//=-- InstrProf.cpp - Instrumented profiling format support -----------------=// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains support for clang's instrumentation based PGO and // coverage. // //===----------------------------------------------------------------------===// #include "llvm/ProfileData/InstrProf.h" #include "llvm/ADT/StringExtras.h" #include "llvm/IR/Constants.h" #include "llvm/IR/Function.h" #include "llvm/IR/GlobalVariable.h" #include "llvm/IR/MDBuilder.h" #include "llvm/IR/Module.h" #include "llvm/Support/Compression.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/LEB128.h" #include "llvm/Support/ManagedStatic.h" #include "llvm/Support/Path.h" using namespace llvm; static cl::opt<bool> StaticFuncFullModulePrefix( "static-func-full-module-prefix", cl::init(false), cl::desc("Use full module build paths in the profile counter names for " "static functions.")); namespace { std::string getInstrProfErrString(instrprof_error Err) { switch (Err) { case instrprof_error::success: return "Success"; case instrprof_error::eof: return "End of File"; case instrprof_error::unrecognized_format: return "Unrecognized instrumentation profile encoding format"; case instrprof_error::bad_magic: return "Invalid instrumentation profile data (bad magic)"; case instrprof_error::bad_header: return "Invalid instrumentation profile data (file header is corrupt)"; case instrprof_error::unsupported_version: return "Unsupported instrumentation profile format version"; case instrprof_error::unsupported_hash_type: return "Unsupported instrumentation profile hash type"; case instrprof_error::too_large: return "Too much profile data"; case instrprof_error::truncated: return "Truncated profile data"; case instrprof_error::malformed: return "Malformed instrumentation profile data"; case instrprof_error::unknown_function: return "No profile data available for function"; case instrprof_error::hash_mismatch: return "Function control flow change detected (hash mismatch)"; case instrprof_error::count_mismatch: return "Function basic block count change detected (counter mismatch)"; case instrprof_error::counter_overflow: return "Counter overflow"; case instrprof_error::value_site_count_mismatch: return "Function value site count change detected (counter mismatch)"; case instrprof_error::compress_failed: return "Failed to compress data (zlib)"; case instrprof_error::uncompress_failed: return "Failed to uncompress data (zlib)"; } llvm_unreachable("A value of instrprof_error has no message."); } // FIXME: This class is only here to support the transition to llvm::Error. It // will be removed once this transition is complete. Clients should prefer to // deal with the Error value directly, rather than converting to error_code. class InstrProfErrorCategoryType : public std::error_category { const char *name() const LLVM_NOEXCEPT override { return "llvm.instrprof"; } std::string message(int IE) const override { return getInstrProfErrString(static_cast<instrprof_error>(IE)); } }; } // end anonymous namespace static ManagedStatic<InstrProfErrorCategoryType> ErrorCategory; const std::error_category &llvm::instrprof_category() { return *ErrorCategory; } namespace llvm { void SoftInstrProfErrors::addError(instrprof_error IE) { if (IE == instrprof_error::success) return; if (FirstError == instrprof_error::success) FirstError = IE; switch (IE) { case instrprof_error::hash_mismatch: ++NumHashMismatches; break; case instrprof_error::count_mismatch: ++NumCountMismatches; break; case instrprof_error::counter_overflow: ++NumCounterOverflows; break; case instrprof_error::value_site_count_mismatch: ++NumValueSiteCountMismatches; break; default: llvm_unreachable("Not a soft error"); } } std::string InstrProfError::message() const { return getInstrProfErrString(Err); } char InstrProfError::ID = 0; std::string getPGOFuncName(StringRef RawFuncName, GlobalValue::LinkageTypes Linkage, StringRef FileName, uint64_t Version LLVM_ATTRIBUTE_UNUSED) { return GlobalValue::getGlobalIdentifier(RawFuncName, Linkage, FileName); } // Return the PGOFuncName. This function has some special handling when called // in LTO optimization. The following only applies when calling in LTO passes // (when \c InLTO is true): LTO's internalization privatizes many global linkage // symbols. This happens after value profile annotation, but those internal // linkage functions should not have a source prefix. // To differentiate compiler generated internal symbols from original ones, // PGOFuncName meta data are created and attached to the original internal // symbols in the value profile annotation step // (PGOUseFunc::annotateIndirectCallSites). If a symbol does not have the meta // data, its original linkage must be non-internal. std::string getPGOFuncName(const Function &F, bool InLTO, uint64_t Version) { if (!InLTO) { StringRef FileName = (StaticFuncFullModulePrefix ? F.getParent()->getName() : sys::path::filename(F.getParent()->getName())); return getPGOFuncName(F.getName(), F.getLinkage(), FileName, Version); } // In LTO mode (when InLTO is true), first check if there is a meta data. if (MDNode *MD = getPGOFuncNameMetadata(F)) { StringRef S = cast<MDString>(MD->getOperand(0))->getString(); return S.str(); } // If there is no meta data, the function must be a global before the value // profile annotation pass. Its current linkage may be internal if it is // internalized in LTO mode. return getPGOFuncName(F.getName(), GlobalValue::ExternalLinkage, ""); } StringRef getFuncNameWithoutPrefix(StringRef PGOFuncName, StringRef FileName) { if (FileName.empty()) return PGOFuncName; // Drop the file name including ':'. See also getPGOFuncName. if (PGOFuncName.startswith(FileName)) PGOFuncName = PGOFuncName.drop_front(FileName.size() + 1); return PGOFuncName; } // \p FuncName is the string used as profile lookup key for the function. A // symbol is created to hold the name. Return the legalized symbol name. std::string getPGOFuncNameVarName(StringRef FuncName, GlobalValue::LinkageTypes Linkage) { std::string VarName = getInstrProfNameVarPrefix(); VarName += FuncName; if (!GlobalValue::isLocalLinkage(Linkage)) return VarName; // Now fix up illegal chars in local VarName that may upset the assembler. const char *InvalidChars = "-:<>/\"'"; size_t found = VarName.find_first_of(InvalidChars); while (found != std::string::npos) { VarName[found] = '_'; found = VarName.find_first_of(InvalidChars, found + 1); } return VarName; } GlobalVariable *createPGOFuncNameVar(Module &M, GlobalValue::LinkageTypes Linkage, StringRef PGOFuncName) { // We generally want to match the function's linkage, but available_externally // and extern_weak both have the wrong semantics, and anything that doesn't // need to link across compilation units doesn't need to be visible at all. if (Linkage == GlobalValue::ExternalWeakLinkage) Linkage = GlobalValue::LinkOnceAnyLinkage; else if (Linkage == GlobalValue::AvailableExternallyLinkage) Linkage = GlobalValue::LinkOnceODRLinkage; else if (Linkage == GlobalValue::InternalLinkage || Linkage == GlobalValue::ExternalLinkage) Linkage = GlobalValue::PrivateLinkage; auto *Value = ConstantDataArray::getString(M.getContext(), PGOFuncName, false); auto FuncNameVar = new GlobalVariable(M, Value->getType(), true, Linkage, Value, getPGOFuncNameVarName(PGOFuncName, Linkage)); // Hide the symbol so that we correctly get a copy for each executable. if (!GlobalValue::isLocalLinkage(FuncNameVar->getLinkage())) FuncNameVar->setVisibility(GlobalValue::HiddenVisibility); return FuncNameVar; } GlobalVariable *createPGOFuncNameVar(Function &F, StringRef PGOFuncName) { return createPGOFuncNameVar(*F.getParent(), F.getLinkage(), PGOFuncName); } void InstrProfSymtab::create(Module &M, bool InLTO) { for (Function &F : M) { // Function may not have a name: like using asm("") to overwrite the name. // Ignore in this case. if (!F.hasName()) continue; const std::string &PGOFuncName = getPGOFuncName(F, InLTO); addFuncName(PGOFuncName); MD5FuncMap.emplace_back(Function::getGUID(PGOFuncName), &F); } finalizeSymtab(); } Error collectPGOFuncNameStrings(const std::vector<std::string> &NameStrs, bool doCompression, std::string &Result) { assert(NameStrs.size() && "No name data to emit"); uint8_t Header[16], *P = Header; std::string UncompressedNameStrings = join(NameStrs.begin(), NameStrs.end(), getInstrProfNameSeparator()); assert(StringRef(UncompressedNameStrings) .count(getInstrProfNameSeparator()) == (NameStrs.size() - 1) && "PGO name is invalid (contains separator token)"); unsigned EncLen = encodeULEB128(UncompressedNameStrings.length(), P); P += EncLen; auto WriteStringToResult = [&](size_t CompressedLen, StringRef InputStr) { EncLen = encodeULEB128(CompressedLen, P); P += EncLen; char *HeaderStr = reinterpret_cast<char *>(&Header[0]); unsigned HeaderLen = P - &Header[0]; Result.append(HeaderStr, HeaderLen); Result += InputStr; return Error::success(); }; if (!doCompression) { return WriteStringToResult(0, UncompressedNameStrings); } SmallString<128> CompressedNameStrings; zlib::Status Success = zlib::compress(StringRef(UncompressedNameStrings), CompressedNameStrings, zlib::BestSizeCompression); if (Success != zlib::StatusOK) return make_error<InstrProfError>(instrprof_error::compress_failed); return WriteStringToResult(CompressedNameStrings.size(), CompressedNameStrings); } StringRef getPGOFuncNameVarInitializer(GlobalVariable *NameVar) { auto *Arr = cast<ConstantDataArray>(NameVar->getInitializer()); StringRef NameStr = Arr->isCString() ? Arr->getAsCString() : Arr->getAsString(); return NameStr; } Error collectPGOFuncNameStrings(const std::vector<GlobalVariable *> &NameVars, std::string &Result, bool doCompression) { std::vector<std::string> NameStrs; for (auto *NameVar : NameVars) { NameStrs.push_back(getPGOFuncNameVarInitializer(NameVar)); } return collectPGOFuncNameStrings( NameStrs, zlib::isAvailable() && doCompression, Result); } Error readPGOFuncNameStrings(StringRef NameStrings, InstrProfSymtab &Symtab) { const uint8_t *P = reinterpret_cast<const uint8_t *>(NameStrings.data()); const uint8_t *EndP = reinterpret_cast<const uint8_t *>(NameStrings.data() + NameStrings.size()); while (P < EndP) { uint32_t N; uint64_t UncompressedSize = decodeULEB128(P, &N); P += N; uint64_t CompressedSize = decodeULEB128(P, &N); P += N; bool isCompressed = (CompressedSize != 0); SmallString<128> UncompressedNameStrings; StringRef NameStrings; if (isCompressed) { StringRef CompressedNameStrings(reinterpret_cast<const char *>(P), CompressedSize); if (zlib::uncompress(CompressedNameStrings, UncompressedNameStrings, UncompressedSize) != zlib::StatusOK) return make_error<InstrProfError>(instrprof_error::uncompress_failed); P += CompressedSize; NameStrings = StringRef(UncompressedNameStrings.data(), UncompressedNameStrings.size()); } else { NameStrings = StringRef(reinterpret_cast<const char *>(P), UncompressedSize); P += UncompressedSize; } // Now parse the name strings. SmallVector<StringRef, 0> Names; NameStrings.split(Names, getInstrProfNameSeparator()); for (StringRef &Name : Names) Symtab.addFuncName(Name); while (P < EndP && *P == 0) P++; } Symtab.finalizeSymtab(); return Error::success(); } void InstrProfValueSiteRecord::merge(SoftInstrProfErrors &SIPE, InstrProfValueSiteRecord &Input, uint64_t Weight) { this->sortByTargetValues(); Input.sortByTargetValues(); auto I = ValueData.begin(); auto IE = ValueData.end(); for (auto J = Input.ValueData.begin(), JE = Input.ValueData.end(); J != JE; ++J) { while (I != IE && I->Value < J->Value) ++I; if (I != IE && I->Value == J->Value) { bool Overflowed; I->Count = SaturatingMultiplyAdd(J->Count, Weight, I->Count, &Overflowed); if (Overflowed) SIPE.addError(instrprof_error::counter_overflow); ++I; continue; } ValueData.insert(I, *J); } } void InstrProfValueSiteRecord::scale(SoftInstrProfErrors &SIPE, uint64_t Weight) { for (auto I = ValueData.begin(), IE = ValueData.end(); I != IE; ++I) { bool Overflowed; I->Count = SaturatingMultiply(I->Count, Weight, &Overflowed); if (Overflowed) SIPE.addError(instrprof_error::counter_overflow); } } // Merge Value Profile data from Src record to this record for ValueKind. // Scale merged value counts by \p Weight. void InstrProfRecord::mergeValueProfData(uint32_t ValueKind, InstrProfRecord &Src, uint64_t Weight) { uint32_t ThisNumValueSites = getNumValueSites(ValueKind); uint32_t OtherNumValueSites = Src.getNumValueSites(ValueKind); if (ThisNumValueSites != OtherNumValueSites) { SIPE.addError(instrprof_error::value_site_count_mismatch); return; } std::vector<InstrProfValueSiteRecord> &ThisSiteRecords = getValueSitesForKind(ValueKind); std::vector<InstrProfValueSiteRecord> &OtherSiteRecords = Src.getValueSitesForKind(ValueKind); for (uint32_t I = 0; I < ThisNumValueSites; I++) ThisSiteRecords[I].merge(SIPE, OtherSiteRecords[I], Weight); } void InstrProfRecord::merge(InstrProfRecord &Other, uint64_t Weight) { // If the number of counters doesn't match we either have bad data // or a hash collision. if (Counts.size() != Other.Counts.size()) { SIPE.addError(instrprof_error::count_mismatch); return; } for (size_t I = 0, E = Other.Counts.size(); I < E; ++I) { bool Overflowed; Counts[I] = SaturatingMultiplyAdd(Other.Counts[I], Weight, Counts[I], &Overflowed); if (Overflowed) SIPE.addError(instrprof_error::counter_overflow); } for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind) mergeValueProfData(Kind, Other, Weight); } void InstrProfRecord::scaleValueProfData(uint32_t ValueKind, uint64_t Weight) { uint32_t ThisNumValueSites = getNumValueSites(ValueKind); std::vector<InstrProfValueSiteRecord> &ThisSiteRecords = getValueSitesForKind(ValueKind); for (uint32_t I = 0; I < ThisNumValueSites; I++) ThisSiteRecords[I].scale(SIPE, Weight); } void InstrProfRecord::scale(uint64_t Weight) { for (auto &Count : this->Counts) { bool Overflowed; Count = SaturatingMultiply(Count, Weight, &Overflowed); if (Overflowed) SIPE.addError(instrprof_error::counter_overflow); } for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind) scaleValueProfData(Kind, Weight); } // Map indirect call target name hash to name string. uint64_t InstrProfRecord::remapValue(uint64_t Value, uint32_t ValueKind, ValueMapType *ValueMap) { if (!ValueMap) return Value; switch (ValueKind) { case IPVK_IndirectCallTarget: { auto Result = std::lower_bound(ValueMap->begin(), ValueMap->end(), Value, [](const std::pair<uint64_t, uint64_t> &LHS, uint64_t RHS) { return LHS.first < RHS; }); // Raw function pointer collected by value profiler may be from // external functions that are not instrumented. They won't have // mapping data to be used by the deserializer. Force the value to // be 0 in this case. if (Result != ValueMap->end() && Result->first == Value) Value = (uint64_t)Result->second; else Value = 0; break; } } return Value; } void InstrProfRecord::addValueData(uint32_t ValueKind, uint32_t Site, InstrProfValueData *VData, uint32_t N, ValueMapType *ValueMap) { for (uint32_t I = 0; I < N; I++) { VData[I].Value = remapValue(VData[I].Value, ValueKind, ValueMap); } std::vector<InstrProfValueSiteRecord> &ValueSites = getValueSitesForKind(ValueKind); if (N == 0) ValueSites.emplace_back(); else ValueSites.emplace_back(VData, VData + N); } #define INSTR_PROF_COMMON_API_IMPL #include "llvm/ProfileData/InstrProfData.inc" /*! * \brief ValueProfRecordClosure Interface implementation for InstrProfRecord * class. These C wrappers are used as adaptors so that C++ code can be * invoked as callbacks. */ uint32_t getNumValueKindsInstrProf(const void *Record) { return reinterpret_cast<const InstrProfRecord *>(Record)->getNumValueKinds(); } uint32_t getNumValueSitesInstrProf(const void *Record, uint32_t VKind) { return reinterpret_cast<const InstrProfRecord *>(Record) ->getNumValueSites(VKind); } uint32_t getNumValueDataInstrProf(const void *Record, uint32_t VKind) { return reinterpret_cast<const InstrProfRecord *>(Record) ->getNumValueData(VKind); } uint32_t getNumValueDataForSiteInstrProf(const void *R, uint32_t VK, uint32_t S) { return reinterpret_cast<const InstrProfRecord *>(R) ->getNumValueDataForSite(VK, S); } void getValueForSiteInstrProf(const void *R, InstrProfValueData *Dst, uint32_t K, uint32_t S) { reinterpret_cast<const InstrProfRecord *>(R)->getValueForSite(Dst, K, S); } ValueProfData *allocValueProfDataInstrProf(size_t TotalSizeInBytes) { ValueProfData *VD = (ValueProfData *)(new (::operator new(TotalSizeInBytes)) ValueProfData()); memset(VD, 0, TotalSizeInBytes); return VD; } static ValueProfRecordClosure InstrProfRecordClosure = { nullptr, getNumValueKindsInstrProf, getNumValueSitesInstrProf, getNumValueDataInstrProf, getNumValueDataForSiteInstrProf, nullptr, getValueForSiteInstrProf, allocValueProfDataInstrProf}; // Wrapper implementation using the closure mechanism. uint32_t ValueProfData::getSize(const InstrProfRecord &Record) { InstrProfRecordClosure.Record = &Record; return getValueProfDataSize(&InstrProfRecordClosure); } // Wrapper implementation using the closure mechanism. std::unique_ptr<ValueProfData> ValueProfData::serializeFrom(const InstrProfRecord &Record) { InstrProfRecordClosure.Record = &Record; std::unique_ptr<ValueProfData> VPD( serializeValueProfDataFrom(&InstrProfRecordClosure, nullptr)); return VPD; } void ValueProfRecord::deserializeTo(InstrProfRecord &Record, InstrProfRecord::ValueMapType *VMap) { Record.reserveSites(Kind, NumValueSites); InstrProfValueData *ValueData = getValueProfRecordValueData(this); for (uint64_t VSite = 0; VSite < NumValueSites; ++VSite) { uint8_t ValueDataCount = this->SiteCountArray[VSite]; Record.addValueData(Kind, VSite, ValueData, ValueDataCount, VMap); ValueData += ValueDataCount; } } // For writing/serializing, Old is the host endianness, and New is // byte order intended on disk. For Reading/deserialization, Old // is the on-disk source endianness, and New is the host endianness. void ValueProfRecord::swapBytes(support::endianness Old, support::endianness New) { using namespace support; if (Old == New) return; if (getHostEndianness() != Old) { sys::swapByteOrder<uint32_t>(NumValueSites); sys::swapByteOrder<uint32_t>(Kind); } uint32_t ND = getValueProfRecordNumValueData(this); InstrProfValueData *VD = getValueProfRecordValueData(this); // No need to swap byte array: SiteCountArrray. for (uint32_t I = 0; I < ND; I++) { sys::swapByteOrder<uint64_t>(VD[I].Value); sys::swapByteOrder<uint64_t>(VD[I].Count); } if (getHostEndianness() == Old) { sys::swapByteOrder<uint32_t>(NumValueSites); sys::swapByteOrder<uint32_t>(Kind); } } void ValueProfData::deserializeTo(InstrProfRecord &Record, InstrProfRecord::ValueMapType *VMap) { if (NumValueKinds == 0) return; ValueProfRecord *VR = getFirstValueProfRecord(this); for (uint32_t K = 0; K < NumValueKinds; K++) { VR->deserializeTo(Record, VMap); VR = getValueProfRecordNext(VR); } } template <class T> static T swapToHostOrder(const unsigned char *&D, support::endianness Orig) { using namespace support; if (Orig == little) return endian::readNext<T, little, unaligned>(D); else return endian::readNext<T, big, unaligned>(D); } static std::unique_ptr<ValueProfData> allocValueProfData(uint32_t TotalSize) { return std::unique_ptr<ValueProfData>(new (::operator new(TotalSize)) ValueProfData()); } Error ValueProfData::checkIntegrity() { if (NumValueKinds > IPVK_Last + 1) return make_error<InstrProfError>(instrprof_error::malformed); // Total size needs to be mulltiple of quadword size. if (TotalSize % sizeof(uint64_t)) return make_error<InstrProfError>(instrprof_error::malformed); ValueProfRecord *VR = getFirstValueProfRecord(this); for (uint32_t K = 0; K < this->NumValueKinds; K++) { if (VR->Kind > IPVK_Last) return make_error<InstrProfError>(instrprof_error::malformed); VR = getValueProfRecordNext(VR); if ((char *)VR - (char *)this > (ptrdiff_t)TotalSize) return make_error<InstrProfError>(instrprof_error::malformed); } return Error::success(); } Expected<std::unique_ptr<ValueProfData>> ValueProfData::getValueProfData(const unsigned char *D, const unsigned char *const BufferEnd, support::endianness Endianness) { using namespace support; if (D + sizeof(ValueProfData) > BufferEnd) return make_error<InstrProfError>(instrprof_error::truncated); const unsigned char *Header = D; uint32_t TotalSize = swapToHostOrder<uint32_t>(Header, Endianness); if (D + TotalSize > BufferEnd) return make_error<InstrProfError>(instrprof_error::too_large); std::unique_ptr<ValueProfData> VPD = allocValueProfData(TotalSize); memcpy(VPD.get(), D, TotalSize); // Byte swap. VPD->swapBytesToHost(Endianness); Error E = VPD->checkIntegrity(); if (E) return std::move(E); return std::move(VPD); } void ValueProfData::swapBytesToHost(support::endianness Endianness) { using namespace support; if (Endianness == getHostEndianness()) return; sys::swapByteOrder<uint32_t>(TotalSize); sys::swapByteOrder<uint32_t>(NumValueKinds); ValueProfRecord *VR = getFirstValueProfRecord(this); for (uint32_t K = 0; K < NumValueKinds; K++) { VR->swapBytes(Endianness, getHostEndianness()); VR = getValueProfRecordNext(VR); } } void ValueProfData::swapBytesFromHost(support::endianness Endianness) { using namespace support; if (Endianness == getHostEndianness()) return; ValueProfRecord *VR = getFirstValueProfRecord(this); for (uint32_t K = 0; K < NumValueKinds; K++) { ValueProfRecord *NVR = getValueProfRecordNext(VR); VR->swapBytes(getHostEndianness(), Endianness); VR = NVR; } sys::swapByteOrder<uint32_t>(TotalSize); sys::swapByteOrder<uint32_t>(NumValueKinds); } void annotateValueSite(Module &M, Instruction &Inst, const InstrProfRecord &InstrProfR, InstrProfValueKind ValueKind, uint32_t SiteIdx, uint32_t MaxMDCount) { uint32_t NV = InstrProfR.getNumValueDataForSite(ValueKind, SiteIdx); if (!NV) return; uint64_t Sum = 0; std::unique_ptr<InstrProfValueData[]> VD = InstrProfR.getValueForSite(ValueKind, SiteIdx, &Sum); ArrayRef<InstrProfValueData> VDs(VD.get(), NV); annotateValueSite(M, Inst, VDs, Sum, ValueKind, MaxMDCount); } void annotateValueSite(Module &M, Instruction &Inst, ArrayRef<InstrProfValueData> VDs, uint64_t Sum, InstrProfValueKind ValueKind, uint32_t MaxMDCount) { LLVMContext &Ctx = M.getContext(); MDBuilder MDHelper(Ctx); SmallVector<Metadata *, 3> Vals; // Tag Vals.push_back(MDHelper.createString("VP")); // Value Kind Vals.push_back(MDHelper.createConstant( ConstantInt::get(Type::getInt32Ty(Ctx), ValueKind))); // Total Count Vals.push_back( MDHelper.createConstant(ConstantInt::get(Type::getInt64Ty(Ctx), Sum))); // Value Profile Data uint32_t MDCount = MaxMDCount; for (auto &VD : VDs) { Vals.push_back(MDHelper.createConstant( ConstantInt::get(Type::getInt64Ty(Ctx), VD.Value))); Vals.push_back(MDHelper.createConstant( ConstantInt::get(Type::getInt64Ty(Ctx), VD.Count))); if (--MDCount == 0) break; } Inst.setMetadata(LLVMContext::MD_prof, MDNode::get(Ctx, Vals)); } bool getValueProfDataFromInst(const Instruction &Inst, InstrProfValueKind ValueKind, uint32_t MaxNumValueData, InstrProfValueData ValueData[], uint32_t &ActualNumValueData, uint64_t &TotalC) { MDNode *MD = Inst.getMetadata(LLVMContext::MD_prof); if (!MD) return false; unsigned NOps = MD->getNumOperands(); if (NOps < 5) return false; // Operand 0 is a string tag "VP": MDString *Tag = cast<MDString>(MD->getOperand(0)); if (!Tag) return false; if (!Tag->getString().equals("VP")) return false; // Now check kind: ConstantInt *KindInt = mdconst::dyn_extract<ConstantInt>(MD->getOperand(1)); if (!KindInt) return false; if (KindInt->getZExtValue() != ValueKind) return false; // Get total count ConstantInt *TotalCInt = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); if (!TotalCInt) return false; TotalC = TotalCInt->getZExtValue(); ActualNumValueData = 0; for (unsigned I = 3; I < NOps; I += 2) { if (ActualNumValueData >= MaxNumValueData) break; ConstantInt *Value = mdconst::dyn_extract<ConstantInt>(MD->getOperand(I)); ConstantInt *Count = mdconst::dyn_extract<ConstantInt>(MD->getOperand(I + 1)); if (!Value || !Count) return false; ValueData[ActualNumValueData].Value = Value->getZExtValue(); ValueData[ActualNumValueData].Count = Count->getZExtValue(); ActualNumValueData++; } return true; } MDNode *getPGOFuncNameMetadata(const Function &F) { return F.getMetadata(getPGOFuncNameMetadataName()); } void createPGOFuncNameMetadata(Function &F, StringRef PGOFuncName) { // Only for internal linkage functions. if (PGOFuncName == F.getName()) return; // Don't create duplicated meta-data. if (getPGOFuncNameMetadata(F)) return; LLVMContext &C = F.getContext(); MDNode *N = MDNode::get(C, MDString::get(C, PGOFuncName)); F.setMetadata(getPGOFuncNameMetadataName(), N); } } // end namespace llvm