//===- SampleProfReader.cpp - Read LLVM sample profile data ---------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the class that reads LLVM sample profiles. It // supports three file formats: text, binary and gcov. // // The textual representation is useful for debugging and testing purposes. The // binary representation is more compact, resulting in smaller file sizes. // // The gcov encoding is the one generated by GCC's AutoFDO profile creation // tool (https://github.com/google/autofdo) // // All three encodings can be used interchangeably as an input sample profile. // //===----------------------------------------------------------------------===// #include "llvm/ProfileData/SampleProfReader.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/STLExtras.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorOr.h" #include "llvm/Support/LEB128.h" #include "llvm/Support/LineIterator.h" #include "llvm/Support/MemoryBuffer.h" using namespace llvm::sampleprof; using namespace llvm; /// \brief Dump the function profile for \p FName. /// /// \param FName Name of the function to print. /// \param OS Stream to emit the output to. void SampleProfileReader::dumpFunctionProfile(StringRef FName, raw_ostream &OS) { OS << "Function: " << FName << ": " << Profiles[FName]; } /// \brief Dump all the function profiles found on stream \p OS. void SampleProfileReader::dump(raw_ostream &OS) { for (const auto &I : Profiles) dumpFunctionProfile(I.getKey(), OS); } /// \brief Parse \p Input as function head. /// /// Parse one line of \p Input, and update function name in \p FName, /// function's total sample count in \p NumSamples, function's entry /// count in \p NumHeadSamples. /// /// \returns true if parsing is successful. static bool ParseHead(const StringRef &Input, StringRef &FName, uint64_t &NumSamples, uint64_t &NumHeadSamples) { if (Input[0] == ' ') return false; size_t n2 = Input.rfind(':'); size_t n1 = Input.rfind(':', n2 - 1); FName = Input.substr(0, n1); if (Input.substr(n1 + 1, n2 - n1 - 1).getAsInteger(10, NumSamples)) return false; if (Input.substr(n2 + 1).getAsInteger(10, NumHeadSamples)) return false; return true; } /// \brief Returns true if line offset \p L is legal (only has 16 bits). static bool isOffsetLegal(unsigned L) { return (L & 0xffff) == L; } /// \brief Parse \p Input as line sample. /// /// \param Input input line. /// \param IsCallsite true if the line represents an inlined callsite. /// \param Depth the depth of the inline stack. /// \param NumSamples total samples of the line/inlined callsite. /// \param LineOffset line offset to the start of the function. /// \param Discriminator discriminator of the line. /// \param TargetCountMap map from indirect call target to count. /// /// returns true if parsing is successful. static bool ParseLine(const StringRef &Input, bool &IsCallsite, uint32_t &Depth, uint64_t &NumSamples, uint32_t &LineOffset, uint32_t &Discriminator, StringRef &CalleeName, DenseMap<StringRef, uint64_t> &TargetCountMap) { for (Depth = 0; Input[Depth] == ' '; Depth++) ; if (Depth == 0) return false; size_t n1 = Input.find(':'); StringRef Loc = Input.substr(Depth, n1 - Depth); size_t n2 = Loc.find('.'); if (n2 == StringRef::npos) { if (Loc.getAsInteger(10, LineOffset) || !isOffsetLegal(LineOffset)) return false; Discriminator = 0; } else { if (Loc.substr(0, n2).getAsInteger(10, LineOffset)) return false; if (Loc.substr(n2 + 1).getAsInteger(10, Discriminator)) return false; } StringRef Rest = Input.substr(n1 + 2); if (Rest[0] >= '0' && Rest[0] <= '9') { IsCallsite = false; size_t n3 = Rest.find(' '); if (n3 == StringRef::npos) { if (Rest.getAsInteger(10, NumSamples)) return false; } else { if (Rest.substr(0, n3).getAsInteger(10, NumSamples)) return false; } while (n3 != StringRef::npos) { n3 += Rest.substr(n3).find_first_not_of(' '); Rest = Rest.substr(n3); n3 = Rest.find(' '); StringRef pair = Rest; if (n3 != StringRef::npos) { pair = Rest.substr(0, n3); } size_t n4 = pair.find(':'); uint64_t count; if (pair.substr(n4 + 1).getAsInteger(10, count)) return false; TargetCountMap[pair.substr(0, n4)] = count; } } else { IsCallsite = true; size_t n3 = Rest.find_last_of(':'); CalleeName = Rest.substr(0, n3); if (Rest.substr(n3 + 1).getAsInteger(10, NumSamples)) return false; } return true; } /// \brief Load samples from a text file. /// /// See the documentation at the top of the file for an explanation of /// the expected format. /// /// \returns true if the file was loaded successfully, false otherwise. std::error_code SampleProfileReaderText::read() { line_iterator LineIt(*Buffer, /*SkipBlanks=*/true, '#'); sampleprof_error Result = sampleprof_error::success; InlineCallStack InlineStack; for (; !LineIt.is_at_eof(); ++LineIt) { if ((*LineIt)[(*LineIt).find_first_not_of(' ')] == '#') continue; // Read the header of each function. // // Note that for function identifiers we are actually expecting // mangled names, but we may not always get them. This happens when // the compiler decides not to emit the function (e.g., it was inlined // and removed). In this case, the binary will not have the linkage // name for the function, so the profiler will emit the function's // unmangled name, which may contain characters like ':' and '>' in its // name (member functions, templates, etc). // // The only requirement we place on the identifier, then, is that it // should not begin with a number. if ((*LineIt)[0] != ' ') { uint64_t NumSamples, NumHeadSamples; StringRef FName; if (!ParseHead(*LineIt, FName, NumSamples, NumHeadSamples)) { reportError(LineIt.line_number(), "Expected 'mangled_name:NUM:NUM', found " + *LineIt); return sampleprof_error::malformed; } Profiles[FName] = FunctionSamples(); FunctionSamples &FProfile = Profiles[FName]; FProfile.setName(FName); MergeResult(Result, FProfile.addTotalSamples(NumSamples)); MergeResult(Result, FProfile.addHeadSamples(NumHeadSamples)); InlineStack.clear(); InlineStack.push_back(&FProfile); } else { uint64_t NumSamples; StringRef FName; DenseMap<StringRef, uint64_t> TargetCountMap; bool IsCallsite; uint32_t Depth, LineOffset, Discriminator; if (!ParseLine(*LineIt, IsCallsite, Depth, NumSamples, LineOffset, Discriminator, FName, TargetCountMap)) { reportError(LineIt.line_number(), "Expected 'NUM[.NUM]: NUM[ mangled_name:NUM]*', found " + *LineIt); return sampleprof_error::malformed; } if (IsCallsite) { while (InlineStack.size() > Depth) { InlineStack.pop_back(); } FunctionSamples &FSamples = InlineStack.back()->functionSamplesAt( LineLocation(LineOffset, Discriminator)); FSamples.setName(FName); MergeResult(Result, FSamples.addTotalSamples(NumSamples)); InlineStack.push_back(&FSamples); } else { while (InlineStack.size() > Depth) { InlineStack.pop_back(); } FunctionSamples &FProfile = *InlineStack.back(); for (const auto &name_count : TargetCountMap) { MergeResult(Result, FProfile.addCalledTargetSamples( LineOffset, Discriminator, name_count.first, name_count.second)); } MergeResult(Result, FProfile.addBodySamples(LineOffset, Discriminator, NumSamples)); } } } if (Result == sampleprof_error::success) computeSummary(); return Result; } bool SampleProfileReaderText::hasFormat(const MemoryBuffer &Buffer) { bool result = false; // Check that the first non-comment line is a valid function header. line_iterator LineIt(Buffer, /*SkipBlanks=*/true, '#'); if (!LineIt.is_at_eof()) { if ((*LineIt)[0] != ' ') { uint64_t NumSamples, NumHeadSamples; StringRef FName; result = ParseHead(*LineIt, FName, NumSamples, NumHeadSamples); } } return result; } template <typename T> ErrorOr<T> SampleProfileReaderBinary::readNumber() { unsigned NumBytesRead = 0; std::error_code EC; uint64_t Val = decodeULEB128(Data, &NumBytesRead); if (Val > std::numeric_limits<T>::max()) EC = sampleprof_error::malformed; else if (Data + NumBytesRead > End) EC = sampleprof_error::truncated; else EC = sampleprof_error::success; if (EC) { reportError(0, EC.message()); return EC; } Data += NumBytesRead; return static_cast<T>(Val); } ErrorOr<StringRef> SampleProfileReaderBinary::readString() { std::error_code EC; StringRef Str(reinterpret_cast<const char *>(Data)); if (Data + Str.size() + 1 > End) { EC = sampleprof_error::truncated; reportError(0, EC.message()); return EC; } Data += Str.size() + 1; return Str; } ErrorOr<StringRef> SampleProfileReaderBinary::readStringFromTable() { std::error_code EC; auto Idx = readNumber<uint32_t>(); if (std::error_code EC = Idx.getError()) return EC; if (*Idx >= NameTable.size()) return sampleprof_error::truncated_name_table; return NameTable[*Idx]; } std::error_code SampleProfileReaderBinary::readProfile(FunctionSamples &FProfile) { auto NumSamples = readNumber<uint64_t>(); if (std::error_code EC = NumSamples.getError()) return EC; FProfile.addTotalSamples(*NumSamples); // Read the samples in the body. auto NumRecords = readNumber<uint32_t>(); if (std::error_code EC = NumRecords.getError()) return EC; for (uint32_t I = 0; I < *NumRecords; ++I) { auto LineOffset = readNumber<uint64_t>(); if (std::error_code EC = LineOffset.getError()) return EC; if (!isOffsetLegal(*LineOffset)) { return std::error_code(); } auto Discriminator = readNumber<uint64_t>(); if (std::error_code EC = Discriminator.getError()) return EC; auto NumSamples = readNumber<uint64_t>(); if (std::error_code EC = NumSamples.getError()) return EC; auto NumCalls = readNumber<uint32_t>(); if (std::error_code EC = NumCalls.getError()) return EC; for (uint32_t J = 0; J < *NumCalls; ++J) { auto CalledFunction(readStringFromTable()); if (std::error_code EC = CalledFunction.getError()) return EC; auto CalledFunctionSamples = readNumber<uint64_t>(); if (std::error_code EC = CalledFunctionSamples.getError()) return EC; FProfile.addCalledTargetSamples(*LineOffset, *Discriminator, *CalledFunction, *CalledFunctionSamples); } FProfile.addBodySamples(*LineOffset, *Discriminator, *NumSamples); } // Read all the samples for inlined function calls. auto NumCallsites = readNumber<uint32_t>(); if (std::error_code EC = NumCallsites.getError()) return EC; for (uint32_t J = 0; J < *NumCallsites; ++J) { auto LineOffset = readNumber<uint64_t>(); if (std::error_code EC = LineOffset.getError()) return EC; auto Discriminator = readNumber<uint64_t>(); if (std::error_code EC = Discriminator.getError()) return EC; auto FName(readStringFromTable()); if (std::error_code EC = FName.getError()) return EC; FunctionSamples &CalleeProfile = FProfile.functionSamplesAt(LineLocation(*LineOffset, *Discriminator)); CalleeProfile.setName(*FName); if (std::error_code EC = readProfile(CalleeProfile)) return EC; } return sampleprof_error::success; } std::error_code SampleProfileReaderBinary::read() { while (!at_eof()) { auto NumHeadSamples = readNumber<uint64_t>(); if (std::error_code EC = NumHeadSamples.getError()) return EC; auto FName(readStringFromTable()); if (std::error_code EC = FName.getError()) return EC; Profiles[*FName] = FunctionSamples(); FunctionSamples &FProfile = Profiles[*FName]; FProfile.setName(*FName); FProfile.addHeadSamples(*NumHeadSamples); if (std::error_code EC = readProfile(FProfile)) return EC; } return sampleprof_error::success; } std::error_code SampleProfileReaderBinary::readHeader() { Data = reinterpret_cast<const uint8_t *>(Buffer->getBufferStart()); End = Data + Buffer->getBufferSize(); // Read and check the magic identifier. auto Magic = readNumber<uint64_t>(); if (std::error_code EC = Magic.getError()) return EC; else if (*Magic != SPMagic()) return sampleprof_error::bad_magic; // Read the version number. auto Version = readNumber<uint64_t>(); if (std::error_code EC = Version.getError()) return EC; else if (*Version != SPVersion()) return sampleprof_error::unsupported_version; if (std::error_code EC = readSummary()) return EC; // Read the name table. auto Size = readNumber<uint32_t>(); if (std::error_code EC = Size.getError()) return EC; NameTable.reserve(*Size); for (uint32_t I = 0; I < *Size; ++I) { auto Name(readString()); if (std::error_code EC = Name.getError()) return EC; NameTable.push_back(*Name); } return sampleprof_error::success; } std::error_code SampleProfileReaderBinary::readSummaryEntry( std::vector<ProfileSummaryEntry> &Entries) { auto Cutoff = readNumber<uint64_t>(); if (std::error_code EC = Cutoff.getError()) return EC; auto MinBlockCount = readNumber<uint64_t>(); if (std::error_code EC = MinBlockCount.getError()) return EC; auto NumBlocks = readNumber<uint64_t>(); if (std::error_code EC = NumBlocks.getError()) return EC; Entries.emplace_back(*Cutoff, *MinBlockCount, *NumBlocks); return sampleprof_error::success; } std::error_code SampleProfileReaderBinary::readSummary() { auto TotalCount = readNumber<uint64_t>(); if (std::error_code EC = TotalCount.getError()) return EC; auto MaxBlockCount = readNumber<uint64_t>(); if (std::error_code EC = MaxBlockCount.getError()) return EC; auto MaxFunctionCount = readNumber<uint64_t>(); if (std::error_code EC = MaxFunctionCount.getError()) return EC; auto NumBlocks = readNumber<uint64_t>(); if (std::error_code EC = NumBlocks.getError()) return EC; auto NumFunctions = readNumber<uint64_t>(); if (std::error_code EC = NumFunctions.getError()) return EC; auto NumSummaryEntries = readNumber<uint64_t>(); if (std::error_code EC = NumSummaryEntries.getError()) return EC; std::vector<ProfileSummaryEntry> Entries; for (unsigned i = 0; i < *NumSummaryEntries; i++) { std::error_code EC = readSummaryEntry(Entries); if (EC != sampleprof_error::success) return EC; } Summary = llvm::make_unique<ProfileSummary>( ProfileSummary::PSK_Sample, Entries, *TotalCount, *MaxBlockCount, 0, *MaxFunctionCount, *NumBlocks, *NumFunctions); return sampleprof_error::success; } bool SampleProfileReaderBinary::hasFormat(const MemoryBuffer &Buffer) { const uint8_t *Data = reinterpret_cast<const uint8_t *>(Buffer.getBufferStart()); uint64_t Magic = decodeULEB128(Data); return Magic == SPMagic(); } std::error_code SampleProfileReaderGCC::skipNextWord() { uint32_t dummy; if (!GcovBuffer.readInt(dummy)) return sampleprof_error::truncated; return sampleprof_error::success; } template <typename T> ErrorOr<T> SampleProfileReaderGCC::readNumber() { if (sizeof(T) <= sizeof(uint32_t)) { uint32_t Val; if (GcovBuffer.readInt(Val) && Val <= std::numeric_limits<T>::max()) return static_cast<T>(Val); } else if (sizeof(T) <= sizeof(uint64_t)) { uint64_t Val; if (GcovBuffer.readInt64(Val) && Val <= std::numeric_limits<T>::max()) return static_cast<T>(Val); } std::error_code EC = sampleprof_error::malformed; reportError(0, EC.message()); return EC; } ErrorOr<StringRef> SampleProfileReaderGCC::readString() { StringRef Str; if (!GcovBuffer.readString(Str)) return sampleprof_error::truncated; return Str; } std::error_code SampleProfileReaderGCC::readHeader() { // Read the magic identifier. if (!GcovBuffer.readGCDAFormat()) return sampleprof_error::unrecognized_format; // Read the version number. Note - the GCC reader does not validate this // version, but the profile creator generates v704. GCOV::GCOVVersion version; if (!GcovBuffer.readGCOVVersion(version)) return sampleprof_error::unrecognized_format; if (version != GCOV::V704) return sampleprof_error::unsupported_version; // Skip the empty integer. if (std::error_code EC = skipNextWord()) return EC; return sampleprof_error::success; } std::error_code SampleProfileReaderGCC::readSectionTag(uint32_t Expected) { uint32_t Tag; if (!GcovBuffer.readInt(Tag)) return sampleprof_error::truncated; if (Tag != Expected) return sampleprof_error::malformed; if (std::error_code EC = skipNextWord()) return EC; return sampleprof_error::success; } std::error_code SampleProfileReaderGCC::readNameTable() { if (std::error_code EC = readSectionTag(GCOVTagAFDOFileNames)) return EC; uint32_t Size; if (!GcovBuffer.readInt(Size)) return sampleprof_error::truncated; for (uint32_t I = 0; I < Size; ++I) { StringRef Str; if (!GcovBuffer.readString(Str)) return sampleprof_error::truncated; Names.push_back(Str); } return sampleprof_error::success; } std::error_code SampleProfileReaderGCC::readFunctionProfiles() { if (std::error_code EC = readSectionTag(GCOVTagAFDOFunction)) return EC; uint32_t NumFunctions; if (!GcovBuffer.readInt(NumFunctions)) return sampleprof_error::truncated; InlineCallStack Stack; for (uint32_t I = 0; I < NumFunctions; ++I) if (std::error_code EC = readOneFunctionProfile(Stack, true, 0)) return EC; computeSummary(); return sampleprof_error::success; } std::error_code SampleProfileReaderGCC::readOneFunctionProfile( const InlineCallStack &InlineStack, bool Update, uint32_t Offset) { uint64_t HeadCount = 0; if (InlineStack.size() == 0) if (!GcovBuffer.readInt64(HeadCount)) return sampleprof_error::truncated; uint32_t NameIdx; if (!GcovBuffer.readInt(NameIdx)) return sampleprof_error::truncated; StringRef Name(Names[NameIdx]); uint32_t NumPosCounts; if (!GcovBuffer.readInt(NumPosCounts)) return sampleprof_error::truncated; uint32_t NumCallsites; if (!GcovBuffer.readInt(NumCallsites)) return sampleprof_error::truncated; FunctionSamples *FProfile = nullptr; if (InlineStack.size() == 0) { // If this is a top function that we have already processed, do not // update its profile again. This happens in the presence of // function aliases. Since these aliases share the same function // body, there will be identical replicated profiles for the // original function. In this case, we simply not bother updating // the profile of the original function. FProfile = &Profiles[Name]; FProfile->addHeadSamples(HeadCount); if (FProfile->getTotalSamples() > 0) Update = false; } else { // Otherwise, we are reading an inlined instance. The top of the // inline stack contains the profile of the caller. Insert this // callee in the caller's CallsiteMap. FunctionSamples *CallerProfile = InlineStack.front(); uint32_t LineOffset = Offset >> 16; uint32_t Discriminator = Offset & 0xffff; FProfile = &CallerProfile->functionSamplesAt( LineLocation(LineOffset, Discriminator)); } FProfile->setName(Name); for (uint32_t I = 0; I < NumPosCounts; ++I) { uint32_t Offset; if (!GcovBuffer.readInt(Offset)) return sampleprof_error::truncated; uint32_t NumTargets; if (!GcovBuffer.readInt(NumTargets)) return sampleprof_error::truncated; uint64_t Count; if (!GcovBuffer.readInt64(Count)) return sampleprof_error::truncated; // The line location is encoded in the offset as: // high 16 bits: line offset to the start of the function. // low 16 bits: discriminator. uint32_t LineOffset = Offset >> 16; uint32_t Discriminator = Offset & 0xffff; InlineCallStack NewStack; NewStack.push_back(FProfile); NewStack.insert(NewStack.end(), InlineStack.begin(), InlineStack.end()); if (Update) { // Walk up the inline stack, adding the samples on this line to // the total sample count of the callers in the chain. for (auto CallerProfile : NewStack) CallerProfile->addTotalSamples(Count); // Update the body samples for the current profile. FProfile->addBodySamples(LineOffset, Discriminator, Count); } // Process the list of functions called at an indirect call site. // These are all the targets that a function pointer (or virtual // function) resolved at runtime. for (uint32_t J = 0; J < NumTargets; J++) { uint32_t HistVal; if (!GcovBuffer.readInt(HistVal)) return sampleprof_error::truncated; if (HistVal != HIST_TYPE_INDIR_CALL_TOPN) return sampleprof_error::malformed; uint64_t TargetIdx; if (!GcovBuffer.readInt64(TargetIdx)) return sampleprof_error::truncated; StringRef TargetName(Names[TargetIdx]); uint64_t TargetCount; if (!GcovBuffer.readInt64(TargetCount)) return sampleprof_error::truncated; if (Update) { FunctionSamples &TargetProfile = Profiles[TargetName]; TargetProfile.addCalledTargetSamples(LineOffset, Discriminator, TargetName, TargetCount); } } } // Process all the inlined callers into the current function. These // are all the callsites that were inlined into this function. for (uint32_t I = 0; I < NumCallsites; I++) { // The offset is encoded as: // high 16 bits: line offset to the start of the function. // low 16 bits: discriminator. uint32_t Offset; if (!GcovBuffer.readInt(Offset)) return sampleprof_error::truncated; InlineCallStack NewStack; NewStack.push_back(FProfile); NewStack.insert(NewStack.end(), InlineStack.begin(), InlineStack.end()); if (std::error_code EC = readOneFunctionProfile(NewStack, Update, Offset)) return EC; } return sampleprof_error::success; } /// \brief Read a GCC AutoFDO profile. /// /// This format is generated by the Linux Perf conversion tool at /// https://github.com/google/autofdo. std::error_code SampleProfileReaderGCC::read() { // Read the string table. if (std::error_code EC = readNameTable()) return EC; // Read the source profile. if (std::error_code EC = readFunctionProfiles()) return EC; return sampleprof_error::success; } bool SampleProfileReaderGCC::hasFormat(const MemoryBuffer &Buffer) { StringRef Magic(reinterpret_cast<const char *>(Buffer.getBufferStart())); return Magic == "adcg*704"; } /// \brief Prepare a memory buffer for the contents of \p Filename. /// /// \returns an error code indicating the status of the buffer. static ErrorOr<std::unique_ptr<MemoryBuffer>> setupMemoryBuffer(const Twine &Filename) { auto BufferOrErr = MemoryBuffer::getFileOrSTDIN(Filename); if (std::error_code EC = BufferOrErr.getError()) return EC; auto Buffer = std::move(BufferOrErr.get()); // Sanity check the file. if (Buffer->getBufferSize() > std::numeric_limits<uint32_t>::max()) return sampleprof_error::too_large; return std::move(Buffer); } /// \brief Create a sample profile reader based on the format of the input file. /// /// \param Filename The file to open. /// /// \param Reader The reader to instantiate according to \p Filename's format. /// /// \param C The LLVM context to use to emit diagnostics. /// /// \returns an error code indicating the status of the created reader. ErrorOr<std::unique_ptr<SampleProfileReader>> SampleProfileReader::create(const Twine &Filename, LLVMContext &C) { auto BufferOrError = setupMemoryBuffer(Filename); if (std::error_code EC = BufferOrError.getError()) return EC; return create(BufferOrError.get(), C); } /// \brief Create a sample profile reader based on the format of the input data. /// /// \param B The memory buffer to create the reader from (assumes ownership). /// /// \param Reader The reader to instantiate according to \p Filename's format. /// /// \param C The LLVM context to use to emit diagnostics. /// /// \returns an error code indicating the status of the created reader. ErrorOr<std::unique_ptr<SampleProfileReader>> SampleProfileReader::create(std::unique_ptr<MemoryBuffer> &B, LLVMContext &C) { std::unique_ptr<SampleProfileReader> Reader; if (SampleProfileReaderBinary::hasFormat(*B)) Reader.reset(new SampleProfileReaderBinary(std::move(B), C)); else if (SampleProfileReaderGCC::hasFormat(*B)) Reader.reset(new SampleProfileReaderGCC(std::move(B), C)); else if (SampleProfileReaderText::hasFormat(*B)) Reader.reset(new SampleProfileReaderText(std::move(B), C)); else return sampleprof_error::unrecognized_format; if (std::error_code EC = Reader->readHeader()) return EC; return std::move(Reader); } // For text and GCC file formats, we compute the summary after reading the // profile. Binary format has the profile summary in its header. void SampleProfileReader::computeSummary() { SampleProfileSummaryBuilder Builder(ProfileSummaryBuilder::DefaultCutoffs); for (const auto &I : Profiles) { const FunctionSamples &Profile = I.second; Builder.addRecord(Profile); } Summary = Builder.getSummary(); }