//===-- MachineBlockPlacement.cpp - Basic Block Code Layout optimization --===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements basic block placement transformations using the CFG // structure and branch probability estimates. // // The pass strives to preserve the structure of the CFG (that is, retain // a topological ordering of basic blocks) in the absence of a *strong* signal // to the contrary from probabilities. However, within the CFG structure, it // attempts to choose an ordering which favors placing more likely sequences of // blocks adjacent to each other. // // The algorithm works from the inner-most loop within a function outward, and // at each stage walks through the basic blocks, trying to coalesce them into // sequential chains where allowed by the CFG (or demanded by heavy // probabilities). Finally, it walks the blocks in topological order, and the // first time it reaches a chain of basic blocks, it schedules them in the // function in-order. // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/Passes.h" #include "llvm/CodeGen/TargetPassConfig.h" #include "BranchFolding.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" #include "llvm/CodeGen/MachineDominators.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineLoopInfo.h" #include "llvm/CodeGen/MachineModuleInfo.h" #include "llvm/Support/Allocator.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetLowering.h" #include "llvm/Target/TargetSubtargetInfo.h" #include <algorithm> using namespace llvm; #define DEBUG_TYPE "block-placement" STATISTIC(NumCondBranches, "Number of conditional branches"); STATISTIC(NumUncondBranches, "Number of unconditional branches"); STATISTIC(CondBranchTakenFreq, "Potential frequency of taking conditional branches"); STATISTIC(UncondBranchTakenFreq, "Potential frequency of taking unconditional branches"); static cl::opt<unsigned> AlignAllBlock("align-all-blocks", cl::desc("Force the alignment of all " "blocks in the function."), cl::init(0), cl::Hidden); static cl::opt<unsigned> AlignAllNonFallThruBlocks( "align-all-nofallthru-blocks", cl::desc("Force the alignment of all " "blocks that have no fall-through predecessors (i.e. don't add " "nops that are executed)."), cl::init(0), cl::Hidden); // FIXME: Find a good default for this flag and remove the flag. static cl::opt<unsigned> ExitBlockBias( "block-placement-exit-block-bias", cl::desc("Block frequency percentage a loop exit block needs " "over the original exit to be considered the new exit."), cl::init(0), cl::Hidden); static cl::opt<bool> OutlineOptionalBranches( "outline-optional-branches", cl::desc("Put completely optional branches, i.e. branches with a common " "post dominator, out of line."), cl::init(false), cl::Hidden); static cl::opt<unsigned> OutlineOptionalThreshold( "outline-optional-threshold", cl::desc("Don't outline optional branches that are a single block with an " "instruction count below this threshold"), cl::init(4), cl::Hidden); static cl::opt<unsigned> LoopToColdBlockRatio( "loop-to-cold-block-ratio", cl::desc("Outline loop blocks from loop chain if (frequency of loop) / " "(frequency of block) is greater than this ratio"), cl::init(5), cl::Hidden); static cl::opt<bool> PreciseRotationCost("precise-rotation-cost", cl::desc("Model the cost of loop rotation more " "precisely by using profile data."), cl::init(false), cl::Hidden); static cl::opt<bool> ForcePreciseRotationCost("force-precise-rotation-cost", cl::desc("Force the use of precise cost " "loop rotation strategy."), cl::init(false), cl::Hidden); static cl::opt<unsigned> MisfetchCost( "misfetch-cost", cl::desc("Cost that models the probablistic risk of an instruction " "misfetch due to a jump comparing to falling through, whose cost " "is zero."), cl::init(1), cl::Hidden); static cl::opt<unsigned> JumpInstCost("jump-inst-cost", cl::desc("Cost of jump instructions."), cl::init(1), cl::Hidden); static cl::opt<bool> BranchFoldPlacement("branch-fold-placement", cl::desc("Perform branch folding during placement. " "Reduces code size."), cl::init(true), cl::Hidden); extern cl::opt<unsigned> StaticLikelyProb; extern cl::opt<unsigned> ProfileLikelyProb; namespace { class BlockChain; /// \brief Type for our function-wide basic block -> block chain mapping. typedef DenseMap<MachineBasicBlock *, BlockChain *> BlockToChainMapType; } namespace { /// \brief A chain of blocks which will be laid out contiguously. /// /// This is the datastructure representing a chain of consecutive blocks that /// are profitable to layout together in order to maximize fallthrough /// probabilities and code locality. We also can use a block chain to represent /// a sequence of basic blocks which have some external (correctness) /// requirement for sequential layout. /// /// Chains can be built around a single basic block and can be merged to grow /// them. They participate in a block-to-chain mapping, which is updated /// automatically as chains are merged together. class BlockChain { /// \brief The sequence of blocks belonging to this chain. /// /// This is the sequence of blocks for a particular chain. These will be laid /// out in-order within the function. SmallVector<MachineBasicBlock *, 4> Blocks; /// \brief A handle to the function-wide basic block to block chain mapping. /// /// This is retained in each block chain to simplify the computation of child /// block chains for SCC-formation and iteration. We store the edges to child /// basic blocks, and map them back to their associated chains using this /// structure. BlockToChainMapType &BlockToChain; public: /// \brief Construct a new BlockChain. /// /// This builds a new block chain representing a single basic block in the /// function. It also registers itself as the chain that block participates /// in with the BlockToChain mapping. BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB) : Blocks(1, BB), BlockToChain(BlockToChain), UnscheduledPredecessors(0) { assert(BB && "Cannot create a chain with a null basic block"); BlockToChain[BB] = this; } /// \brief Iterator over blocks within the chain. typedef SmallVectorImpl<MachineBasicBlock *>::iterator iterator; /// \brief Beginning of blocks within the chain. iterator begin() { return Blocks.begin(); } /// \brief End of blocks within the chain. iterator end() { return Blocks.end(); } /// \brief Merge a block chain into this one. /// /// This routine merges a block chain into this one. It takes care of forming /// a contiguous sequence of basic blocks, updating the edge list, and /// updating the block -> chain mapping. It does not free or tear down the /// old chain, but the old chain's block list is no longer valid. void merge(MachineBasicBlock *BB, BlockChain *Chain) { assert(BB); assert(!Blocks.empty()); // Fast path in case we don't have a chain already. if (!Chain) { assert(!BlockToChain[BB]); Blocks.push_back(BB); BlockToChain[BB] = this; return; } assert(BB == *Chain->begin()); assert(Chain->begin() != Chain->end()); // Update the incoming blocks to point to this chain, and add them to the // chain structure. for (MachineBasicBlock *ChainBB : *Chain) { Blocks.push_back(ChainBB); assert(BlockToChain[ChainBB] == Chain && "Incoming blocks not in chain"); BlockToChain[ChainBB] = this; } } #ifndef NDEBUG /// \brief Dump the blocks in this chain. LLVM_DUMP_METHOD void dump() { for (MachineBasicBlock *MBB : *this) MBB->dump(); } #endif // NDEBUG /// \brief Count of predecessors of any block within the chain which have not /// yet been scheduled. In general, we will delay scheduling this chain /// until those predecessors are scheduled (or we find a sufficiently good /// reason to override this heuristic.) Note that when forming loop chains, /// blocks outside the loop are ignored and treated as if they were already /// scheduled. /// /// Note: This field is reinitialized multiple times - once for each loop, /// and then once for the function as a whole. unsigned UnscheduledPredecessors; }; } namespace { class MachineBlockPlacement : public MachineFunctionPass { /// \brief A typedef for a block filter set. typedef SmallPtrSet<MachineBasicBlock *, 16> BlockFilterSet; /// \brief work lists of blocks that are ready to be laid out SmallVector<MachineBasicBlock *, 16> BlockWorkList; SmallVector<MachineBasicBlock *, 16> EHPadWorkList; /// \brief Machine Function MachineFunction *F; /// \brief A handle to the branch probability pass. const MachineBranchProbabilityInfo *MBPI; /// \brief A handle to the function-wide block frequency pass. std::unique_ptr<BranchFolder::MBFIWrapper> MBFI; /// \brief A handle to the loop info. MachineLoopInfo *MLI; /// \brief A handle to the target's instruction info. const TargetInstrInfo *TII; /// \brief A handle to the target's lowering info. const TargetLoweringBase *TLI; /// \brief A handle to the post dominator tree. MachineDominatorTree *MDT; /// \brief A set of blocks that are unavoidably execute, i.e. they dominate /// all terminators of the MachineFunction. SmallPtrSet<MachineBasicBlock *, 4> UnavoidableBlocks; /// \brief Allocator and owner of BlockChain structures. /// /// We build BlockChains lazily while processing the loop structure of /// a function. To reduce malloc traffic, we allocate them using this /// slab-like allocator, and destroy them after the pass completes. An /// important guarantee is that this allocator produces stable pointers to /// the chains. SpecificBumpPtrAllocator<BlockChain> ChainAllocator; /// \brief Function wide BasicBlock to BlockChain mapping. /// /// This mapping allows efficiently moving from any given basic block to the /// BlockChain it participates in, if any. We use it to, among other things, /// allow implicitly defining edges between chains as the existing edges /// between basic blocks. DenseMap<MachineBasicBlock *, BlockChain *> BlockToChain; void markChainSuccessors(BlockChain &Chain, MachineBasicBlock *LoopHeaderBB, const BlockFilterSet *BlockFilter = nullptr); BranchProbability collectViableSuccessors(MachineBasicBlock *BB, BlockChain &Chain, const BlockFilterSet *BlockFilter, SmallVector<MachineBasicBlock *, 4> &Successors); bool shouldPredBlockBeOutlined(MachineBasicBlock *BB, MachineBasicBlock *Succ, BlockChain &Chain, const BlockFilterSet *BlockFilter, BranchProbability SuccProb, BranchProbability HotProb); bool hasBetterLayoutPredecessor(MachineBasicBlock *BB, MachineBasicBlock *Succ, BlockChain &SuccChain, BranchProbability SuccProb, BranchProbability RealSuccProb, BlockChain &Chain, const BlockFilterSet *BlockFilter); MachineBasicBlock *selectBestSuccessor(MachineBasicBlock *BB, BlockChain &Chain, const BlockFilterSet *BlockFilter); MachineBasicBlock * selectBestCandidateBlock(BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList); MachineBasicBlock * getFirstUnplacedBlock(const BlockChain &PlacedChain, MachineFunction::iterator &PrevUnplacedBlockIt, const BlockFilterSet *BlockFilter); /// \brief Add a basic block to the work list if it is apropriate. /// /// If the optional parameter BlockFilter is provided, only MBB /// present in the set will be added to the worklist. If nullptr /// is provided, no filtering occurs. void fillWorkLists(MachineBasicBlock *MBB, SmallPtrSetImpl<BlockChain *> &UpdatedPreds, const BlockFilterSet *BlockFilter); void buildChain(MachineBasicBlock *BB, BlockChain &Chain, const BlockFilterSet *BlockFilter = nullptr); MachineBasicBlock *findBestLoopTop(MachineLoop &L, const BlockFilterSet &LoopBlockSet); MachineBasicBlock *findBestLoopExit(MachineLoop &L, const BlockFilterSet &LoopBlockSet); BlockFilterSet collectLoopBlockSet(MachineLoop &L); void buildLoopChains(MachineLoop &L); void rotateLoop(BlockChain &LoopChain, MachineBasicBlock *ExitingBB, const BlockFilterSet &LoopBlockSet); void rotateLoopWithProfile(BlockChain &LoopChain, MachineLoop &L, const BlockFilterSet &LoopBlockSet); void collectMustExecuteBBs(); void buildCFGChains(); void optimizeBranches(); void alignBlocks(); public: static char ID; // Pass identification, replacement for typeid MachineBlockPlacement() : MachineFunctionPass(ID) { initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry()); } bool runOnMachineFunction(MachineFunction &F) override; void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addRequired<MachineBranchProbabilityInfo>(); AU.addRequired<MachineBlockFrequencyInfo>(); AU.addRequired<MachineDominatorTree>(); AU.addRequired<MachineLoopInfo>(); AU.addRequired<TargetPassConfig>(); MachineFunctionPass::getAnalysisUsage(AU); } }; } char MachineBlockPlacement::ID = 0; char &llvm::MachineBlockPlacementID = MachineBlockPlacement::ID; INITIALIZE_PASS_BEGIN(MachineBlockPlacement, "block-placement", "Branch Probability Basic Block Placement", false, false) INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) INITIALIZE_PASS_END(MachineBlockPlacement, "block-placement", "Branch Probability Basic Block Placement", false, false) #ifndef NDEBUG /// \brief Helper to print the name of a MBB. /// /// Only used by debug logging. static std::string getBlockName(MachineBasicBlock *BB) { std::string Result; raw_string_ostream OS(Result); OS << "BB#" << BB->getNumber(); OS << " ('" << BB->getName() << "')"; OS.flush(); return Result; } #endif /// \brief Mark a chain's successors as having one fewer preds. /// /// When a chain is being merged into the "placed" chain, this routine will /// quickly walk the successors of each block in the chain and mark them as /// having one fewer active predecessor. It also adds any successors of this /// chain which reach the zero-predecessor state to the worklist passed in. void MachineBlockPlacement::markChainSuccessors( BlockChain &Chain, MachineBasicBlock *LoopHeaderBB, const BlockFilterSet *BlockFilter) { // Walk all the blocks in this chain, marking their successors as having // a predecessor placed. for (MachineBasicBlock *MBB : Chain) { // Add any successors for which this is the only un-placed in-loop // predecessor to the worklist as a viable candidate for CFG-neutral // placement. No subsequent placement of this block will violate the CFG // shape, so we get to use heuristics to choose a favorable placement. for (MachineBasicBlock *Succ : MBB->successors()) { if (BlockFilter && !BlockFilter->count(Succ)) continue; BlockChain &SuccChain = *BlockToChain[Succ]; // Disregard edges within a fixed chain, or edges to the loop header. if (&Chain == &SuccChain || Succ == LoopHeaderBB) continue; // This is a cross-chain edge that is within the loop, so decrement the // loop predecessor count of the destination chain. if (SuccChain.UnscheduledPredecessors == 0 || --SuccChain.UnscheduledPredecessors > 0) continue; auto *MBB = *SuccChain.begin(); if (MBB->isEHPad()) EHPadWorkList.push_back(MBB); else BlockWorkList.push_back(MBB); } } } /// This helper function collects the set of successors of block /// \p BB that are allowed to be its layout successors, and return /// the total branch probability of edges from \p BB to those /// blocks. BranchProbability MachineBlockPlacement::collectViableSuccessors( MachineBasicBlock *BB, BlockChain &Chain, const BlockFilterSet *BlockFilter, SmallVector<MachineBasicBlock *, 4> &Successors) { // Adjust edge probabilities by excluding edges pointing to blocks that is // either not in BlockFilter or is already in the current chain. Consider the // following CFG: // // --->A // | / \ // | B C // | \ / \ // ----D E // // Assume A->C is very hot (>90%), and C->D has a 50% probability, then after // A->C is chosen as a fall-through, D won't be selected as a successor of C // due to CFG constraint (the probability of C->D is not greater than // HotProb to break top-oorder). If we exclude E that is not in BlockFilter // when calculating the probability of C->D, D will be selected and we // will get A C D B as the layout of this loop. auto AdjustedSumProb = BranchProbability::getOne(); for (MachineBasicBlock *Succ : BB->successors()) { bool SkipSucc = false; if (Succ->isEHPad() || (BlockFilter && !BlockFilter->count(Succ))) { SkipSucc = true; } else { BlockChain *SuccChain = BlockToChain[Succ]; if (SuccChain == &Chain) { SkipSucc = true; } else if (Succ != *SuccChain->begin()) { DEBUG(dbgs() << " " << getBlockName(Succ) << " -> Mid chain!\n"); continue; } } if (SkipSucc) AdjustedSumProb -= MBPI->getEdgeProbability(BB, Succ); else Successors.push_back(Succ); } return AdjustedSumProb; } /// The helper function returns the branch probability that is adjusted /// or normalized over the new total \p AdjustedSumProb. static BranchProbability getAdjustedProbability(BranchProbability OrigProb, BranchProbability AdjustedSumProb) { BranchProbability SuccProb; uint32_t SuccProbN = OrigProb.getNumerator(); uint32_t SuccProbD = AdjustedSumProb.getNumerator(); if (SuccProbN >= SuccProbD) SuccProb = BranchProbability::getOne(); else SuccProb = BranchProbability(SuccProbN, SuccProbD); return SuccProb; } /// When the option OutlineOptionalBranches is on, this method /// checks if the fallthrough candidate block \p Succ (of block /// \p BB) also has other unscheduled predecessor blocks which /// are also successors of \p BB (forming triagular shape CFG). /// If none of such predecessors are small, it returns true. /// The caller can choose to select \p Succ as the layout successors /// so that \p Succ's predecessors (optional branches) can be /// outlined. /// FIXME: fold this with more general layout cost analysis. bool MachineBlockPlacement::shouldPredBlockBeOutlined( MachineBasicBlock *BB, MachineBasicBlock *Succ, BlockChain &Chain, const BlockFilterSet *BlockFilter, BranchProbability SuccProb, BranchProbability HotProb) { if (!OutlineOptionalBranches) return false; // If we outline optional branches, look whether Succ is unavoidable, i.e. // dominates all terminators of the MachineFunction. If it does, other // successors must be optional. Don't do this for cold branches. if (SuccProb > HotProb.getCompl() && UnavoidableBlocks.count(Succ) > 0) { for (MachineBasicBlock *Pred : Succ->predecessors()) { // Check whether there is an unplaced optional branch. if (Pred == Succ || (BlockFilter && !BlockFilter->count(Pred)) || BlockToChain[Pred] == &Chain) continue; // Check whether the optional branch has exactly one BB. if (Pred->pred_size() > 1 || *Pred->pred_begin() != BB) continue; // Check whether the optional branch is small. if (Pred->size() < OutlineOptionalThreshold) return false; } return true; } else return false; } // When profile is not present, return the StaticLikelyProb. // When profile is available, we need to handle the triangle-shape CFG. static BranchProbability getLayoutSuccessorProbThreshold( MachineBasicBlock *BB) { if (!BB->getParent()->getFunction()->getEntryCount()) return BranchProbability(StaticLikelyProb, 100); if (BB->succ_size() == 2) { const MachineBasicBlock *Succ1 = *BB->succ_begin(); const MachineBasicBlock *Succ2 = *(BB->succ_begin() + 1); if (Succ1->isSuccessor(Succ2) || Succ2->isSuccessor(Succ1)) { /* See case 1 below for the cost analysis. For BB->Succ to * be taken with smaller cost, the following needs to hold: * Prob(BB->Succ) > 2* Prob(BB->Pred) * So the threshold T * T = 2 * (1-Prob(BB->Pred). Since T + Prob(BB->Pred) == 1, * We have T + T/2 = 1, i.e. T = 2/3. Also adding user specified * branch bias, we have * T = (2/3)*(ProfileLikelyProb/50) * = (2*ProfileLikelyProb)/150) */ return BranchProbability(2 * ProfileLikelyProb, 150); } } return BranchProbability(ProfileLikelyProb, 100); } /// Checks to see if the layout candidate block \p Succ has a better layout /// predecessor than \c BB. If yes, returns true. bool MachineBlockPlacement::hasBetterLayoutPredecessor( MachineBasicBlock *BB, MachineBasicBlock *Succ, BlockChain &SuccChain, BranchProbability SuccProb, BranchProbability RealSuccProb, BlockChain &Chain, const BlockFilterSet *BlockFilter) { // This is no global conflict, just return false. if (SuccChain.UnscheduledPredecessors == 0) return false; // There are two basic scenarios here: // ------------------------------------- // Case 1: triagular shape CFG: // BB // | \ // | \ // | Pred // | / // Succ // In this case, we are evaluating whether to select edge -> Succ, e.g. // set Succ as the layout successor of BB. Picking Succ as BB's // successor breaks the CFG constraints. With this layout, Pred BB // is forced to be outlined, so the overall cost will be cost of the // branch taken from BB to Pred, plus the cost of back taken branch // from Pred to Succ, as well as the additional cost asssociated // with the needed unconditional jump instruction from Pred To Succ. // The cost of the topological order layout is the taken branch cost // from BB to Succ, so to make BB->Succ a viable candidate, the following // must hold: // 2 * freq(BB->Pred) * taken_branch_cost + unconditional_jump_cost // < freq(BB->Succ) * taken_branch_cost. // Ignoring unconditional jump cost, we get // freq(BB->Succ) > 2 * freq(BB->Pred), i.e., // prob(BB->Succ) > 2 * prob(BB->Pred) // // When real profile data is available, we can precisely compute the the // probabililty threshold that is needed for edge BB->Succ to be considered. // With out profile data, the heuristic requires the branch bias to be // a lot larger to make sure the signal is very strong (e.g. 80% default). // ----------------------------------------------------------------- // Case 2: diamond like CFG: // S // / \ // | \ // BB Pred // \ / // Succ // .. // In this case, edge S->BB has already been selected, and we are evaluating // candidate edge BB->Succ. Edge S->BB is selected because prob(S->BB) // is no less than prob(S->Pred). When real profile data is *available*, if // the condition is true, it will be always better to continue the trace with // edge BB->Succ instead of laying out with topological order (i.e. laying // Pred first). The cost of S->BB->Succ is 2 * freq (S->Pred), while with // the topo order, the cost is freq(S-> Pred) + Pred(S->BB) which is larger. // When profile data is not available, however, we need to be more // conservative. If the branch prediction is wrong, breaking the topo-order // will actually yield a layout with large cost. For this reason, we need // strong biaaed branch at block S with Prob(S->BB) in order to select // BB->Succ. This is equialant to looking the CFG backward with backward // edge: Prob(Succ->BB) needs to >= HotProb in order to be selected (without // profile data). BranchProbability HotProb = getLayoutSuccessorProbThreshold(BB); // Forward checking. For case 2, SuccProb will be 1. if (SuccProb < HotProb) { DEBUG(dbgs() << " " << getBlockName(Succ) << " -> " << SuccProb << " (prob) (CFG conflict)\n"); return true; } // Make sure that a hot successor doesn't have a globally more // important predecessor. BlockFrequency CandidateEdgeFreq = MBFI->getBlockFreq(BB) * RealSuccProb; bool BadCFGConflict = false; for (MachineBasicBlock *Pred : Succ->predecessors()) { if (Pred == Succ || BlockToChain[Pred] == &SuccChain || (BlockFilter && !BlockFilter->count(Pred)) || BlockToChain[Pred] == &Chain) continue; // Do backward checking. For case 1, it is actually redundant check. For // case 2 above, we need a backward checking to filter out edges that are // not 'strongly' biased. With profile data available, the check is mostly // redundant too (when threshold prob is set at 50%) unless S has more than // two successors. // BB Pred // \ / // Succ // We select edgee BB->Succ if // freq(BB->Succ) > freq(Succ) * HotProb // i.e. freq(BB->Succ) > freq(BB->Succ) * HotProb + freq(Pred->Succ) * // HotProb // i.e. freq((BB->Succ) * (1 - HotProb) > freq(Pred->Succ) * HotProb BlockFrequency PredEdgeFreq = MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, Succ); if (PredEdgeFreq * HotProb >= CandidateEdgeFreq * HotProb.getCompl()) { BadCFGConflict = true; break; } } if (BadCFGConflict) { DEBUG(dbgs() << " " << getBlockName(Succ) << " -> " << SuccProb << " (prob) (non-cold CFG conflict)\n"); return true; } return false; } /// \brief Select the best successor for a block. /// /// This looks across all successors of a particular block and attempts to /// select the "best" one to be the layout successor. It only considers direct /// successors which also pass the block filter. It will attempt to avoid /// breaking CFG structure, but cave and break such structures in the case of /// very hot successor edges. /// /// \returns The best successor block found, or null if none are viable. MachineBasicBlock * MachineBlockPlacement::selectBestSuccessor(MachineBasicBlock *BB, BlockChain &Chain, const BlockFilterSet *BlockFilter) { const BranchProbability HotProb(StaticLikelyProb, 100); MachineBasicBlock *BestSucc = nullptr; auto BestProb = BranchProbability::getZero(); SmallVector<MachineBasicBlock *, 4> Successors; auto AdjustedSumProb = collectViableSuccessors(BB, Chain, BlockFilter, Successors); DEBUG(dbgs() << "Attempting merge from: " << getBlockName(BB) << "\n"); for (MachineBasicBlock *Succ : Successors) { auto RealSuccProb = MBPI->getEdgeProbability(BB, Succ); BranchProbability SuccProb = getAdjustedProbability(RealSuccProb, AdjustedSumProb); // This heuristic is off by default. if (shouldPredBlockBeOutlined(BB, Succ, Chain, BlockFilter, SuccProb, HotProb)) return Succ; BlockChain &SuccChain = *BlockToChain[Succ]; // Skip the edge \c BB->Succ if block \c Succ has a better layout // predecessor that yields lower global cost. if (hasBetterLayoutPredecessor(BB, Succ, SuccChain, SuccProb, RealSuccProb, Chain, BlockFilter)) continue; DEBUG( dbgs() << " " << getBlockName(Succ) << " -> " << SuccProb << " (prob)" << (SuccChain.UnscheduledPredecessors != 0 ? " (CFG break)" : "") << "\n"); if (BestSucc && BestProb >= SuccProb) continue; BestSucc = Succ; BestProb = SuccProb; } return BestSucc; } /// \brief Select the best block from a worklist. /// /// This looks through the provided worklist as a list of candidate basic /// blocks and select the most profitable one to place. The definition of /// profitable only really makes sense in the context of a loop. This returns /// the most frequently visited block in the worklist, which in the case of /// a loop, is the one most desirable to be physically close to the rest of the /// loop body in order to improve icache behavior. /// /// \returns The best block found, or null if none are viable. MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock( BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList) { // Once we need to walk the worklist looking for a candidate, cleanup the // worklist of already placed entries. // FIXME: If this shows up on profiles, it could be folded (at the cost of // some code complexity) into the loop below. WorkList.erase(std::remove_if(WorkList.begin(), WorkList.end(), [&](MachineBasicBlock *BB) { return BlockToChain.lookup(BB) == &Chain; }), WorkList.end()); if (WorkList.empty()) return nullptr; bool IsEHPad = WorkList[0]->isEHPad(); MachineBasicBlock *BestBlock = nullptr; BlockFrequency BestFreq; for (MachineBasicBlock *MBB : WorkList) { assert(MBB->isEHPad() == IsEHPad); BlockChain &SuccChain = *BlockToChain[MBB]; if (&SuccChain == &Chain) continue; assert(SuccChain.UnscheduledPredecessors == 0 && "Found CFG-violating block"); BlockFrequency CandidateFreq = MBFI->getBlockFreq(MBB); DEBUG(dbgs() << " " << getBlockName(MBB) << " -> "; MBFI->printBlockFreq(dbgs(), CandidateFreq) << " (freq)\n"); // For ehpad, we layout the least probable first as to avoid jumping back // from least probable landingpads to more probable ones. // // FIXME: Using probability is probably (!) not the best way to achieve // this. We should probably have a more principled approach to layout // cleanup code. // // The goal is to get: // // +--------------------------+ // | V // InnerLp -> InnerCleanup OuterLp -> OuterCleanup -> Resume // // Rather than: // // +-------------------------------------+ // V | // OuterLp -> OuterCleanup -> Resume InnerLp -> InnerCleanup if (BestBlock && (IsEHPad ^ (BestFreq >= CandidateFreq))) continue; BestBlock = MBB; BestFreq = CandidateFreq; } return BestBlock; } /// \brief Retrieve the first unplaced basic block. /// /// This routine is called when we are unable to use the CFG to walk through /// all of the basic blocks and form a chain due to unnatural loops in the CFG. /// We walk through the function's blocks in order, starting from the /// LastUnplacedBlockIt. We update this iterator on each call to avoid /// re-scanning the entire sequence on repeated calls to this routine. MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock( const BlockChain &PlacedChain, MachineFunction::iterator &PrevUnplacedBlockIt, const BlockFilterSet *BlockFilter) { for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F->end(); I != E; ++I) { if (BlockFilter && !BlockFilter->count(&*I)) continue; if (BlockToChain[&*I] != &PlacedChain) { PrevUnplacedBlockIt = I; // Now select the head of the chain to which the unplaced block belongs // as the block to place. This will force the entire chain to be placed, // and satisfies the requirements of merging chains. return *BlockToChain[&*I]->begin(); } } return nullptr; } void MachineBlockPlacement::fillWorkLists( MachineBasicBlock *MBB, SmallPtrSetImpl<BlockChain *> &UpdatedPreds, const BlockFilterSet *BlockFilter = nullptr) { BlockChain &Chain = *BlockToChain[MBB]; if (!UpdatedPreds.insert(&Chain).second) return; assert(Chain.UnscheduledPredecessors == 0); for (MachineBasicBlock *ChainBB : Chain) { assert(BlockToChain[ChainBB] == &Chain); for (MachineBasicBlock *Pred : ChainBB->predecessors()) { if (BlockFilter && !BlockFilter->count(Pred)) continue; if (BlockToChain[Pred] == &Chain) continue; ++Chain.UnscheduledPredecessors; } } if (Chain.UnscheduledPredecessors != 0) return; MBB = *Chain.begin(); if (MBB->isEHPad()) EHPadWorkList.push_back(MBB); else BlockWorkList.push_back(MBB); } void MachineBlockPlacement::buildChain( MachineBasicBlock *BB, BlockChain &Chain, const BlockFilterSet *BlockFilter) { assert(BB && "BB must not be null.\n"); assert(BlockToChain[BB] == &Chain && "BlockToChainMap mis-match.\n"); MachineFunction::iterator PrevUnplacedBlockIt = F->begin(); MachineBasicBlock *LoopHeaderBB = BB; markChainSuccessors(Chain, LoopHeaderBB, BlockFilter); BB = *std::prev(Chain.end()); for (;;) { assert(BB && "null block found at end of chain in loop."); assert(BlockToChain[BB] == &Chain && "BlockToChainMap mis-match in loop."); assert(*std::prev(Chain.end()) == BB && "BB Not found at end of chain."); // Look for the best viable successor if there is one to place immediately // after this block. MachineBasicBlock *BestSucc = selectBestSuccessor(BB, Chain, BlockFilter); // If an immediate successor isn't available, look for the best viable // block among those we've identified as not violating the loop's CFG at // this point. This won't be a fallthrough, but it will increase locality. if (!BestSucc) BestSucc = selectBestCandidateBlock(Chain, BlockWorkList); if (!BestSucc) BestSucc = selectBestCandidateBlock(Chain, EHPadWorkList); if (!BestSucc) { BestSucc = getFirstUnplacedBlock(Chain, PrevUnplacedBlockIt, BlockFilter); if (!BestSucc) break; DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the " "layout successor until the CFG reduces\n"); } // Place this block, updating the datastructures to reflect its placement. BlockChain &SuccChain = *BlockToChain[BestSucc]; // Zero out UnscheduledPredecessors for the successor we're about to merge in case // we selected a successor that didn't fit naturally into the CFG. SuccChain.UnscheduledPredecessors = 0; DEBUG(dbgs() << "Merging from " << getBlockName(BB) << " to " << getBlockName(BestSucc) << "\n"); markChainSuccessors(SuccChain, LoopHeaderBB, BlockFilter); Chain.merge(BestSucc, &SuccChain); BB = *std::prev(Chain.end()); } DEBUG(dbgs() << "Finished forming chain for header block " << getBlockName(*Chain.begin()) << "\n"); } /// \brief Find the best loop top block for layout. /// /// Look for a block which is strictly better than the loop header for laying /// out at the top of the loop. This looks for one and only one pattern: /// a latch block with no conditional exit. This block will cause a conditional /// jump around it or will be the bottom of the loop if we lay it out in place, /// but if it it doesn't end up at the bottom of the loop for any reason, /// rotation alone won't fix it. Because such a block will always result in an /// unconditional jump (for the backedge) rotating it in front of the loop /// header is always profitable. MachineBasicBlock * MachineBlockPlacement::findBestLoopTop(MachineLoop &L, const BlockFilterSet &LoopBlockSet) { // Check that the header hasn't been fused with a preheader block due to // crazy branches. If it has, we need to start with the header at the top to // prevent pulling the preheader into the loop body. BlockChain &HeaderChain = *BlockToChain[L.getHeader()]; if (!LoopBlockSet.count(*HeaderChain.begin())) return L.getHeader(); DEBUG(dbgs() << "Finding best loop top for: " << getBlockName(L.getHeader()) << "\n"); BlockFrequency BestPredFreq; MachineBasicBlock *BestPred = nullptr; for (MachineBasicBlock *Pred : L.getHeader()->predecessors()) { if (!LoopBlockSet.count(Pred)) continue; DEBUG(dbgs() << " header pred: " << getBlockName(Pred) << ", " << Pred->succ_size() << " successors, "; MBFI->printBlockFreq(dbgs(), Pred) << " freq\n"); if (Pred->succ_size() > 1) continue; BlockFrequency PredFreq = MBFI->getBlockFreq(Pred); if (!BestPred || PredFreq > BestPredFreq || (!(PredFreq < BestPredFreq) && Pred->isLayoutSuccessor(L.getHeader()))) { BestPred = Pred; BestPredFreq = PredFreq; } } // If no direct predecessor is fine, just use the loop header. if (!BestPred) { DEBUG(dbgs() << " final top unchanged\n"); return L.getHeader(); } // Walk backwards through any straight line of predecessors. while (BestPred->pred_size() == 1 && (*BestPred->pred_begin())->succ_size() == 1 && *BestPred->pred_begin() != L.getHeader()) BestPred = *BestPred->pred_begin(); DEBUG(dbgs() << " final top: " << getBlockName(BestPred) << "\n"); return BestPred; } /// \brief Find the best loop exiting block for layout. /// /// This routine implements the logic to analyze the loop looking for the best /// block to layout at the top of the loop. Typically this is done to maximize /// fallthrough opportunities. MachineBasicBlock * MachineBlockPlacement::findBestLoopExit(MachineLoop &L, const BlockFilterSet &LoopBlockSet) { // We don't want to layout the loop linearly in all cases. If the loop header // is just a normal basic block in the loop, we want to look for what block // within the loop is the best one to layout at the top. However, if the loop // header has be pre-merged into a chain due to predecessors not having // analyzable branches, *and* the predecessor it is merged with is *not* part // of the loop, rotating the header into the middle of the loop will create // a non-contiguous range of blocks which is Very Bad. So start with the // header and only rotate if safe. BlockChain &HeaderChain = *BlockToChain[L.getHeader()]; if (!LoopBlockSet.count(*HeaderChain.begin())) return nullptr; BlockFrequency BestExitEdgeFreq; unsigned BestExitLoopDepth = 0; MachineBasicBlock *ExitingBB = nullptr; // If there are exits to outer loops, loop rotation can severely limit // fallthrough opportunites unless it selects such an exit. Keep a set of // blocks where rotating to exit with that block will reach an outer loop. SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop; DEBUG(dbgs() << "Finding best loop exit for: " << getBlockName(L.getHeader()) << "\n"); for (MachineBasicBlock *MBB : L.getBlocks()) { BlockChain &Chain = *BlockToChain[MBB]; // Ensure that this block is at the end of a chain; otherwise it could be // mid-way through an inner loop or a successor of an unanalyzable branch. if (MBB != *std::prev(Chain.end())) continue; // Now walk the successors. We need to establish whether this has a viable // exiting successor and whether it has a viable non-exiting successor. // We store the old exiting state and restore it if a viable looping // successor isn't found. MachineBasicBlock *OldExitingBB = ExitingBB; BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq; bool HasLoopingSucc = false; for (MachineBasicBlock *Succ : MBB->successors()) { if (Succ->isEHPad()) continue; if (Succ == MBB) continue; BlockChain &SuccChain = *BlockToChain[Succ]; // Don't split chains, either this chain or the successor's chain. if (&Chain == &SuccChain) { DEBUG(dbgs() << " exiting: " << getBlockName(MBB) << " -> " << getBlockName(Succ) << " (chain conflict)\n"); continue; } auto SuccProb = MBPI->getEdgeProbability(MBB, Succ); if (LoopBlockSet.count(Succ)) { DEBUG(dbgs() << " looping: " << getBlockName(MBB) << " -> " << getBlockName(Succ) << " (" << SuccProb << ")\n"); HasLoopingSucc = true; continue; } unsigned SuccLoopDepth = 0; if (MachineLoop *ExitLoop = MLI->getLoopFor(Succ)) { SuccLoopDepth = ExitLoop->getLoopDepth(); if (ExitLoop->contains(&L)) BlocksExitingToOuterLoop.insert(MBB); } BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(MBB) * SuccProb; DEBUG(dbgs() << " exiting: " << getBlockName(MBB) << " -> " << getBlockName(Succ) << " [L:" << SuccLoopDepth << "] ("; MBFI->printBlockFreq(dbgs(), ExitEdgeFreq) << ")\n"); // Note that we bias this toward an existing layout successor to retain // incoming order in the absence of better information. The exit must have // a frequency higher than the current exit before we consider breaking // the layout. BranchProbability Bias(100 - ExitBlockBias, 100); if (!ExitingBB || SuccLoopDepth > BestExitLoopDepth || ExitEdgeFreq > BestExitEdgeFreq || (MBB->isLayoutSuccessor(Succ) && !(ExitEdgeFreq < BestExitEdgeFreq * Bias))) { BestExitEdgeFreq = ExitEdgeFreq; ExitingBB = MBB; } } if (!HasLoopingSucc) { // Restore the old exiting state, no viable looping successor was found. ExitingBB = OldExitingBB; BestExitEdgeFreq = OldBestExitEdgeFreq; } } // Without a candidate exiting block or with only a single block in the // loop, just use the loop header to layout the loop. if (!ExitingBB || L.getNumBlocks() == 1) return nullptr; // Also, if we have exit blocks which lead to outer loops but didn't select // one of them as the exiting block we are rotating toward, disable loop // rotation altogether. if (!BlocksExitingToOuterLoop.empty() && !BlocksExitingToOuterLoop.count(ExitingBB)) return nullptr; DEBUG(dbgs() << " Best exiting block: " << getBlockName(ExitingBB) << "\n"); return ExitingBB; } /// \brief Attempt to rotate an exiting block to the bottom of the loop. /// /// Once we have built a chain, try to rotate it to line up the hot exit block /// with fallthrough out of the loop if doing so doesn't introduce unnecessary /// branches. For example, if the loop has fallthrough into its header and out /// of its bottom already, don't rotate it. void MachineBlockPlacement::rotateLoop(BlockChain &LoopChain, MachineBasicBlock *ExitingBB, const BlockFilterSet &LoopBlockSet) { if (!ExitingBB) return; MachineBasicBlock *Top = *LoopChain.begin(); bool ViableTopFallthrough = false; for (MachineBasicBlock *Pred : Top->predecessors()) { BlockChain *PredChain = BlockToChain[Pred]; if (!LoopBlockSet.count(Pred) && (!PredChain || Pred == *std::prev(PredChain->end()))) { ViableTopFallthrough = true; break; } } // If the header has viable fallthrough, check whether the current loop // bottom is a viable exiting block. If so, bail out as rotating will // introduce an unnecessary branch. if (ViableTopFallthrough) { MachineBasicBlock *Bottom = *std::prev(LoopChain.end()); for (MachineBasicBlock *Succ : Bottom->successors()) { BlockChain *SuccChain = BlockToChain[Succ]; if (!LoopBlockSet.count(Succ) && (!SuccChain || Succ == *SuccChain->begin())) return; } } BlockChain::iterator ExitIt = std::find(LoopChain.begin(), LoopChain.end(), ExitingBB); if (ExitIt == LoopChain.end()) return; std::rotate(LoopChain.begin(), std::next(ExitIt), LoopChain.end()); } /// \brief Attempt to rotate a loop based on profile data to reduce branch cost. /// /// With profile data, we can determine the cost in terms of missed fall through /// opportunities when rotating a loop chain and select the best rotation. /// Basically, there are three kinds of cost to consider for each rotation: /// 1. The possibly missed fall through edge (if it exists) from BB out of /// the loop to the loop header. /// 2. The possibly missed fall through edges (if they exist) from the loop /// exits to BB out of the loop. /// 3. The missed fall through edge (if it exists) from the last BB to the /// first BB in the loop chain. /// Therefore, the cost for a given rotation is the sum of costs listed above. /// We select the best rotation with the smallest cost. void MachineBlockPlacement::rotateLoopWithProfile( BlockChain &LoopChain, MachineLoop &L, const BlockFilterSet &LoopBlockSet) { auto HeaderBB = L.getHeader(); auto HeaderIter = std::find(LoopChain.begin(), LoopChain.end(), HeaderBB); auto RotationPos = LoopChain.end(); BlockFrequency SmallestRotationCost = BlockFrequency::getMaxFrequency(); // A utility lambda that scales up a block frequency by dividing it by a // branch probability which is the reciprocal of the scale. auto ScaleBlockFrequency = [](BlockFrequency Freq, unsigned Scale) -> BlockFrequency { if (Scale == 0) return 0; // Use operator / between BlockFrequency and BranchProbability to implement // saturating multiplication. return Freq / BranchProbability(1, Scale); }; // Compute the cost of the missed fall-through edge to the loop header if the // chain head is not the loop header. As we only consider natural loops with // single header, this computation can be done only once. BlockFrequency HeaderFallThroughCost(0); for (auto *Pred : HeaderBB->predecessors()) { BlockChain *PredChain = BlockToChain[Pred]; if (!LoopBlockSet.count(Pred) && (!PredChain || Pred == *std::prev(PredChain->end()))) { auto EdgeFreq = MBFI->getBlockFreq(Pred) * MBPI->getEdgeProbability(Pred, HeaderBB); auto FallThruCost = ScaleBlockFrequency(EdgeFreq, MisfetchCost); // If the predecessor has only an unconditional jump to the header, we // need to consider the cost of this jump. if (Pred->succ_size() == 1) FallThruCost += ScaleBlockFrequency(EdgeFreq, JumpInstCost); HeaderFallThroughCost = std::max(HeaderFallThroughCost, FallThruCost); } } // Here we collect all exit blocks in the loop, and for each exit we find out // its hottest exit edge. For each loop rotation, we define the loop exit cost // as the sum of frequencies of exit edges we collect here, excluding the exit // edge from the tail of the loop chain. SmallVector<std::pair<MachineBasicBlock *, BlockFrequency>, 4> ExitsWithFreq; for (auto BB : LoopChain) { auto LargestExitEdgeProb = BranchProbability::getZero(); for (auto *Succ : BB->successors()) { BlockChain *SuccChain = BlockToChain[Succ]; if (!LoopBlockSet.count(Succ) && (!SuccChain || Succ == *SuccChain->begin())) { auto SuccProb = MBPI->getEdgeProbability(BB, Succ); LargestExitEdgeProb = std::max(LargestExitEdgeProb, SuccProb); } } if (LargestExitEdgeProb > BranchProbability::getZero()) { auto ExitFreq = MBFI->getBlockFreq(BB) * LargestExitEdgeProb; ExitsWithFreq.emplace_back(BB, ExitFreq); } } // In this loop we iterate every block in the loop chain and calculate the // cost assuming the block is the head of the loop chain. When the loop ends, // we should have found the best candidate as the loop chain's head. for (auto Iter = LoopChain.begin(), TailIter = std::prev(LoopChain.end()), EndIter = LoopChain.end(); Iter != EndIter; Iter++, TailIter++) { // TailIter is used to track the tail of the loop chain if the block we are // checking (pointed by Iter) is the head of the chain. if (TailIter == LoopChain.end()) TailIter = LoopChain.begin(); auto TailBB = *TailIter; // Calculate the cost by putting this BB to the top. BlockFrequency Cost = 0; // If the current BB is the loop header, we need to take into account the // cost of the missed fall through edge from outside of the loop to the // header. if (Iter != HeaderIter) Cost += HeaderFallThroughCost; // Collect the loop exit cost by summing up frequencies of all exit edges // except the one from the chain tail. for (auto &ExitWithFreq : ExitsWithFreq) if (TailBB != ExitWithFreq.first) Cost += ExitWithFreq.second; // The cost of breaking the once fall-through edge from the tail to the top // of the loop chain. Here we need to consider three cases: // 1. If the tail node has only one successor, then we will get an // additional jmp instruction. So the cost here is (MisfetchCost + // JumpInstCost) * tail node frequency. // 2. If the tail node has two successors, then we may still get an // additional jmp instruction if the layout successor after the loop // chain is not its CFG successor. Note that the more frequently executed // jmp instruction will be put ahead of the other one. Assume the // frequency of those two branches are x and y, where x is the frequency // of the edge to the chain head, then the cost will be // (x * MisfetechCost + min(x, y) * JumpInstCost) * tail node frequency. // 3. If the tail node has more than two successors (this rarely happens), // we won't consider any additional cost. if (TailBB->isSuccessor(*Iter)) { auto TailBBFreq = MBFI->getBlockFreq(TailBB); if (TailBB->succ_size() == 1) Cost += ScaleBlockFrequency(TailBBFreq.getFrequency(), MisfetchCost + JumpInstCost); else if (TailBB->succ_size() == 2) { auto TailToHeadProb = MBPI->getEdgeProbability(TailBB, *Iter); auto TailToHeadFreq = TailBBFreq * TailToHeadProb; auto ColderEdgeFreq = TailToHeadProb > BranchProbability(1, 2) ? TailBBFreq * TailToHeadProb.getCompl() : TailToHeadFreq; Cost += ScaleBlockFrequency(TailToHeadFreq, MisfetchCost) + ScaleBlockFrequency(ColderEdgeFreq, JumpInstCost); } } DEBUG(dbgs() << "The cost of loop rotation by making " << getBlockName(*Iter) << " to the top: " << Cost.getFrequency() << "\n"); if (Cost < SmallestRotationCost) { SmallestRotationCost = Cost; RotationPos = Iter; } } if (RotationPos != LoopChain.end()) { DEBUG(dbgs() << "Rotate loop by making " << getBlockName(*RotationPos) << " to the top\n"); std::rotate(LoopChain.begin(), RotationPos, LoopChain.end()); } } /// \brief Collect blocks in the given loop that are to be placed. /// /// When profile data is available, exclude cold blocks from the returned set; /// otherwise, collect all blocks in the loop. MachineBlockPlacement::BlockFilterSet MachineBlockPlacement::collectLoopBlockSet(MachineLoop &L) { BlockFilterSet LoopBlockSet; // Filter cold blocks off from LoopBlockSet when profile data is available. // Collect the sum of frequencies of incoming edges to the loop header from // outside. If we treat the loop as a super block, this is the frequency of // the loop. Then for each block in the loop, we calculate the ratio between // its frequency and the frequency of the loop block. When it is too small, // don't add it to the loop chain. If there are outer loops, then this block // will be merged into the first outer loop chain for which this block is not // cold anymore. This needs precise profile data and we only do this when // profile data is available. if (F->getFunction()->getEntryCount()) { BlockFrequency LoopFreq(0); for (auto LoopPred : L.getHeader()->predecessors()) if (!L.contains(LoopPred)) LoopFreq += MBFI->getBlockFreq(LoopPred) * MBPI->getEdgeProbability(LoopPred, L.getHeader()); for (MachineBasicBlock *LoopBB : L.getBlocks()) { auto Freq = MBFI->getBlockFreq(LoopBB).getFrequency(); if (Freq == 0 || LoopFreq.getFrequency() / Freq > LoopToColdBlockRatio) continue; LoopBlockSet.insert(LoopBB); } } else LoopBlockSet.insert(L.block_begin(), L.block_end()); return LoopBlockSet; } /// \brief Forms basic block chains from the natural loop structures. /// /// These chains are designed to preserve the existing *structure* of the code /// as much as possible. We can then stitch the chains together in a way which /// both preserves the topological structure and minimizes taken conditional /// branches. void MachineBlockPlacement::buildLoopChains(MachineLoop &L) { // First recurse through any nested loops, building chains for those inner // loops. for (MachineLoop *InnerLoop : L) buildLoopChains(*InnerLoop); assert(BlockWorkList.empty()); assert(EHPadWorkList.empty()); BlockFilterSet LoopBlockSet = collectLoopBlockSet(L); // Check if we have profile data for this function. If yes, we will rotate // this loop by modeling costs more precisely which requires the profile data // for better layout. bool RotateLoopWithProfile = ForcePreciseRotationCost || (PreciseRotationCost && F->getFunction()->getEntryCount()); // First check to see if there is an obviously preferable top block for the // loop. This will default to the header, but may end up as one of the // predecessors to the header if there is one which will result in strictly // fewer branches in the loop body. // When we use profile data to rotate the loop, this is unnecessary. MachineBasicBlock *LoopTop = RotateLoopWithProfile ? L.getHeader() : findBestLoopTop(L, LoopBlockSet); // If we selected just the header for the loop top, look for a potentially // profitable exit block in the event that rotating the loop can eliminate // branches by placing an exit edge at the bottom. MachineBasicBlock *ExitingBB = nullptr; if (!RotateLoopWithProfile && LoopTop == L.getHeader()) ExitingBB = findBestLoopExit(L, LoopBlockSet); BlockChain &LoopChain = *BlockToChain[LoopTop]; // FIXME: This is a really lame way of walking the chains in the loop: we // walk the blocks, and use a set to prevent visiting a particular chain // twice. SmallPtrSet<BlockChain *, 4> UpdatedPreds; assert(LoopChain.UnscheduledPredecessors == 0); UpdatedPreds.insert(&LoopChain); for (MachineBasicBlock *LoopBB : LoopBlockSet) fillWorkLists(LoopBB, UpdatedPreds, &LoopBlockSet); buildChain(LoopTop, LoopChain, &LoopBlockSet); if (RotateLoopWithProfile) rotateLoopWithProfile(LoopChain, L, LoopBlockSet); else rotateLoop(LoopChain, ExitingBB, LoopBlockSet); DEBUG({ // Crash at the end so we get all of the debugging output first. bool BadLoop = false; if (LoopChain.UnscheduledPredecessors) { BadLoop = true; dbgs() << "Loop chain contains a block without its preds placed!\n" << " Loop header: " << getBlockName(*L.block_begin()) << "\n" << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n"; } for (MachineBasicBlock *ChainBB : LoopChain) { dbgs() << " ... " << getBlockName(ChainBB) << "\n"; if (!LoopBlockSet.erase(ChainBB)) { // We don't mark the loop as bad here because there are real situations // where this can occur. For example, with an unanalyzable fallthrough // from a loop block to a non-loop block or vice versa. dbgs() << "Loop chain contains a block not contained by the loop!\n" << " Loop header: " << getBlockName(*L.block_begin()) << "\n" << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n" << " Bad block: " << getBlockName(ChainBB) << "\n"; } } if (!LoopBlockSet.empty()) { BadLoop = true; for (MachineBasicBlock *LoopBB : LoopBlockSet) dbgs() << "Loop contains blocks never placed into a chain!\n" << " Loop header: " << getBlockName(*L.block_begin()) << "\n" << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n" << " Bad block: " << getBlockName(LoopBB) << "\n"; } assert(!BadLoop && "Detected problems with the placement of this loop."); }); BlockWorkList.clear(); EHPadWorkList.clear(); } /// When OutlineOpitonalBranches is on, this method colects BBs that /// dominates all terminator blocks of the function \p F. void MachineBlockPlacement::collectMustExecuteBBs() { if (OutlineOptionalBranches) { // Find the nearest common dominator of all of F's terminators. MachineBasicBlock *Terminator = nullptr; for (MachineBasicBlock &MBB : *F) { if (MBB.succ_size() == 0) { if (Terminator == nullptr) Terminator = &MBB; else Terminator = MDT->findNearestCommonDominator(Terminator, &MBB); } } // MBBs dominating this common dominator are unavoidable. UnavoidableBlocks.clear(); for (MachineBasicBlock &MBB : *F) { if (MDT->dominates(&MBB, Terminator)) { UnavoidableBlocks.insert(&MBB); } } } } void MachineBlockPlacement::buildCFGChains() { // Ensure that every BB in the function has an associated chain to simplify // the assumptions of the remaining algorithm. SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch. for (MachineFunction::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI) { MachineBasicBlock *BB = &*FI; BlockChain *Chain = new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB); // Also, merge any blocks which we cannot reason about and must preserve // the exact fallthrough behavior for. for (;;) { Cond.clear(); MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. if (!TII->analyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough()) break; MachineFunction::iterator NextFI = std::next(FI); MachineBasicBlock *NextBB = &*NextFI; // Ensure that the layout successor is a viable block, as we know that // fallthrough is a possibility. assert(NextFI != FE && "Can't fallthrough past the last block."); DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: " << getBlockName(BB) << " -> " << getBlockName(NextBB) << "\n"); Chain->merge(NextBB, nullptr); FI = NextFI; BB = NextBB; } } // Turned on with OutlineOptionalBranches option collectMustExecuteBBs(); // Build any loop-based chains. for (MachineLoop *L : *MLI) buildLoopChains(*L); assert(BlockWorkList.empty()); assert(EHPadWorkList.empty()); SmallPtrSet<BlockChain *, 4> UpdatedPreds; for (MachineBasicBlock &MBB : *F) fillWorkLists(&MBB, UpdatedPreds); BlockChain &FunctionChain = *BlockToChain[&F->front()]; buildChain(&F->front(), FunctionChain); #ifndef NDEBUG typedef SmallPtrSet<MachineBasicBlock *, 16> FunctionBlockSetType; #endif DEBUG({ // Crash at the end so we get all of the debugging output first. bool BadFunc = false; FunctionBlockSetType FunctionBlockSet; for (MachineBasicBlock &MBB : *F) FunctionBlockSet.insert(&MBB); for (MachineBasicBlock *ChainBB : FunctionChain) if (!FunctionBlockSet.erase(ChainBB)) { BadFunc = true; dbgs() << "Function chain contains a block not in the function!\n" << " Bad block: " << getBlockName(ChainBB) << "\n"; } if (!FunctionBlockSet.empty()) { BadFunc = true; for (MachineBasicBlock *RemainingBB : FunctionBlockSet) dbgs() << "Function contains blocks never placed into a chain!\n" << " Bad block: " << getBlockName(RemainingBB) << "\n"; } assert(!BadFunc && "Detected problems with the block placement."); }); // Splice the blocks into place. MachineFunction::iterator InsertPos = F->begin(); DEBUG(dbgs() << "[MBP] Function: "<< F->getName() << "\n"); for (MachineBasicBlock *ChainBB : FunctionChain) { DEBUG(dbgs() << (ChainBB == *FunctionChain.begin() ? "Placing chain " : " ... ") << getBlockName(ChainBB) << "\n"); if (InsertPos != MachineFunction::iterator(ChainBB)) F->splice(InsertPos, ChainBB); else ++InsertPos; // Update the terminator of the previous block. if (ChainBB == *FunctionChain.begin()) continue; MachineBasicBlock *PrevBB = &*std::prev(MachineFunction::iterator(ChainBB)); // FIXME: It would be awesome of updateTerminator would just return rather // than assert when the branch cannot be analyzed in order to remove this // boiler plate. Cond.clear(); MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. // The "PrevBB" is not yet updated to reflect current code layout, so, // o. it may fall-through to a block without explict "goto" instruction // before layout, and no longer fall-through it after layout; or // o. just opposite. // // analyzeBranch() may return erroneous value for FBB when these two // situations take place. For the first scenario FBB is mistakenly set NULL; // for the 2nd scenario, the FBB, which is expected to be NULL, is // mistakenly pointing to "*BI". // Thus, if the future change needs to use FBB before the layout is set, it // has to correct FBB first by using the code similar to the following: // // if (!Cond.empty() && (!FBB || FBB == ChainBB)) { // PrevBB->updateTerminator(); // Cond.clear(); // TBB = FBB = nullptr; // if (TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) { // // FIXME: This should never take place. // TBB = FBB = nullptr; // } // } if (!TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) PrevBB->updateTerminator(); } // Fixup the last block. Cond.clear(); MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. if (!TII->analyzeBranch(F->back(), TBB, FBB, Cond)) F->back().updateTerminator(); BlockWorkList.clear(); EHPadWorkList.clear(); } void MachineBlockPlacement::optimizeBranches() { BlockChain &FunctionChain = *BlockToChain[&F->front()]; SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch. // Now that all the basic blocks in the chain have the proper layout, // make a final call to AnalyzeBranch with AllowModify set. // Indeed, the target may be able to optimize the branches in a way we // cannot because all branches may not be analyzable. // E.g., the target may be able to remove an unconditional branch to // a fallthrough when it occurs after predicated terminators. for (MachineBasicBlock *ChainBB : FunctionChain) { Cond.clear(); MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For AnalyzeBranch. if (!TII->analyzeBranch(*ChainBB, TBB, FBB, Cond, /*AllowModify*/ true)) { // If PrevBB has a two-way branch, try to re-order the branches // such that we branch to the successor with higher probability first. if (TBB && !Cond.empty() && FBB && MBPI->getEdgeProbability(ChainBB, FBB) > MBPI->getEdgeProbability(ChainBB, TBB) && !TII->ReverseBranchCondition(Cond)) { DEBUG(dbgs() << "Reverse order of the two branches: " << getBlockName(ChainBB) << "\n"); DEBUG(dbgs() << " Edge probability: " << MBPI->getEdgeProbability(ChainBB, FBB) << " vs " << MBPI->getEdgeProbability(ChainBB, TBB) << "\n"); DebugLoc dl; // FIXME: this is nowhere TII->RemoveBranch(*ChainBB); TII->InsertBranch(*ChainBB, FBB, TBB, Cond, dl); ChainBB->updateTerminator(); } } } } void MachineBlockPlacement::alignBlocks() { // Walk through the backedges of the function now that we have fully laid out // the basic blocks and align the destination of each backedge. We don't rely // exclusively on the loop info here so that we can align backedges in // unnatural CFGs and backedges that were introduced purely because of the // loop rotations done during this layout pass. if (F->getFunction()->optForSize()) return; BlockChain &FunctionChain = *BlockToChain[&F->front()]; if (FunctionChain.begin() == FunctionChain.end()) return; // Empty chain. const BranchProbability ColdProb(1, 5); // 20% BlockFrequency EntryFreq = MBFI->getBlockFreq(&F->front()); BlockFrequency WeightedEntryFreq = EntryFreq * ColdProb; for (MachineBasicBlock *ChainBB : FunctionChain) { if (ChainBB == *FunctionChain.begin()) continue; // Don't align non-looping basic blocks. These are unlikely to execute // enough times to matter in practice. Note that we'll still handle // unnatural CFGs inside of a natural outer loop (the common case) and // rotated loops. MachineLoop *L = MLI->getLoopFor(ChainBB); if (!L) continue; unsigned Align = TLI->getPrefLoopAlignment(L); if (!Align) continue; // Don't care about loop alignment. // If the block is cold relative to the function entry don't waste space // aligning it. BlockFrequency Freq = MBFI->getBlockFreq(ChainBB); if (Freq < WeightedEntryFreq) continue; // If the block is cold relative to its loop header, don't align it // regardless of what edges into the block exist. MachineBasicBlock *LoopHeader = L->getHeader(); BlockFrequency LoopHeaderFreq = MBFI->getBlockFreq(LoopHeader); if (Freq < (LoopHeaderFreq * ColdProb)) continue; // Check for the existence of a non-layout predecessor which would benefit // from aligning this block. MachineBasicBlock *LayoutPred = &*std::prev(MachineFunction::iterator(ChainBB)); // Force alignment if all the predecessors are jumps. We already checked // that the block isn't cold above. if (!LayoutPred->isSuccessor(ChainBB)) { ChainBB->setAlignment(Align); continue; } // Align this block if the layout predecessor's edge into this block is // cold relative to the block. When this is true, other predecessors make up // all of the hot entries into the block and thus alignment is likely to be // important. BranchProbability LayoutProb = MBPI->getEdgeProbability(LayoutPred, ChainBB); BlockFrequency LayoutEdgeFreq = MBFI->getBlockFreq(LayoutPred) * LayoutProb; if (LayoutEdgeFreq <= (Freq * ColdProb)) ChainBB->setAlignment(Align); } } bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &MF) { if (skipFunction(*MF.getFunction())) return false; // Check for single-block functions and skip them. if (std::next(MF.begin()) == MF.end()) return false; F = &MF; MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); MBFI = llvm::make_unique<BranchFolder::MBFIWrapper>( getAnalysis<MachineBlockFrequencyInfo>()); MLI = &getAnalysis<MachineLoopInfo>(); TII = MF.getSubtarget().getInstrInfo(); TLI = MF.getSubtarget().getTargetLowering(); MDT = &getAnalysis<MachineDominatorTree>(); assert(BlockToChain.empty()); buildCFGChains(); // Changing the layout can create new tail merging opportunities. TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>(); // TailMerge can create jump into if branches that make CFG irreducible for // HW that requires structurized CFG. bool EnableTailMerge = !MF.getTarget().requiresStructuredCFG() && PassConfig->getEnableTailMerge() && BranchFoldPlacement; // No tail merging opportunities if the block number is less than four. if (MF.size() > 3 && EnableTailMerge) { BranchFolder BF(/*EnableTailMerge=*/true, /*CommonHoist=*/false, *MBFI, *MBPI); if (BF.OptimizeFunction(MF, TII, MF.getSubtarget().getRegisterInfo(), getAnalysisIfAvailable<MachineModuleInfo>(), MLI, /*AfterBlockPlacement=*/true)) { // Redo the layout if tail merging creates/removes/moves blocks. BlockToChain.clear(); ChainAllocator.DestroyAll(); buildCFGChains(); } } optimizeBranches(); alignBlocks(); BlockToChain.clear(); ChainAllocator.DestroyAll(); if (AlignAllBlock) // Align all of the blocks in the function to a specific alignment. for (MachineBasicBlock &MBB : MF) MBB.setAlignment(AlignAllBlock); else if (AlignAllNonFallThruBlocks) { // Align all of the blocks that have no fall-through predecessors to a // specific alignment. for (auto MBI = std::next(MF.begin()), MBE = MF.end(); MBI != MBE; ++MBI) { auto LayoutPred = std::prev(MBI); if (!LayoutPred->isSuccessor(&*MBI)) MBI->setAlignment(AlignAllNonFallThruBlocks); } } // We always return true as we have no way to track whether the final order // differs from the original order. return true; } namespace { /// \brief A pass to compute block placement statistics. /// /// A separate pass to compute interesting statistics for evaluating block /// placement. This is separate from the actual placement pass so that they can /// be computed in the absence of any placement transformations or when using /// alternative placement strategies. class MachineBlockPlacementStats : public MachineFunctionPass { /// \brief A handle to the branch probability pass. const MachineBranchProbabilityInfo *MBPI; /// \brief A handle to the function-wide block frequency pass. const MachineBlockFrequencyInfo *MBFI; public: static char ID; // Pass identification, replacement for typeid MachineBlockPlacementStats() : MachineFunctionPass(ID) { initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry()); } bool runOnMachineFunction(MachineFunction &F) override; void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addRequired<MachineBranchProbabilityInfo>(); AU.addRequired<MachineBlockFrequencyInfo>(); AU.setPreservesAll(); MachineFunctionPass::getAnalysisUsage(AU); } }; } char MachineBlockPlacementStats::ID = 0; char &llvm::MachineBlockPlacementStatsID = MachineBlockPlacementStats::ID; INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats", "Basic Block Placement Stats", false, false) INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats", "Basic Block Placement Stats", false, false) bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) { // Check for single-block functions and skip them. if (std::next(F.begin()) == F.end()) return false; MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); for (MachineBasicBlock &MBB : F) { BlockFrequency BlockFreq = MBFI->getBlockFreq(&MBB); Statistic &NumBranches = (MBB.succ_size() > 1) ? NumCondBranches : NumUncondBranches; Statistic &BranchTakenFreq = (MBB.succ_size() > 1) ? CondBranchTakenFreq : UncondBranchTakenFreq; for (MachineBasicBlock *Succ : MBB.successors()) { // Skip if this successor is a fallthrough. if (MBB.isLayoutSuccessor(Succ)) continue; BlockFrequency EdgeFreq = BlockFreq * MBPI->getEdgeProbability(&MBB, Succ); ++NumBranches; BranchTakenFreq += EdgeFreq.getFrequency(); } } return false; }