//===- MappedBlockStream.cpp - Reads stream data from a PDBFile -----------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "llvm/DebugInfo/PDB/Raw/MappedBlockStream.h" #include "llvm/DebugInfo/PDB/Raw/DirectoryStreamData.h" #include "llvm/DebugInfo/PDB/Raw/IPDBStreamData.h" #include "llvm/DebugInfo/PDB/Raw/IndexedStreamData.h" #include "llvm/DebugInfo/PDB/Raw/PDBFile.h" #include "llvm/DebugInfo/PDB/Raw/RawError.h" using namespace llvm; using namespace llvm::pdb; namespace { // This exists so that we can use make_unique while still keeping the // constructor of MappedBlockStream private, forcing users to go through // the `create` interface. class MappedBlockStreamImpl : public MappedBlockStream { public: MappedBlockStreamImpl(std::unique_ptr<IPDBStreamData> Data, const IPDBFile &File) : MappedBlockStream(std::move(Data), File) {} }; } typedef std::pair<uint32_t, uint32_t> Interval; static Interval intersect(const Interval &I1, const Interval &I2) { return std::make_pair(std::max(I1.first, I2.first), std::min(I1.second, I2.second)); } MappedBlockStream::MappedBlockStream(std::unique_ptr<IPDBStreamData> Data, const IPDBFile &Pdb) : Pdb(Pdb), Data(std::move(Data)) {} Error MappedBlockStream::readBytes(uint32_t Offset, uint32_t Size, ArrayRef<uint8_t> &Buffer) const { // Make sure we aren't trying to read beyond the end of the stream. if (Size > Data->getLength()) return make_error<RawError>(raw_error_code::insufficient_buffer); if (Offset > Data->getLength() - Size) return make_error<RawError>(raw_error_code::insufficient_buffer); if (tryReadContiguously(Offset, Size, Buffer)) return Error::success(); auto CacheIter = CacheMap.find(Offset); if (CacheIter != CacheMap.end()) { // Try to find an alloc that was large enough for this request. for (auto &Entry : CacheIter->second) { if (Entry.size() >= Size) { Buffer = Entry.slice(0, Size); return Error::success(); } } } // We couldn't find a buffer that started at the correct offset (the most // common scenario). Try to see if there is a buffer that starts at some // other offset but overlaps the desired range. for (auto &CacheItem : CacheMap) { Interval RequestExtent = std::make_pair(Offset, Offset + Size); // We already checked this one on the fast path above. if (CacheItem.first == Offset) continue; // If the initial extent of the cached item is beyond the ending extent // of the request, there is no overlap. if (CacheItem.first >= Offset + Size) continue; // We really only have to check the last item in the list, since we append // in order of increasing length. if (CacheItem.second.empty()) continue; auto CachedAlloc = CacheItem.second.back(); // If the initial extent of the request is beyond the ending extent of // the cached item, there is no overlap. Interval CachedExtent = std::make_pair(CacheItem.first, CacheItem.first + CachedAlloc.size()); if (RequestExtent.first >= CachedExtent.first + CachedExtent.second) continue; Interval Intersection = intersect(CachedExtent, RequestExtent); // Only use this if the entire request extent is contained in the cached // extent. if (Intersection != RequestExtent) continue; uint32_t CacheRangeOffset = AbsoluteDifference(CachedExtent.first, Intersection.first); Buffer = CachedAlloc.slice(CacheRangeOffset, Size); return Error::success(); } // Otherwise allocate a large enough buffer in the pool, memcpy the data // into it, and return an ArrayRef to that. Do not touch existing pool // allocations, as existing clients may be holding a pointer which must // not be invalidated. uint8_t *WriteBuffer = static_cast<uint8_t *>(Pool.Allocate(Size, 8)); if (auto EC = readBytes(Offset, MutableArrayRef<uint8_t>(WriteBuffer, Size))) return EC; if (CacheIter != CacheMap.end()) { CacheIter->second.emplace_back(WriteBuffer, Size); } else { std::vector<CacheEntry> List; List.emplace_back(WriteBuffer, Size); CacheMap.insert(std::make_pair(Offset, List)); } Buffer = ArrayRef<uint8_t>(WriteBuffer, Size); return Error::success(); } Error MappedBlockStream::readLongestContiguousChunk( uint32_t Offset, ArrayRef<uint8_t> &Buffer) const { // Make sure we aren't trying to read beyond the end of the stream. if (Offset >= Data->getLength()) return make_error<RawError>(raw_error_code::insufficient_buffer); uint32_t First = Offset / Pdb.getBlockSize(); uint32_t Last = First; auto BlockList = Data->getStreamBlocks(); while (Last < Pdb.getBlockCount() - 1) { if (BlockList[Last] != BlockList[Last + 1] - 1) break; ++Last; } uint32_t OffsetInFirstBlock = Offset % Pdb.getBlockSize(); uint32_t BytesFromFirstBlock = Pdb.getBlockSize() - OffsetInFirstBlock; uint32_t BlockSpan = Last - First + 1; uint32_t ByteSpan = BytesFromFirstBlock + (BlockSpan - 1) * Pdb.getBlockSize(); auto Result = Pdb.getBlockData(BlockList[First], Pdb.getBlockSize()); if (!Result) return Result.takeError(); Buffer = Result->drop_front(OffsetInFirstBlock); Buffer = ArrayRef<uint8_t>(Buffer.data(), ByteSpan); return Error::success(); } uint32_t MappedBlockStream::getLength() const { return Data->getLength(); } Error MappedBlockStream::commit() const { return Error::success(); } bool MappedBlockStream::tryReadContiguously(uint32_t Offset, uint32_t Size, ArrayRef<uint8_t> &Buffer) const { // Attempt to fulfill the request with a reference directly into the stream. // This can work even if the request crosses a block boundary, provided that // all subsequent blocks are contiguous. For example, a 10k read with a 4k // block size can be filled with a reference if, from the starting offset, // 3 blocks in a row are contiguous. uint32_t BlockNum = Offset / Pdb.getBlockSize(); uint32_t OffsetInBlock = Offset % Pdb.getBlockSize(); uint32_t BytesFromFirstBlock = std::min(Size, Pdb.getBlockSize() - OffsetInBlock); uint32_t NumAdditionalBlocks = llvm::alignTo(Size - BytesFromFirstBlock, Pdb.getBlockSize()) / Pdb.getBlockSize(); auto BlockList = Data->getStreamBlocks(); uint32_t RequiredContiguousBlocks = NumAdditionalBlocks + 1; uint32_t E = BlockList[BlockNum]; for (uint32_t I = 0; I < RequiredContiguousBlocks; ++I, ++E) { if (BlockList[I + BlockNum] != E) return false; } uint32_t FirstBlockAddr = BlockList[BlockNum]; auto Result = Pdb.getBlockData(FirstBlockAddr, Pdb.getBlockSize()); if (!Result) { consumeError(Result.takeError()); return false; } auto Data = Result->drop_front(OffsetInBlock); Buffer = ArrayRef<uint8_t>(Data.data(), Size); return true; } Error MappedBlockStream::readBytes(uint32_t Offset, MutableArrayRef<uint8_t> Buffer) const { uint32_t BlockNum = Offset / Pdb.getBlockSize(); uint32_t OffsetInBlock = Offset % Pdb.getBlockSize(); // Make sure we aren't trying to read beyond the end of the stream. if (Buffer.size() > Data->getLength()) return make_error<RawError>(raw_error_code::insufficient_buffer); if (Offset > Data->getLength() - Buffer.size()) return make_error<RawError>(raw_error_code::insufficient_buffer); uint32_t BytesLeft = Buffer.size(); uint32_t BytesWritten = 0; uint8_t *WriteBuffer = Buffer.data(); auto BlockList = Data->getStreamBlocks(); while (BytesLeft > 0) { uint32_t StreamBlockAddr = BlockList[BlockNum]; auto Result = Pdb.getBlockData(StreamBlockAddr, Pdb.getBlockSize()); if (!Result) return Result.takeError(); auto Data = *Result; const uint8_t *ChunkStart = Data.data() + OffsetInBlock; uint32_t BytesInChunk = std::min(BytesLeft, Pdb.getBlockSize() - OffsetInBlock); ::memcpy(WriteBuffer + BytesWritten, ChunkStart, BytesInChunk); BytesWritten += BytesInChunk; BytesLeft -= BytesInChunk; ++BlockNum; OffsetInBlock = 0; } return Error::success(); } Error MappedBlockStream::writeBytes(uint32_t Offset, ArrayRef<uint8_t> Buffer) const { // Make sure we aren't trying to write beyond the end of the stream. if (Buffer.size() > Data->getLength()) return make_error<RawError>(raw_error_code::insufficient_buffer); if (Offset > Data->getLength() - Buffer.size()) return make_error<RawError>(raw_error_code::insufficient_buffer); uint32_t BlockNum = Offset / Pdb.getBlockSize(); uint32_t OffsetInBlock = Offset % Pdb.getBlockSize(); uint32_t BytesLeft = Buffer.size(); auto BlockList = Data->getStreamBlocks(); uint32_t BytesWritten = 0; while (BytesLeft > 0) { uint32_t StreamBlockAddr = BlockList[BlockNum]; uint32_t BytesToWriteInChunk = std::min(BytesLeft, Pdb.getBlockSize() - OffsetInBlock); const uint8_t *Chunk = Buffer.data() + BytesWritten; ArrayRef<uint8_t> ChunkData(Chunk, BytesToWriteInChunk); if (auto EC = Pdb.setBlockData(StreamBlockAddr, OffsetInBlock, ChunkData)) return EC; BytesLeft -= BytesToWriteInChunk; BytesWritten += BytesToWriteInChunk; ++BlockNum; OffsetInBlock = 0; } // If this write overlapped a read which previously came from the pool, // someone may still be holding a pointer to that alloc which is now invalid. // Compute the overlapping range and update the cache entry, so any // outstanding buffers are automatically updated. for (const auto &MapEntry : CacheMap) { // If the end of the written extent precedes the beginning of the cached // extent, ignore this map entry. if (Offset + BytesWritten < MapEntry.first) continue; for (const auto &Alloc : MapEntry.second) { // If the end of the cached extent precedes the beginning of the written // extent, ignore this alloc. if (MapEntry.first + Alloc.size() < Offset) continue; // If we get here, they are guaranteed to overlap. Interval WriteInterval = std::make_pair(Offset, Offset + BytesWritten); Interval CachedInterval = std::make_pair(MapEntry.first, MapEntry.first + Alloc.size()); // If they overlap, we need to write the new data into the overlapping // range. auto Intersection = intersect(WriteInterval, CachedInterval); assert(Intersection.first <= Intersection.second); uint32_t Length = Intersection.second - Intersection.first; uint32_t SrcOffset = AbsoluteDifference(WriteInterval.first, Intersection.first); uint32_t DestOffset = AbsoluteDifference(CachedInterval.first, Intersection.first); ::memcpy(Alloc.data() + DestOffset, Buffer.data() + SrcOffset, Length); } } return Error::success(); } uint32_t MappedBlockStream::getNumBytesCopied() const { return static_cast<uint32_t>(Pool.getBytesAllocated()); } Expected<std::unique_ptr<MappedBlockStream>> MappedBlockStream::createIndexedStream(uint32_t StreamIdx, const IPDBFile &File) { if (StreamIdx >= File.getNumStreams()) return make_error<RawError>(raw_error_code::no_stream); auto Data = llvm::make_unique<IndexedStreamData>(StreamIdx, File); return llvm::make_unique<MappedBlockStreamImpl>(std::move(Data), File); } Expected<std::unique_ptr<MappedBlockStream>> MappedBlockStream::createDirectoryStream(const PDBFile &File) { auto Data = llvm::make_unique<DirectoryStreamData>(File); return llvm::make_unique<MappedBlockStreamImpl>(std::move(Data), File); }