup. if (isCatchAll(Personality, TypeInfo)) { if (!isLastClause) MakeNewInstruction = true; CleanupFlag = false; break; } } else { // A filter clause. If any of the filter elements were already caught // then they can be dropped from the filter. It is tempting to try to // exploit the filter further by saying that any typeinfo that does not // occur in the filter can't be caught later (and thus can be dropped). // However this would be wrong, since typeinfos can match without being // equal (for example if one represents a C++ class, and the other some // class derived from it). assert(LI.isFilter(i) && "Unsupported landingpad clause!"); Constant *FilterClause = LI.getClause(i); ArrayType *FilterType = cast<ArrayType>(FilterClause->getType()); unsigned NumTypeInfos = FilterType->getNumElements(); // An empty filter catches everything, so there is no point in keeping any // following clauses or marking the landingpad as having a cleanup. By // dealing with this case here the following code is made a bit simpler. if (!NumTypeInfos) { NewClauses.push_back(FilterClause); if (!isLastClause) MakeNewInstruction = true; CleanupFlag = false; break; } bool MakeNewFilter = false; // If true, make a new filter. SmallVector<Constant *, 16> NewFilterElts; // New elements. if (isa<ConstantAggregateZero>(FilterClause)) { // Not an empty filter - it contains at least one null typeinfo. assert(NumTypeInfos > 0 && "Should have handled empty filter already!"); Constant *TypeInfo = Constant::getNullValue(FilterType->getElementType()); // If this typeinfo is a catch-all then the filter can never match. if (isCatchAll(Personality, TypeInfo)) { // Throw the filter away. MakeNewInstruction = true; continue; } // There is no point in having multiple copies of this typeinfo, so // discard all but the first copy if there is more than one. NewFilterElts.push_back(TypeInfo); if (NumTypeInfos > 1) MakeNewFilter = true; } else { ConstantArray *Filter = cast<ConstantArray>(FilterClause); SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements. NewFilterElts.reserve(NumTypeInfos); // Remove any filter elements that were already caught or that already // occurred in the filter. While there, see if any of the elements are // catch-alls. If so, the filter can be discarded. bool SawCatchAll = false; for (unsigned j = 0; j != NumTypeInfos; ++j) { Constant *Elt = Filter->getOperand(j); Constant *TypeInfo = Elt->stripPointerCasts(); if (isCatchAll(Personality, TypeInfo)) { // This element is a catch-all. Bail out, noting this fact. SawCatchAll = true; break; } // Even if we've seen a type in a catch clause, we don't want to // remove it from the filter. An unexpected type handler may be // set up for a call site which throws an exception of the same // type caught. In order for the exception thrown by the unexpected // handler to propogate correctly, the filter must be correctly // described for the call site. // // Example: // // void unexpected() { throw 1;} // void foo() throw (int) { // std::set_unexpected(unexpected); // try { // throw 2.0; // } catch (int i) {} // } // There is no point in having multiple copies of the same typeinfo in // a filter, so only add it if we didn't already. if (SeenInFilter.insert(TypeInfo).second) NewFilterElts.push_back(cast<Constant>(Elt)); } // A filter containing a catch-all cannot match anything by definition. if (SawCatchAll) { // Throw the filter away. MakeNewInstruction = true; continue; } // If we dropped something from the filter, make a new one. if (NewFilterElts.size() < NumTypeInfos) MakeNewFilter = true; } if (MakeNewFilter) { FilterType = ArrayType::get(FilterType->getElementType(), NewFilterElts.size()); FilterClause = ConstantArray::get(FilterType, NewFilterElts); MakeNewInstruction = true; } NewClauses.push_back(FilterClause); // If the new filter is empty then it will catch everything so there is // no point in keeping any following clauses or marking the landingpad // as having a cleanup. The case of the original filter being empty was // already handled above. if (MakeNewFilter && !NewFilterElts.size()) { assert(MakeNewInstruction && "New filter but not a new instruction!"); CleanupFlag = false; break; } } } // If several filters occur in a row then reorder them so that the shortest // filters come first (those with the smallest number of elements). This is // advantageous because shorter filters are more likely to match, speeding up // unwinding, but mostly because it increases the effectiveness of the other // filter optimizations below. for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) { unsigned j; // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters. for (j = i; j != e; ++j) if (!isa<ArrayType>(NewClauses[j]->getType())) break; // Check whether the filters are already sorted by length. We need to know // if sorting them is actually going to do anything so that we only make a // new landingpad instruction if it does. for (unsigned k = i; k + 1 < j; ++k) if (shorter_filter(NewClauses[k+1], NewClauses[k])) { // Not sorted, so sort the filters now. Doing an unstable sort would be // correct too but reordering filters pointlessly might confuse users. std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j, shorter_filter); MakeNewInstruction = true; break; } // Look for the next batch of filters. i = j + 1; } // If typeinfos matched if and only if equal, then the elements of a filter L // that occurs later than a filter F could be replaced by the intersection of // the elements of F and L. In reality two typeinfos can match without being // equal (for example if one represents a C++ class, and the other some class // derived from it) so it would be wrong to perform this transform in general. // However the transform is correct and useful if F is a subset of L. In that // case L can be replaced by F, and thus removed altogether since repeating a // filter is pointless. So here we look at all pairs of filters F and L where // L follows F in the list of clauses, and remove L if every element of F is // an element of L. This can occur when inlining C++ functions with exception // specifications. for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) { // Examine each filter in turn. Value *Filter = NewClauses[i]; ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType()); if (!FTy) // Not a filter - skip it. continue; unsigned FElts = FTy->getNumElements(); // Examine each filter following this one. Doing this backwards means that // we don't have to worry about filters disappearing under us when removed. for (unsigned j = NewClauses.size() - 1; j != i; --j) { Value *LFilter = NewClauses[j]; ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType()); if (!LTy) // Not a filter - skip it. continue; // If Filter is a subset of LFilter, i.e. every element of Filter is also // an element of LFilter, then discard LFilter. SmallVectorImpl<Constant *>::iterator J = NewClauses.begin() + j; // If Filter is empty then it is a subset of LFilter. if (!FElts) { // Discard LFilter. NewClauses.erase(J); MakeNewInstruction = true; // Move on to the next filter. continue; } unsigned LElts = LTy->getNumElements(); // If Filter is longer than LFilter then it cannot be a subset of it. if (FElts > LElts) // Move on to the next filter. continue; // At this point we know that LFilter has at least one element. if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros. // Filter is a subset of LFilter iff Filter contains only zeros (as we // already know that Filter is not longer than LFilter). if (isa<ConstantAggregateZero>(Filter)) { assert(FElts <= LElts && "Should have handled this case earlier!"); // Discard LFilter. NewClauses.erase(J); MakeNewInstruction = true; } // Move on to the next filter. continue; } ConstantArray *LArray = cast<ConstantArray>(LFilter); if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros. // Since Filter is non-empty and contains only zeros, it is a subset of // LFilter iff LFilter contains a zero. assert(FElts > 0 && "Should have eliminated the empty filter earlier!"); for (unsigned l = 0; l != LElts; ++l) if (LArray->getOperand(l)->isNullValue()) { // LFilter contains a zero - discard it. NewClauses.erase(J); MakeNewInstruction = true; break; } // Move on to the next filter. continue; } // At this point we know that both filters are ConstantArrays. Loop over // operands to see whether every element of Filter is also an element of // LFilter. Since filters tend to be short this is probably faster than // using a method that scales nicely. ConstantArray *FArray = cast<ConstantArray>(Filter); bool AllFound = true; for (unsigned f = 0; f != FElts; ++f) { Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts(); AllFound = false; for (unsigned l = 0; l != LElts; ++l) { Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts(); if (LTypeInfo == FTypeInfo) { AllFound = true; break; } } if (!AllFound) break; } if (AllFound) { // Discard LFilter. NewClauses.erase(J); MakeNewInstruction = true; } // Move on to the next filter. } } // If we changed any of the clauses, replace the old landingpad instruction // with a new one. if (MakeNewInstruction) { LandingPadInst *NLI = LandingPadInst::Create(LI.getType(), NewClauses.size()); for (unsigned i = 0, e = NewClauses.size(); i != e; ++i) NLI->addClause(NewClauses[i]); // A landing pad with no clauses must have the cleanup flag set. It is // theoretically possible, though highly unlikely, that we eliminated all // clauses. If so, force the cleanup flag to true. if (NewClauses.empty()) CleanupFlag = true; NLI->setCleanup(CleanupFlag); return NLI; } // Even if none of the clauses changed, we may nonetheless have understood // that the cleanup flag is pointless. Clear it if so. if (LI.isCleanup() != CleanupFlag) { assert(!CleanupFlag && "Adding a cleanup, not removing one?!"); LI.setCleanup(CleanupFlag); return &LI; } return nullptr; } /// Try to move the specified instruction from its current block into the /// beginning of DestBlock, which can only happen if it's safe to move the /// instruction past all of the instructions between it and the end of its /// block. static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) { assert(I->hasOneUse() && "Invariants didn't hold!"); // Cannot move control-flow-involving, volatile loads, vaarg, etc. if (isa<PHINode>(I) || I->isEHPad() || I->mayHaveSideEffects() || isa<TerminatorInst>(I)) return false; // Do not sink alloca instructions out of the entry block. if (isa<AllocaInst>(I) && I->getParent() == &DestBlock->getParent()->getEntryBlock()) return false; // Do not sink into catchswitch blocks. if (isa<CatchSwitchInst>(DestBlock->getTerminator())) return false; // Do not sink convergent call instructions. if (auto *CI = dyn_cast<CallInst>(I)) { if (CI->isConvergent()) return false; } // We can only sink load instructions if there is nothing between the load and // the end of block that could change the value. if (I->mayReadFromMemory()) { for (BasicBlock::iterator Scan = I->getIterator(), E = I->getParent()->end(); Scan != E; ++Scan) if (Scan->mayWriteToMemory()) return false; } BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt(); I->moveBefore(&*InsertPos); ++NumSunkInst; return true; } bool InstCombiner::run() { while (!Worklist.isEmpty()) { Instruction *I = Worklist.RemoveOne(); if (I == nullptr) continue; // skip null values. // Check to see if we can DCE the instruction. if (isInstructionTriviallyDead(I, TLI)) { DEBUG(dbgs() << "IC: DCE: " << *I << '\n'); eraseInstFromFunction(*I); ++NumDeadInst; MadeIRChange = true; continue; } // Instruction isn't dead, see if we can constant propagate it. if (!I->use_empty() && (I->getNumOperands() == 0 || isa<Constant>(I->getOperand(0)))) { if (Constant *C = ConstantFoldInstruction(I, DL, TLI)) { DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *I << '\n'); // Add operands to the worklist. replaceInstUsesWith(*I, C); ++NumConstProp; eraseInstFromFunction(*I); MadeIRChange = true; continue; } } // In general, it is possible for computeKnownBits to determine all bits in // a value even when the operands are not all constants. if (ExpensiveCombines && !I->use_empty() && I->getType()->isIntegerTy()) { unsigned BitWidth = I->getType()->getScalarSizeInBits(); APInt KnownZero(BitWidth, 0); APInt KnownOne(BitWidth, 0); computeKnownBits(I, KnownZero, KnownOne, /*Depth*/0, I); if ((KnownZero | KnownOne).isAllOnesValue()) { Constant *C = ConstantInt::get(I->getContext(), KnownOne); DEBUG(dbgs() << "IC: ConstFold (all bits known) to: " << *C << " from: " << *I << '\n'); // Add operands to the worklist. replaceInstUsesWith(*I, C); ++NumConstProp; eraseInstFromFunction(*I); MadeIRChange = true; continue; } } // See if we can trivially sink this instruction to a successor basic block. if (I->hasOneUse()) { BasicBlock *BB = I->getParent(); Instruction *UserInst = cast<Instruction>(*I->user_begin()); BasicBlock *UserParent; // Get the block the use occurs in. if (PHINode *PN = dyn_cast<PHINode>(UserInst)) UserParent = PN->getIncomingBlock(*I->use_begin()); else UserParent = UserInst->getParent(); if (UserParent != BB) { bool UserIsSuccessor = false; // See if the user is one of our successors. for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI) if (*SI == UserParent) { UserIsSuccessor = true; break; } // If the user is one of our immediate successors, and if that successor // only has us as a predecessors (we'd have to split the critical edge // otherwise), we can keep going. if (UserIsSuccessor && UserParent->getSinglePredecessor()) { // Okay, the CFG is simple enough, try to sink this instruction. if (TryToSinkInstruction(I, UserParent)) { DEBUG(dbgs() << "IC: Sink: " << *I << '\n'); MadeIRChange = true; // We'll add uses of the sunk instruction below, but since sinking // can expose opportunities for it's *operands* add them to the // worklist for (Use &U : I->operands()) if (Instruction *OpI = dyn_cast<Instruction>(U.get())) Worklist.Add(OpI); } } } } // Now that we have an instruction, try combining it to simplify it. Builder->SetInsertPoint(I); Builder->SetCurrentDebugLocation(I->getDebugLoc()); #ifndef NDEBUG std::string OrigI; #endif DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str();); DEBUG(dbgs() << "IC: Visiting: " << OrigI << '\n'); if (Instruction *Result = visit(*I)) { ++NumCombined; // Should we replace the old instruction with a new one? if (Result != I) { DEBUG(dbgs() << "IC: Old = " << *I << '\n' << " New = " << *Result << '\n'); if (I->getDebugLoc()) Result->setDebugLoc(I->getDebugLoc()); // Everything uses the new instruction now. I->replaceAllUsesWith(Result); // Move the name to the new instruction first. Result->takeName(I); // Push the new instruction and any users onto the worklist. Worklist.Add(Result); Worklist.AddUsersToWorkList(*Result); // Insert the new instruction into the basic block... BasicBlock *InstParent = I->getParent(); BasicBlock::iterator InsertPos = I->getIterator(); // If we replace a PHI with something that isn't a PHI, fix up the // insertion point. if (!isa<PHINode>(Result) && isa<PHINode>(InsertPos)) InsertPos = InstParent->getFirstInsertionPt(); InstParent->getInstList().insert(InsertPos, Result); eraseInstFromFunction(*I); } else { #ifndef NDEBUG DEBUG(dbgs() << "IC: Mod = " << OrigI << '\n' << " New = " << *I << '\n'); #endif // If the instruction was modified, it's possible that it is now dead. // if so, remove it. if (isInstructionTriviallyDead(I, TLI)) { eraseInstFromFunction(*I); } else { Worklist.Add(I); Worklist.AddUsersToWorkList(*I); } } MadeIRChange = true; } } Worklist.Zap(); return MadeIRChange; } /// Walk the function in depth-first order, adding all reachable code to the /// worklist. /// /// This has a couple of tricks to make the code faster and more powerful. In /// particular, we constant fold and DCE instructions as we go, to avoid adding /// them to the worklist (this significantly speeds up instcombine on code where /// many instructions are dead or constant). Additionally, if we find a branch /// whose condition is a known constant, we only visit the reachable successors. /// static bool AddReachableCodeToWorklist(BasicBlock *BB, const DataLayout &DL, SmallPtrSetImpl<BasicBlock *> &Visited, InstCombineWorklist &ICWorklist, const TargetLibraryInfo *TLI) { bool MadeIRChange = false; SmallVector<BasicBlock*, 256> Worklist; Worklist.push_back(BB); SmallVector<Instruction*, 128> InstrsForInstCombineWorklist; DenseMap<ConstantExpr*, Constant*> FoldedConstants; do { BB = Worklist.pop_back_val(); // We have now visited this block! If we've already been here, ignore it. if (!Visited.insert(BB).second) continue; for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) { Instruction *Inst = &*BBI++; // DCE instruction if trivially dead. if (isInstructionTriviallyDead(Inst, TLI)) { ++NumDeadInst; DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n'); Inst->eraseFromParent(); continue; } // ConstantProp instruction if trivially constant. if (!Inst->use_empty() && (Inst->getNumOperands() == 0 || isa<Constant>(Inst->getOperand(0)))) if (Constant *C = ConstantFoldInstruction(Inst, DL, TLI)) { DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *Inst << '\n'); Inst->replaceAllUsesWith(C); ++NumConstProp; Inst->eraseFromParent(); continue; } // See if we can constant fold its operands. for (User::op_iterator i = Inst->op_begin(), e = Inst->op_end(); i != e; ++i) { ConstantExpr *CE = dyn_cast<ConstantExpr>(i); if (CE == nullptr) continue; Constant *&FoldRes = FoldedConstants[CE]; if (!FoldRes) FoldRes = ConstantFoldConstantExpression(CE, DL, TLI); if (!FoldRes) FoldRes = CE; if (FoldRes != CE) { *i = FoldRes; MadeIRChange = true; } } InstrsForInstCombineWorklist.push_back(Inst); } // Recursively visit successors. If this is a branch or switch on a // constant, only visit the reachable successor. TerminatorInst *TI = BB->getTerminator(); if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) { bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue(); BasicBlock *ReachableBB = BI->getSuccessor(!CondVal); Worklist.push_back(ReachableBB); continue; } } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) { // See if this is an explicit destination. for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); i != e; ++i) if (i.getCaseValue() == Cond) { BasicBlock *ReachableBB = i.getCaseSuccessor(); Worklist.push_back(ReachableBB); continue; } // Otherwise it is the default destination. Worklist.push_back(SI->getDefaultDest()); continue; } } for (BasicBlock *SuccBB : TI->successors()) Worklist.push_back(SuccBB); } while (!Worklist.empty()); // Once we've found all of the instructions to add to instcombine's worklist, // add them in reverse order. This way instcombine will visit from the top // of the function down. This jives well with the way that it adds all uses // of instructions to the worklist after doing a transformation, thus avoiding // some N^2 behavior in pathological cases. ICWorklist.AddInitialGroup(InstrsForInstCombineWorklist); return MadeIRChange; } /// \brief Populate the IC worklist from a function, and prune any dead basic /// blocks discovered in the process. /// /// This also does basic constant propagation and other forward fixing to make /// the combiner itself run much faster. static bool prepareICWorklistFromFunction(Function &F, const DataLayout &DL, TargetLibraryInfo *TLI, InstCombineWorklist &ICWorklist) { bool MadeIRChange = false; // Do a depth-first traversal of the function, populate the worklist with // the reachable instructions. Ignore blocks that are not reachable. Keep // track of which blocks we visit. SmallPtrSet<BasicBlock *, 32> Visited; MadeIRChange |= AddReachableCodeToWorklist(&F.front(), DL, Visited, ICWorklist, TLI); // Do a quick scan over the function. If we find any blocks that are // unreachable, remove any instructions inside of them. This prevents // the instcombine code from having to deal with some bad special cases. for (BasicBlock &BB : F) { if (Visited.count(&BB)) continue; unsigned NumDeadInstInBB = removeAllNonTerminatorAndEHPadInstructions(&BB); MadeIRChange |= NumDeadInstInBB > 0; NumDeadInst += NumDeadInstInBB; } return MadeIRChange; } static bool combineInstructionsOverFunction(Function &F, InstCombineWorklist &Worklist, AliasAnalysis *AA, AssumptionCache &AC, TargetLibraryInfo &TLI, DominatorTree &DT, bool ExpensiveCombines = true, LoopInfo *LI = nullptr) { auto &DL = F.getParent()->getDataLayout(); ExpensiveCombines |= EnableExpensiveCombines; /// Builder - This is an IRBuilder that automatically inserts new /// instructions into the worklist when they are created. IRBuilder<TargetFolder, InstCombineIRInserter> Builder( F.getContext(), TargetFolder(DL), InstCombineIRInserter(Worklist, &AC)); // Lower dbg.declare intrinsics otherwise their value may be clobbered // by instcombiner. bool DbgDeclaresChanged = LowerDbgDeclare(F); // Iterate while there is work to do. int Iteration = 0; for (;;) { ++Iteration; DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on " << F.getName() << "\n"); bool Changed = prepareICWorklistFromFunction(F, DL, &TLI, Worklist); InstCombiner IC(Worklist, &Builder, F.optForMinSize(), ExpensiveCombines, AA, &AC, &TLI, &DT, DL, LI); Changed |= IC.run(); if (!Changed) break; } return DbgDeclaresChanged || Iteration > 1; } PreservedAnalyses InstCombinePass::run(Function &F, AnalysisManager<Function> &AM) { auto &AC = AM.getResult<AssumptionAnalysis>(F); auto &DT = AM.getResult<DominatorTreeAnalysis>(F); auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); auto *LI = AM.getCachedResult<LoopAnalysis>(F); // FIXME: The AliasAnalysis is not yet supported in the new pass manager if (!combineInstructionsOverFunction(F, Worklist, nullptr, AC, TLI, DT, ExpensiveCombines, LI)) // No changes, all analyses are preserved. return PreservedAnalyses::all(); // Mark all the analyses that instcombine updates as preserved. // FIXME: This should also 'preserve the CFG'. PreservedAnalyses PA; PA.preserve<DominatorTreeAnalysis>(); return PA; } void InstructionCombiningPass::getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesCFG(); AU.addRequired<AAResultsWrapperPass>(); AU.addRequired<AssumptionCacheTracker>(); AU.addRequired<TargetLibraryInfoWrapperPass>(); AU.addRequired<DominatorTreeWrapperPass>(); AU.addPreserved<DominatorTreeWrapperPass>(); AU.addPreserved<AAResultsWrapperPass>(); AU.addPreserved<BasicAAWrapperPass>(); AU.addPreserved<GlobalsAAWrapperPass>(); } bool InstructionCombiningPass::runOnFunction(Function &F) { if (skipFunction(F)) return false; // Required analyses. auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); // Optional analyses. auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>(); auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr; return combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, DT, ExpensiveCombines, LI); } char InstructionCombiningPass::ID = 0; INITIALIZE_PASS_BEGIN(InstructionCombiningPass, "instcombine", "Combine redundant instructions", false, false) INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) INITIALIZE_PASS_END(InstructionCombiningPass, "instcombine", "Combine redundant instructions", false, false) // Initialization Routines void llvm::initializeInstCombine(PassRegistry &Registry) { initializeInstructionCombiningPassPass(Registry); } void LLVMInitializeInstCombine(LLVMPassRegistryRef R) { initializeInstructionCombiningPassPass(*unwrap(R)); } FunctionPass *llvm::createInstructionCombiningPass(bool ExpensiveCombines) { return new InstructionCombiningPass(ExpensiveCombines); }