//=-- CoverageMappingReader.cpp - Code coverage mapping reader ----*- C++ -*-=// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains support for reading coverage mapping data for // instrumentation based coverage. // //===----------------------------------------------------------------------===// #include "llvm/ProfileData/Coverage/CoverageMappingReader.h" #include "llvm/ADT/DenseMap.h" #include "llvm/Object/MachOUniversal.h" #include "llvm/Object/ObjectFile.h" #include "llvm/Support/Debug.h" #include "llvm/Support/Endian.h" #include "llvm/Support/LEB128.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; using namespace coverage; using namespace object; #define DEBUG_TYPE "coverage-mapping" void CoverageMappingIterator::increment() { // Check if all the records were read or if an error occurred while reading // the next record. if (auto E = Reader->readNextRecord(Record)) { handleAllErrors(std::move(E), [&](const CoverageMapError &CME) { if (CME.get() == coveragemap_error::eof) *this = CoverageMappingIterator(); else llvm_unreachable("Unexpected error in coverage mapping iterator"); }); } } Error RawCoverageReader::readULEB128(uint64_t &Result) { if (Data.size() < 1) return make_error<CoverageMapError>(coveragemap_error::truncated); unsigned N = 0; Result = decodeULEB128(reinterpret_cast<const uint8_t *>(Data.data()), &N); if (N > Data.size()) return make_error<CoverageMapError>(coveragemap_error::malformed); Data = Data.substr(N); return Error::success(); } Error RawCoverageReader::readIntMax(uint64_t &Result, uint64_t MaxPlus1) { if (auto Err = readULEB128(Result)) return Err; if (Result >= MaxPlus1) return make_error<CoverageMapError>(coveragemap_error::malformed); return Error::success(); } Error RawCoverageReader::readSize(uint64_t &Result) { if (auto Err = readULEB128(Result)) return Err; // Sanity check the number. if (Result > Data.size()) return make_error<CoverageMapError>(coveragemap_error::malformed); return Error::success(); } Error RawCoverageReader::readString(StringRef &Result) { uint64_t Length; if (auto Err = readSize(Length)) return Err; Result = Data.substr(0, Length); Data = Data.substr(Length); return Error::success(); } Error RawCoverageFilenamesReader::read() { uint64_t NumFilenames; if (auto Err = readSize(NumFilenames)) return Err; for (size_t I = 0; I < NumFilenames; ++I) { StringRef Filename; if (auto Err = readString(Filename)) return Err; Filenames.push_back(Filename); } return Error::success(); } Error RawCoverageMappingReader::decodeCounter(unsigned Value, Counter &C) { auto Tag = Value & Counter::EncodingTagMask; switch (Tag) { case Counter::Zero: C = Counter::getZero(); return Error::success(); case Counter::CounterValueReference: C = Counter::getCounter(Value >> Counter::EncodingTagBits); return Error::success(); default: break; } Tag -= Counter::Expression; switch (Tag) { case CounterExpression::Subtract: case CounterExpression::Add: { auto ID = Value >> Counter::EncodingTagBits; if (ID >= Expressions.size()) return make_error<CoverageMapError>(coveragemap_error::malformed); Expressions[ID].Kind = CounterExpression::ExprKind(Tag); C = Counter::getExpression(ID); break; } default: return make_error<CoverageMapError>(coveragemap_error::malformed); } return Error::success(); } Error RawCoverageMappingReader::readCounter(Counter &C) { uint64_t EncodedCounter; if (auto Err = readIntMax(EncodedCounter, std::numeric_limits<unsigned>::max())) return Err; if (auto Err = decodeCounter(EncodedCounter, C)) return Err; return Error::success(); } static const unsigned EncodingExpansionRegionBit = 1 << Counter::EncodingTagBits; /// \brief Read the sub-array of regions for the given inferred file id. /// \param NumFileIDs the number of file ids that are defined for this /// function. Error RawCoverageMappingReader::readMappingRegionsSubArray( std::vector<CounterMappingRegion> &MappingRegions, unsigned InferredFileID, size_t NumFileIDs) { uint64_t NumRegions; if (auto Err = readSize(NumRegions)) return Err; unsigned LineStart = 0; for (size_t I = 0; I < NumRegions; ++I) { Counter C; CounterMappingRegion::RegionKind Kind = CounterMappingRegion::CodeRegion; // Read the combined counter + region kind. uint64_t EncodedCounterAndRegion; if (auto Err = readIntMax(EncodedCounterAndRegion, std::numeric_limits<unsigned>::max())) return Err; unsigned Tag = EncodedCounterAndRegion & Counter::EncodingTagMask; uint64_t ExpandedFileID = 0; if (Tag != Counter::Zero) { if (auto Err = decodeCounter(EncodedCounterAndRegion, C)) return Err; } else { // Is it an expansion region? if (EncodedCounterAndRegion & EncodingExpansionRegionBit) { Kind = CounterMappingRegion::ExpansionRegion; ExpandedFileID = EncodedCounterAndRegion >> Counter::EncodingCounterTagAndExpansionRegionTagBits; if (ExpandedFileID >= NumFileIDs) return make_error<CoverageMapError>(coveragemap_error::malformed); } else { switch (EncodedCounterAndRegion >> Counter::EncodingCounterTagAndExpansionRegionTagBits) { case CounterMappingRegion::CodeRegion: // Don't do anything when we have a code region with a zero counter. break; case CounterMappingRegion::SkippedRegion: Kind = CounterMappingRegion::SkippedRegion; break; default: return make_error<CoverageMapError>(coveragemap_error::malformed); } } } // Read the source range. uint64_t LineStartDelta, ColumnStart, NumLines, ColumnEnd; if (auto Err = readIntMax(LineStartDelta, std::numeric_limits<unsigned>::max())) return Err; if (auto Err = readULEB128(ColumnStart)) return Err; if (ColumnStart > std::numeric_limits<unsigned>::max()) return make_error<CoverageMapError>(coveragemap_error::malformed); if (auto Err = readIntMax(NumLines, std::numeric_limits<unsigned>::max())) return Err; if (auto Err = readIntMax(ColumnEnd, std::numeric_limits<unsigned>::max())) return Err; LineStart += LineStartDelta; // Adjust the column locations for the empty regions that are supposed to // cover whole lines. Those regions should be encoded with the // column range (1 -> std::numeric_limits<unsigned>::max()), but because // the encoded std::numeric_limits<unsigned>::max() is several bytes long, // we set the column range to (0 -> 0) to ensure that the column start and // column end take up one byte each. // The std::numeric_limits<unsigned>::max() is used to represent a column // position at the end of the line without knowing the length of that line. if (ColumnStart == 0 && ColumnEnd == 0) { ColumnStart = 1; ColumnEnd = std::numeric_limits<unsigned>::max(); } DEBUG({ dbgs() << "Counter in file " << InferredFileID << " " << LineStart << ":" << ColumnStart << " -> " << (LineStart + NumLines) << ":" << ColumnEnd << ", "; if (Kind == CounterMappingRegion::ExpansionRegion) dbgs() << "Expands to file " << ExpandedFileID; else CounterMappingContext(Expressions).dump(C, dbgs()); dbgs() << "\n"; }); MappingRegions.push_back(CounterMappingRegion( C, InferredFileID, ExpandedFileID, LineStart, ColumnStart, LineStart + NumLines, ColumnEnd, Kind)); } return Error::success(); } Error RawCoverageMappingReader::read() { // Read the virtual file mapping. llvm::SmallVector<unsigned, 8> VirtualFileMapping; uint64_t NumFileMappings; if (auto Err = readSize(NumFileMappings)) return Err; for (size_t I = 0; I < NumFileMappings; ++I) { uint64_t FilenameIndex; if (auto Err = readIntMax(FilenameIndex, TranslationUnitFilenames.size())) return Err; VirtualFileMapping.push_back(FilenameIndex); } // Construct the files using unique filenames and virtual file mapping. for (auto I : VirtualFileMapping) { Filenames.push_back(TranslationUnitFilenames[I]); } // Read the expressions. uint64_t NumExpressions; if (auto Err = readSize(NumExpressions)) return Err; // Create an array of dummy expressions that get the proper counters // when the expressions are read, and the proper kinds when the counters // are decoded. Expressions.resize( NumExpressions, CounterExpression(CounterExpression::Subtract, Counter(), Counter())); for (size_t I = 0; I < NumExpressions; ++I) { if (auto Err = readCounter(Expressions[I].LHS)) return Err; if (auto Err = readCounter(Expressions[I].RHS)) return Err; } // Read the mapping regions sub-arrays. for (unsigned InferredFileID = 0, S = VirtualFileMapping.size(); InferredFileID < S; ++InferredFileID) { if (auto Err = readMappingRegionsSubArray(MappingRegions, InferredFileID, VirtualFileMapping.size())) return Err; } // Set the counters for the expansion regions. // i.e. Counter of expansion region = counter of the first region // from the expanded file. // Perform multiple passes to correctly propagate the counters through // all the nested expansion regions. SmallVector<CounterMappingRegion *, 8> FileIDExpansionRegionMapping; FileIDExpansionRegionMapping.resize(VirtualFileMapping.size(), nullptr); for (unsigned Pass = 1, S = VirtualFileMapping.size(); Pass < S; ++Pass) { for (auto &R : MappingRegions) { if (R.Kind != CounterMappingRegion::ExpansionRegion) continue; assert(!FileIDExpansionRegionMapping[R.ExpandedFileID]); FileIDExpansionRegionMapping[R.ExpandedFileID] = &R; } for (auto &R : MappingRegions) { if (FileIDExpansionRegionMapping[R.FileID]) { FileIDExpansionRegionMapping[R.FileID]->Count = R.Count; FileIDExpansionRegionMapping[R.FileID] = nullptr; } } } return Error::success(); } Expected<bool> RawCoverageMappingDummyChecker::isDummy() { // A dummy coverage mapping data consists of just one region with zero count. uint64_t NumFileMappings; if (Error Err = readSize(NumFileMappings)) return std::move(Err); if (NumFileMappings != 1) return false; // We don't expect any specific value for the filename index, just skip it. uint64_t FilenameIndex; if (Error Err = readIntMax(FilenameIndex, std::numeric_limits<unsigned>::max())) return std::move(Err); uint64_t NumExpressions; if (Error Err = readSize(NumExpressions)) return std::move(Err); if (NumExpressions != 0) return false; uint64_t NumRegions; if (Error Err = readSize(NumRegions)) return std::move(Err); if (NumRegions != 1) return false; uint64_t EncodedCounterAndRegion; if (Error Err = readIntMax(EncodedCounterAndRegion, std::numeric_limits<unsigned>::max())) return std::move(Err); unsigned Tag = EncodedCounterAndRegion & Counter::EncodingTagMask; return Tag == Counter::Zero; } Error InstrProfSymtab::create(SectionRef &Section) { if (auto EC = Section.getContents(Data)) return errorCodeToError(EC); Address = Section.getAddress(); return Error::success(); } StringRef InstrProfSymtab::getFuncName(uint64_t Pointer, size_t Size) { if (Pointer < Address) return StringRef(); auto Offset = Pointer - Address; if (Offset + Size > Data.size()) return StringRef(); return Data.substr(Pointer - Address, Size); } // Check if the mapping data is a dummy, i.e. is emitted for an unused function. static Expected<bool> isCoverageMappingDummy(uint64_t Hash, StringRef Mapping) { // The hash value of dummy mapping records is always zero. if (Hash) return false; return RawCoverageMappingDummyChecker(Mapping).isDummy(); } namespace { struct CovMapFuncRecordReader { // The interface to read coverage mapping function records for a module. // // \p Buf points to the buffer containing the \c CovHeader of the coverage // mapping data associated with the module. // // Returns a pointer to the next \c CovHeader if it exists, or a pointer // greater than \p End if not. virtual Expected<const char *> readFunctionRecords(const char *Buf, const char *End) = 0; virtual ~CovMapFuncRecordReader() {} template <class IntPtrT, support::endianness Endian> static Expected<std::unique_ptr<CovMapFuncRecordReader>> get(coverage::CovMapVersion Version, InstrProfSymtab &P, std::vector<BinaryCoverageReader::ProfileMappingRecord> &R, std::vector<StringRef> &F); }; // A class for reading coverage mapping function records for a module. template <coverage::CovMapVersion Version, class IntPtrT, support::endianness Endian> class VersionedCovMapFuncRecordReader : public CovMapFuncRecordReader { typedef typename coverage::CovMapTraits< Version, IntPtrT>::CovMapFuncRecordType FuncRecordType; typedef typename coverage::CovMapTraits<Version, IntPtrT>::NameRefType NameRefType; // Maps function's name references to the indexes of their records // in \c Records. llvm::DenseMap<NameRefType, size_t> FunctionRecords; InstrProfSymtab &ProfileNames; std::vector<StringRef> &Filenames; std::vector<BinaryCoverageReader::ProfileMappingRecord> &Records; // Add the record to the collection if we don't already have a record that // points to the same function name. This is useful to ignore the redundant // records for the functions with ODR linkage. // In addition, prefer records with real coverage mapping data to dummy // records, which were emitted for inline functions which were seen but // not used in the corresponding translation unit. Error insertFunctionRecordIfNeeded(const FuncRecordType *CFR, StringRef Mapping, size_t FilenamesBegin) { uint64_t FuncHash = CFR->template getFuncHash<Endian>(); NameRefType NameRef = CFR->template getFuncNameRef<Endian>(); auto InsertResult = FunctionRecords.insert(std::make_pair(NameRef, Records.size())); if (InsertResult.second) { StringRef FuncName; if (Error Err = CFR->template getFuncName<Endian>(ProfileNames, FuncName)) return Err; Records.emplace_back(Version, FuncName, FuncHash, Mapping, FilenamesBegin, Filenames.size() - FilenamesBegin); return Error::success(); } // Update the existing record if it's a dummy and the new record is real. size_t OldRecordIndex = InsertResult.first->second; BinaryCoverageReader::ProfileMappingRecord &OldRecord = Records[OldRecordIndex]; Expected<bool> OldIsDummyExpected = isCoverageMappingDummy( OldRecord.FunctionHash, OldRecord.CoverageMapping); if (Error Err = OldIsDummyExpected.takeError()) return Err; if (!*OldIsDummyExpected) return Error::success(); Expected<bool> NewIsDummyExpected = isCoverageMappingDummy(FuncHash, Mapping); if (Error Err = NewIsDummyExpected.takeError()) return Err; if (*NewIsDummyExpected) return Error::success(); OldRecord.FunctionHash = FuncHash; OldRecord.CoverageMapping = Mapping; OldRecord.FilenamesBegin = FilenamesBegin; OldRecord.FilenamesSize = Filenames.size() - FilenamesBegin; return Error::success(); } public: VersionedCovMapFuncRecordReader( InstrProfSymtab &P, std::vector<BinaryCoverageReader::ProfileMappingRecord> &R, std::vector<StringRef> &F) : ProfileNames(P), Filenames(F), Records(R) {} ~VersionedCovMapFuncRecordReader() override {} Expected<const char *> readFunctionRecords(const char *Buf, const char *End) override { using namespace support; if (Buf + sizeof(CovMapHeader) > End) return make_error<CoverageMapError>(coveragemap_error::malformed); auto CovHeader = reinterpret_cast<const coverage::CovMapHeader *>(Buf); uint32_t NRecords = CovHeader->getNRecords<Endian>(); uint32_t FilenamesSize = CovHeader->getFilenamesSize<Endian>(); uint32_t CoverageSize = CovHeader->getCoverageSize<Endian>(); assert((CovMapVersion)CovHeader->getVersion<Endian>() == Version); Buf = reinterpret_cast<const char *>(CovHeader + 1); // Skip past the function records, saving the start and end for later. const char *FunBuf = Buf; Buf += NRecords * sizeof(FuncRecordType); const char *FunEnd = Buf; // Get the filenames. if (Buf + FilenamesSize > End) return make_error<CoverageMapError>(coveragemap_error::malformed); size_t FilenamesBegin = Filenames.size(); RawCoverageFilenamesReader Reader(StringRef(Buf, FilenamesSize), Filenames); if (auto Err = Reader.read()) return std::move(Err); Buf += FilenamesSize; // We'll read the coverage mapping records in the loop below. const char *CovBuf = Buf; Buf += CoverageSize; const char *CovEnd = Buf; if (Buf > End) return make_error<CoverageMapError>(coveragemap_error::malformed); // Each coverage map has an alignment of 8, so we need to adjust alignment // before reading the next map. Buf += alignmentAdjustment(Buf, 8); auto CFR = reinterpret_cast<const FuncRecordType *>(FunBuf); while ((const char *)CFR < FunEnd) { // Read the function information uint32_t DataSize = CFR->template getDataSize<Endian>(); // Now use that to read the coverage data. if (CovBuf + DataSize > CovEnd) return make_error<CoverageMapError>(coveragemap_error::malformed); auto Mapping = StringRef(CovBuf, DataSize); CovBuf += DataSize; if (Error Err = insertFunctionRecordIfNeeded(CFR, Mapping, FilenamesBegin)) return std::move(Err); CFR++; } return Buf; } }; } // end anonymous namespace template <class IntPtrT, support::endianness Endian> Expected<std::unique_ptr<CovMapFuncRecordReader>> CovMapFuncRecordReader::get( coverage::CovMapVersion Version, InstrProfSymtab &P, std::vector<BinaryCoverageReader::ProfileMappingRecord> &R, std::vector<StringRef> &F) { using namespace coverage; switch (Version) { case CovMapVersion::Version1: return llvm::make_unique<VersionedCovMapFuncRecordReader< CovMapVersion::Version1, IntPtrT, Endian>>(P, R, F); case CovMapVersion::Version2: // Decompress the name data. if (Error E = P.create(P.getNameData())) return std::move(E); return llvm::make_unique<VersionedCovMapFuncRecordReader< CovMapVersion::Version2, IntPtrT, Endian>>(P, R, F); } llvm_unreachable("Unsupported version"); } template <typename T, support::endianness Endian> static Error readCoverageMappingData( InstrProfSymtab &ProfileNames, StringRef Data, std::vector<BinaryCoverageReader::ProfileMappingRecord> &Records, std::vector<StringRef> &Filenames) { using namespace coverage; // Read the records in the coverage data section. auto CovHeader = reinterpret_cast<const coverage::CovMapHeader *>(Data.data()); CovMapVersion Version = (CovMapVersion)CovHeader->getVersion<Endian>(); if (Version > coverage::CovMapVersion::CurrentVersion) return make_error<CoverageMapError>(coveragemap_error::unsupported_version); Expected<std::unique_ptr<CovMapFuncRecordReader>> ReaderExpected = CovMapFuncRecordReader::get<T, Endian>(Version, ProfileNames, Records, Filenames); if (Error E = ReaderExpected.takeError()) return E; auto Reader = std::move(ReaderExpected.get()); for (const char *Buf = Data.data(), *End = Buf + Data.size(); Buf < End;) { auto NextHeaderOrErr = Reader->readFunctionRecords(Buf, End); if (auto E = NextHeaderOrErr.takeError()) return E; Buf = NextHeaderOrErr.get(); } return Error::success(); } static const char *TestingFormatMagic = "llvmcovmtestdata"; static Error loadTestingFormat(StringRef Data, InstrProfSymtab &ProfileNames, StringRef &CoverageMapping, uint8_t &BytesInAddress, support::endianness &Endian) { BytesInAddress = 8; Endian = support::endianness::little; Data = Data.substr(StringRef(TestingFormatMagic).size()); if (Data.size() < 1) return make_error<CoverageMapError>(coveragemap_error::truncated); unsigned N = 0; auto ProfileNamesSize = decodeULEB128(reinterpret_cast<const uint8_t *>(Data.data()), &N); if (N > Data.size()) return make_error<CoverageMapError>(coveragemap_error::malformed); Data = Data.substr(N); if (Data.size() < 1) return make_error<CoverageMapError>(coveragemap_error::truncated); N = 0; uint64_t Address = decodeULEB128(reinterpret_cast<const uint8_t *>(Data.data()), &N); if (N > Data.size()) return make_error<CoverageMapError>(coveragemap_error::malformed); Data = Data.substr(N); if (Data.size() < ProfileNamesSize) return make_error<CoverageMapError>(coveragemap_error::malformed); if (Error E = ProfileNames.create(Data.substr(0, ProfileNamesSize), Address)) return E; CoverageMapping = Data.substr(ProfileNamesSize); // Skip the padding bytes because coverage map data has an alignment of 8. if (CoverageMapping.size() < 1) return make_error<CoverageMapError>(coveragemap_error::truncated); size_t Pad = alignmentAdjustment(CoverageMapping.data(), 8); if (CoverageMapping.size() < Pad) return make_error<CoverageMapError>(coveragemap_error::malformed); CoverageMapping = CoverageMapping.substr(Pad); return Error::success(); } static Expected<SectionRef> lookupSection(ObjectFile &OF, StringRef Name) { StringRef FoundName; for (const auto &Section : OF.sections()) { if (auto EC = Section.getName(FoundName)) return errorCodeToError(EC); if (FoundName == Name) return Section; } return make_error<CoverageMapError>(coveragemap_error::no_data_found); } static Error loadBinaryFormat(MemoryBufferRef ObjectBuffer, InstrProfSymtab &ProfileNames, StringRef &CoverageMapping, uint8_t &BytesInAddress, support::endianness &Endian, StringRef Arch) { auto BinOrErr = object::createBinary(ObjectBuffer); if (!BinOrErr) return BinOrErr.takeError(); auto Bin = std::move(BinOrErr.get()); std::unique_ptr<ObjectFile> OF; if (auto *Universal = dyn_cast<object::MachOUniversalBinary>(Bin.get())) { // If we have a universal binary, try to look up the object for the // appropriate architecture. auto ObjectFileOrErr = Universal->getObjectForArch(Arch); if (!ObjectFileOrErr) return ObjectFileOrErr.takeError(); OF = std::move(ObjectFileOrErr.get()); } else if (isa<object::ObjectFile>(Bin.get())) { // For any other object file, upcast and take ownership. OF.reset(cast<object::ObjectFile>(Bin.release())); // If we've asked for a particular arch, make sure they match. if (!Arch.empty() && OF->getArch() != Triple(Arch).getArch()) return errorCodeToError(object_error::arch_not_found); } else // We can only handle object files. return make_error<CoverageMapError>(coveragemap_error::malformed); // The coverage uses native pointer sizes for the object it's written in. BytesInAddress = OF->getBytesInAddress(); Endian = OF->isLittleEndian() ? support::endianness::little : support::endianness::big; // Look for the sections that we are interested in. auto NamesSection = lookupSection(*OF, getInstrProfNameSectionName(false)); if (auto E = NamesSection.takeError()) return E; auto CoverageSection = lookupSection(*OF, getInstrProfCoverageSectionName(false)); if (auto E = CoverageSection.takeError()) return E; // Get the contents of the given sections. if (auto EC = CoverageSection->getContents(CoverageMapping)) return errorCodeToError(EC); if (Error E = ProfileNames.create(*NamesSection)) return E; return Error::success(); } Expected<std::unique_ptr<BinaryCoverageReader>> BinaryCoverageReader::create(std::unique_ptr<MemoryBuffer> &ObjectBuffer, StringRef Arch) { std::unique_ptr<BinaryCoverageReader> Reader(new BinaryCoverageReader()); StringRef Coverage; uint8_t BytesInAddress; support::endianness Endian; Error E; consumeError(std::move(E)); if (ObjectBuffer->getBuffer().startswith(TestingFormatMagic)) // This is a special format used for testing. E = loadTestingFormat(ObjectBuffer->getBuffer(), Reader->ProfileNames, Coverage, BytesInAddress, Endian); else E = loadBinaryFormat(ObjectBuffer->getMemBufferRef(), Reader->ProfileNames, Coverage, BytesInAddress, Endian, Arch); if (E) return std::move(E); if (BytesInAddress == 4 && Endian == support::endianness::little) E = readCoverageMappingData<uint32_t, support::endianness::little>( Reader->ProfileNames, Coverage, Reader->MappingRecords, Reader->Filenames); else if (BytesInAddress == 4 && Endian == support::endianness::big) E = readCoverageMappingData<uint32_t, support::endianness::big>( Reader->ProfileNames, Coverage, Reader->MappingRecords, Reader->Filenames); else if (BytesInAddress == 8 && Endian == support::endianness::little) E = readCoverageMappingData<uint64_t, support::endianness::little>( Reader->ProfileNames, Coverage, Reader->MappingRecords, Reader->Filenames); else if (BytesInAddress == 8 && Endian == support::endianness::big) E = readCoverageMappingData<uint64_t, support::endianness::big>( Reader->ProfileNames, Coverage, Reader->MappingRecords, Reader->Filenames); else return make_error<CoverageMapError>(coveragemap_error::malformed); if (E) return std::move(E); return std::move(Reader); } Error BinaryCoverageReader::readNextRecord(CoverageMappingRecord &Record) { if (CurrentRecord >= MappingRecords.size()) return make_error<CoverageMapError>(coveragemap_error::eof); FunctionsFilenames.clear(); Expressions.clear(); MappingRegions.clear(); auto &R = MappingRecords[CurrentRecord]; RawCoverageMappingReader Reader( R.CoverageMapping, makeArrayRef(Filenames).slice(R.FilenamesBegin, R.FilenamesSize), FunctionsFilenames, Expressions, MappingRegions); if (auto Err = Reader.read()) return Err; Record.FunctionName = R.FunctionName; Record.FunctionHash = R.FunctionHash; Record.Filenames = FunctionsFilenames; Record.Expressions = Expressions; Record.MappingRegions = MappingRegions; ++CurrentRecord; return Error::success(); }