/* * Copyright 2011 The LibYuv Project Authors. All rights reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include <stdlib.h> #include <time.h> #include "libyuv/basic_types.h" #include "libyuv/compare.h" #include "libyuv/convert.h" #include "libyuv/convert_argb.h" #include "libyuv/convert_from.h" #include "libyuv/convert_from_argb.h" #include "libyuv/cpu_id.h" #ifdef HAVE_JPEG #include "libyuv/mjpeg_decoder.h" #endif #include "../unit_test/unit_test.h" #include "libyuv/planar_functions.h" #include "libyuv/rotate.h" #include "libyuv/video_common.h" namespace libyuv { #define SUBSAMPLE(v, a) ((((v) + (a)-1)) / (a)) #define TESTPLANARTOPI(SRC_FMT_PLANAR, SRC_SUBSAMP_X, SRC_SUBSAMP_Y, \ FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, W1280, N, NEG, OFF) \ TEST_F(LibYUVConvertTest, SRC_FMT_PLANAR##To##FMT_PLANAR##N) { \ const int kWidth = ((W1280) > 0) ? (W1280) : 1; \ const int kHeight = benchmark_height_; \ align_buffer_page_end(src_y, kWidth* kHeight + OFF); \ align_buffer_page_end(src_u, SUBSAMPLE(kWidth, SRC_SUBSAMP_X) * \ SUBSAMPLE(kHeight, SRC_SUBSAMP_Y) + \ OFF); \ align_buffer_page_end(src_v, SUBSAMPLE(kWidth, SRC_SUBSAMP_X) * \ SUBSAMPLE(kHeight, SRC_SUBSAMP_Y) + \ OFF); \ align_buffer_page_end(dst_y_c, kWidth* kHeight); \ align_buffer_page_end(dst_u_c, SUBSAMPLE(kWidth, SUBSAMP_X) * \ SUBSAMPLE(kHeight, SUBSAMP_Y)); \ align_buffer_page_end(dst_v_c, SUBSAMPLE(kWidth, SUBSAMP_X) * \ SUBSAMPLE(kHeight, SUBSAMP_Y)); \ align_buffer_page_end(dst_y_opt, kWidth* kHeight); \ align_buffer_page_end(dst_u_opt, SUBSAMPLE(kWidth, SUBSAMP_X) * \ SUBSAMPLE(kHeight, SUBSAMP_Y)); \ align_buffer_page_end(dst_v_opt, SUBSAMPLE(kWidth, SUBSAMP_X) * \ SUBSAMPLE(kHeight, SUBSAMP_Y)); \ for (int i = 0; i < kHeight; ++i) \ for (int j = 0; j < kWidth; ++j) \ src_y[i * kWidth + j + OFF] = (fastrand() & 0xff); \ for (int i = 0; i < SUBSAMPLE(kHeight, SRC_SUBSAMP_Y); ++i) { \ for (int j = 0; j < SUBSAMPLE(kWidth, SRC_SUBSAMP_X); ++j) { \ src_u[(i * SUBSAMPLE(kWidth, SRC_SUBSAMP_X)) + j + OFF] = \ (fastrand() & 0xff); \ src_v[(i * SUBSAMPLE(kWidth, SRC_SUBSAMP_X)) + j + OFF] = \ (fastrand() & 0xff); \ } \ } \ memset(dst_y_c, 1, kWidth* kHeight); \ memset(dst_u_c, 2, \ SUBSAMPLE(kWidth, SUBSAMP_X) * SUBSAMPLE(kHeight, SUBSAMP_Y)); \ memset(dst_v_c, 3, \ SUBSAMPLE(kWidth, SUBSAMP_X) * SUBSAMPLE(kHeight, SUBSAMP_Y)); \ memset(dst_y_opt, 101, kWidth* kHeight); \ memset(dst_u_opt, 102, \ SUBSAMPLE(kWidth, SUBSAMP_X) * SUBSAMPLE(kHeight, SUBSAMP_Y)); \ memset(dst_v_opt, 103, \ SUBSAMPLE(kWidth, SUBSAMP_X) * SUBSAMPLE(kHeight, SUBSAMP_Y)); \ MaskCpuFlags(disable_cpu_flags_); \ SRC_FMT_PLANAR##To##FMT_PLANAR( \ src_y + OFF, kWidth, src_u + OFF, SUBSAMPLE(kWidth, SRC_SUBSAMP_X), \ src_v + OFF, SUBSAMPLE(kWidth, SRC_SUBSAMP_X), dst_y_c, kWidth, \ dst_u_c, SUBSAMPLE(kWidth, SUBSAMP_X), dst_v_c, \ SUBSAMPLE(kWidth, SUBSAMP_X), kWidth, NEG kHeight); \ MaskCpuFlags(benchmark_cpu_info_); \ for (int i = 0; i < benchmark_iterations_; ++i) { \ SRC_FMT_PLANAR##To##FMT_PLANAR( \ src_y + OFF, kWidth, src_u + OFF, SUBSAMPLE(kWidth, SRC_SUBSAMP_X), \ src_v + OFF, SUBSAMPLE(kWidth, SRC_SUBSAMP_X), dst_y_opt, kWidth, \ dst_u_opt, SUBSAMPLE(kWidth, SUBSAMP_X), dst_v_opt, \ SUBSAMPLE(kWidth, SUBSAMP_X), kWidth, NEG kHeight); \ } \ int max_diff = 0; \ for (int i = 0; i < kHeight; ++i) { \ for (int j = 0; j < kWidth; ++j) { \ int abs_diff = abs(static_cast<int>(dst_y_c[i * kWidth + j]) - \ static_cast<int>(dst_y_opt[i * kWidth + j])); \ if (abs_diff > max_diff) { \ max_diff = abs_diff; \ } \ } \ } \ EXPECT_EQ(0, max_diff); \ for (int i = 0; i < SUBSAMPLE(kHeight, SUBSAMP_Y); ++i) { \ for (int j = 0; j < SUBSAMPLE(kWidth, SUBSAMP_X); ++j) { \ int abs_diff = abs( \ static_cast<int>(dst_u_c[i * SUBSAMPLE(kWidth, SUBSAMP_X) + j]) - \ static_cast<int>( \ dst_u_opt[i * SUBSAMPLE(kWidth, SUBSAMP_X) + j])); \ if (abs_diff > max_diff) { \ max_diff = abs_diff; \ } \ } \ } \ EXPECT_LE(max_diff, 3); \ for (int i = 0; i < SUBSAMPLE(kHeight, SUBSAMP_Y); ++i) { \ for (int j = 0; j < SUBSAMPLE(kWidth, SUBSAMP_X); ++j) { \ int abs_diff = abs( \ static_cast<int>(dst_v_c[i * SUBSAMPLE(kWidth, SUBSAMP_X) + j]) - \ static_cast<int>( \ dst_v_opt[i * SUBSAMPLE(kWidth, SUBSAMP_X) + j])); \ if (abs_diff > max_diff) { \ max_diff = abs_diff; \ } \ } \ } \ EXPECT_LE(max_diff, 3); \ free_aligned_buffer_page_end(dst_y_c); \ free_aligned_buffer_page_end(dst_u_c); \ free_aligned_buffer_page_end(dst_v_c); \ free_aligned_buffer_page_end(dst_y_opt); \ free_aligned_buffer_page_end(dst_u_opt); \ free_aligned_buffer_page_end(dst_v_opt); \ free_aligned_buffer_page_end(src_y); \ free_aligned_buffer_page_end(src_u); \ free_aligned_buffer_page_end(src_v); \ } #define TESTPLANARTOP(SRC_FMT_PLANAR, SRC_SUBSAMP_X, SRC_SUBSAMP_Y, \ FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y) \ TESTPLANARTOPI(SRC_FMT_PLANAR, SRC_SUBSAMP_X, SRC_SUBSAMP_Y, FMT_PLANAR, \ SUBSAMP_X, SUBSAMP_Y, benchmark_width_ - 4, _Any, +, 0) \ TESTPLANARTOPI(SRC_FMT_PLANAR, SRC_SUBSAMP_X, SRC_SUBSAMP_Y, FMT_PLANAR, \ SUBSAMP_X, SUBSAMP_Y, benchmark_width_, _Unaligned, +, 1) \ TESTPLANARTOPI(SRC_FMT_PLANAR, SRC_SUBSAMP_X, SRC_SUBSAMP_Y, FMT_PLANAR, \ SUBSAMP_X, SUBSAMP_Y, benchmark_width_, _Invert, -, 0) \ TESTPLANARTOPI(SRC_FMT_PLANAR, SRC_SUBSAMP_X, SRC_SUBSAMP_Y, FMT_PLANAR, \ SUBSAMP_X, SUBSAMP_Y, benchmark_width_, _Opt, +, 0) TESTPLANARTOP(I420, 2, 2, I420, 2, 2) TESTPLANARTOP(I422, 2, 1, I420, 2, 2) TESTPLANARTOP(I444, 1, 1, I420, 2, 2) TESTPLANARTOP(I420, 2, 2, I422, 2, 1) TESTPLANARTOP(I420, 2, 2, I444, 1, 1) TESTPLANARTOP(I420, 2, 2, I420Mirror, 2, 2) TESTPLANARTOP(I422, 2, 1, I422, 2, 1) TESTPLANARTOP(I444, 1, 1, I444, 1, 1) // Test Android 420 to I420 #define TESTAPLANARTOPI(SRC_FMT_PLANAR, PIXEL_STRIDE, SRC_SUBSAMP_X, \ SRC_SUBSAMP_Y, FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, \ W1280, N, NEG, OFF, PN, OFF_U, OFF_V) \ TEST_F(LibYUVConvertTest, SRC_FMT_PLANAR##To##FMT_PLANAR##_##PN##N) { \ const int kWidth = ((W1280) > 0) ? (W1280) : 1; \ const int kHeight = benchmark_height_; \ const int kSizeUV = \ SUBSAMPLE(kWidth, SRC_SUBSAMP_X) * SUBSAMPLE(kHeight, SRC_SUBSAMP_Y); \ align_buffer_page_end(src_y, kWidth* kHeight + OFF); \ align_buffer_page_end(src_uv, \ kSizeUV*((PIXEL_STRIDE == 3) ? 3 : 2) + OFF); \ align_buffer_page_end(dst_y_c, kWidth* kHeight); \ align_buffer_page_end(dst_u_c, SUBSAMPLE(kWidth, SUBSAMP_X) * \ SUBSAMPLE(kHeight, SUBSAMP_Y)); \ align_buffer_page_end(dst_v_c, SUBSAMPLE(kWidth, SUBSAMP_X) * \ SUBSAMPLE(kHeight, SUBSAMP_Y)); \ align_buffer_page_end(dst_y_opt, kWidth* kHeight); \ align_buffer_page_end(dst_u_opt, SUBSAMPLE(kWidth, SUBSAMP_X) * \ SUBSAMPLE(kHeight, SUBSAMP_Y)); \ align_buffer_page_end(dst_v_opt, SUBSAMPLE(kWidth, SUBSAMP_X) * \ SUBSAMPLE(kHeight, SUBSAMP_Y)); \ uint8* src_u = src_uv + OFF_U; \ uint8* src_v = src_uv + (PIXEL_STRIDE == 1 ? kSizeUV : OFF_V); \ int src_stride_uv = SUBSAMPLE(kWidth, SUBSAMP_X) * PIXEL_STRIDE; \ for (int i = 0; i < kHeight; ++i) \ for (int j = 0; j < kWidth; ++j) \ src_y[i * kWidth + j + OFF] = (fastrand() & 0xff); \ for (int i = 0; i < SUBSAMPLE(kHeight, SRC_SUBSAMP_Y); ++i) { \ for (int j = 0; j < SUBSAMPLE(kWidth, SRC_SUBSAMP_X); ++j) { \ src_u[(i * src_stride_uv) + j * PIXEL_STRIDE + OFF] = \ (fastrand() & 0xff); \ src_v[(i * src_stride_uv) + j * PIXEL_STRIDE + OFF] = \ (fastrand() & 0xff); \ } \ } \ memset(dst_y_c, 1, kWidth* kHeight); \ memset(dst_u_c, 2, \ SUBSAMPLE(kWidth, SUBSAMP_X) * SUBSAMPLE(kHeight, SUBSAMP_Y)); \ memset(dst_v_c, 3, \ SUBSAMPLE(kWidth, SUBSAMP_X) * SUBSAMPLE(kHeight, SUBSAMP_Y)); \ memset(dst_y_opt, 101, kWidth* kHeight); \ memset(dst_u_opt, 102, \ SUBSAMPLE(kWidth, SUBSAMP_X) * SUBSAMPLE(kHeight, SUBSAMP_Y)); \ memset(dst_v_opt, 103, \ SUBSAMPLE(kWidth, SUBSAMP_X) * SUBSAMPLE(kHeight, SUBSAMP_Y)); \ MaskCpuFlags(disable_cpu_flags_); \ SRC_FMT_PLANAR##To##FMT_PLANAR( \ src_y + OFF, kWidth, src_u + OFF, SUBSAMPLE(kWidth, SRC_SUBSAMP_X), \ src_v + OFF, SUBSAMPLE(kWidth, SRC_SUBSAMP_X), PIXEL_STRIDE, dst_y_c, \ kWidth, dst_u_c, SUBSAMPLE(kWidth, SUBSAMP_X), dst_v_c, \ SUBSAMPLE(kWidth, SUBSAMP_X), kWidth, NEG kHeight); \ MaskCpuFlags(benchmark_cpu_info_); \ for (int i = 0; i < benchmark_iterations_; ++i) { \ SRC_FMT_PLANAR##To##FMT_PLANAR( \ src_y + OFF, kWidth, src_u + OFF, SUBSAMPLE(kWidth, SRC_SUBSAMP_X), \ src_v + OFF, SUBSAMPLE(kWidth, SRC_SUBSAMP_X), PIXEL_STRIDE, \ dst_y_opt, kWidth, dst_u_opt, SUBSAMPLE(kWidth, SUBSAMP_X), \ dst_v_opt, SUBSAMPLE(kWidth, SUBSAMP_X), kWidth, NEG kHeight); \ } \ int max_diff = 0; \ for (int i = 0; i < kHeight; ++i) { \ for (int j = 0; j < kWidth; ++j) { \ int abs_diff = abs(static_cast<int>(dst_y_c[i * kWidth + j]) - \ static_cast<int>(dst_y_opt[i * kWidth + j])); \ if (abs_diff > max_diff) { \ max_diff = abs_diff; \ } \ } \ } \ EXPECT_EQ(0, max_diff); \ for (int i = 0; i < SUBSAMPLE(kHeight, SUBSAMP_Y); ++i) { \ for (int j = 0; j < SUBSAMPLE(kWidth, SUBSAMP_X); ++j) { \ int abs_diff = abs( \ static_cast<int>(dst_u_c[i * SUBSAMPLE(kWidth, SUBSAMP_X) + j]) - \ static_cast<int>( \ dst_u_opt[i * SUBSAMPLE(kWidth, SUBSAMP_X) + j])); \ if (abs_diff > max_diff) { \ max_diff = abs_diff; \ } \ } \ } \ EXPECT_LE(max_diff, 3); \ for (int i = 0; i < SUBSAMPLE(kHeight, SUBSAMP_Y); ++i) { \ for (int j = 0; j < SUBSAMPLE(kWidth, SUBSAMP_X); ++j) { \ int abs_diff = abs( \ static_cast<int>(dst_v_c[i * SUBSAMPLE(kWidth, SUBSAMP_X) + j]) - \ static_cast<int>( \ dst_v_opt[i * SUBSAMPLE(kWidth, SUBSAMP_X) + j])); \ if (abs_diff > max_diff) { \ max_diff = abs_diff; \ } \ } \ } \ EXPECT_LE(max_diff, 3); \ free_aligned_buffer_page_end(dst_y_c); \ free_aligned_buffer_page_end(dst_u_c); \ free_aligned_buffer_page_end(dst_v_c); \ free_aligned_buffer_page_end(dst_y_opt); \ free_aligned_buffer_page_end(dst_u_opt); \ free_aligned_buffer_page_end(dst_v_opt); \ free_aligned_buffer_page_end(src_y); \ free_aligned_buffer_page_end(src_uv); \ } #define TESTAPLANARTOP(SRC_FMT_PLANAR, PN, PIXEL_STRIDE, OFF_U, OFF_V, \ SRC_SUBSAMP_X, SRC_SUBSAMP_Y, FMT_PLANAR, SUBSAMP_X, \ SUBSAMP_Y) \ TESTAPLANARTOPI(SRC_FMT_PLANAR, PIXEL_STRIDE, SRC_SUBSAMP_X, SRC_SUBSAMP_Y, \ FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, benchmark_width_ - 4, \ _Any, +, 0, PN, OFF_U, OFF_V) \ TESTAPLANARTOPI(SRC_FMT_PLANAR, PIXEL_STRIDE, SRC_SUBSAMP_X, SRC_SUBSAMP_Y, \ FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, benchmark_width_, \ _Unaligned, +, 1, PN, OFF_U, OFF_V) \ TESTAPLANARTOPI(SRC_FMT_PLANAR, PIXEL_STRIDE, SRC_SUBSAMP_X, SRC_SUBSAMP_Y, \ FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, benchmark_width_, _Invert, \ -, 0, PN, OFF_U, OFF_V) \ TESTAPLANARTOPI(SRC_FMT_PLANAR, PIXEL_STRIDE, SRC_SUBSAMP_X, SRC_SUBSAMP_Y, \ FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, benchmark_width_, _Opt, +, \ 0, PN, OFF_U, OFF_V) TESTAPLANARTOP(Android420, I420, 1, 0, 0, 2, 2, I420, 2, 2) TESTAPLANARTOP(Android420, NV12, 2, 0, 1, 2, 2, I420, 2, 2) TESTAPLANARTOP(Android420, NV21, 2, 1, 0, 2, 2, I420, 2, 2) #define TESTPLANARTOBPI(SRC_FMT_PLANAR, SRC_SUBSAMP_X, SRC_SUBSAMP_Y, \ FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, W1280, N, NEG, OFF) \ TEST_F(LibYUVConvertTest, SRC_FMT_PLANAR##To##FMT_PLANAR##N) { \ const int kWidth = ((W1280) > 0) ? (W1280) : 1; \ const int kHeight = benchmark_height_; \ align_buffer_page_end(src_y, kWidth* kHeight + OFF); \ align_buffer_page_end(src_u, SUBSAMPLE(kWidth, SRC_SUBSAMP_X) * \ SUBSAMPLE(kHeight, SRC_SUBSAMP_Y) + \ OFF); \ align_buffer_page_end(src_v, SUBSAMPLE(kWidth, SRC_SUBSAMP_X) * \ SUBSAMPLE(kHeight, SRC_SUBSAMP_Y) + \ OFF); \ align_buffer_page_end(dst_y_c, kWidth* kHeight); \ align_buffer_page_end(dst_uv_c, SUBSAMPLE(kWidth * 2, SUBSAMP_X) * \ SUBSAMPLE(kHeight, SUBSAMP_Y)); \ align_buffer_page_end(dst_y_opt, kWidth* kHeight); \ align_buffer_page_end(dst_uv_opt, SUBSAMPLE(kWidth * 2, SUBSAMP_X) * \ SUBSAMPLE(kHeight, SUBSAMP_Y)); \ for (int i = 0; i < kHeight; ++i) \ for (int j = 0; j < kWidth; ++j) \ src_y[i * kWidth + j + OFF] = (fastrand() & 0xff); \ for (int i = 0; i < SUBSAMPLE(kHeight, SRC_SUBSAMP_Y); ++i) { \ for (int j = 0; j < SUBSAMPLE(kWidth, SRC_SUBSAMP_X); ++j) { \ src_u[(i * SUBSAMPLE(kWidth, SRC_SUBSAMP_X)) + j + OFF] = \ (fastrand() & 0xff); \ src_v[(i * SUBSAMPLE(kWidth, SRC_SUBSAMP_X)) + j + OFF] = \ (fastrand() & 0xff); \ } \ } \ memset(dst_y_c, 1, kWidth* kHeight); \ memset(dst_uv_c, 2, \ SUBSAMPLE(kWidth * 2, SUBSAMP_X) * SUBSAMPLE(kHeight, SUBSAMP_Y)); \ memset(dst_y_opt, 101, kWidth* kHeight); \ memset(dst_uv_opt, 102, \ SUBSAMPLE(kWidth * 2, SUBSAMP_X) * SUBSAMPLE(kHeight, SUBSAMP_Y)); \ MaskCpuFlags(disable_cpu_flags_); \ SRC_FMT_PLANAR##To##FMT_PLANAR( \ src_y + OFF, kWidth, src_u + OFF, SUBSAMPLE(kWidth, SRC_SUBSAMP_X), \ src_v + OFF, SUBSAMPLE(kWidth, SRC_SUBSAMP_X), dst_y_c, kWidth, \ dst_uv_c, SUBSAMPLE(kWidth * 2, SUBSAMP_X), kWidth, NEG kHeight); \ MaskCpuFlags(benchmark_cpu_info_); \ for (int i = 0; i < benchmark_iterations_; ++i) { \ SRC_FMT_PLANAR##To##FMT_PLANAR( \ src_y + OFF, kWidth, src_u + OFF, SUBSAMPLE(kWidth, SRC_SUBSAMP_X), \ src_v + OFF, SUBSAMPLE(kWidth, SRC_SUBSAMP_X), dst_y_opt, kWidth, \ dst_uv_opt, SUBSAMPLE(kWidth * 2, SUBSAMP_X), kWidth, NEG kHeight); \ } \ int max_diff = 0; \ for (int i = 0; i < kHeight; ++i) { \ for (int j = 0; j < kWidth; ++j) { \ int abs_diff = abs(static_cast<int>(dst_y_c[i * kWidth + j]) - \ static_cast<int>(dst_y_opt[i * kWidth + j])); \ if (abs_diff > max_diff) { \ max_diff = abs_diff; \ } \ } \ } \ EXPECT_LE(max_diff, 1); \ for (int i = 0; i < SUBSAMPLE(kHeight, SUBSAMP_Y); ++i) { \ for (int j = 0; j < SUBSAMPLE(kWidth * 2, SUBSAMP_X); ++j) { \ int abs_diff = \ abs(static_cast<int>( \ dst_uv_c[i * SUBSAMPLE(kWidth * 2, SUBSAMP_X) + j]) - \ static_cast<int>( \ dst_uv_opt[i * SUBSAMPLE(kWidth * 2, SUBSAMP_X) + j])); \ if (abs_diff > max_diff) { \ max_diff = abs_diff; \ } \ } \ } \ EXPECT_LE(max_diff, 1); \ free_aligned_buffer_page_end(dst_y_c); \ free_aligned_buffer_page_end(dst_uv_c); \ free_aligned_buffer_page_end(dst_y_opt); \ free_aligned_buffer_page_end(dst_uv_opt); \ free_aligned_buffer_page_end(src_y); \ free_aligned_buffer_page_end(src_u); \ free_aligned_buffer_page_end(src_v); \ } #define TESTPLANARTOBP(SRC_FMT_PLANAR, SRC_SUBSAMP_X, SRC_SUBSAMP_Y, \ FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y) \ TESTPLANARTOBPI(SRC_FMT_PLANAR, SRC_SUBSAMP_X, SRC_SUBSAMP_Y, FMT_PLANAR, \ SUBSAMP_X, SUBSAMP_Y, benchmark_width_ - 4, _Any, +, 0) \ TESTPLANARTOBPI(SRC_FMT_PLANAR, SRC_SUBSAMP_X, SRC_SUBSAMP_Y, FMT_PLANAR, \ SUBSAMP_X, SUBSAMP_Y, benchmark_width_, _Unaligned, +, 1) \ TESTPLANARTOBPI(SRC_FMT_PLANAR, SRC_SUBSAMP_X, SRC_SUBSAMP_Y, FMT_PLANAR, \ SUBSAMP_X, SUBSAMP_Y, benchmark_width_, _Invert, -, 0) \ TESTPLANARTOBPI(SRC_FMT_PLANAR, SRC_SUBSAMP_X, SRC_SUBSAMP_Y, FMT_PLANAR, \ SUBSAMP_X, SUBSAMP_Y, benchmark_width_, _Opt, +, 0) TESTPLANARTOBP(I420, 2, 2, NV12, 2, 2) TESTPLANARTOBP(I420, 2, 2, NV21, 2, 2) #define TESTBIPLANARTOPI(SRC_FMT_PLANAR, SRC_SUBSAMP_X, SRC_SUBSAMP_Y, \ FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, W1280, N, NEG, OFF, \ DOY) \ TEST_F(LibYUVConvertTest, SRC_FMT_PLANAR##To##FMT_PLANAR##N) { \ const int kWidth = ((W1280) > 0) ? (W1280) : 1; \ const int kHeight = benchmark_height_; \ align_buffer_page_end(src_y, kWidth* kHeight + OFF); \ align_buffer_page_end(src_uv, 2 * SUBSAMPLE(kWidth, SRC_SUBSAMP_X) * \ SUBSAMPLE(kHeight, SRC_SUBSAMP_Y) + \ OFF); \ align_buffer_page_end(dst_y_c, kWidth* kHeight); \ align_buffer_page_end(dst_u_c, SUBSAMPLE(kWidth, SUBSAMP_X) * \ SUBSAMPLE(kHeight, SUBSAMP_Y)); \ align_buffer_page_end(dst_v_c, SUBSAMPLE(kWidth, SUBSAMP_X) * \ SUBSAMPLE(kHeight, SUBSAMP_Y)); \ align_buffer_page_end(dst_y_opt, kWidth* kHeight); \ align_buffer_page_end(dst_u_opt, SUBSAMPLE(kWidth, SUBSAMP_X) * \ SUBSAMPLE(kHeight, SUBSAMP_Y)); \ align_buffer_page_end(dst_v_opt, SUBSAMPLE(kWidth, SUBSAMP_X) * \ SUBSAMPLE(kHeight, SUBSAMP_Y)); \ for (int i = 0; i < kHeight; ++i) \ for (int j = 0; j < kWidth; ++j) \ src_y[i * kWidth + j + OFF] = (fastrand() & 0xff); \ for (int i = 0; i < SUBSAMPLE(kHeight, SRC_SUBSAMP_Y); ++i) { \ for (int j = 0; j < 2 * SUBSAMPLE(kWidth, SRC_SUBSAMP_X); ++j) { \ src_uv[(i * 2 * SUBSAMPLE(kWidth, SRC_SUBSAMP_X)) + j + OFF] = \ (fastrand() & 0xff); \ } \ } \ memset(dst_y_c, 1, kWidth* kHeight); \ memset(dst_u_c, 2, \ SUBSAMPLE(kWidth, SUBSAMP_X) * SUBSAMPLE(kHeight, SUBSAMP_Y)); \ memset(dst_v_c, 3, \ SUBSAMPLE(kWidth, SUBSAMP_X) * SUBSAMPLE(kHeight, SUBSAMP_Y)); \ memset(dst_y_opt, 101, kWidth* kHeight); \ memset(dst_u_opt, 102, \ SUBSAMPLE(kWidth, SUBSAMP_X) * SUBSAMPLE(kHeight, SUBSAMP_Y)); \ memset(dst_v_opt, 103, \ SUBSAMPLE(kWidth, SUBSAMP_X) * SUBSAMPLE(kHeight, SUBSAMP_Y)); \ MaskCpuFlags(disable_cpu_flags_); \ SRC_FMT_PLANAR##To##FMT_PLANAR( \ src_y + OFF, kWidth, src_uv + OFF, \ 2 * SUBSAMPLE(kWidth, SRC_SUBSAMP_X), DOY ? dst_y_c : NULL, kWidth, \ dst_u_c, SUBSAMPLE(kWidth, SUBSAMP_X), dst_v_c, \ SUBSAMPLE(kWidth, SUBSAMP_X), kWidth, NEG kHeight); \ MaskCpuFlags(benchmark_cpu_info_); \ for (int i = 0; i < benchmark_iterations_; ++i) { \ SRC_FMT_PLANAR##To##FMT_PLANAR( \ src_y + OFF, kWidth, src_uv + OFF, \ 2 * SUBSAMPLE(kWidth, SRC_SUBSAMP_X), DOY ? dst_y_opt : NULL, \ kWidth, dst_u_opt, SUBSAMPLE(kWidth, SUBSAMP_X), dst_v_opt, \ SUBSAMPLE(kWidth, SUBSAMP_X), kWidth, NEG kHeight); \ } \ int max_diff = 0; \ if (DOY) { \ for (int i = 0; i < kHeight; ++i) { \ for (int j = 0; j < kWidth; ++j) { \ int abs_diff = abs(static_cast<int>(dst_y_c[i * kWidth + j]) - \ static_cast<int>(dst_y_opt[i * kWidth + j])); \ if (abs_diff > max_diff) { \ max_diff = abs_diff; \ } \ } \ } \ EXPECT_LE(max_diff, 1); \ } \ for (int i = 0; i < SUBSAMPLE(kHeight, SUBSAMP_Y); ++i) { \ for (int j = 0; j < SUBSAMPLE(kWidth, SUBSAMP_X); ++j) { \ int abs_diff = abs( \ static_cast<int>(dst_u_c[i * SUBSAMPLE(kWidth, SUBSAMP_X) + j]) - \ static_cast<int>( \ dst_u_opt[i * SUBSAMPLE(kWidth, SUBSAMP_X) + j])); \ if (abs_diff > max_diff) { \ max_diff = abs_diff; \ } \ } \ } \ EXPECT_LE(max_diff, 1); \ for (int i = 0; i < SUBSAMPLE(kHeight, SUBSAMP_Y); ++i) { \ for (int j = 0; j < SUBSAMPLE(kWidth, SUBSAMP_X); ++j) { \ int abs_diff = abs( \ static_cast<int>(dst_v_c[i * SUBSAMPLE(kWidth, SUBSAMP_X) + j]) - \ static_cast<int>( \ dst_v_opt[i * SUBSAMPLE(kWidth, SUBSAMP_X) + j])); \ if (abs_diff > max_diff) { \ max_diff = abs_diff; \ } \ } \ } \ EXPECT_LE(max_diff, 1); \ free_aligned_buffer_page_end(dst_y_c); \ free_aligned_buffer_page_end(dst_u_c); \ free_aligned_buffer_page_end(dst_v_c); \ free_aligned_buffer_page_end(dst_y_opt); \ free_aligned_buffer_page_end(dst_u_opt); \ free_aligned_buffer_page_end(dst_v_opt); \ free_aligned_buffer_page_end(src_y); \ free_aligned_buffer_page_end(src_uv); \ } #define TESTBIPLANARTOP(SRC_FMT_PLANAR, SRC_SUBSAMP_X, SRC_SUBSAMP_Y, \ FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y) \ TESTBIPLANARTOPI(SRC_FMT_PLANAR, SRC_SUBSAMP_X, SRC_SUBSAMP_Y, FMT_PLANAR, \ SUBSAMP_X, SUBSAMP_Y, benchmark_width_ - 4, _Any, +, 0, 1) \ TESTBIPLANARTOPI(SRC_FMT_PLANAR, SRC_SUBSAMP_X, SRC_SUBSAMP_Y, FMT_PLANAR, \ SUBSAMP_X, SUBSAMP_Y, benchmark_width_, _Unaligned, +, 1, \ 1) \ TESTBIPLANARTOPI(SRC_FMT_PLANAR, SRC_SUBSAMP_X, SRC_SUBSAMP_Y, FMT_PLANAR, \ SUBSAMP_X, SUBSAMP_Y, benchmark_width_, _Invert, -, 0, 1) \ TESTBIPLANARTOPI(SRC_FMT_PLANAR, SRC_SUBSAMP_X, SRC_SUBSAMP_Y, FMT_PLANAR, \ SUBSAMP_X, SUBSAMP_Y, benchmark_width_, _Opt, +, 0, 1) \ TESTBIPLANARTOPI(SRC_FMT_PLANAR, SRC_SUBSAMP_X, SRC_SUBSAMP_Y, FMT_PLANAR, \ SUBSAMP_X, SUBSAMP_Y, benchmark_width_, _NullY, +, 0, 0) TESTBIPLANARTOP(NV12, 2, 2, I420, 2, 2) TESTBIPLANARTOP(NV21, 2, 2, I420, 2, 2) #define ALIGNINT(V, ALIGN) (((V) + (ALIGN)-1) / (ALIGN) * (ALIGN)) #define TESTPLANARTOBI(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, BPP_B, ALIGN, \ YALIGN, W1280, DIFF, N, NEG, OFF, FMT_C, BPP_C) \ TEST_F(LibYUVConvertTest, FMT_PLANAR##To##FMT_B##N) { \ const int kWidth = ((W1280) > 0) ? (W1280) : 1; \ const int kHeight = ALIGNINT(benchmark_height_, YALIGN); \ const int kStrideB = ALIGNINT(kWidth * BPP_B, ALIGN); \ const int kStrideUV = SUBSAMPLE(kWidth, SUBSAMP_X); \ const int kSizeUV = kStrideUV * SUBSAMPLE(kHeight, SUBSAMP_Y); \ align_buffer_page_end(src_y, kWidth* kHeight + OFF); \ align_buffer_page_end(src_u, kSizeUV + OFF); \ align_buffer_page_end(src_v, kSizeUV + OFF); \ align_buffer_page_end(dst_argb_c, kStrideB* kHeight + OFF); \ align_buffer_page_end(dst_argb_opt, kStrideB* kHeight + OFF); \ for (int i = 0; i < kWidth * kHeight; ++i) { \ src_y[i + OFF] = (fastrand() & 0xff); \ } \ for (int i = 0; i < kSizeUV; ++i) { \ src_u[i + OFF] = (fastrand() & 0xff); \ src_v[i + OFF] = (fastrand() & 0xff); \ } \ memset(dst_argb_c + OFF, 1, kStrideB * kHeight); \ memset(dst_argb_opt + OFF, 101, kStrideB * kHeight); \ MaskCpuFlags(disable_cpu_flags_); \ FMT_PLANAR##To##FMT_B(src_y + OFF, kWidth, src_u + OFF, kStrideUV, \ src_v + OFF, kStrideUV, dst_argb_c + OFF, kStrideB, \ kWidth, NEG kHeight); \ MaskCpuFlags(benchmark_cpu_info_); \ for (int i = 0; i < benchmark_iterations_; ++i) { \ FMT_PLANAR##To##FMT_B(src_y + OFF, kWidth, src_u + OFF, kStrideUV, \ src_v + OFF, kStrideUV, dst_argb_opt + OFF, \ kStrideB, kWidth, NEG kHeight); \ } \ int max_diff = 0; \ /* Convert to ARGB so 565 is expanded to bytes that can be compared. */ \ align_buffer_page_end(dst_argb32_c, kWidth* BPP_C* kHeight); \ align_buffer_page_end(dst_argb32_opt, kWidth* BPP_C* kHeight); \ memset(dst_argb32_c, 2, kWidth* BPP_C* kHeight); \ memset(dst_argb32_opt, 102, kWidth* BPP_C* kHeight); \ FMT_B##To##FMT_C(dst_argb_c + OFF, kStrideB, dst_argb32_c, kWidth * BPP_C, \ kWidth, kHeight); \ FMT_B##To##FMT_C(dst_argb_opt + OFF, kStrideB, dst_argb32_opt, \ kWidth * BPP_C, kWidth, kHeight); \ for (int i = 0; i < kWidth * BPP_C * kHeight; ++i) { \ int abs_diff = abs(static_cast<int>(dst_argb32_c[i]) - \ static_cast<int>(dst_argb32_opt[i])); \ if (abs_diff > max_diff) { \ max_diff = abs_diff; \ } \ } \ EXPECT_LE(max_diff, DIFF); \ free_aligned_buffer_page_end(src_y); \ free_aligned_buffer_page_end(src_u); \ free_aligned_buffer_page_end(src_v); \ free_aligned_buffer_page_end(dst_argb_c); \ free_aligned_buffer_page_end(dst_argb_opt); \ free_aligned_buffer_page_end(dst_argb32_c); \ free_aligned_buffer_page_end(dst_argb32_opt); \ } #define TESTPLANARTOB(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, BPP_B, ALIGN, \ YALIGN, DIFF, FMT_C, BPP_C) \ TESTPLANARTOBI(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, BPP_B, ALIGN, \ YALIGN, benchmark_width_ - 4, DIFF, _Any, +, 0, FMT_C, BPP_C) \ TESTPLANARTOBI(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, BPP_B, ALIGN, \ YALIGN, benchmark_width_, DIFF, _Unaligned, +, 1, FMT_C, \ BPP_C) \ TESTPLANARTOBI(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, BPP_B, ALIGN, \ YALIGN, benchmark_width_, DIFF, _Invert, -, 0, FMT_C, BPP_C) \ TESTPLANARTOBI(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, BPP_B, ALIGN, \ YALIGN, benchmark_width_, DIFF, _Opt, +, 0, FMT_C, BPP_C) TESTPLANARTOB(I420, 2, 2, ARGB, 4, 4, 1, 2, ARGB, 4) TESTPLANARTOB(J420, 2, 2, ARGB, 4, 4, 1, 2, ARGB, 4) TESTPLANARTOB(J420, 2, 2, ABGR, 4, 4, 1, 2, ARGB, 4) TESTPLANARTOB(H420, 2, 2, ARGB, 4, 4, 1, 2, ARGB, 4) TESTPLANARTOB(H420, 2, 2, ABGR, 4, 4, 1, 2, ARGB, 4) TESTPLANARTOB(I420, 2, 2, BGRA, 4, 4, 1, 2, ARGB, 4) TESTPLANARTOB(I420, 2, 2, ABGR, 4, 4, 1, 2, ARGB, 4) TESTPLANARTOB(I420, 2, 2, RGBA, 4, 4, 1, 2, ARGB, 4) TESTPLANARTOB(I420, 2, 2, RAW, 3, 3, 1, 2, ARGB, 4) TESTPLANARTOB(I420, 2, 2, RGB24, 3, 3, 1, 2, ARGB, 4) TESTPLANARTOB(I420, 2, 2, RGB565, 2, 2, 1, 9, ARGB, 4) TESTPLANARTOB(I420, 2, 2, ARGB1555, 2, 2, 1, 9, ARGB, 4) TESTPLANARTOB(I420, 2, 2, ARGB4444, 2, 2, 1, 17, ARGB, 4) TESTPLANARTOB(I422, 2, 1, ARGB, 4, 4, 1, 2, ARGB, 4) TESTPLANARTOB(J422, 2, 1, ARGB, 4, 4, 1, 2, ARGB, 4) TESTPLANARTOB(J422, 2, 1, ABGR, 4, 4, 1, 2, ARGB, 4) TESTPLANARTOB(H422, 2, 1, ARGB, 4, 4, 1, 2, ARGB, 4) TESTPLANARTOB(H422, 2, 1, ABGR, 4, 4, 1, 2, ARGB, 4) TESTPLANARTOB(I422, 2, 1, BGRA, 4, 4, 1, 2, ARGB, 4) TESTPLANARTOB(I422, 2, 1, ABGR, 4, 4, 1, 2, ARGB, 4) TESTPLANARTOB(I422, 2, 1, RGBA, 4, 4, 1, 2, ARGB, 4) TESTPLANARTOB(I444, 1, 1, ARGB, 4, 4, 1, 2, ARGB, 4) TESTPLANARTOB(J444, 1, 1, ARGB, 4, 4, 1, 2, ARGB, 4) TESTPLANARTOB(I444, 1, 1, ABGR, 4, 4, 1, 2, ARGB, 4) TESTPLANARTOB(I420, 2, 2, YUY2, 2, 4, 1, 1, ARGB, 4) TESTPLANARTOB(I420, 2, 2, UYVY, 2, 4, 1, 1, ARGB, 4) TESTPLANARTOB(I422, 2, 1, YUY2, 2, 4, 1, 0, ARGB, 4) TESTPLANARTOB(I422, 2, 1, UYVY, 2, 4, 1, 0, ARGB, 4) TESTPLANARTOB(I420, 2, 2, I400, 1, 1, 1, 0, ARGB, 4) TESTPLANARTOB(J420, 2, 2, J400, 1, 1, 1, 0, ARGB, 4) #define TESTQPLANARTOBI(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, BPP_B, ALIGN, \ YALIGN, W1280, DIFF, N, NEG, OFF, ATTEN) \ TEST_F(LibYUVConvertTest, FMT_PLANAR##To##FMT_B##N) { \ const int kWidth = ((W1280) > 0) ? (W1280) : 1; \ const int kHeight = ALIGNINT(benchmark_height_, YALIGN); \ const int kStrideB = ALIGNINT(kWidth * BPP_B, ALIGN); \ const int kStrideUV = SUBSAMPLE(kWidth, SUBSAMP_X); \ const int kSizeUV = kStrideUV * SUBSAMPLE(kHeight, SUBSAMP_Y); \ align_buffer_page_end(src_y, kWidth* kHeight + OFF); \ align_buffer_page_end(src_u, kSizeUV + OFF); \ align_buffer_page_end(src_v, kSizeUV + OFF); \ align_buffer_page_end(src_a, kWidth* kHeight + OFF); \ align_buffer_page_end(dst_argb_c, kStrideB* kHeight + OFF); \ align_buffer_page_end(dst_argb_opt, kStrideB* kHeight + OFF); \ for (int i = 0; i < kWidth * kHeight; ++i) { \ src_y[i + OFF] = (fastrand() & 0xff); \ src_a[i + OFF] = (fastrand() & 0xff); \ } \ for (int i = 0; i < kSizeUV; ++i) { \ src_u[i + OFF] = (fastrand() & 0xff); \ src_v[i + OFF] = (fastrand() & 0xff); \ } \ memset(dst_argb_c + OFF, 1, kStrideB * kHeight); \ memset(dst_argb_opt + OFF, 101, kStrideB * kHeight); \ MaskCpuFlags(disable_cpu_flags_); \ FMT_PLANAR##To##FMT_B(src_y + OFF, kWidth, src_u + OFF, kStrideUV, \ src_v + OFF, kStrideUV, src_a + OFF, kWidth, \ dst_argb_c + OFF, kStrideB, kWidth, NEG kHeight, \ ATTEN); \ MaskCpuFlags(benchmark_cpu_info_); \ for (int i = 0; i < benchmark_iterations_; ++i) { \ FMT_PLANAR##To##FMT_B(src_y + OFF, kWidth, src_u + OFF, kStrideUV, \ src_v + OFF, kStrideUV, src_a + OFF, kWidth, \ dst_argb_opt + OFF, kStrideB, kWidth, NEG kHeight, \ ATTEN); \ } \ int max_diff = 0; \ for (int i = 0; i < kWidth * BPP_B * kHeight; ++i) { \ int abs_diff = abs(static_cast<int>(dst_argb_c[i + OFF]) - \ static_cast<int>(dst_argb_opt[i + OFF])); \ if (abs_diff > max_diff) { \ max_diff = abs_diff; \ } \ } \ EXPECT_LE(max_diff, DIFF); \ free_aligned_buffer_page_end(src_y); \ free_aligned_buffer_page_end(src_u); \ free_aligned_buffer_page_end(src_v); \ free_aligned_buffer_page_end(src_a); \ free_aligned_buffer_page_end(dst_argb_c); \ free_aligned_buffer_page_end(dst_argb_opt); \ } #define TESTQPLANARTOB(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, BPP_B, ALIGN, \ YALIGN, DIFF) \ TESTQPLANARTOBI(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, BPP_B, ALIGN, \ YALIGN, benchmark_width_ - 4, DIFF, _Any, +, 0, 0) \ TESTQPLANARTOBI(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, BPP_B, ALIGN, \ YALIGN, benchmark_width_, DIFF, _Unaligned, +, 1, 0) \ TESTQPLANARTOBI(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, BPP_B, ALIGN, \ YALIGN, benchmark_width_, DIFF, _Invert, -, 0, 0) \ TESTQPLANARTOBI(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, BPP_B, ALIGN, \ YALIGN, benchmark_width_, DIFF, _Opt, +, 0, 0) \ TESTQPLANARTOBI(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, BPP_B, ALIGN, \ YALIGN, benchmark_width_, DIFF, _Premult, +, 0, 1) TESTQPLANARTOB(I420Alpha, 2, 2, ARGB, 4, 4, 1, 2) TESTQPLANARTOB(I420Alpha, 2, 2, ABGR, 4, 4, 1, 2) #define TESTBIPLANARTOBI(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, BPP_B, \ W1280, DIFF, N, NEG, OFF) \ TEST_F(LibYUVConvertTest, FMT_PLANAR##To##FMT_B##N) { \ const int kWidth = ((W1280) > 0) ? (W1280) : 1; \ const int kHeight = benchmark_height_; \ const int kStrideB = kWidth * BPP_B; \ const int kStrideUV = SUBSAMPLE(kWidth, SUBSAMP_X); \ align_buffer_page_end(src_y, kWidth* kHeight + OFF); \ align_buffer_page_end(src_uv, \ kStrideUV* SUBSAMPLE(kHeight, SUBSAMP_Y) * 2 + OFF); \ align_buffer_page_end(dst_argb_c, kStrideB* kHeight); \ align_buffer_page_end(dst_argb_opt, kStrideB* kHeight); \ for (int i = 0; i < kHeight; ++i) \ for (int j = 0; j < kWidth; ++j) \ src_y[i * kWidth + j + OFF] = (fastrand() & 0xff); \ for (int i = 0; i < SUBSAMPLE(kHeight, SUBSAMP_Y); ++i) { \ for (int j = 0; j < kStrideUV * 2; ++j) { \ src_uv[i * kStrideUV * 2 + j + OFF] = (fastrand() & 0xff); \ } \ } \ memset(dst_argb_c, 1, kStrideB* kHeight); \ memset(dst_argb_opt, 101, kStrideB* kHeight); \ MaskCpuFlags(disable_cpu_flags_); \ FMT_PLANAR##To##FMT_B(src_y + OFF, kWidth, src_uv + OFF, kStrideUV * 2, \ dst_argb_c, kWidth * BPP_B, kWidth, NEG kHeight); \ MaskCpuFlags(benchmark_cpu_info_); \ for (int i = 0; i < benchmark_iterations_; ++i) { \ FMT_PLANAR##To##FMT_B(src_y + OFF, kWidth, src_uv + OFF, kStrideUV * 2, \ dst_argb_opt, kWidth * BPP_B, kWidth, \ NEG kHeight); \ } \ /* Convert to ARGB so 565 is expanded to bytes that can be compared. */ \ align_buffer_page_end(dst_argb32_c, kWidth * 4 * kHeight); \ align_buffer_page_end(dst_argb32_opt, kWidth * 4 * kHeight); \ memset(dst_argb32_c, 2, kWidth * 4 * kHeight); \ memset(dst_argb32_opt, 102, kWidth * 4 * kHeight); \ FMT_B##ToARGB(dst_argb_c, kStrideB, dst_argb32_c, kWidth * 4, kWidth, \ kHeight); \ FMT_B##ToARGB(dst_argb_opt, kStrideB, dst_argb32_opt, kWidth * 4, kWidth, \ kHeight); \ int max_diff = 0; \ for (int i = 0; i < kHeight; ++i) { \ for (int j = 0; j < kWidth * 4; ++j) { \ int abs_diff = \ abs(static_cast<int>(dst_argb32_c[i * kWidth * 4 + j]) - \ static_cast<int>(dst_argb32_opt[i * kWidth * 4 + j])); \ if (abs_diff > max_diff) { \ max_diff = abs_diff; \ } \ } \ } \ EXPECT_LE(max_diff, DIFF); \ free_aligned_buffer_page_end(src_y); \ free_aligned_buffer_page_end(src_uv); \ free_aligned_buffer_page_end(dst_argb_c); \ free_aligned_buffer_page_end(dst_argb_opt); \ free_aligned_buffer_page_end(dst_argb32_c); \ free_aligned_buffer_page_end(dst_argb32_opt); \ } #define TESTBIPLANARTOB(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, BPP_B, DIFF) \ TESTBIPLANARTOBI(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, BPP_B, \ benchmark_width_ - 4, DIFF, _Any, +, 0) \ TESTBIPLANARTOBI(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, BPP_B, \ benchmark_width_, DIFF, _Unaligned, +, 1) \ TESTBIPLANARTOBI(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, BPP_B, \ benchmark_width_, DIFF, _Invert, -, 0) \ TESTBIPLANARTOBI(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, BPP_B, \ benchmark_width_, DIFF, _Opt, +, 0) TESTBIPLANARTOB(NV12, 2, 2, ARGB, 4, 2) TESTBIPLANARTOB(NV21, 2, 2, ARGB, 4, 2) TESTBIPLANARTOB(NV12, 2, 2, RGB565, 2, 9) #ifdef DO_THREE_PLANES // Do 3 allocations for yuv. conventional but slower. #define TESTATOPLANARI(FMT_A, BPP_A, YALIGN, FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, \ W1280, DIFF, N, NEG, OFF) \ TEST_F(LibYUVConvertTest, FMT_A##To##FMT_PLANAR##N) { \ const int kWidth = ((W1280) > 0) ? (W1280) : 1; \ const int kHeight = ALIGNINT(benchmark_height_, YALIGN); \ const int kStrideUV = SUBSAMPLE(kWidth, SUBSAMP_X); \ const int kStride = (kStrideUV * SUBSAMP_X * 8 * BPP_A + 7) / 8; \ align_buffer_page_end(src_argb, kStride* kHeight + OFF); \ align_buffer_page_end(dst_y_c, kWidth* kHeight); \ align_buffer_page_end(dst_u_c, kStrideUV* SUBSAMPLE(kHeight, SUBSAMP_Y)); \ align_buffer_page_end(dst_v_c, kStrideUV* SUBSAMPLE(kHeight, SUBSAMP_Y)); \ align_buffer_page_end(dst_y_opt, kWidth* kHeight); \ align_buffer_page_end(dst_u_opt, \ kStrideUV* SUBSAMPLE(kHeight, SUBSAMP_Y)); \ align_buffer_page_end(dst_v_opt, \ kStrideUV* SUBSAMPLE(kHeight, SUBSAMP_Y)); \ memset(dst_y_c, 1, kWidth* kHeight); \ memset(dst_u_c, 2, kStrideUV* SUBSAMPLE(kHeight, SUBSAMP_Y)); \ memset(dst_v_c, 3, kStrideUV* SUBSAMPLE(kHeight, SUBSAMP_Y)); \ memset(dst_y_opt, 101, kWidth* kHeight); \ memset(dst_u_opt, 102, kStrideUV* SUBSAMPLE(kHeight, SUBSAMP_Y)); \ memset(dst_v_opt, 103, kStrideUV* SUBSAMPLE(kHeight, SUBSAMP_Y)); \ for (int i = 0; i < kHeight; ++i) \ for (int j = 0; j < kStride; ++j) \ src_argb[(i * kStride) + j + OFF] = (fastrand() & 0xff); \ MaskCpuFlags(disable_cpu_flags_); \ FMT_A##To##FMT_PLANAR(src_argb + OFF, kStride, dst_y_c, kWidth, dst_u_c, \ kStrideUV, dst_v_c, kStrideUV, kWidth, NEG kHeight); \ MaskCpuFlags(benchmark_cpu_info_); \ for (int i = 0; i < benchmark_iterations_; ++i) { \ FMT_A##To##FMT_PLANAR(src_argb + OFF, kStride, dst_y_opt, kWidth, \ dst_u_opt, kStrideUV, dst_v_opt, kStrideUV, \ kWidth, NEG kHeight); \ } \ for (int i = 0; i < kHeight; ++i) { \ for (int j = 0; j < kWidth; ++j) { \ EXPECT_NEAR(static_cast<int>(dst_y_c[i * kWidth + j]), \ static_cast<int>(dst_y_opt[i * kWidth + j]), DIFF); \ } \ } \ for (int i = 0; i < SUBSAMPLE(kHeight, SUBSAMP_Y); ++i) { \ for (int j = 0; j < kStrideUV; ++j) { \ EXPECT_NEAR(static_cast<int>(dst_u_c[i * kStrideUV + j]), \ static_cast<int>(dst_u_opt[i * kStrideUV + j]), DIFF); \ } \ } \ for (int i = 0; i < SUBSAMPLE(kHeight, SUBSAMP_Y); ++i) { \ for (int j = 0; j < kStrideUV; ++j) { \ EXPECT_NEAR(static_cast<int>(dst_v_c[i * kStrideUV + j]), \ static_cast<int>(dst_v_opt[i * kStrideUV + j]), DIFF); \ } \ } \ free_aligned_buffer_page_end(dst_y_c); \ free_aligned_buffer_page_end(dst_u_c); \ free_aligned_buffer_page_end(dst_v_c); \ free_aligned_buffer_page_end(dst_y_opt); \ free_aligned_buffer_page_end(dst_u_opt); \ free_aligned_buffer_page_end(dst_v_opt); \ free_aligned_buffer_page_end(src_argb); \ } #else #define TESTATOPLANARI(FMT_A, BPP_A, YALIGN, FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, \ W1280, DIFF, N, NEG, OFF) \ TEST_F(LibYUVConvertTest, FMT_A##To##FMT_PLANAR##N) { \ const int kWidth = ((W1280) > 0) ? (W1280) : 1; \ const int kHeight = ALIGNINT(benchmark_height_, YALIGN); \ const int kStrideUV = SUBSAMPLE(kWidth, SUBSAMP_X); \ const int kStride = (kStrideUV * SUBSAMP_X * 8 * BPP_A + 7) / 8; \ align_buffer_page_end(src_argb, kStride* kHeight + OFF); \ align_buffer_page_end(dst_y_c, kWidth* kHeight); \ align_buffer_page_end(dst_uv_c, \ kStrideUV * 2 * SUBSAMPLE(kHeight, SUBSAMP_Y)); \ align_buffer_page_end(dst_y_opt, kWidth* kHeight); \ align_buffer_page_end(dst_uv_opt, \ kStrideUV * 2 * SUBSAMPLE(kHeight, SUBSAMP_Y)); \ memset(dst_y_c, 1, kWidth* kHeight); \ memset(dst_uv_c, 2, kStrideUV * 2 * SUBSAMPLE(kHeight, SUBSAMP_Y)); \ memset(dst_y_opt, 101, kWidth* kHeight); \ memset(dst_uv_opt, 102, kStrideUV * 2 * SUBSAMPLE(kHeight, SUBSAMP_Y)); \ for (int i = 0; i < kHeight; ++i) \ for (int j = 0; j < kStride; ++j) \ src_argb[(i * kStride) + j + OFF] = (fastrand() & 0xff); \ MaskCpuFlags(disable_cpu_flags_); \ FMT_A##To##FMT_PLANAR(src_argb + OFF, kStride, dst_y_c, kWidth, dst_uv_c, \ kStrideUV * 2, dst_uv_c + kStrideUV, kStrideUV * 2, \ kWidth, NEG kHeight); \ MaskCpuFlags(benchmark_cpu_info_); \ for (int i = 0; i < benchmark_iterations_; ++i) { \ FMT_A##To##FMT_PLANAR(src_argb + OFF, kStride, dst_y_opt, kWidth, \ dst_uv_opt, kStrideUV * 2, dst_uv_opt + kStrideUV, \ kStrideUV * 2, kWidth, NEG kHeight); \ } \ for (int i = 0; i < kHeight; ++i) { \ for (int j = 0; j < kWidth; ++j) { \ EXPECT_NEAR(static_cast<int>(dst_y_c[i * kWidth + j]), \ static_cast<int>(dst_y_opt[i * kWidth + j]), DIFF); \ } \ } \ for (int i = 0; i < SUBSAMPLE(kHeight, SUBSAMP_Y) * 2; ++i) { \ for (int j = 0; j < kStrideUV; ++j) { \ EXPECT_NEAR(static_cast<int>(dst_uv_c[i * kStrideUV + j]), \ static_cast<int>(dst_uv_opt[i * kStrideUV + j]), DIFF); \ } \ } \ free_aligned_buffer_page_end(dst_y_c); \ free_aligned_buffer_page_end(dst_uv_c); \ free_aligned_buffer_page_end(dst_y_opt); \ free_aligned_buffer_page_end(dst_uv_opt); \ free_aligned_buffer_page_end(src_argb); \ } #endif #define TESTATOPLANAR(FMT_A, BPP_A, YALIGN, FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, \ DIFF) \ TESTATOPLANARI(FMT_A, BPP_A, YALIGN, FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, \ benchmark_width_ - 4, DIFF, _Any, +, 0) \ TESTATOPLANARI(FMT_A, BPP_A, YALIGN, FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, \ benchmark_width_, DIFF, _Unaligned, +, 1) \ TESTATOPLANARI(FMT_A, BPP_A, YALIGN, FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, \ benchmark_width_, DIFF, _Invert, -, 0) \ TESTATOPLANARI(FMT_A, BPP_A, YALIGN, FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, \ benchmark_width_, DIFF, _Opt, +, 0) TESTATOPLANAR(ARGB, 4, 1, I420, 2, 2, 4) #if defined(__arm__) || defined(__aarch64__) // arm version subsamples by summing 4 pixels then multiplying by matrix with // 4x smaller coefficients which are rounded to nearest integer. TESTATOPLANAR(ARGB, 4, 1, J420, 2, 2, 4) TESTATOPLANAR(ARGB, 4, 1, J422, 2, 1, 4) #else TESTATOPLANAR(ARGB, 4, 1, J420, 2, 2, 0) TESTATOPLANAR(ARGB, 4, 1, J422, 2, 1, 0) #endif TESTATOPLANAR(BGRA, 4, 1, I420, 2, 2, 4) TESTATOPLANAR(ABGR, 4, 1, I420, 2, 2, 4) TESTATOPLANAR(RGBA, 4, 1, I420, 2, 2, 4) TESTATOPLANAR(RAW, 3, 1, I420, 2, 2, 4) TESTATOPLANAR(RGB24, 3, 1, I420, 2, 2, 4) TESTATOPLANAR(RGB565, 2, 1, I420, 2, 2, 5) // TODO(fbarchard): Make 1555 neon work same as C code, reduce to diff 9. TESTATOPLANAR(ARGB1555, 2, 1, I420, 2, 2, 15) TESTATOPLANAR(ARGB4444, 2, 1, I420, 2, 2, 17) TESTATOPLANAR(ARGB, 4, 1, I422, 2, 1, 2) TESTATOPLANAR(ARGB, 4, 1, I444, 1, 1, 2) TESTATOPLANAR(YUY2, 2, 1, I420, 2, 2, 2) TESTATOPLANAR(UYVY, 2, 1, I420, 2, 2, 2) TESTATOPLANAR(YUY2, 2, 1, I422, 2, 1, 2) TESTATOPLANAR(UYVY, 2, 1, I422, 2, 1, 2) TESTATOPLANAR(I400, 1, 1, I420, 2, 2, 2) TESTATOPLANAR(J400, 1, 1, J420, 2, 2, 2) #define TESTATOBIPLANARI(FMT_A, SUB_A, BPP_A, FMT_PLANAR, SUBSAMP_X, \ SUBSAMP_Y, W1280, N, NEG, OFF) \ TEST_F(LibYUVConvertTest, FMT_A##To##FMT_PLANAR##N) { \ const int kWidth = ((W1280) > 0) ? (W1280) : 1; \ const int kHeight = benchmark_height_; \ const int kStride = SUBSAMPLE(kWidth, SUB_A) * BPP_A; \ const int kStrideUV = SUBSAMPLE(kWidth, SUBSAMP_X); \ align_buffer_page_end(src_argb, kStride* kHeight + OFF); \ align_buffer_page_end(dst_y_c, kWidth* kHeight); \ align_buffer_page_end(dst_uv_c, \ kStrideUV * 2 * SUBSAMPLE(kHeight, SUBSAMP_Y)); \ align_buffer_page_end(dst_y_opt, kWidth* kHeight); \ align_buffer_page_end(dst_uv_opt, \ kStrideUV * 2 * SUBSAMPLE(kHeight, SUBSAMP_Y)); \ for (int i = 0; i < kHeight; ++i) \ for (int j = 0; j < kStride; ++j) \ src_argb[(i * kStride) + j + OFF] = (fastrand() & 0xff); \ memset(dst_y_c, 1, kWidth* kHeight); \ memset(dst_uv_c, 2, kStrideUV * 2 * SUBSAMPLE(kHeight, SUBSAMP_Y)); \ memset(dst_y_opt, 101, kWidth* kHeight); \ memset(dst_uv_opt, 102, kStrideUV * 2 * SUBSAMPLE(kHeight, SUBSAMP_Y)); \ MaskCpuFlags(disable_cpu_flags_); \ FMT_A##To##FMT_PLANAR(src_argb + OFF, kStride, dst_y_c, kWidth, dst_uv_c, \ kStrideUV * 2, kWidth, NEG kHeight); \ MaskCpuFlags(benchmark_cpu_info_); \ for (int i = 0; i < benchmark_iterations_; ++i) { \ FMT_A##To##FMT_PLANAR(src_argb + OFF, kStride, dst_y_opt, kWidth, \ dst_uv_opt, kStrideUV * 2, kWidth, NEG kHeight); \ } \ int max_diff = 0; \ for (int i = 0; i < kHeight; ++i) { \ for (int j = 0; j < kWidth; ++j) { \ int abs_diff = abs(static_cast<int>(dst_y_c[i * kWidth + j]) - \ static_cast<int>(dst_y_opt[i * kWidth + j])); \ if (abs_diff > max_diff) { \ max_diff = abs_diff; \ } \ } \ } \ EXPECT_LE(max_diff, 4); \ for (int i = 0; i < SUBSAMPLE(kHeight, SUBSAMP_Y); ++i) { \ for (int j = 0; j < kStrideUV * 2; ++j) { \ int abs_diff = \ abs(static_cast<int>(dst_uv_c[i * kStrideUV * 2 + j]) - \ static_cast<int>(dst_uv_opt[i * kStrideUV * 2 + j])); \ if (abs_diff > max_diff) { \ max_diff = abs_diff; \ } \ } \ } \ EXPECT_LE(max_diff, 4); \ free_aligned_buffer_page_end(dst_y_c); \ free_aligned_buffer_page_end(dst_uv_c); \ free_aligned_buffer_page_end(dst_y_opt); \ free_aligned_buffer_page_end(dst_uv_opt); \ free_aligned_buffer_page_end(src_argb); \ } #define TESTATOBIPLANAR(FMT_A, SUB_A, BPP_A, FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y) \ TESTATOBIPLANARI(FMT_A, SUB_A, BPP_A, FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, \ benchmark_width_ - 4, _Any, +, 0) \ TESTATOBIPLANARI(FMT_A, SUB_A, BPP_A, FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, \ benchmark_width_, _Unaligned, +, 1) \ TESTATOBIPLANARI(FMT_A, SUB_A, BPP_A, FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, \ benchmark_width_, _Invert, -, 0) \ TESTATOBIPLANARI(FMT_A, SUB_A, BPP_A, FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, \ benchmark_width_, _Opt, +, 0) TESTATOBIPLANAR(ARGB, 1, 4, NV12, 2, 2) TESTATOBIPLANAR(ARGB, 1, 4, NV21, 2, 2) TESTATOBIPLANAR(YUY2, 2, 4, NV12, 2, 2) TESTATOBIPLANAR(UYVY, 2, 4, NV12, 2, 2) #define TESTATOBI(FMT_A, BPP_A, STRIDE_A, HEIGHT_A, FMT_B, BPP_B, STRIDE_B, \ HEIGHT_B, W1280, DIFF, N, NEG, OFF) \ TEST_F(LibYUVConvertTest, FMT_A##To##FMT_B##N) { \ const int kWidth = ((W1280) > 0) ? (W1280) : 1; \ const int kHeight = benchmark_height_; \ const int kHeightA = (kHeight + HEIGHT_A - 1) / HEIGHT_A * HEIGHT_A; \ const int kHeightB = (kHeight + HEIGHT_B - 1) / HEIGHT_B * HEIGHT_B; \ const int kStrideA = \ (kWidth * BPP_A + STRIDE_A - 1) / STRIDE_A * STRIDE_A; \ const int kStrideB = \ (kWidth * BPP_B + STRIDE_B - 1) / STRIDE_B * STRIDE_B; \ align_buffer_page_end(src_argb, kStrideA* kHeightA + OFF); \ align_buffer_page_end(dst_argb_c, kStrideB* kHeightB); \ align_buffer_page_end(dst_argb_opt, kStrideB* kHeightB); \ for (int i = 0; i < kStrideA * kHeightA; ++i) { \ src_argb[i + OFF] = (fastrand() & 0xff); \ } \ memset(dst_argb_c, 1, kStrideB* kHeightB); \ memset(dst_argb_opt, 101, kStrideB* kHeightB); \ MaskCpuFlags(disable_cpu_flags_); \ FMT_A##To##FMT_B(src_argb + OFF, kStrideA, dst_argb_c, kStrideB, kWidth, \ NEG kHeight); \ MaskCpuFlags(benchmark_cpu_info_); \ for (int i = 0; i < benchmark_iterations_; ++i) { \ FMT_A##To##FMT_B(src_argb + OFF, kStrideA, dst_argb_opt, kStrideB, \ kWidth, NEG kHeight); \ } \ int max_diff = 0; \ for (int i = 0; i < kStrideB * kHeightB; ++i) { \ int abs_diff = abs(static_cast<int>(dst_argb_c[i]) - \ static_cast<int>(dst_argb_opt[i])); \ if (abs_diff > max_diff) { \ max_diff = abs_diff; \ } \ } \ EXPECT_LE(max_diff, DIFF); \ free_aligned_buffer_page_end(src_argb); \ free_aligned_buffer_page_end(dst_argb_c); \ free_aligned_buffer_page_end(dst_argb_opt); \ } #define TESTATOBRANDOM(FMT_A, BPP_A, STRIDE_A, HEIGHT_A, FMT_B, BPP_B, \ STRIDE_B, HEIGHT_B, DIFF) \ TEST_F(LibYUVConvertTest, FMT_A##To##FMT_B##_Random) { \ for (int times = 0; times < benchmark_iterations_; ++times) { \ const int kWidth = (fastrand() & 63) + 1; \ const int kHeight = (fastrand() & 31) + 1; \ const int kHeightA = (kHeight + HEIGHT_A - 1) / HEIGHT_A * HEIGHT_A; \ const int kHeightB = (kHeight + HEIGHT_B - 1) / HEIGHT_B * HEIGHT_B; \ const int kStrideA = \ (kWidth * BPP_A + STRIDE_A - 1) / STRIDE_A * STRIDE_A; \ const int kStrideB = \ (kWidth * BPP_B + STRIDE_B - 1) / STRIDE_B * STRIDE_B; \ align_buffer_page_end(src_argb, kStrideA* kHeightA); \ align_buffer_page_end(dst_argb_c, kStrideB* kHeightB); \ align_buffer_page_end(dst_argb_opt, kStrideB* kHeightB); \ for (int i = 0; i < kStrideA * kHeightA; ++i) { \ src_argb[i] = (fastrand() & 0xff); \ } \ memset(dst_argb_c, 123, kStrideB* kHeightB); \ memset(dst_argb_opt, 123, kStrideB* kHeightB); \ MaskCpuFlags(disable_cpu_flags_); \ FMT_A##To##FMT_B(src_argb, kStrideA, dst_argb_c, kStrideB, kWidth, \ kHeight); \ MaskCpuFlags(benchmark_cpu_info_); \ FMT_A##To##FMT_B(src_argb, kStrideA, dst_argb_opt, kStrideB, kWidth, \ kHeight); \ int max_diff = 0; \ for (int i = 0; i < kStrideB * kHeightB; ++i) { \ int abs_diff = abs(static_cast<int>(dst_argb_c[i]) - \ static_cast<int>(dst_argb_opt[i])); \ if (abs_diff > max_diff) { \ max_diff = abs_diff; \ } \ } \ EXPECT_LE(max_diff, DIFF); \ free_aligned_buffer_page_end(src_argb); \ free_aligned_buffer_page_end(dst_argb_c); \ free_aligned_buffer_page_end(dst_argb_opt); \ } \ } #define TESTATOB(FMT_A, BPP_A, STRIDE_A, HEIGHT_A, FMT_B, BPP_B, STRIDE_B, \ HEIGHT_B, DIFF) \ TESTATOBI(FMT_A, BPP_A, STRIDE_A, HEIGHT_A, FMT_B, BPP_B, STRIDE_B, \ HEIGHT_B, benchmark_width_ - 4, DIFF, _Any, +, 0) \ TESTATOBI(FMT_A, BPP_A, STRIDE_A, HEIGHT_A, FMT_B, BPP_B, STRIDE_B, \ HEIGHT_B, benchmark_width_, DIFF, _Unaligned, +, 1) \ TESTATOBI(FMT_A, BPP_A, STRIDE_A, HEIGHT_A, FMT_B, BPP_B, STRIDE_B, \ HEIGHT_B, benchmark_width_, DIFF, _Invert, -, 0) \ TESTATOBI(FMT_A, BPP_A, STRIDE_A, HEIGHT_A, FMT_B, BPP_B, STRIDE_B, \ HEIGHT_B, benchmark_width_, DIFF, _Opt, +, 0) \ TESTATOBRANDOM(FMT_A, BPP_A, STRIDE_A, HEIGHT_A, FMT_B, BPP_B, STRIDE_B, \ HEIGHT_B, DIFF) TESTATOB(ARGB, 4, 4, 1, ARGB, 4, 4, 1, 0) TESTATOB(ARGB, 4, 4, 1, BGRA, 4, 4, 1, 0) TESTATOB(ARGB, 4, 4, 1, ABGR, 4, 4, 1, 0) TESTATOB(ARGB, 4, 4, 1, RGBA, 4, 4, 1, 0) TESTATOB(ARGB, 4, 4, 1, RAW, 3, 3, 1, 0) TESTATOB(ARGB, 4, 4, 1, RGB24, 3, 3, 1, 0) TESTATOB(ARGB, 4, 4, 1, RGB565, 2, 2, 1, 0) TESTATOB(ARGB, 4, 4, 1, ARGB1555, 2, 2, 1, 0) TESTATOB(ARGB, 4, 4, 1, ARGB4444, 2, 2, 1, 0) TESTATOB(ARGB, 4, 4, 1, YUY2, 2, 4, 1, 4) TESTATOB(ARGB, 4, 4, 1, UYVY, 2, 4, 1, 4) TESTATOB(ARGB, 4, 4, 1, I400, 1, 1, 1, 2) TESTATOB(ARGB, 4, 4, 1, J400, 1, 1, 1, 2) TESTATOB(BGRA, 4, 4, 1, ARGB, 4, 4, 1, 0) TESTATOB(ABGR, 4, 4, 1, ARGB, 4, 4, 1, 0) TESTATOB(RGBA, 4, 4, 1, ARGB, 4, 4, 1, 0) TESTATOB(RAW, 3, 3, 1, ARGB, 4, 4, 1, 0) TESTATOB(RAW, 3, 3, 1, RGB24, 3, 3, 1, 0) TESTATOB(RGB24, 3, 3, 1, ARGB, 4, 4, 1, 0) TESTATOB(RGB565, 2, 2, 1, ARGB, 4, 4, 1, 0) TESTATOB(ARGB1555, 2, 2, 1, ARGB, 4, 4, 1, 0) TESTATOB(ARGB4444, 2, 2, 1, ARGB, 4, 4, 1, 0) TESTATOB(YUY2, 2, 4, 1, ARGB, 4, 4, 1, 4) TESTATOB(UYVY, 2, 4, 1, ARGB, 4, 4, 1, 4) TESTATOB(YUY2, 2, 4, 1, Y, 1, 1, 1, 0) TESTATOB(I400, 1, 1, 1, ARGB, 4, 4, 1, 0) TESTATOB(J400, 1, 1, 1, ARGB, 4, 4, 1, 0) TESTATOB(I400, 1, 1, 1, I400, 1, 1, 1, 0) TESTATOB(J400, 1, 1, 1, J400, 1, 1, 1, 0) TESTATOB(I400, 1, 1, 1, I400Mirror, 1, 1, 1, 0) TESTATOB(ARGB, 4, 4, 1, ARGBMirror, 4, 4, 1, 0) #define TESTATOBDI(FMT_A, BPP_A, STRIDE_A, HEIGHT_A, FMT_B, BPP_B, STRIDE_B, \ HEIGHT_B, W1280, DIFF, N, NEG, OFF) \ TEST_F(LibYUVConvertTest, FMT_A##To##FMT_B##Dither##N) { \ const int kWidth = ((W1280) > 0) ? (W1280) : 1; \ const int kHeight = benchmark_height_; \ const int kHeightA = (kHeight + HEIGHT_A - 1) / HEIGHT_A * HEIGHT_A; \ const int kHeightB = (kHeight + HEIGHT_B - 1) / HEIGHT_B * HEIGHT_B; \ const int kStrideA = \ (kWidth * BPP_A + STRIDE_A - 1) / STRIDE_A * STRIDE_A; \ const int kStrideB = \ (kWidth * BPP_B + STRIDE_B - 1) / STRIDE_B * STRIDE_B; \ align_buffer_page_end(src_argb, kStrideA* kHeightA + OFF); \ align_buffer_page_end(dst_argb_c, kStrideB* kHeightB); \ align_buffer_page_end(dst_argb_opt, kStrideB* kHeightB); \ for (int i = 0; i < kStrideA * kHeightA; ++i) { \ src_argb[i + OFF] = (fastrand() & 0xff); \ } \ memset(dst_argb_c, 1, kStrideB* kHeightB); \ memset(dst_argb_opt, 101, kStrideB* kHeightB); \ MaskCpuFlags(disable_cpu_flags_); \ FMT_A##To##FMT_B##Dither(src_argb + OFF, kStrideA, dst_argb_c, kStrideB, \ NULL, kWidth, NEG kHeight); \ MaskCpuFlags(benchmark_cpu_info_); \ for (int i = 0; i < benchmark_iterations_; ++i) { \ FMT_A##To##FMT_B##Dither(src_argb + OFF, kStrideA, dst_argb_opt, \ kStrideB, NULL, kWidth, NEG kHeight); \ } \ int max_diff = 0; \ for (int i = 0; i < kStrideB * kHeightB; ++i) { \ int abs_diff = abs(static_cast<int>(dst_argb_c[i]) - \ static_cast<int>(dst_argb_opt[i])); \ if (abs_diff > max_diff) { \ max_diff = abs_diff; \ } \ } \ EXPECT_LE(max_diff, DIFF); \ free_aligned_buffer_page_end(src_argb); \ free_aligned_buffer_page_end(dst_argb_c); \ free_aligned_buffer_page_end(dst_argb_opt); \ } #define TESTATOBDRANDOM(FMT_A, BPP_A, STRIDE_A, HEIGHT_A, FMT_B, BPP_B, \ STRIDE_B, HEIGHT_B, DIFF) \ TEST_F(LibYUVConvertTest, FMT_A##To##FMT_B##Dither_Random) { \ for (int times = 0; times < benchmark_iterations_; ++times) { \ const int kWidth = (fastrand() & 63) + 1; \ const int kHeight = (fastrand() & 31) + 1; \ const int kHeightA = (kHeight + HEIGHT_A - 1) / HEIGHT_A * HEIGHT_A; \ const int kHeightB = (kHeight + HEIGHT_B - 1) / HEIGHT_B * HEIGHT_B; \ const int kStrideA = \ (kWidth * BPP_A + STRIDE_A - 1) / STRIDE_A * STRIDE_A; \ const int kStrideB = \ (kWidth * BPP_B + STRIDE_B - 1) / STRIDE_B * STRIDE_B; \ align_buffer_page_end(src_argb, kStrideA* kHeightA); \ align_buffer_page_end(dst_argb_c, kStrideB* kHeightB); \ align_buffer_page_end(dst_argb_opt, kStrideB* kHeightB); \ for (int i = 0; i < kStrideA * kHeightA; ++i) { \ src_argb[i] = (fastrand() & 0xff); \ } \ memset(dst_argb_c, 123, kStrideB* kHeightB); \ memset(dst_argb_opt, 123, kStrideB* kHeightB); \ MaskCpuFlags(disable_cpu_flags_); \ FMT_A##To##FMT_B##Dither(src_argb, kStrideA, dst_argb_c, kStrideB, NULL, \ kWidth, kHeight); \ MaskCpuFlags(benchmark_cpu_info_); \ FMT_A##To##FMT_B##Dither(src_argb, kStrideA, dst_argb_opt, kStrideB, \ NULL, kWidth, kHeight); \ int max_diff = 0; \ for (int i = 0; i < kStrideB * kHeightB; ++i) { \ int abs_diff = abs(static_cast<int>(dst_argb_c[i]) - \ static_cast<int>(dst_argb_opt[i])); \ if (abs_diff > max_diff) { \ max_diff = abs_diff; \ } \ } \ EXPECT_LE(max_diff, DIFF); \ free_aligned_buffer_page_end(src_argb); \ free_aligned_buffer_page_end(dst_argb_c); \ free_aligned_buffer_page_end(dst_argb_opt); \ } \ } #define TESTATOBD(FMT_A, BPP_A, STRIDE_A, HEIGHT_A, FMT_B, BPP_B, STRIDE_B, \ HEIGHT_B, DIFF) \ TESTATOBDI(FMT_A, BPP_A, STRIDE_A, HEIGHT_A, FMT_B, BPP_B, STRIDE_B, \ HEIGHT_B, benchmark_width_ - 4, DIFF, _Any, +, 0) \ TESTATOBDI(FMT_A, BPP_A, STRIDE_A, HEIGHT_A, FMT_B, BPP_B, STRIDE_B, \ HEIGHT_B, benchmark_width_, DIFF, _Unaligned, +, 1) \ TESTATOBDI(FMT_A, BPP_A, STRIDE_A, HEIGHT_A, FMT_B, BPP_B, STRIDE_B, \ HEIGHT_B, benchmark_width_, DIFF, _Invert, -, 0) \ TESTATOBDI(FMT_A, BPP_A, STRIDE_A, HEIGHT_A, FMT_B, BPP_B, STRIDE_B, \ HEIGHT_B, benchmark_width_, DIFF, _Opt, +, 0) \ TESTATOBDRANDOM(FMT_A, BPP_A, STRIDE_A, HEIGHT_A, FMT_B, BPP_B, STRIDE_B, \ HEIGHT_B, DIFF) TESTATOBD(ARGB, 4, 4, 1, RGB565, 2, 2, 1, 0) #define TESTSYMI(FMT_ATOB, BPP_A, STRIDE_A, HEIGHT_A, W1280, N, NEG, OFF) \ TEST_F(LibYUVConvertTest, FMT_ATOB##_Symetric##N) { \ const int kWidth = ((W1280) > 0) ? (W1280) : 1; \ const int kHeight = benchmark_height_; \ const int kHeightA = (kHeight + HEIGHT_A - 1) / HEIGHT_A * HEIGHT_A; \ const int kStrideA = \ (kWidth * BPP_A + STRIDE_A - 1) / STRIDE_A * STRIDE_A; \ align_buffer_page_end(src_argb, kStrideA* kHeightA + OFF); \ align_buffer_page_end(dst_argb_c, kStrideA* kHeightA); \ align_buffer_page_end(dst_argb_opt, kStrideA* kHeightA); \ for (int i = 0; i < kStrideA * kHeightA; ++i) { \ src_argb[i + OFF] = (fastrand() & 0xff); \ } \ memset(dst_argb_c, 1, kStrideA* kHeightA); \ memset(dst_argb_opt, 101, kStrideA* kHeightA); \ MaskCpuFlags(disable_cpu_flags_); \ FMT_ATOB(src_argb + OFF, kStrideA, dst_argb_c, kStrideA, kWidth, \ NEG kHeight); \ MaskCpuFlags(benchmark_cpu_info_); \ for (int i = 0; i < benchmark_iterations_; ++i) { \ FMT_ATOB(src_argb + OFF, kStrideA, dst_argb_opt, kStrideA, kWidth, \ NEG kHeight); \ } \ MaskCpuFlags(disable_cpu_flags_); \ FMT_ATOB(dst_argb_c, kStrideA, dst_argb_c, kStrideA, kWidth, NEG kHeight); \ MaskCpuFlags(benchmark_cpu_info_); \ FMT_ATOB(dst_argb_opt, kStrideA, dst_argb_opt, kStrideA, kWidth, \ NEG kHeight); \ for (int i = 0; i < kStrideA * kHeightA; ++i) { \ EXPECT_EQ(src_argb[i + OFF], dst_argb_opt[i]); \ EXPECT_EQ(dst_argb_c[i], dst_argb_opt[i]); \ } \ free_aligned_buffer_page_end(src_argb); \ free_aligned_buffer_page_end(dst_argb_c); \ free_aligned_buffer_page_end(dst_argb_opt); \ } #define TESTSYM(FMT_ATOB, BPP_A, STRIDE_A, HEIGHT_A) \ TESTSYMI(FMT_ATOB, BPP_A, STRIDE_A, HEIGHT_A, benchmark_width_ - 4, _Any, +, \ 0) \ TESTSYMI(FMT_ATOB, BPP_A, STRIDE_A, HEIGHT_A, benchmark_width_, _Unaligned, \ +, 1) \ TESTSYMI(FMT_ATOB, BPP_A, STRIDE_A, HEIGHT_A, benchmark_width_, _Opt, +, 0) TESTSYM(ARGBToARGB, 4, 4, 1) TESTSYM(ARGBToBGRA, 4, 4, 1) TESTSYM(ARGBToABGR, 4, 4, 1) TESTSYM(BGRAToARGB, 4, 4, 1) TESTSYM(ABGRToARGB, 4, 4, 1) TEST_F(LibYUVConvertTest, Test565) { SIMD_ALIGNED(uint8 orig_pixels[256][4]); SIMD_ALIGNED(uint8 pixels565[256][2]); for (int i = 0; i < 256; ++i) { for (int j = 0; j < 4; ++j) { orig_pixels[i][j] = i; } } ARGBToRGB565(&orig_pixels[0][0], 0, &pixels565[0][0], 0, 256, 1); uint32 checksum = HashDjb2(&pixels565[0][0], sizeof(pixels565), 5381); EXPECT_EQ(610919429u, checksum); } #ifdef HAVE_JPEG TEST_F(LibYUVConvertTest, ValidateJpeg) { const int kOff = 10; const int kMinJpeg = 64; const int kImageSize = benchmark_width_ * benchmark_height_ >= kMinJpeg ? benchmark_width_ * benchmark_height_ : kMinJpeg; const int kSize = kImageSize + kOff; align_buffer_page_end(orig_pixels, kSize); // No SOI or EOI. Expect fail. memset(orig_pixels, 0, kSize); EXPECT_FALSE(ValidateJpeg(orig_pixels, kSize)); // Test special value that matches marker start. memset(orig_pixels, 0xff, kSize); EXPECT_FALSE(ValidateJpeg(orig_pixels, kSize)); // EOI, SOI. Expect pass. orig_pixels[0] = 0xff; orig_pixels[1] = 0xd8; // SOI. orig_pixels[kSize - kOff + 0] = 0xff; orig_pixels[kSize - kOff + 1] = 0xd9; // EOI. for (int times = 0; times < benchmark_iterations_; ++times) { EXPECT_TRUE(ValidateJpeg(orig_pixels, kSize)); } free_aligned_buffer_page_end(orig_pixels); } TEST_F(LibYUVConvertTest, ValidateJpegLarge) { const int kOff = 10; const int kMinJpeg = 64; const int kImageSize = benchmark_width_ * benchmark_height_ >= kMinJpeg ? benchmark_width_ * benchmark_height_ : kMinJpeg; const int kSize = kImageSize + kOff; const int kMultiple = 10; const int kBufSize = kImageSize * kMultiple + kOff; align_buffer_page_end(orig_pixels, kBufSize); // No SOI or EOI. Expect fail. memset(orig_pixels, 0, kBufSize); EXPECT_FALSE(ValidateJpeg(orig_pixels, kBufSize)); // EOI, SOI. Expect pass. orig_pixels[0] = 0xff; orig_pixels[1] = 0xd8; // SOI. orig_pixels[kSize - kOff + 0] = 0xff; orig_pixels[kSize - kOff + 1] = 0xd9; // EOI. for (int times = 0; times < benchmark_iterations_; ++times) { EXPECT_TRUE(ValidateJpeg(orig_pixels, kBufSize)); } free_aligned_buffer_page_end(orig_pixels); } TEST_F(LibYUVConvertTest, InvalidateJpeg) { const int kOff = 10; const int kMinJpeg = 64; const int kImageSize = benchmark_width_ * benchmark_height_ >= kMinJpeg ? benchmark_width_ * benchmark_height_ : kMinJpeg; const int kSize = kImageSize + kOff; align_buffer_page_end(orig_pixels, kSize); // NULL pointer. Expect fail. EXPECT_FALSE(ValidateJpeg(NULL, kSize)); // Negative size. Expect fail. EXPECT_FALSE(ValidateJpeg(orig_pixels, -1)); // Too large size. Expect fail. EXPECT_FALSE(ValidateJpeg(orig_pixels, 0xfb000000ull)); // No SOI or EOI. Expect fail. memset(orig_pixels, 0, kSize); EXPECT_FALSE(ValidateJpeg(orig_pixels, kSize)); // SOI but no EOI. Expect fail. orig_pixels[0] = 0xff; orig_pixels[1] = 0xd8; // SOI. for (int times = 0; times < benchmark_iterations_; ++times) { EXPECT_FALSE(ValidateJpeg(orig_pixels, kSize)); } // EOI but no SOI. Expect fail. orig_pixels[0] = 0; orig_pixels[1] = 0; orig_pixels[kSize - kOff + 0] = 0xff; orig_pixels[kSize - kOff + 1] = 0xd9; // EOI. EXPECT_FALSE(ValidateJpeg(orig_pixels, kSize)); free_aligned_buffer_page_end(orig_pixels); } TEST_F(LibYUVConvertTest, FuzzJpeg) { // SOI but no EOI. Expect fail. for (int times = 0; times < benchmark_iterations_; ++times) { const int kSize = fastrand() % 5000 + 2; align_buffer_page_end(orig_pixels, kSize); MemRandomize(orig_pixels, kSize); // Add SOI so frame will be scanned. orig_pixels[0] = 0xff; orig_pixels[1] = 0xd8; // SOI. orig_pixels[kSize - 1] = 0xff; ValidateJpeg(orig_pixels, kSize); // Failure normally expected. free_aligned_buffer_page_end(orig_pixels); } } TEST_F(LibYUVConvertTest, MJPGToI420) { const int kOff = 10; const int kMinJpeg = 64; const int kImageSize = benchmark_width_ * benchmark_height_ >= kMinJpeg ? benchmark_width_ * benchmark_height_ : kMinJpeg; const int kSize = kImageSize + kOff; align_buffer_page_end(orig_pixels, kSize); align_buffer_page_end(dst_y_opt, benchmark_width_ * benchmark_height_); align_buffer_page_end(dst_u_opt, SUBSAMPLE(benchmark_width_, 2) * SUBSAMPLE(benchmark_height_, 2)); align_buffer_page_end(dst_v_opt, SUBSAMPLE(benchmark_width_, 2) * SUBSAMPLE(benchmark_height_, 2)); // EOI, SOI to make MJPG appear valid. memset(orig_pixels, 0, kSize); orig_pixels[0] = 0xff; orig_pixels[1] = 0xd8; // SOI. orig_pixels[kSize - kOff + 0] = 0xff; orig_pixels[kSize - kOff + 1] = 0xd9; // EOI. for (int times = 0; times < benchmark_iterations_; ++times) { int ret = MJPGToI420(orig_pixels, kSize, dst_y_opt, benchmark_width_, dst_u_opt, SUBSAMPLE(benchmark_width_, 2), dst_v_opt, SUBSAMPLE(benchmark_width_, 2), benchmark_width_, benchmark_height_, benchmark_width_, benchmark_height_); // Expect failure because image is not really valid. EXPECT_EQ(1, ret); } free_aligned_buffer_page_end(dst_y_opt); free_aligned_buffer_page_end(dst_u_opt); free_aligned_buffer_page_end(dst_v_opt); free_aligned_buffer_page_end(orig_pixels); } TEST_F(LibYUVConvertTest, MJPGToARGB) { const int kOff = 10; const int kMinJpeg = 64; const int kImageSize = benchmark_width_ * benchmark_height_ >= kMinJpeg ? benchmark_width_ * benchmark_height_ : kMinJpeg; const int kSize = kImageSize + kOff; align_buffer_page_end(orig_pixels, kSize); align_buffer_page_end(dst_argb_opt, benchmark_width_ * benchmark_height_ * 4); // EOI, SOI to make MJPG appear valid. memset(orig_pixels, 0, kSize); orig_pixels[0] = 0xff; orig_pixels[1] = 0xd8; // SOI. orig_pixels[kSize - kOff + 0] = 0xff; orig_pixels[kSize - kOff + 1] = 0xd9; // EOI. for (int times = 0; times < benchmark_iterations_; ++times) { int ret = MJPGToARGB(orig_pixels, kSize, dst_argb_opt, benchmark_width_ * 4, benchmark_width_, benchmark_height_, benchmark_width_, benchmark_height_); // Expect failure because image is not really valid. EXPECT_EQ(1, ret); } free_aligned_buffer_page_end(dst_argb_opt); free_aligned_buffer_page_end(orig_pixels); } #endif // HAVE_JPEG TEST_F(LibYUVConvertTest, NV12Crop) { const int SUBSAMP_X = 2; const int SUBSAMP_Y = 2; const int kWidth = benchmark_width_; const int kHeight = benchmark_height_; const int crop_y = ((benchmark_height_ - (benchmark_height_ * 360 / 480)) / 2 + 1) & ~1; const int kDestWidth = benchmark_width_; const int kDestHeight = benchmark_height_ - crop_y * 2; const int kStrideUV = SUBSAMPLE(kWidth, SUBSAMP_X); const int sample_size = kWidth * kHeight + kStrideUV * SUBSAMPLE(kHeight, SUBSAMP_Y) * 2; align_buffer_page_end(src_y, sample_size); uint8* src_uv = src_y + kWidth * kHeight; align_buffer_page_end(dst_y, kDestWidth * kDestHeight); align_buffer_page_end(dst_u, SUBSAMPLE(kDestWidth, SUBSAMP_X) * SUBSAMPLE(kDestHeight, SUBSAMP_Y)); align_buffer_page_end(dst_v, SUBSAMPLE(kDestWidth, SUBSAMP_X) * SUBSAMPLE(kDestHeight, SUBSAMP_Y)); align_buffer_page_end(dst_y_2, kDestWidth * kDestHeight); align_buffer_page_end(dst_u_2, SUBSAMPLE(kDestWidth, SUBSAMP_X) * SUBSAMPLE(kDestHeight, SUBSAMP_Y)); align_buffer_page_end(dst_v_2, SUBSAMPLE(kDestWidth, SUBSAMP_X) * SUBSAMPLE(kDestHeight, SUBSAMP_Y)); for (int i = 0; i < kHeight * kWidth; ++i) { src_y[i] = (fastrand() & 0xff); } for (int i = 0; i < (SUBSAMPLE(kHeight, SUBSAMP_Y) * kStrideUV) * 2; ++i) { src_uv[i] = (fastrand() & 0xff); } memset(dst_y, 1, kDestWidth * kDestHeight); memset(dst_u, 2, SUBSAMPLE(kDestWidth, SUBSAMP_X) * SUBSAMPLE(kDestHeight, SUBSAMP_Y)); memset(dst_v, 3, SUBSAMPLE(kDestWidth, SUBSAMP_X) * SUBSAMPLE(kDestHeight, SUBSAMP_Y)); memset(dst_y_2, 1, kDestWidth * kDestHeight); memset(dst_u_2, 2, SUBSAMPLE(kDestWidth, SUBSAMP_X) * SUBSAMPLE(kDestHeight, SUBSAMP_Y)); memset(dst_v_2, 3, SUBSAMPLE(kDestWidth, SUBSAMP_X) * SUBSAMPLE(kDestHeight, SUBSAMP_Y)); ConvertToI420(src_y, sample_size, dst_y_2, kDestWidth, dst_u_2, SUBSAMPLE(kDestWidth, SUBSAMP_X), dst_v_2, SUBSAMPLE(kDestWidth, SUBSAMP_X), 0, crop_y, kWidth, kHeight, kDestWidth, kDestHeight, libyuv::kRotate0, libyuv::FOURCC_NV12); NV12ToI420(src_y + crop_y * kWidth, kWidth, src_uv + (crop_y / 2) * kStrideUV * 2, kStrideUV * 2, dst_y, kDestWidth, dst_u, SUBSAMPLE(kDestWidth, SUBSAMP_X), dst_v, SUBSAMPLE(kDestWidth, SUBSAMP_X), kDestWidth, kDestHeight); for (int i = 0; i < kDestHeight; ++i) { for (int j = 0; j < kDestWidth; ++j) { EXPECT_EQ(dst_y[i * kWidth + j], dst_y_2[i * kWidth + j]); } } for (int i = 0; i < SUBSAMPLE(kDestHeight, SUBSAMP_Y); ++i) { for (int j = 0; j < SUBSAMPLE(kDestWidth, SUBSAMP_X); ++j) { EXPECT_EQ(dst_u[i * SUBSAMPLE(kDestWidth, SUBSAMP_X) + j], dst_u_2[i * SUBSAMPLE(kDestWidth, SUBSAMP_X) + j]); } } for (int i = 0; i < SUBSAMPLE(kDestHeight, SUBSAMP_Y); ++i) { for (int j = 0; j < SUBSAMPLE(kDestWidth, SUBSAMP_X); ++j) { EXPECT_EQ(dst_v[i * SUBSAMPLE(kDestWidth, SUBSAMP_X) + j], dst_v_2[i * SUBSAMPLE(kDestWidth, SUBSAMP_X) + j]); } } free_aligned_buffer_page_end(dst_y); free_aligned_buffer_page_end(dst_u); free_aligned_buffer_page_end(dst_v); free_aligned_buffer_page_end(dst_y_2); free_aligned_buffer_page_end(dst_u_2); free_aligned_buffer_page_end(dst_v_2); free_aligned_buffer_page_end(src_y); } TEST_F(LibYUVConvertTest, TestYToARGB) { uint8 y[32]; uint8 expectedg[32]; for (int i = 0; i < 32; ++i) { y[i] = i * 5 + 17; expectedg[i] = static_cast<int>((y[i] - 16) * 1.164f + 0.5f); } uint8 argb[32 * 4]; YToARGB(y, 0, argb, 0, 32, 1); for (int i = 0; i < 32; ++i) { printf("%2d %d: %d <-> %d,%d,%d,%d\n", i, y[i], expectedg[i], argb[i * 4 + 0], argb[i * 4 + 1], argb[i * 4 + 2], argb[i * 4 + 3]); } for (int i = 0; i < 32; ++i) { EXPECT_EQ(expectedg[i], argb[i * 4 + 0]); } } static const uint8 kNoDither4x4[16] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }; TEST_F(LibYUVConvertTest, TestNoDither) { align_buffer_page_end(src_argb, benchmark_width_ * benchmark_height_ * 4); align_buffer_page_end(dst_rgb565, benchmark_width_ * benchmark_height_ * 2); align_buffer_page_end(dst_rgb565dither, benchmark_width_ * benchmark_height_ * 2); MemRandomize(src_argb, benchmark_width_ * benchmark_height_ * 4); MemRandomize(dst_rgb565, benchmark_width_ * benchmark_height_ * 2); MemRandomize(dst_rgb565dither, benchmark_width_ * benchmark_height_ * 2); ARGBToRGB565(src_argb, benchmark_width_ * 4, dst_rgb565, benchmark_width_ * 2, benchmark_width_, benchmark_height_); ARGBToRGB565Dither(src_argb, benchmark_width_ * 4, dst_rgb565dither, benchmark_width_ * 2, kNoDither4x4, benchmark_width_, benchmark_height_); for (int i = 0; i < benchmark_width_ * benchmark_height_ * 2; ++i) { EXPECT_EQ(dst_rgb565[i], dst_rgb565dither[i]); } free_aligned_buffer_page_end(src_argb); free_aligned_buffer_page_end(dst_rgb565); free_aligned_buffer_page_end(dst_rgb565dither); } // Ordered 4x4 dither for 888 to 565. Values from 0 to 7. static const uint8 kDither565_4x4[16] = { 0, 4, 1, 5, 6, 2, 7, 3, 1, 5, 0, 4, 7, 3, 6, 2, }; TEST_F(LibYUVConvertTest, TestDither) { align_buffer_page_end(src_argb, benchmark_width_ * benchmark_height_ * 4); align_buffer_page_end(dst_rgb565, benchmark_width_ * benchmark_height_ * 2); align_buffer_page_end(dst_rgb565dither, benchmark_width_ * benchmark_height_ * 2); align_buffer_page_end(dst_argb, benchmark_width_ * benchmark_height_ * 4); align_buffer_page_end(dst_argbdither, benchmark_width_ * benchmark_height_ * 4); MemRandomize(src_argb, benchmark_width_ * benchmark_height_ * 4); MemRandomize(dst_rgb565, benchmark_width_ * benchmark_height_ * 2); MemRandomize(dst_rgb565dither, benchmark_width_ * benchmark_height_ * 2); MemRandomize(dst_argb, benchmark_width_ * benchmark_height_ * 4); MemRandomize(dst_argbdither, benchmark_width_ * benchmark_height_ * 4); ARGBToRGB565(src_argb, benchmark_width_ * 4, dst_rgb565, benchmark_width_ * 2, benchmark_width_, benchmark_height_); ARGBToRGB565Dither(src_argb, benchmark_width_ * 4, dst_rgb565dither, benchmark_width_ * 2, kDither565_4x4, benchmark_width_, benchmark_height_); RGB565ToARGB(dst_rgb565, benchmark_width_ * 2, dst_argb, benchmark_width_ * 4, benchmark_width_, benchmark_height_); RGB565ToARGB(dst_rgb565dither, benchmark_width_ * 2, dst_argbdither, benchmark_width_ * 4, benchmark_width_, benchmark_height_); for (int i = 0; i < benchmark_width_ * benchmark_height_ * 4; ++i) { EXPECT_NEAR(dst_argb[i], dst_argbdither[i], 9); } free_aligned_buffer_page_end(src_argb); free_aligned_buffer_page_end(dst_rgb565); free_aligned_buffer_page_end(dst_rgb565dither); free_aligned_buffer_page_end(dst_argb); free_aligned_buffer_page_end(dst_argbdither); } #define TESTPLANARTOBID(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, BPP_B, ALIGN, \ YALIGN, W1280, DIFF, N, NEG, OFF, FMT_C, BPP_C) \ TEST_F(LibYUVConvertTest, FMT_PLANAR##To##FMT_B##Dither##N) { \ const int kWidth = ((W1280) > 0) ? (W1280) : 1; \ const int kHeight = ALIGNINT(benchmark_height_, YALIGN); \ const int kStrideB = ALIGNINT(kWidth * BPP_B, ALIGN); \ const int kStrideUV = SUBSAMPLE(kWidth, SUBSAMP_X); \ const int kSizeUV = kStrideUV * SUBSAMPLE(kHeight, SUBSAMP_Y); \ align_buffer_page_end(src_y, kWidth* kHeight + OFF); \ align_buffer_page_end(src_u, kSizeUV + OFF); \ align_buffer_page_end(src_v, kSizeUV + OFF); \ align_buffer_page_end(dst_argb_c, kStrideB* kHeight + OFF); \ align_buffer_page_end(dst_argb_opt, kStrideB* kHeight + OFF); \ for (int i = 0; i < kWidth * kHeight; ++i) { \ src_y[i + OFF] = (fastrand() & 0xff); \ } \ for (int i = 0; i < kSizeUV; ++i) { \ src_u[i + OFF] = (fastrand() & 0xff); \ src_v[i + OFF] = (fastrand() & 0xff); \ } \ memset(dst_argb_c + OFF, 1, kStrideB * kHeight); \ memset(dst_argb_opt + OFF, 101, kStrideB * kHeight); \ MaskCpuFlags(disable_cpu_flags_); \ FMT_PLANAR##To##FMT_B##Dither(src_y + OFF, kWidth, src_u + OFF, kStrideUV, \ src_v + OFF, kStrideUV, dst_argb_c + OFF, \ kStrideB, NULL, kWidth, NEG kHeight); \ MaskCpuFlags(benchmark_cpu_info_); \ for (int i = 0; i < benchmark_iterations_; ++i) { \ FMT_PLANAR##To##FMT_B##Dither( \ src_y + OFF, kWidth, src_u + OFF, kStrideUV, src_v + OFF, kStrideUV, \ dst_argb_opt + OFF, kStrideB, NULL, kWidth, NEG kHeight); \ } \ int max_diff = 0; \ /* Convert to ARGB so 565 is expanded to bytes that can be compared. */ \ align_buffer_page_end(dst_argb32_c, kWidth* BPP_C* kHeight); \ align_buffer_page_end(dst_argb32_opt, kWidth* BPP_C* kHeight); \ memset(dst_argb32_c, 2, kWidth* BPP_C* kHeight); \ memset(dst_argb32_opt, 102, kWidth* BPP_C* kHeight); \ FMT_B##To##FMT_C(dst_argb_c + OFF, kStrideB, dst_argb32_c, kWidth * BPP_C, \ kWidth, kHeight); \ FMT_B##To##FMT_C(dst_argb_opt + OFF, kStrideB, dst_argb32_opt, \ kWidth * BPP_C, kWidth, kHeight); \ for (int i = 0; i < kWidth * BPP_C * kHeight; ++i) { \ int abs_diff = abs(static_cast<int>(dst_argb32_c[i]) - \ static_cast<int>(dst_argb32_opt[i])); \ if (abs_diff > max_diff) { \ max_diff = abs_diff; \ } \ } \ EXPECT_LE(max_diff, DIFF); \ free_aligned_buffer_page_end(src_y); \ free_aligned_buffer_page_end(src_u); \ free_aligned_buffer_page_end(src_v); \ free_aligned_buffer_page_end(dst_argb_c); \ free_aligned_buffer_page_end(dst_argb_opt); \ free_aligned_buffer_page_end(dst_argb32_c); \ free_aligned_buffer_page_end(dst_argb32_opt); \ } #define TESTPLANARTOBD(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, BPP_B, ALIGN, \ YALIGN, DIFF, FMT_C, BPP_C) \ TESTPLANARTOBID(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, BPP_B, ALIGN, \ YALIGN, benchmark_width_ - 4, DIFF, _Any, +, 0, FMT_C, \ BPP_C) \ TESTPLANARTOBID(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, BPP_B, ALIGN, \ YALIGN, benchmark_width_, DIFF, _Unaligned, +, 1, FMT_C, \ BPP_C) \ TESTPLANARTOBID(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, BPP_B, ALIGN, \ YALIGN, benchmark_width_, DIFF, _Invert, -, 0, FMT_C, BPP_C) \ TESTPLANARTOBID(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, BPP_B, ALIGN, \ YALIGN, benchmark_width_, DIFF, _Opt, +, 0, FMT_C, BPP_C) TESTPLANARTOBD(I420, 2, 2, RGB565, 2, 2, 1, 9, ARGB, 4) #define TESTPTOB(NAME, UYVYTOI420, UYVYTONV12) \ TEST_F(LibYUVConvertTest, NAME) { \ const int kWidth = benchmark_width_; \ const int kHeight = benchmark_height_; \ \ align_buffer_page_end(orig_uyvy, 4 * SUBSAMPLE(kWidth, 2) * kHeight); \ align_buffer_page_end(orig_y, kWidth* kHeight); \ align_buffer_page_end(orig_u, \ SUBSAMPLE(kWidth, 2) * SUBSAMPLE(kHeight, 2)); \ align_buffer_page_end(orig_v, \ SUBSAMPLE(kWidth, 2) * SUBSAMPLE(kHeight, 2)); \ \ align_buffer_page_end(dst_y_orig, kWidth* kHeight); \ align_buffer_page_end(dst_uv_orig, \ 2 * SUBSAMPLE(kWidth, 2) * SUBSAMPLE(kHeight, 2)); \ \ align_buffer_page_end(dst_y, kWidth* kHeight); \ align_buffer_page_end(dst_uv, \ 2 * SUBSAMPLE(kWidth, 2) * SUBSAMPLE(kHeight, 2)); \ \ MemRandomize(orig_uyvy, 4 * SUBSAMPLE(kWidth, 2) * kHeight); \ \ /* Convert UYVY to NV12 in 2 steps for reference */ \ libyuv::UYVYTOI420(orig_uyvy, 4 * SUBSAMPLE(kWidth, 2), orig_y, kWidth, \ orig_u, SUBSAMPLE(kWidth, 2), orig_v, \ SUBSAMPLE(kWidth, 2), kWidth, kHeight); \ libyuv::I420ToNV12(orig_y, kWidth, orig_u, SUBSAMPLE(kWidth, 2), orig_v, \ SUBSAMPLE(kWidth, 2), dst_y_orig, kWidth, dst_uv_orig, \ 2 * SUBSAMPLE(kWidth, 2), kWidth, kHeight); \ \ /* Convert to NV12 */ \ for (int i = 0; i < benchmark_iterations_; ++i) { \ libyuv::UYVYTONV12(orig_uyvy, 4 * SUBSAMPLE(kWidth, 2), dst_y, kWidth, \ dst_uv, 2 * SUBSAMPLE(kWidth, 2), kWidth, kHeight); \ } \ \ for (int i = 0; i < kWidth * kHeight; ++i) { \ EXPECT_EQ(orig_y[i], dst_y[i]); \ } \ for (int i = 0; i < kWidth * kHeight; ++i) { \ EXPECT_EQ(dst_y_orig[i], dst_y[i]); \ } \ for (int i = 0; i < 2 * SUBSAMPLE(kWidth, 2) * SUBSAMPLE(kHeight, 2); \ ++i) { \ EXPECT_EQ(dst_uv_orig[i], dst_uv[i]); \ } \ \ free_aligned_buffer_page_end(orig_uyvy); \ free_aligned_buffer_page_end(orig_y); \ free_aligned_buffer_page_end(orig_u); \ free_aligned_buffer_page_end(orig_v); \ free_aligned_buffer_page_end(dst_y_orig); \ free_aligned_buffer_page_end(dst_uv_orig); \ free_aligned_buffer_page_end(dst_y); \ free_aligned_buffer_page_end(dst_uv); \ } TESTPTOB(TestYUY2ToNV12, YUY2ToI420, YUY2ToNV12) TESTPTOB(TestUYVYToNV12, UYVYToI420, UYVYToNV12) #define TESTPLANARTOEI(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, SUB_B, BPP_B, \ W1280, N, NEG, OFF, FMT_C, BPP_C) \ TEST_F(LibYUVConvertTest, FMT_PLANAR##To##FMT_B##_##FMT_C##N) { \ const int kWidth = ((W1280) > 0) ? (W1280) : 1; \ const int kHeight = benchmark_height_; \ const int kStrideB = SUBSAMPLE(kWidth, SUB_B) * BPP_B; \ const int kStrideUV = SUBSAMPLE(kWidth, SUBSAMP_X); \ const int kSizeUV = kStrideUV * SUBSAMPLE(kHeight, SUBSAMP_Y); \ align_buffer_page_end(src_y, kWidth* kHeight + OFF); \ align_buffer_page_end(src_u, kSizeUV + OFF); \ align_buffer_page_end(src_v, kSizeUV + OFF); \ align_buffer_page_end(dst_argb_b, kStrideB* kHeight + OFF); \ for (int i = 0; i < kWidth * kHeight; ++i) { \ src_y[i + OFF] = (fastrand() & 0xff); \ } \ for (int i = 0; i < kSizeUV; ++i) { \ src_u[i + OFF] = (fastrand() & 0xff); \ src_v[i + OFF] = (fastrand() & 0xff); \ } \ memset(dst_argb_b + OFF, 1, kStrideB * kHeight); \ for (int i = 0; i < benchmark_iterations_; ++i) { \ FMT_PLANAR##To##FMT_B(src_y + OFF, kWidth, src_u + OFF, kStrideUV, \ src_v + OFF, kStrideUV, dst_argb_b + OFF, \ kStrideB, kWidth, NEG kHeight); \ } \ /* Convert to a 3rd format in 1 step and 2 steps and compare */ \ const int kStrideC = kWidth * BPP_C; \ align_buffer_page_end(dst_argb_c, kStrideC* kHeight + OFF); \ align_buffer_page_end(dst_argb_bc, kStrideC* kHeight + OFF); \ memset(dst_argb_c + OFF, 2, kStrideC * kHeight); \ memset(dst_argb_bc + OFF, 3, kStrideC * kHeight); \ FMT_PLANAR##To##FMT_C(src_y + OFF, kWidth, src_u + OFF, kStrideUV, \ src_v + OFF, kStrideUV, dst_argb_c + OFF, kStrideC, \ kWidth, NEG kHeight); \ /* Convert B to C */ \ FMT_B##To##FMT_C(dst_argb_b + OFF, kStrideB, dst_argb_bc + OFF, kStrideC, \ kWidth, kHeight); \ for (int i = 0; i < kStrideC * kHeight; ++i) { \ EXPECT_EQ(dst_argb_c[i + OFF], dst_argb_bc[i + OFF]); \ } \ free_aligned_buffer_page_end(src_y); \ free_aligned_buffer_page_end(src_u); \ free_aligned_buffer_page_end(src_v); \ free_aligned_buffer_page_end(dst_argb_b); \ free_aligned_buffer_page_end(dst_argb_c); \ free_aligned_buffer_page_end(dst_argb_bc); \ } #define TESTPLANARTOE(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, SUB_B, BPP_B, \ FMT_C, BPP_C) \ TESTPLANARTOEI(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, SUB_B, BPP_B, \ benchmark_width_ - 4, _Any, +, 0, FMT_C, BPP_C) \ TESTPLANARTOEI(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, SUB_B, BPP_B, \ benchmark_width_, _Unaligned, +, 1, FMT_C, BPP_C) \ TESTPLANARTOEI(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, SUB_B, BPP_B, \ benchmark_width_, _Invert, -, 0, FMT_C, BPP_C) \ TESTPLANARTOEI(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, SUB_B, BPP_B, \ benchmark_width_, _Opt, +, 0, FMT_C, BPP_C) TESTPLANARTOE(I420, 2, 2, ARGB, 1, 4, ABGR, 4) TESTPLANARTOE(J420, 2, 2, ARGB, 1, 4, ARGB, 4) TESTPLANARTOE(J420, 2, 2, ABGR, 1, 4, ARGB, 4) TESTPLANARTOE(H420, 2, 2, ARGB, 1, 4, ARGB, 4) TESTPLANARTOE(H420, 2, 2, ABGR, 1, 4, ARGB, 4) TESTPLANARTOE(I420, 2, 2, BGRA, 1, 4, ARGB, 4) TESTPLANARTOE(I420, 2, 2, ABGR, 1, 4, ARGB, 4) TESTPLANARTOE(I420, 2, 2, RGBA, 1, 4, ARGB, 4) TESTPLANARTOE(I420, 2, 2, RGB24, 1, 3, ARGB, 4) TESTPLANARTOE(I420, 2, 2, RAW, 1, 3, RGB24, 3) TESTPLANARTOE(I420, 2, 2, RGB24, 1, 3, RAW, 3) TESTPLANARTOE(I420, 2, 2, ARGB, 1, 4, RAW, 3) TESTPLANARTOE(I420, 2, 2, RAW, 1, 3, ARGB, 4) TESTPLANARTOE(I420, 2, 2, ARGB, 1, 4, RGB565, 2) TESTPLANARTOE(I420, 2, 2, ARGB, 1, 4, ARGB1555, 2) TESTPLANARTOE(I420, 2, 2, ARGB, 1, 4, ARGB4444, 2) TESTPLANARTOE(I422, 2, 1, ARGB, 1, 4, ARGB, 4) TESTPLANARTOE(J422, 2, 1, ARGB, 1, 4, ARGB, 4) TESTPLANARTOE(J422, 2, 1, ABGR, 1, 4, ARGB, 4) TESTPLANARTOE(H422, 2, 1, ARGB, 1, 4, ARGB, 4) TESTPLANARTOE(H422, 2, 1, ABGR, 1, 4, ARGB, 4) TESTPLANARTOE(I422, 2, 1, BGRA, 1, 4, ARGB, 4) TESTPLANARTOE(I422, 2, 1, ABGR, 1, 4, ARGB, 4) TESTPLANARTOE(I422, 2, 1, RGBA, 1, 4, ARGB, 4) TESTPLANARTOE(I444, 1, 1, ARGB, 1, 4, ARGB, 4) TESTPLANARTOE(J444, 1, 1, ARGB, 1, 4, ARGB, 4) TESTPLANARTOE(I444, 1, 1, ABGR, 1, 4, ARGB, 4) TESTPLANARTOE(I420, 2, 2, YUY2, 2, 4, ARGB, 4) TESTPLANARTOE(I420, 2, 2, UYVY, 2, 4, ARGB, 4) TESTPLANARTOE(I422, 2, 1, YUY2, 2, 4, ARGB, 4) TESTPLANARTOE(I422, 2, 1, UYVY, 2, 4, ARGB, 4) #define TESTQPLANARTOEI(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, SUB_B, BPP_B, \ W1280, N, NEG, OFF, FMT_C, BPP_C, ATTEN) \ TEST_F(LibYUVConvertTest, FMT_PLANAR##To##FMT_B##_##FMT_C##N) { \ const int kWidth = ((W1280) > 0) ? (W1280) : 1; \ const int kHeight = benchmark_height_; \ const int kStrideB = SUBSAMPLE(kWidth, SUB_B) * BPP_B; \ const int kSizeUV = \ SUBSAMPLE(kWidth, SUBSAMP_X) * SUBSAMPLE(kHeight, SUBSAMP_Y); \ align_buffer_page_end(src_y, kWidth* kHeight + OFF); \ align_buffer_page_end(src_u, kSizeUV + OFF); \ align_buffer_page_end(src_v, kSizeUV + OFF); \ align_buffer_page_end(src_a, kWidth* kHeight + OFF); \ align_buffer_page_end(dst_argb_b, kStrideB* kHeight + OFF); \ for (int i = 0; i < kWidth * kHeight; ++i) { \ src_y[i + OFF] = (fastrand() & 0xff); \ src_a[i + OFF] = (fastrand() & 0xff); \ } \ for (int i = 0; i < kSizeUV; ++i) { \ src_u[i + OFF] = (fastrand() & 0xff); \ src_v[i + OFF] = (fastrand() & 0xff); \ } \ memset(dst_argb_b + OFF, 1, kStrideB * kHeight); \ for (int i = 0; i < benchmark_iterations_; ++i) { \ FMT_PLANAR##To##FMT_B( \ src_y + OFF, kWidth, src_u + OFF, SUBSAMPLE(kWidth, SUBSAMP_X), \ src_v + OFF, SUBSAMPLE(kWidth, SUBSAMP_X), src_a + OFF, kWidth, \ dst_argb_b + OFF, kStrideB, kWidth, NEG kHeight, ATTEN); \ } \ /* Convert to a 3rd format in 1 step and 2 steps and compare */ \ const int kStrideC = kWidth * BPP_C; \ align_buffer_page_end(dst_argb_c, kStrideC* kHeight + OFF); \ align_buffer_page_end(dst_argb_bc, kStrideC* kHeight + OFF); \ memset(dst_argb_c + OFF, 2, kStrideC * kHeight); \ memset(dst_argb_bc + OFF, 3, kStrideC * kHeight); \ FMT_PLANAR##To##FMT_C( \ src_y + OFF, kWidth, src_u + OFF, SUBSAMPLE(kWidth, SUBSAMP_X), \ src_v + OFF, SUBSAMPLE(kWidth, SUBSAMP_X), src_a + OFF, kWidth, \ dst_argb_c + OFF, kStrideC, kWidth, NEG kHeight, ATTEN); \ /* Convert B to C */ \ FMT_B##To##FMT_C(dst_argb_b + OFF, kStrideB, dst_argb_bc + OFF, kStrideC, \ kWidth, kHeight); \ for (int i = 0; i < kStrideC * kHeight; ++i) { \ EXPECT_EQ(dst_argb_c[i + OFF], dst_argb_bc[i + OFF]); \ } \ free_aligned_buffer_page_end(src_y); \ free_aligned_buffer_page_end(src_u); \ free_aligned_buffer_page_end(src_v); \ free_aligned_buffer_page_end(src_a); \ free_aligned_buffer_page_end(dst_argb_b); \ free_aligned_buffer_page_end(dst_argb_c); \ free_aligned_buffer_page_end(dst_argb_bc); \ } #define TESTQPLANARTOE(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, SUB_B, BPP_B, \ FMT_C, BPP_C) \ TESTQPLANARTOEI(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, SUB_B, BPP_B, \ benchmark_width_ - 4, _Any, +, 0, FMT_C, BPP_C, 0) \ TESTQPLANARTOEI(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, SUB_B, BPP_B, \ benchmark_width_, _Unaligned, +, 1, FMT_C, BPP_C, 0) \ TESTQPLANARTOEI(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, SUB_B, BPP_B, \ benchmark_width_, _Invert, -, 0, FMT_C, BPP_C, 0) \ TESTQPLANARTOEI(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, SUB_B, BPP_B, \ benchmark_width_, _Opt, +, 0, FMT_C, BPP_C, 0) \ TESTQPLANARTOEI(FMT_PLANAR, SUBSAMP_X, SUBSAMP_Y, FMT_B, SUB_B, BPP_B, \ benchmark_width_, _Premult, +, 0, FMT_C, BPP_C, 1) TESTQPLANARTOE(I420Alpha, 2, 2, ARGB, 1, 4, ABGR, 4) TESTQPLANARTOE(I420Alpha, 2, 2, ABGR, 1, 4, ARGB, 4) TEST_F(LibYUVConvertTest, RotateWithARGBSource) { // 2x2 frames uint32_t src[4]; uint32_t dst[4]; // some random input src[0] = 0x11000000; src[1] = 0x00450000; src[2] = 0x00009f00; src[3] = 0x000000ff; // zeros on destination dst[0] = 0x00000000; dst[1] = 0x00000000; dst[2] = 0x00000000; dst[3] = 0x00000000; int r = ConvertToARGB(reinterpret_cast<uint8_t*>(src), 16, // input size reinterpret_cast<uint8_t*>(dst), 8, // destination stride 0, // crop_x 0, // crop_y 2, // width 2, // height 2, // crop width 2, // crop height kRotate90, FOURCC_ARGB); EXPECT_EQ(r, 0); // 90 degrees rotation, no conversion EXPECT_EQ(dst[0], src[2]); EXPECT_EQ(dst[1], src[0]); EXPECT_EQ(dst[2], src[3]); EXPECT_EQ(dst[3], src[1]); } } // namespace libyuv