// Copyright 2016 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef BASE_OPTIONAL_H_ #define BASE_OPTIONAL_H_ #include <type_traits> #include "base/logging.h" #include "base/memory/aligned_memory.h" #include "base/template_util.h" namespace base { // Specification: // http://en.cppreference.com/w/cpp/utility/optional/in_place_t struct in_place_t {}; // Specification: // http://en.cppreference.com/w/cpp/utility/optional/nullopt_t struct nullopt_t { constexpr explicit nullopt_t(int) {} }; // Specification: // http://en.cppreference.com/w/cpp/utility/optional/in_place constexpr in_place_t in_place = {}; // Specification: // http://en.cppreference.com/w/cpp/utility/optional/nullopt constexpr nullopt_t nullopt(0); namespace internal { template <typename T, bool = base::is_trivially_destructible<T>::value> struct OptionalStorage { // When T is not trivially destructible we must call its // destructor before deallocating its memory. ~OptionalStorage() { if (!is_null_) buffer_.template data_as<T>()->~T(); } bool is_null_ = true; base::AlignedMemory<sizeof(T), ALIGNOF(T)> buffer_; }; template <typename T> struct OptionalStorage<T, true> { // When T is trivially destructible (i.e. its destructor does nothing) // there is no need to call it. // Since |base::AlignedMemory| is just an array its destructor // is trivial. Explicitly defaulting the destructor means it's not // user-provided. All of this together make this destructor trivial. ~OptionalStorage() = default; bool is_null_ = true; base::AlignedMemory<sizeof(T), ALIGNOF(T)> buffer_; }; } // namespace internal // base::Optional is a Chromium version of the C++17 optional class: // std::optional documentation: // http://en.cppreference.com/w/cpp/utility/optional // Chromium documentation: // https://chromium.googlesource.com/chromium/src/+/master/docs/optional.md // // These are the differences between the specification and the implementation: // - The constructor and emplace method using initializer_list are not // implemented because 'initializer_list' is banned from Chromium. // - Constructors do not use 'constexpr' as it is a C++14 extension. // - 'constexpr' might be missing in some places for reasons specified locally. // - No exceptions are thrown, because they are banned from Chromium. // - All the non-members are in the 'base' namespace instead of 'std'. template <typename T> class Optional { public: using value_type = T; constexpr Optional() = default; Optional(base::nullopt_t) : Optional() {} Optional(const Optional& other) { if (!other.storage_.is_null_) Init(other.value()); } Optional(Optional&& other) { if (!other.storage_.is_null_) Init(std::move(other.value())); } Optional(const T& value) { Init(value); } Optional(T&& value) { Init(std::move(value)); } template <class... Args> explicit Optional(base::in_place_t, Args&&... args) { emplace(std::forward<Args>(args)...); } ~Optional() = default; Optional& operator=(base::nullopt_t) { FreeIfNeeded(); return *this; } Optional& operator=(const Optional& other) { if (other.storage_.is_null_) { FreeIfNeeded(); return *this; } InitOrAssign(other.value()); return *this; } Optional& operator=(Optional&& other) { if (other.storage_.is_null_) { FreeIfNeeded(); return *this; } InitOrAssign(std::move(other.value())); return *this; } template <class U> typename std::enable_if<std::is_same<std::decay<U>, T>::value, Optional&>::type operator=(U&& value) { InitOrAssign(std::forward<U>(value)); return *this; } // TODO(mlamouri): can't use 'constexpr' with DCHECK. const T* operator->() const { DCHECK(!storage_.is_null_); return &value(); } // TODO(mlamouri): using 'constexpr' here breaks compiler that assume it was // meant to be 'constexpr const'. T* operator->() { DCHECK(!storage_.is_null_); return &value(); } constexpr const T& operator*() const& { return value(); } // TODO(mlamouri): using 'constexpr' here breaks compiler that assume it was // meant to be 'constexpr const'. T& operator*() & { return value(); } constexpr const T&& operator*() const&& { return std::move(value()); } // TODO(mlamouri): using 'constexpr' here breaks compiler that assume it was // meant to be 'constexpr const'. T&& operator*() && { return std::move(value()); } constexpr explicit operator bool() const { return !storage_.is_null_; } // TODO(mlamouri): using 'constexpr' here breaks compiler that assume it was // meant to be 'constexpr const'. T& value() & { DCHECK(!storage_.is_null_); return *storage_.buffer_.template data_as<T>(); } // TODO(mlamouri): can't use 'constexpr' with DCHECK. const T& value() const& { DCHECK(!storage_.is_null_); return *storage_.buffer_.template data_as<T>(); } // TODO(mlamouri): using 'constexpr' here breaks compiler that assume it was // meant to be 'constexpr const'. T&& value() && { DCHECK(!storage_.is_null_); return std::move(*storage_.buffer_.template data_as<T>()); } // TODO(mlamouri): can't use 'constexpr' with DCHECK. const T&& value() const&& { DCHECK(!storage_.is_null_); return std::move(*storage_.buffer_.template data_as<T>()); } template <class U> constexpr T value_or(U&& default_value) const& { // TODO(mlamouri): add the following assert when possible: // static_assert(std::is_copy_constructible<T>::value, // "T must be copy constructible"); static_assert(std::is_convertible<U, T>::value, "U must be convertible to T"); return storage_.is_null_ ? static_cast<T>(std::forward<U>(default_value)) : value(); } template <class U> T value_or(U&& default_value) && { // TODO(mlamouri): add the following assert when possible: // static_assert(std::is_move_constructible<T>::value, // "T must be move constructible"); static_assert(std::is_convertible<U, T>::value, "U must be convertible to T"); return storage_.is_null_ ? static_cast<T>(std::forward<U>(default_value)) : std::move(value()); } void swap(Optional& other) { if (storage_.is_null_ && other.storage_.is_null_) return; if (storage_.is_null_ != other.storage_.is_null_) { if (storage_.is_null_) { Init(std::move(*other.storage_.buffer_.template data_as<T>())); other.FreeIfNeeded(); } else { other.Init(std::move(*storage_.buffer_.template data_as<T>())); FreeIfNeeded(); } return; } DCHECK(!storage_.is_null_ && !other.storage_.is_null_); using std::swap; swap(**this, *other); } template <class... Args> void emplace(Args&&... args) { FreeIfNeeded(); Init(std::forward<Args>(args)...); } private: void Init(const T& value) { DCHECK(storage_.is_null_); new (storage_.buffer_.void_data()) T(value); storage_.is_null_ = false; } void Init(T&& value) { DCHECK(storage_.is_null_); new (storage_.buffer_.void_data()) T(std::move(value)); storage_.is_null_ = false; } template <class... Args> void Init(Args&&... args) { DCHECK(storage_.is_null_); new (storage_.buffer_.void_data()) T(std::forward<Args>(args)...); storage_.is_null_ = false; } void InitOrAssign(const T& value) { if (storage_.is_null_) Init(value); else *storage_.buffer_.template data_as<T>() = value; } void InitOrAssign(T&& value) { if (storage_.is_null_) Init(std::move(value)); else *storage_.buffer_.template data_as<T>() = std::move(value); } void FreeIfNeeded() { if (storage_.is_null_) return; storage_.buffer_.template data_as<T>()->~T(); storage_.is_null_ = true; } internal::OptionalStorage<T> storage_; }; template <class T> constexpr bool operator==(const Optional<T>& lhs, const Optional<T>& rhs) { return !!lhs != !!rhs ? false : lhs == nullopt || (*lhs == *rhs); } template <class T> constexpr bool operator!=(const Optional<T>& lhs, const Optional<T>& rhs) { return !(lhs == rhs); } template <class T> constexpr bool operator<(const Optional<T>& lhs, const Optional<T>& rhs) { return rhs == nullopt ? false : (lhs == nullopt ? true : *lhs < *rhs); } template <class T> constexpr bool operator<=(const Optional<T>& lhs, const Optional<T>& rhs) { return !(rhs < lhs); } template <class T> constexpr bool operator>(const Optional<T>& lhs, const Optional<T>& rhs) { return rhs < lhs; } template <class T> constexpr bool operator>=(const Optional<T>& lhs, const Optional<T>& rhs) { return !(lhs < rhs); } template <class T> constexpr bool operator==(const Optional<T>& opt, base::nullopt_t) { return !opt; } template <class T> constexpr bool operator==(base::nullopt_t, const Optional<T>& opt) { return !opt; } template <class T> constexpr bool operator!=(const Optional<T>& opt, base::nullopt_t) { return !!opt; } template <class T> constexpr bool operator!=(base::nullopt_t, const Optional<T>& opt) { return !!opt; } template <class T> constexpr bool operator<(const Optional<T>& opt, base::nullopt_t) { return false; } template <class T> constexpr bool operator<(base::nullopt_t, const Optional<T>& opt) { return !!opt; } template <class T> constexpr bool operator<=(const Optional<T>& opt, base::nullopt_t) { return !opt; } template <class T> constexpr bool operator<=(base::nullopt_t, const Optional<T>& opt) { return true; } template <class T> constexpr bool operator>(const Optional<T>& opt, base::nullopt_t) { return !!opt; } template <class T> constexpr bool operator>(base::nullopt_t, const Optional<T>& opt) { return false; } template <class T> constexpr bool operator>=(const Optional<T>& opt, base::nullopt_t) { return true; } template <class T> constexpr bool operator>=(base::nullopt_t, const Optional<T>& opt) { return !opt; } template <class T> constexpr bool operator==(const Optional<T>& opt, const T& value) { return opt != nullopt ? *opt == value : false; } template <class T> constexpr bool operator==(const T& value, const Optional<T>& opt) { return opt == value; } template <class T> constexpr bool operator!=(const Optional<T>& opt, const T& value) { return !(opt == value); } template <class T> constexpr bool operator!=(const T& value, const Optional<T>& opt) { return !(opt == value); } template <class T> constexpr bool operator<(const Optional<T>& opt, const T& value) { return opt != nullopt ? *opt < value : true; } template <class T> constexpr bool operator<(const T& value, const Optional<T>& opt) { return opt != nullopt ? value < *opt : false; } template <class T> constexpr bool operator<=(const Optional<T>& opt, const T& value) { return !(opt > value); } template <class T> constexpr bool operator<=(const T& value, const Optional<T>& opt) { return !(value > opt); } template <class T> constexpr bool operator>(const Optional<T>& opt, const T& value) { return value < opt; } template <class T> constexpr bool operator>(const T& value, const Optional<T>& opt) { return opt < value; } template <class T> constexpr bool operator>=(const Optional<T>& opt, const T& value) { return !(opt < value); } template <class T> constexpr bool operator>=(const T& value, const Optional<T>& opt) { return !(value < opt); } template <class T> constexpr Optional<typename std::decay<T>::type> make_optional(T&& value) { return Optional<typename std::decay<T>::type>(std::forward<T>(value)); } template <class T> void swap(Optional<T>& lhs, Optional<T>& rhs) { lhs.swap(rhs); } } // namespace base namespace std { template <class T> struct hash<base::Optional<T>> { size_t operator()(const base::Optional<T>& opt) const { return opt == base::nullopt ? 0 : std::hash<T>()(*opt); } }; } // namespace std #endif // BASE_OPTIONAL_H_