/* * Copyright (C) 2017 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "smartselect/cached-features.h" #include "gmock/gmock.h" #include "gtest/gtest.h" namespace libtextclassifier { namespace { class TestingCachedFeatures : public CachedFeatures { public: using CachedFeatures::CachedFeatures; using CachedFeatures::RemapV0FeatureVector; }; TEST(CachedFeaturesTest, Simple) { std::vector<Token> tokens; tokens.push_back(Token()); tokens.push_back(Token()); tokens.push_back(Token("Hello", 0, 1)); tokens.push_back(Token("World", 1, 2)); tokens.push_back(Token("today!", 2, 3)); tokens.push_back(Token()); tokens.push_back(Token()); std::vector<std::vector<int>> sparse_features(tokens.size()); for (int i = 0; i < sparse_features.size(); ++i) { sparse_features[i].push_back(i); } std::vector<std::vector<float>> dense_features(tokens.size()); for (int i = 0; i < dense_features.size(); ++i) { dense_features[i].push_back(-i); } TestingCachedFeatures feature_extractor( tokens, /*context_size=*/2, sparse_features, dense_features, [](const std::vector<int>& sparse_features, const std::vector<float>& dense_features, float* features) { features[0] = sparse_features[0]; features[1] = sparse_features[0]; features[2] = dense_features[0]; features[3] = dense_features[0]; features[4] = 123; return true; }, 5); VectorSpan<float> features; VectorSpan<Token> output_tokens; EXPECT_TRUE(feature_extractor.Get(2, &features, &output_tokens)); for (int i = 0; i < 5; i++) { EXPECT_EQ(features[i * 5 + 0], i) << "Feature " << i; EXPECT_EQ(features[i * 5 + 1], i) << "Feature " << i; EXPECT_EQ(features[i * 5 + 2], -i) << "Feature " << i; EXPECT_EQ(features[i * 5 + 3], -i) << "Feature " << i; EXPECT_EQ(features[i * 5 + 4], 123) << "Feature " << i; } } TEST(CachedFeaturesTest, InvalidInput) { std::vector<Token> tokens; tokens.push_back(Token()); tokens.push_back(Token()); tokens.push_back(Token("Hello", 0, 1)); tokens.push_back(Token("World", 1, 2)); tokens.push_back(Token("today!", 2, 3)); tokens.push_back(Token()); tokens.push_back(Token()); std::vector<std::vector<int>> sparse_features(tokens.size()); std::vector<std::vector<float>> dense_features(tokens.size()); TestingCachedFeatures feature_extractor( tokens, /*context_size=*/2, sparse_features, dense_features, [](const std::vector<int>& sparse_features, const std::vector<float>& dense_features, float* features) { return true; }, /*feature_vector_size=*/5); VectorSpan<float> features; VectorSpan<Token> output_tokens; EXPECT_FALSE(feature_extractor.Get(-1000, &features, &output_tokens)); EXPECT_FALSE(feature_extractor.Get(-1, &features, &output_tokens)); EXPECT_FALSE(feature_extractor.Get(0, &features, &output_tokens)); EXPECT_TRUE(feature_extractor.Get(2, &features, &output_tokens)); EXPECT_TRUE(feature_extractor.Get(4, &features, &output_tokens)); EXPECT_FALSE(feature_extractor.Get(5, &features, &output_tokens)); EXPECT_FALSE(feature_extractor.Get(500, &features, &output_tokens)); } TEST(CachedFeaturesTest, RemapV0FeatureVector) { std::vector<Token> tokens; tokens.push_back(Token()); tokens.push_back(Token()); tokens.push_back(Token("Hello", 0, 1)); tokens.push_back(Token("World", 1, 2)); tokens.push_back(Token("today!", 2, 3)); tokens.push_back(Token()); tokens.push_back(Token()); std::vector<std::vector<int>> sparse_features(tokens.size()); std::vector<std::vector<float>> dense_features(tokens.size()); TestingCachedFeatures feature_extractor( tokens, /*context_size=*/2, sparse_features, dense_features, [](const std::vector<int>& sparse_features, const std::vector<float>& dense_features, float* features) { return true; }, /*feature_vector_size=*/5); std::vector<float> features_orig(5 * 5); for (int i = 0; i < features_orig.size(); i++) { features_orig[i] = i; } VectorSpan<float> features; feature_extractor.SetV0FeatureMode(0); features = VectorSpan<float>(features_orig); feature_extractor.RemapV0FeatureVector(&features); EXPECT_EQ( std::vector<float>({0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24}), std::vector<float>(features.begin(), features.end())); feature_extractor.SetV0FeatureMode(2); features = VectorSpan<float>(features_orig); feature_extractor.RemapV0FeatureVector(&features); EXPECT_EQ(std::vector<float>({0, 1, 5, 6, 10, 11, 15, 16, 20, 21, 2, 3, 4, 7, 8, 9, 12, 13, 14, 17, 18, 19, 22, 23, 24}), std::vector<float>(features.begin(), features.end())); } } // namespace } // namespace libtextclassifier