// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // Time represents an absolute point in coordinated universal time (UTC), // internally represented as microseconds (s/1,000,000) since the Windows epoch // (1601-01-01 00:00:00 UTC). System-dependent clock interface routines are // defined in time_PLATFORM.cc. Note that values for Time may skew and jump // around as the operating system makes adjustments to synchronize (e.g., with // NTP servers). Thus, client code that uses the Time class must account for // this. // // TimeDelta represents a duration of time, internally represented in // microseconds. // // TimeTicks and ThreadTicks represent an abstract time that is most of the time // incrementing, for use in measuring time durations. Internally, they are // represented in microseconds. They can not be converted to a human-readable // time, but are guaranteed not to decrease (unlike the Time class). Note that // TimeTicks may "stand still" (e.g., if the computer is suspended), and // ThreadTicks will "stand still" whenever the thread has been de-scheduled by // the operating system. // // All time classes are copyable, assignable, and occupy 64-bits per // instance. Thus, they can be efficiently passed by-value (as opposed to // by-reference). // // Definitions of operator<< are provided to make these types work with // DCHECK_EQ() and other log macros. For human-readable formatting, see // "base/i18n/time_formatting.h". // // So many choices! Which time class should you use? Examples: // // Time: Interpreting the wall-clock time provided by a remote // system. Detecting whether cached resources have // expired. Providing the user with a display of the current date // and time. Determining the amount of time between events across // re-boots of the machine. // // TimeTicks: Tracking the amount of time a task runs. Executing delayed // tasks at the right time. Computing presentation timestamps. // Synchronizing audio and video using TimeTicks as a common // reference clock (lip-sync). Measuring network round-trip // latency. // // ThreadTicks: Benchmarking how long the current thread has been doing actual // work. #ifndef BASE_TIME_TIME_H_ #define BASE_TIME_TIME_H_ #include <stdint.h> #include <time.h> #include <iosfwd> #include <limits> #include "base/base_export.h" #include "base/compiler_specific.h" #include "base/numerics/safe_math.h" #include "build/build_config.h" #if defined(OS_MACOSX) #include <CoreFoundation/CoreFoundation.h> // Avoid Mac system header macro leak. #undef TYPE_BOOL #endif #if defined(OS_POSIX) #include <unistd.h> #include <sys/time.h> #endif #if defined(OS_WIN) // For FILETIME in FromFileTime, until it moves to a new converter class. // See TODO(iyengar) below. #include <windows.h> #include "base/gtest_prod_util.h" #endif namespace base { class PlatformThreadHandle; class TimeDelta; // The functions in the time_internal namespace are meant to be used only by the // time classes and functions. Please use the math operators defined in the // time classes instead. namespace time_internal { // Add or subtract |value| from a TimeDelta. The int64_t argument and return // value are in terms of a microsecond timebase. BASE_EXPORT int64_t SaturatedAdd(TimeDelta delta, int64_t value); BASE_EXPORT int64_t SaturatedSub(TimeDelta delta, int64_t value); // Clamp |value| on overflow and underflow conditions. The int64_t argument and // return value are in terms of a microsecond timebase. BASE_EXPORT int64_t FromCheckedNumeric(const CheckedNumeric<int64_t> value); } // namespace time_internal // TimeDelta ------------------------------------------------------------------ class BASE_EXPORT TimeDelta { public: TimeDelta() : delta_(0) { } // Converts units of time to TimeDeltas. static constexpr TimeDelta FromDays(int days); static constexpr TimeDelta FromHours(int hours); static constexpr TimeDelta FromMinutes(int minutes); static constexpr TimeDelta FromSeconds(int64_t secs); static constexpr TimeDelta FromMilliseconds(int64_t ms); static constexpr TimeDelta FromSecondsD(double secs); static constexpr TimeDelta FromMillisecondsD(double ms); static constexpr TimeDelta FromMicroseconds(int64_t us); #if defined(OS_WIN) static TimeDelta FromQPCValue(LONGLONG qpc_value); #endif // Converts an integer value representing TimeDelta to a class. This is used // when deserializing a |TimeDelta| structure, using a value known to be // compatible. It is not provided as a constructor because the integer type // may be unclear from the perspective of a caller. static TimeDelta FromInternalValue(int64_t delta) { return TimeDelta(delta); } // Returns the maximum time delta, which should be greater than any reasonable // time delta we might compare it to. Adding or subtracting the maximum time // delta to a time or another time delta has an undefined result. static TimeDelta Max(); // Returns the internal numeric value of the TimeDelta object. Please don't // use this and do arithmetic on it, as it is more error prone than using the // provided operators. // For serializing, use FromInternalValue to reconstitute. int64_t ToInternalValue() const { return delta_; } // Returns the magnitude (absolute value) of this TimeDelta. TimeDelta magnitude() const { // Some toolchains provide an incomplete C++11 implementation and lack an // int64_t overload for std::abs(). The following is a simple branchless // implementation: const int64_t mask = delta_ >> (sizeof(delta_) * 8 - 1); return TimeDelta((delta_ + mask) ^ mask); } // Returns true if the time delta is zero. bool is_zero() const { return delta_ == 0; } // Returns true if the time delta is the maximum time delta. bool is_max() const { return delta_ == std::numeric_limits<int64_t>::max(); } #if defined(OS_POSIX) struct timespec ToTimeSpec() const; #endif // Returns the time delta in some unit. The F versions return a floating // point value, the "regular" versions return a rounded-down value. // // InMillisecondsRoundedUp() instead returns an integer that is rounded up // to the next full millisecond. int InDays() const; int InHours() const; int InMinutes() const; double InSecondsF() const; int64_t InSeconds() const; double InMillisecondsF() const; int64_t InMilliseconds() const; int64_t InMillisecondsRoundedUp() const; int64_t InMicroseconds() const; TimeDelta& operator=(TimeDelta other) { delta_ = other.delta_; return *this; } // Computations with other deltas. TimeDelta operator+(TimeDelta other) const { return TimeDelta(time_internal::SaturatedAdd(*this, other.delta_)); } TimeDelta operator-(TimeDelta other) const { return TimeDelta(time_internal::SaturatedSub(*this, other.delta_)); } TimeDelta& operator+=(TimeDelta other) { return *this = (*this + other); } TimeDelta& operator-=(TimeDelta other) { return *this = (*this - other); } TimeDelta operator-() const { return TimeDelta(-delta_); } // Computations with numeric types. template<typename T> TimeDelta operator*(T a) const { CheckedNumeric<int64_t> rv(delta_); rv *= a; return TimeDelta(time_internal::FromCheckedNumeric(rv)); } template<typename T> TimeDelta operator/(T a) const { CheckedNumeric<int64_t> rv(delta_); rv /= a; return TimeDelta(time_internal::FromCheckedNumeric(rv)); } template<typename T> TimeDelta& operator*=(T a) { return *this = (*this * a); } template<typename T> TimeDelta& operator/=(T a) { return *this = (*this / a); } int64_t operator/(TimeDelta a) const { return delta_ / a.delta_; } TimeDelta operator%(TimeDelta a) const { return TimeDelta(delta_ % a.delta_); } // Comparison operators. constexpr bool operator==(TimeDelta other) const { return delta_ == other.delta_; } constexpr bool operator!=(TimeDelta other) const { return delta_ != other.delta_; } constexpr bool operator<(TimeDelta other) const { return delta_ < other.delta_; } constexpr bool operator<=(TimeDelta other) const { return delta_ <= other.delta_; } constexpr bool operator>(TimeDelta other) const { return delta_ > other.delta_; } constexpr bool operator>=(TimeDelta other) const { return delta_ >= other.delta_; } private: friend int64_t time_internal::SaturatedAdd(TimeDelta delta, int64_t value); friend int64_t time_internal::SaturatedSub(TimeDelta delta, int64_t value); // Constructs a delta given the duration in microseconds. This is private // to avoid confusion by callers with an integer constructor. Use // FromSeconds, FromMilliseconds, etc. instead. constexpr explicit TimeDelta(int64_t delta_us) : delta_(delta_us) {} // Private method to build a delta from a double. static constexpr TimeDelta FromDouble(double value); // Private method to build a delta from the product of a user-provided value // and a known-positive value. static constexpr TimeDelta FromProduct(int64_t value, int64_t positive_value); // Delta in microseconds. int64_t delta_; }; template<typename T> inline TimeDelta operator*(T a, TimeDelta td) { return td * a; } // For logging use only. BASE_EXPORT std::ostream& operator<<(std::ostream& os, TimeDelta time_delta); // Do not reference the time_internal::TimeBase template class directly. Please // use one of the time subclasses instead, and only reference the public // TimeBase members via those classes. namespace time_internal { // TimeBase-------------------------------------------------------------------- // Provides value storage and comparison/math operations common to all time // classes. Each subclass provides for strong type-checking to ensure // semantically meaningful comparison/math of time values from the same clock // source or timeline. template<class TimeClass> class TimeBase { public: static const int64_t kHoursPerDay = 24; static const int64_t kMillisecondsPerSecond = 1000; static const int64_t kMillisecondsPerDay = kMillisecondsPerSecond * 60 * 60 * kHoursPerDay; static const int64_t kMicrosecondsPerMillisecond = 1000; static const int64_t kMicrosecondsPerSecond = kMicrosecondsPerMillisecond * kMillisecondsPerSecond; static const int64_t kMicrosecondsPerMinute = kMicrosecondsPerSecond * 60; static const int64_t kMicrosecondsPerHour = kMicrosecondsPerMinute * 60; static const int64_t kMicrosecondsPerDay = kMicrosecondsPerHour * kHoursPerDay; static const int64_t kMicrosecondsPerWeek = kMicrosecondsPerDay * 7; static const int64_t kNanosecondsPerMicrosecond = 1000; static const int64_t kNanosecondsPerSecond = kNanosecondsPerMicrosecond * kMicrosecondsPerSecond; // Returns true if this object has not been initialized. // // Warning: Be careful when writing code that performs math on time values, // since it's possible to produce a valid "zero" result that should not be // interpreted as a "null" value. bool is_null() const { return us_ == 0; } // Returns true if this object represents the maximum time. bool is_max() const { return us_ == std::numeric_limits<int64_t>::max(); } // Returns the maximum time, which should be greater than any reasonable time // with which we might compare it. static TimeClass Max() { return TimeClass(std::numeric_limits<int64_t>::max()); } // For serializing only. Use FromInternalValue() to reconstitute. Please don't // use this and do arithmetic on it, as it is more error prone than using the // provided operators. int64_t ToInternalValue() const { return us_; } TimeClass& operator=(TimeClass other) { us_ = other.us_; return *(static_cast<TimeClass*>(this)); } // Compute the difference between two times. TimeDelta operator-(TimeClass other) const { return TimeDelta::FromMicroseconds(us_ - other.us_); } // Return a new time modified by some delta. TimeClass operator+(TimeDelta delta) const { return TimeClass(time_internal::SaturatedAdd(delta, us_)); } TimeClass operator-(TimeDelta delta) const { return TimeClass(-time_internal::SaturatedSub(delta, us_)); } // Modify by some time delta. TimeClass& operator+=(TimeDelta delta) { return static_cast<TimeClass&>(*this = (*this + delta)); } TimeClass& operator-=(TimeDelta delta) { return static_cast<TimeClass&>(*this = (*this - delta)); } // Comparison operators bool operator==(TimeClass other) const { return us_ == other.us_; } bool operator!=(TimeClass other) const { return us_ != other.us_; } bool operator<(TimeClass other) const { return us_ < other.us_; } bool operator<=(TimeClass other) const { return us_ <= other.us_; } bool operator>(TimeClass other) const { return us_ > other.us_; } bool operator>=(TimeClass other) const { return us_ >= other.us_; } // Converts an integer value representing TimeClass to a class. This is used // when deserializing a |TimeClass| structure, using a value known to be // compatible. It is not provided as a constructor because the integer type // may be unclear from the perspective of a caller. static TimeClass FromInternalValue(int64_t us) { return TimeClass(us); } protected: explicit TimeBase(int64_t us) : us_(us) {} // Time value in a microsecond timebase. int64_t us_; }; } // namespace time_internal template<class TimeClass> inline TimeClass operator+(TimeDelta delta, TimeClass t) { return t + delta; } // Time ----------------------------------------------------------------------- // Represents a wall clock time in UTC. Values are not guaranteed to be // monotonically non-decreasing and are subject to large amounts of skew. class BASE_EXPORT Time : public time_internal::TimeBase<Time> { public: // The representation of Jan 1, 1970 UTC in microseconds since the // platform-dependent epoch. static const int64_t kTimeTToMicrosecondsOffset; #if !defined(OS_WIN) // On Mac & Linux, this value is the delta from the Windows epoch of 1601 to // the Posix delta of 1970. This is used for migrating between the old // 1970-based epochs to the new 1601-based ones. It should be removed from // this global header and put in the platform-specific ones when we remove the // migration code. static const int64_t kWindowsEpochDeltaMicroseconds; #else // To avoid overflow in QPC to Microseconds calculations, since we multiply // by kMicrosecondsPerSecond, then the QPC value should not exceed // (2^63 - 1) / 1E6. If it exceeds that threshold, we divide then multiply. enum : int64_t{kQPCOverflowThreshold = 0x8637BD05AF7}; #endif // Represents an exploded time that can be formatted nicely. This is kind of // like the Win32 SYSTEMTIME structure or the Unix "struct tm" with a few // additions and changes to prevent errors. struct BASE_EXPORT Exploded { int year; // Four digit year "2007" int month; // 1-based month (values 1 = January, etc.) int day_of_week; // 0-based day of week (0 = Sunday, etc.) int day_of_month; // 1-based day of month (1-31) int hour; // Hour within the current day (0-23) int minute; // Minute within the current hour (0-59) int second; // Second within the current minute (0-59 plus leap // seconds which may take it up to 60). int millisecond; // Milliseconds within the current second (0-999) // A cursory test for whether the data members are within their // respective ranges. A 'true' return value does not guarantee the // Exploded value can be successfully converted to a Time value. bool HasValidValues() const; }; // Contains the NULL time. Use Time::Now() to get the current time. Time() : TimeBase(0) { } // Returns the time for epoch in Unix-like system (Jan 1, 1970). static Time UnixEpoch(); // Returns the current time. Watch out, the system might adjust its clock // in which case time will actually go backwards. We don't guarantee that // times are increasing, or that two calls to Now() won't be the same. static Time Now(); // Returns the current time. Same as Now() except that this function always // uses system time so that there are no discrepancies between the returned // time and system time even on virtual environments including our test bot. // For timing sensitive unittests, this function should be used. static Time NowFromSystemTime(); // Converts to/from time_t in UTC and a Time class. // TODO(brettw) this should be removed once everybody starts using the |Time| // class. static Time FromTimeT(time_t tt); time_t ToTimeT() const; // Converts time to/from a double which is the number of seconds since epoch // (Jan 1, 1970). Webkit uses this format to represent time. // Because WebKit initializes double time value to 0 to indicate "not // initialized", we map it to empty Time object that also means "not // initialized". static Time FromDoubleT(double dt); double ToDoubleT() const; #if defined(OS_POSIX) // Converts the timespec structure to time. MacOS X 10.8.3 (and tentatively, // earlier versions) will have the |ts|'s tv_nsec component zeroed out, // having a 1 second resolution, which agrees with // https://developer.apple.com/legacy/library/#technotes/tn/tn1150.html#HFSPlusDates. static Time FromTimeSpec(const timespec& ts); #endif // Converts to/from the Javascript convention for times, a number of // milliseconds since the epoch: // https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Date/getTime. static Time FromJsTime(double ms_since_epoch); double ToJsTime() const; // Converts to Java convention for times, a number of // milliseconds since the epoch. int64_t ToJavaTime() const; #if defined(OS_POSIX) static Time FromTimeVal(struct timeval t); struct timeval ToTimeVal() const; #endif #if defined(OS_MACOSX) static Time FromCFAbsoluteTime(CFAbsoluteTime t); CFAbsoluteTime ToCFAbsoluteTime() const; #endif #if defined(OS_WIN) static Time FromFileTime(FILETIME ft); FILETIME ToFileTime() const; // The minimum time of a low resolution timer. This is basically a windows // constant of ~15.6ms. While it does vary on some older OS versions, we'll // treat it as static across all windows versions. static const int kMinLowResolutionThresholdMs = 16; // Enable or disable Windows high resolution timer. static void EnableHighResolutionTimer(bool enable); // Activates or deactivates the high resolution timer based on the |activate| // flag. If the HighResolutionTimer is not Enabled (see // EnableHighResolutionTimer), this function will return false. Otherwise // returns true. Each successful activate call must be paired with a // subsequent deactivate call. // All callers to activate the high resolution timer must eventually call // this function to deactivate the high resolution timer. static bool ActivateHighResolutionTimer(bool activate); // Returns true if the high resolution timer is both enabled and activated. // This is provided for testing only, and is not tracked in a thread-safe // way. static bool IsHighResolutionTimerInUse(); #endif // Converts an exploded structure representing either the local time or UTC // into a Time class. // TODO(maksims): Get rid of these in favor of the methods below when // all the callers stop using these ones. static Time FromUTCExploded(const Exploded& exploded) { base::Time time; ignore_result(FromUTCExploded(exploded, &time)); return time; } static Time FromLocalExploded(const Exploded& exploded) { base::Time time; ignore_result(FromLocalExploded(exploded, &time)); return time; } // Converts an exploded structure representing either the local time or UTC // into a Time class. Returns false on a failure when, for example, a day of // month is set to 31 on a 28-30 day month. static bool FromUTCExploded(const Exploded& exploded, Time* time) WARN_UNUSED_RESULT { return FromExploded(false, exploded, time); } static bool FromLocalExploded(const Exploded& exploded, Time* time) WARN_UNUSED_RESULT { return FromExploded(true, exploded, time); } // Converts a string representation of time to a Time object. // An example of a time string which is converted is as below:- // "Tue, 15 Nov 1994 12:45:26 GMT". If the timezone is not specified // in the input string, FromString assumes local time and FromUTCString // assumes UTC. A timezone that cannot be parsed (e.g. "UTC" which is not // specified in RFC822) is treated as if the timezone is not specified. // TODO(iyengar) Move the FromString/FromTimeT/ToTimeT/FromFileTime to // a new time converter class. static bool FromString(const char* time_string, Time* parsed_time) { return FromStringInternal(time_string, true, parsed_time); } static bool FromUTCString(const char* time_string, Time* parsed_time) { return FromStringInternal(time_string, false, parsed_time); } // Fills the given exploded structure with either the local time or UTC from // this time structure (containing UTC). void UTCExplode(Exploded* exploded) const { return Explode(false, exploded); } void LocalExplode(Exploded* exploded) const { return Explode(true, exploded); } // Rounds this time down to the nearest day in local time. It will represent // midnight on that day. Time LocalMidnight() const; private: friend class time_internal::TimeBase<Time>; explicit Time(int64_t us) : TimeBase(us) {} // Explodes the given time to either local time |is_local = true| or UTC // |is_local = false|. void Explode(bool is_local, Exploded* exploded) const; // Unexplodes a given time assuming the source is either local time // |is_local = true| or UTC |is_local = false|. Function returns false on // failure and sets |time| to Time(0). Otherwise returns true and sets |time| // to non-exploded time. static bool FromExploded(bool is_local, const Exploded& exploded, Time* time) WARN_UNUSED_RESULT; // Converts a string representation of time to a Time object. // An example of a time string which is converted is as below:- // "Tue, 15 Nov 1994 12:45:26 GMT". If the timezone is not specified // in the input string, local time |is_local = true| or // UTC |is_local = false| is assumed. A timezone that cannot be parsed // (e.g. "UTC" which is not specified in RFC822) is treated as if the // timezone is not specified. static bool FromStringInternal(const char* time_string, bool is_local, Time* parsed_time); // Comparison does not consider |day_of_week| when doing the operation. static bool ExplodedMostlyEquals(const Exploded& lhs, const Exploded& rhs); }; // static constexpr TimeDelta TimeDelta::FromDays(int days) { return days == std::numeric_limits<int>::max() ? Max() : TimeDelta(days * Time::kMicrosecondsPerDay); } // static constexpr TimeDelta TimeDelta::FromHours(int hours) { return hours == std::numeric_limits<int>::max() ? Max() : TimeDelta(hours * Time::kMicrosecondsPerHour); } // static constexpr TimeDelta TimeDelta::FromMinutes(int minutes) { return minutes == std::numeric_limits<int>::max() ? Max() : TimeDelta(minutes * Time::kMicrosecondsPerMinute); } // static constexpr TimeDelta TimeDelta::FromSeconds(int64_t secs) { return FromProduct(secs, Time::kMicrosecondsPerSecond); } // static constexpr TimeDelta TimeDelta::FromMilliseconds(int64_t ms) { return FromProduct(ms, Time::kMicrosecondsPerMillisecond); } // static constexpr TimeDelta TimeDelta::FromSecondsD(double secs) { return FromDouble(secs * Time::kMicrosecondsPerSecond); } // static constexpr TimeDelta TimeDelta::FromMillisecondsD(double ms) { return FromDouble(ms * Time::kMicrosecondsPerMillisecond); } // static constexpr TimeDelta TimeDelta::FromMicroseconds(int64_t us) { return TimeDelta(us); } // static constexpr TimeDelta TimeDelta::FromDouble(double value) { // TODO(crbug.com/612601): Use saturated_cast<int64_t>(value) once we sort out // the Min() behavior. return value > std::numeric_limits<int64_t>::max() ? Max() : value < -std::numeric_limits<int64_t>::max() ? -Max() : TimeDelta(static_cast<int64_t>(value)); } // static constexpr TimeDelta TimeDelta::FromProduct(int64_t value, int64_t positive_value) { return ( #if !defined(_PREFAST_) || !defined(OS_WIN) // Avoid internal compiler errors in /analyze builds with VS 2015 // update 3. // https://connect.microsoft.com/VisualStudio/feedback/details/2870865 DCHECK(positive_value > 0), #endif value > std::numeric_limits<int64_t>::max() / positive_value ? Max() : value < -std::numeric_limits<int64_t>::max() / positive_value ? -Max() : TimeDelta(value * positive_value)); } // For logging use only. BASE_EXPORT std::ostream& operator<<(std::ostream& os, Time time); // TimeTicks ------------------------------------------------------------------ // Represents monotonically non-decreasing clock time. class BASE_EXPORT TimeTicks : public time_internal::TimeBase<TimeTicks> { public: // The underlying clock used to generate new TimeTicks. enum class Clock { LINUX_CLOCK_MONOTONIC, IOS_CF_ABSOLUTE_TIME_MINUS_KERN_BOOTTIME, MAC_MACH_ABSOLUTE_TIME, WIN_QPC, WIN_ROLLOVER_PROTECTED_TIME_GET_TIME }; TimeTicks() : TimeBase(0) { } // Platform-dependent tick count representing "right now." When // IsHighResolution() returns false, the resolution of the clock could be // as coarse as ~15.6ms. Otherwise, the resolution should be no worse than one // microsecond. static TimeTicks Now(); // Returns true if the high resolution clock is working on this system and // Now() will return high resolution values. Note that, on systems where the // high resolution clock works but is deemed inefficient, the low resolution // clock will be used instead. static bool IsHighResolution(); #if defined(OS_WIN) // Translates an absolute QPC timestamp into a TimeTicks value. The returned // value has the same origin as Now(). Do NOT attempt to use this if // IsHighResolution() returns false. static TimeTicks FromQPCValue(LONGLONG qpc_value); #endif // Get an estimate of the TimeTick value at the time of the UnixEpoch. Because // Time and TimeTicks respond differently to user-set time and NTP // adjustments, this number is only an estimate. Nevertheless, this can be // useful when you need to relate the value of TimeTicks to a real time and // date. Note: Upon first invocation, this function takes a snapshot of the // realtime clock to establish a reference point. This function will return // the same value for the duration of the application, but will be different // in future application runs. static TimeTicks UnixEpoch(); // Returns |this| snapped to the next tick, given a |tick_phase| and // repeating |tick_interval| in both directions. |this| may be before, // after, or equal to the |tick_phase|. TimeTicks SnappedToNextTick(TimeTicks tick_phase, TimeDelta tick_interval) const; // Returns an enum indicating the underlying clock being used to generate // TimeTicks timestamps. This function should only be used for debugging and // logging purposes. static Clock GetClock(); #if defined(OS_WIN) protected: typedef DWORD (*TickFunctionType)(void); static TickFunctionType SetMockTickFunction(TickFunctionType ticker); #endif private: friend class time_internal::TimeBase<TimeTicks>; // Please use Now() to create a new object. This is for internal use // and testing. explicit TimeTicks(int64_t us) : TimeBase(us) {} }; // For logging use only. BASE_EXPORT std::ostream& operator<<(std::ostream& os, TimeTicks time_ticks); // ThreadTicks ---------------------------------------------------------------- // Represents a clock, specific to a particular thread, than runs only while the // thread is running. class BASE_EXPORT ThreadTicks : public time_internal::TimeBase<ThreadTicks> { public: ThreadTicks() : TimeBase(0) { } // Returns true if ThreadTicks::Now() is supported on this system. static bool IsSupported() { #if (defined(_POSIX_THREAD_CPUTIME) && (_POSIX_THREAD_CPUTIME >= 0)) || \ (defined(OS_MACOSX) && !defined(OS_IOS)) || defined(OS_ANDROID) return true; #elif defined(OS_WIN) return IsSupportedWin(); #else return false; #endif } // Waits until the initialization is completed. Needs to be guarded with a // call to IsSupported(). static void WaitUntilInitialized() { #if defined(OS_WIN) WaitUntilInitializedWin(); #endif } // Returns thread-specific CPU-time on systems that support this feature. // Needs to be guarded with a call to IsSupported(). Use this timer // to (approximately) measure how much time the calling thread spent doing // actual work vs. being de-scheduled. May return bogus results if the thread // migrates to another CPU between two calls. Returns an empty ThreadTicks // object until the initialization is completed. If a clock reading is // absolutely needed, call WaitUntilInitialized() before this method. static ThreadTicks Now(); #if defined(OS_WIN) // Similar to Now() above except this returns thread-specific CPU time for an // arbitrary thread. All comments for Now() method above apply apply to this // method as well. static ThreadTicks GetForThread(const PlatformThreadHandle& thread_handle); #endif private: friend class time_internal::TimeBase<ThreadTicks>; // Please use Now() or GetForThread() to create a new object. This is for // internal use and testing. explicit ThreadTicks(int64_t us) : TimeBase(us) {} #if defined(OS_WIN) FRIEND_TEST_ALL_PREFIXES(TimeTicks, TSCTicksPerSecond); // Returns the frequency of the TSC in ticks per second, or 0 if it hasn't // been measured yet. Needs to be guarded with a call to IsSupported(). // This method is declared here rather than in the anonymous namespace to // allow testing. static double TSCTicksPerSecond(); static bool IsSupportedWin(); static void WaitUntilInitializedWin(); #endif }; // For logging use only. BASE_EXPORT std::ostream& operator<<(std::ostream& os, ThreadTicks time_ticks); } // namespace base #endif // BASE_TIME_TIME_H_