// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "sandbox/linux/seccomp-bpf/syscall.h" #include <errno.h> #include <stdint.h> #include "base/logging.h" #include "sandbox/linux/bpf_dsl/seccomp_macros.h" namespace sandbox { namespace { #if defined(ARCH_CPU_X86_FAMILY) || defined(ARCH_CPU_ARM_FAMILY) || \ defined(ARCH_CPU_MIPS_FAMILY) // Number that's not currently used by any Linux kernel ABIs. const int kInvalidSyscallNumber = 0x351d3; #else #error Unrecognized architecture #endif asm(// We need to be able to tell the kernel exactly where we made a // system call. The C++ compiler likes to sometimes clone or // inline code, which would inadvertently end up duplicating // the entry point. // "gcc" can suppress code duplication with suitable function // attributes, but "clang" doesn't have this ability. // The "clang" developer mailing list suggested that the correct // and portable solution is a file-scope assembly block. // N.B. We do mark our code as a proper function so that backtraces // work correctly. But we make absolutely no attempt to use the // ABI's calling conventions for passing arguments. We will only // ever be called from assembly code and thus can pick more // suitable calling conventions. #if defined(__i386__) ".text\n" ".align 16, 0x90\n" ".type SyscallAsm, @function\n" "SyscallAsm:.cfi_startproc\n" // Check if "%eax" is negative. If so, do not attempt to make a // system call. Instead, compute the return address that is visible // to the kernel after we execute "int $0x80". This address can be // used as a marker that BPF code inspects. "test %eax, %eax\n" "jge 1f\n" // Always, make sure that our code is position-independent, or // address space randomization might not work on i386. This means, // we can't use "lea", but instead have to rely on "call/pop". "call 0f; .cfi_adjust_cfa_offset 4\n" "0:pop %eax; .cfi_adjust_cfa_offset -4\n" "addl $2f-0b, %eax\n" "ret\n" // Save register that we don't want to clobber. On i386, we need to // save relatively aggressively, as there are a couple or registers // that are used internally (e.g. %ebx for position-independent // code, and %ebp for the frame pointer), and as we need to keep at // least a few registers available for the register allocator. "1:push %esi; .cfi_adjust_cfa_offset 4; .cfi_rel_offset esi, 0\n" "push %edi; .cfi_adjust_cfa_offset 4; .cfi_rel_offset edi, 0\n" "push %ebx; .cfi_adjust_cfa_offset 4; .cfi_rel_offset ebx, 0\n" "push %ebp; .cfi_adjust_cfa_offset 4; .cfi_rel_offset ebp, 0\n" // Copy entries from the array holding the arguments into the // correct CPU registers. "movl 0(%edi), %ebx\n" "movl 4(%edi), %ecx\n" "movl 8(%edi), %edx\n" "movl 12(%edi), %esi\n" "movl 20(%edi), %ebp\n" "movl 16(%edi), %edi\n" // Enter the kernel. "int $0x80\n" // This is our "magic" return address that the BPF filter sees. "2:" // Restore any clobbered registers that we didn't declare to the // compiler. "pop %ebp; .cfi_restore ebp; .cfi_adjust_cfa_offset -4\n" "pop %ebx; .cfi_restore ebx; .cfi_adjust_cfa_offset -4\n" "pop %edi; .cfi_restore edi; .cfi_adjust_cfa_offset -4\n" "pop %esi; .cfi_restore esi; .cfi_adjust_cfa_offset -4\n" "ret\n" ".cfi_endproc\n" "9:.size SyscallAsm, 9b-SyscallAsm\n" #elif defined(__x86_64__) ".text\n" ".align 16, 0x90\n" ".type SyscallAsm, @function\n" "SyscallAsm:.cfi_startproc\n" // Check if "%rdi" is negative. If so, do not attempt to make a // system call. Instead, compute the return address that is visible // to the kernel after we execute "syscall". This address can be // used as a marker that BPF code inspects. "test %rdi, %rdi\n" "jge 1f\n" // Always make sure that our code is position-independent, or the // linker will throw a hissy fit on x86-64. "lea 2f(%rip), %rax\n" "ret\n" // Now we load the registers used to pass arguments to the system // call: system call number in %rax, and arguments in %rdi, %rsi, // %rdx, %r10, %r8, %r9. Note: These are all caller-save registers // (only %rbx, %rbp, %rsp, and %r12-%r15 are callee-save), so no // need to worry here about spilling registers or CFI directives. "1:movq %rdi, %rax\n" "movq 0(%rsi), %rdi\n" "movq 16(%rsi), %rdx\n" "movq 24(%rsi), %r10\n" "movq 32(%rsi), %r8\n" "movq 40(%rsi), %r9\n" "movq 8(%rsi), %rsi\n" // Enter the kernel. "syscall\n" // This is our "magic" return address that the BPF filter sees. "2:ret\n" ".cfi_endproc\n" "9:.size SyscallAsm, 9b-SyscallAsm\n" #elif defined(__arm__) // Throughout this file, we use the same mode (ARM vs. thumb) // that the C++ compiler uses. This means, when transfering control // from C++ to assembly code, we do not need to switch modes (e.g. // by using the "bx" instruction). It also means that our assembly // code should not be invoked directly from code that lives in // other compilation units, as we don't bother implementing thumb // interworking. That's OK, as we don't make any of the assembly // symbols public. They are all local to this file. ".text\n" ".align 2\n" ".type SyscallAsm, %function\n" #if defined(__thumb__) ".thumb_func\n" #else ".arm\n" #endif "SyscallAsm:\n" #if !defined(__native_client_nonsfi__) // .fnstart and .fnend pseudo operations creates unwind table. // It also creates a reference to the symbol __aeabi_unwind_cpp_pr0, which // is not provided by PNaCl toolchain. Disable it. ".fnstart\n" #endif "@ args = 0, pretend = 0, frame = 8\n" "@ frame_needed = 1, uses_anonymous_args = 0\n" #if defined(__thumb__) ".cfi_startproc\n" "push {r7, lr}\n" ".save {r7, lr}\n" ".cfi_offset 14, -4\n" ".cfi_offset 7, -8\n" ".cfi_def_cfa_offset 8\n" #else "stmfd sp!, {fp, lr}\n" "add fp, sp, #4\n" #endif // Check if "r0" is negative. If so, do not attempt to make a // system call. Instead, compute the return address that is visible // to the kernel after we execute "swi 0". This address can be // used as a marker that BPF code inspects. "cmp r0, #0\n" "bge 1f\n" "adr r0, 2f\n" "b 2f\n" // We declared (almost) all clobbered registers to the compiler. On // ARM there is no particular register pressure. So, we can go // ahead and directly copy the entries from the arguments array // into the appropriate CPU registers. "1:ldr r5, [r6, #20]\n" "ldr r4, [r6, #16]\n" "ldr r3, [r6, #12]\n" "ldr r2, [r6, #8]\n" "ldr r1, [r6, #4]\n" "mov r7, r0\n" "ldr r0, [r6, #0]\n" // Enter the kernel "swi 0\n" // Restore the frame pointer. Also restore the program counter from // the link register; this makes us return to the caller. #if defined(__thumb__) "2:pop {r7, pc}\n" ".cfi_endproc\n" #else "2:ldmfd sp!, {fp, pc}\n" #endif #if !defined(__native_client_nonsfi__) // Do not use .fnstart and .fnend for PNaCl toolchain. See above comment, // for more details. ".fnend\n" #endif "9:.size SyscallAsm, 9b-SyscallAsm\n" #elif defined(__mips__) ".text\n" ".option pic2\n" ".align 4\n" ".global SyscallAsm\n" ".type SyscallAsm, @function\n" "SyscallAsm:.ent SyscallAsm\n" ".frame $sp, 40, $ra\n" ".set push\n" ".set noreorder\n" ".cpload $t9\n" "addiu $sp, $sp, -40\n" "sw $ra, 36($sp)\n" // Check if "v0" is negative. If so, do not attempt to make a // system call. Instead, compute the return address that is visible // to the kernel after we execute "syscall". This address can be // used as a marker that BPF code inspects. "bgez $v0, 1f\n" " nop\n" // This is equivalent to "la $v0, 2f". // LA macro has to be avoided since LLVM-AS has issue with LA in PIC mode // https://llvm.org/bugs/show_bug.cgi?id=27644 "lw $v0, %got(2f)($gp)\n" "addiu $v0, $v0, %lo(2f)\n" "b 2f\n" " nop\n" // On MIPS first four arguments go to registers a0 - a3 and any // argument after that goes to stack. We can go ahead and directly // copy the entries from the arguments array into the appropriate // CPU registers and on the stack. "1:lw $a3, 28($a0)\n" "lw $a2, 24($a0)\n" "lw $a1, 20($a0)\n" "lw $t0, 16($a0)\n" "sw $a3, 28($sp)\n" "sw $a2, 24($sp)\n" "sw $a1, 20($sp)\n" "sw $t0, 16($sp)\n" "lw $a3, 12($a0)\n" "lw $a2, 8($a0)\n" "lw $a1, 4($a0)\n" "lw $a0, 0($a0)\n" // Enter the kernel "syscall\n" // This is our "magic" return address that the BPF filter sees. // Restore the return address from the stack. "2:lw $ra, 36($sp)\n" "jr $ra\n" " addiu $sp, $sp, 40\n" ".set pop\n" ".end SyscallAsm\n" ".size SyscallAsm,.-SyscallAsm\n" #elif defined(__aarch64__) ".text\n" ".align 2\n" ".type SyscallAsm, %function\n" "SyscallAsm:\n" ".cfi_startproc\n" "cmp x0, #0\n" "b.ge 1f\n" "adr x0,2f\n" "b 2f\n" "1:ldr x5, [x6, #40]\n" "ldr x4, [x6, #32]\n" "ldr x3, [x6, #24]\n" "ldr x2, [x6, #16]\n" "ldr x1, [x6, #8]\n" "mov x8, x0\n" "ldr x0, [x6, #0]\n" // Enter the kernel "svc 0\n" "2:ret\n" ".cfi_endproc\n" ".size SyscallAsm, .-SyscallAsm\n" #endif ); // asm #if defined(__x86_64__) extern "C" { intptr_t SyscallAsm(intptr_t nr, const intptr_t args[6]); } #elif defined(__mips__) extern "C" { intptr_t SyscallAsm(intptr_t nr, const intptr_t args[8]); } #endif } // namespace intptr_t Syscall::InvalidCall() { // Explicitly pass eight zero arguments just in case. return Call(kInvalidSyscallNumber, 0, 0, 0, 0, 0, 0, 0, 0); } intptr_t Syscall::Call(int nr, intptr_t p0, intptr_t p1, intptr_t p2, intptr_t p3, intptr_t p4, intptr_t p5, intptr_t p6, intptr_t p7) { // We rely on "intptr_t" to be the exact size as a "void *". This is // typically true, but just in case, we add a check. The language // specification allows platforms some leeway in cases, where // "sizeof(void *)" is not the same as "sizeof(void (*)())". We expect // that this would only be an issue for IA64, which we are currently not // planning on supporting. And it is even possible that this would work // on IA64, but for lack of actual hardware, I cannot test. static_assert(sizeof(void*) == sizeof(intptr_t), "pointer types and intptr_t must be exactly the same size"); // TODO(nedeljko): Enable use of more than six parameters on architectures // where that makes sense. #if defined(__mips__) const intptr_t args[8] = {p0, p1, p2, p3, p4, p5, p6, p7}; #else DCHECK_EQ(p6, 0) << " Support for syscalls with more than six arguments not " "added for this architecture"; DCHECK_EQ(p7, 0) << " Support for syscalls with more than six arguments not " "added for this architecture"; const intptr_t args[6] = {p0, p1, p2, p3, p4, p5}; #endif // defined(__mips__) // Invoke our file-scope assembly code. The constraints have been picked // carefully to match what the rest of the assembly code expects in input, // output, and clobbered registers. #if defined(__i386__) intptr_t ret = nr; asm volatile( "call SyscallAsm\n" // N.B. These are not the calling conventions normally used by the ABI. : "=a"(ret) : "0"(ret), "D"(args) : "cc", "esp", "memory", "ecx", "edx"); #elif defined(__x86_64__) intptr_t ret = SyscallAsm(nr, args); #elif defined(__arm__) intptr_t ret; { register intptr_t inout __asm__("r0") = nr; register const intptr_t* data __asm__("r6") = args; asm volatile( "bl SyscallAsm\n" // N.B. These are not the calling conventions normally used by the ABI. : "=r"(inout) : "0"(inout), "r"(data) : "cc", "lr", "memory", "r1", "r2", "r3", "r4", "r5" #if !defined(__thumb__) // In thumb mode, we cannot use "r7" as a general purpose register, as // it is our frame pointer. We have to manually manage and preserve // it. // In ARM mode, we have a dedicated frame pointer register and "r7" is // thus available as a general purpose register. We don't preserve it, // but instead mark it as clobbered. , "r7" #endif // !defined(__thumb__) ); ret = inout; } #elif defined(__mips__) int err_status; intptr_t ret = Syscall::SandboxSyscallRaw(nr, args, &err_status); if (err_status) { // On error, MIPS returns errno from syscall instead of -errno. // The purpose of this negation is for SandboxSyscall() to behave // more like it would on other architectures. ret = -ret; } #elif defined(__aarch64__) intptr_t ret; { register intptr_t inout __asm__("x0") = nr; register const intptr_t* data __asm__("x6") = args; asm volatile("bl SyscallAsm\n" : "=r"(inout) : "0"(inout), "r"(data) : "memory", "x1", "x2", "x3", "x4", "x5", "x8", "x30"); ret = inout; } #else #error "Unimplemented architecture" #endif return ret; } void Syscall::PutValueInUcontext(intptr_t ret_val, ucontext_t* ctx) { #if defined(__mips__) // Mips ABI states that on error a3 CPU register has non zero value and if // there is no error, it should be zero. if (ret_val <= -1 && ret_val >= -4095) { // |ret_val| followes the Syscall::Call() convention of being -errno on // errors. In order to write correct value to return register this sign // needs to be changed back. ret_val = -ret_val; SECCOMP_PARM4(ctx) = 1; } else SECCOMP_PARM4(ctx) = 0; #endif SECCOMP_RESULT(ctx) = static_cast<greg_t>(ret_val); } #if defined(__mips__) intptr_t Syscall::SandboxSyscallRaw(int nr, const intptr_t* args, intptr_t* err_ret) { register intptr_t ret __asm__("v0") = nr; register intptr_t syscallasm __asm__("t9") = (intptr_t) &SyscallAsm; // a3 register becomes non zero on error. register intptr_t err_stat __asm__("a3") = 0; { register const intptr_t* data __asm__("a0") = args; asm volatile( "jalr $t9\n" " nop\n" : "=r"(ret), "=r"(err_stat) : "0"(ret), "r"(data), "r"(syscallasm) // a2 is in the clober list so inline assembly can not change its // value. : "memory", "ra", "a2"); } // Set an error status so it can be used outside of this function *err_ret = err_stat; return ret; } #endif // defined(__mips__) } // namespace sandbox