// Copyright (c) 2011 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef BASE_BIND_INTERNAL_H_ #define BASE_BIND_INTERNAL_H_ #include <stddef.h> #include <tuple> #include <type_traits> #include "base/bind_helpers.h" #include "base/callback_internal.h" #include "base/memory/raw_scoped_refptr_mismatch_checker.h" #include "base/memory/weak_ptr.h" #include "base/template_util.h" #include "base/tuple.h" #include "build/build_config.h" namespace base { namespace internal { // See base/callback.h for user documentation. // // // CONCEPTS: // Functor -- A movable type representing something that should be called. // All function pointers and Callback<> are functors even if the // invocation syntax differs. // RunType -- A function type (as opposed to function _pointer_ type) for // a Callback<>::Run(). Usually just a convenience typedef. // (Bound)Args -- A set of types that stores the arguments. // // Types: // ForceVoidReturn<> -- Helper class for translating function signatures to // equivalent forms with a "void" return type. // FunctorTraits<> -- Type traits used to determine the correct RunType and // invocation manner for a Functor. This is where function // signature adapters are applied. // InvokeHelper<> -- Take a Functor + arguments and actully invokes it. // Handle the differing syntaxes needed for WeakPtr<> // support. This is separate from Invoker to avoid creating // multiple version of Invoker<>. // Invoker<> -- Unwraps the curried parameters and executes the Functor. // BindState<> -- Stores the curried parameters, and is the main entry point // into the Bind() system. template <typename...> struct make_void { using type = void; }; // A clone of C++17 std::void_t. // Unlike the original version, we need |make_void| as a helper struct to avoid // a C++14 defect. // ref: http://en.cppreference.com/w/cpp/types/void_t // ref: http://open-std.org/JTC1/SC22/WG21/docs/cwg_defects.html#1558 template <typename... Ts> using void_t = typename make_void<Ts...>::type; template <typename Callable, typename Signature = decltype(&Callable::operator())> struct ExtractCallableRunTypeImpl; template <typename Callable, typename R, typename... Args> struct ExtractCallableRunTypeImpl<Callable, R(Callable::*)(Args...) const> { using Type = R(Args...); }; // Evaluated to RunType of the given callable type. // Example: // auto f = [](int, char*) { return 0.1; }; // ExtractCallableRunType<decltype(f)> // is evaluated to // double(int, char*); template <typename Callable> using ExtractCallableRunType = typename ExtractCallableRunTypeImpl<Callable>::Type; // IsConvertibleToRunType<Functor> is std::true_type if |Functor| has operator() // and convertible to the corresponding function pointer. Otherwise, it's // std::false_type. // Example: // IsConvertibleToRunType<void(*)()>::value is false. // // struct Foo {}; // IsConvertibleToRunType<void(Foo::*)()>::value is false. // // auto f = []() {}; // IsConvertibleToRunType<decltype(f)>::value is true. // // int i = 0; // auto g = [i]() {}; // IsConvertibleToRunType<decltype(g)>::value is false. template <typename Functor, typename SFINAE = void> struct IsConvertibleToRunType : std::false_type {}; template <typename Callable> struct IsConvertibleToRunType<Callable, void_t<decltype(&Callable::operator())>> : std::is_convertible<Callable, ExtractCallableRunType<Callable>*> {}; // HasRefCountedTypeAsRawPtr selects true_type when any of the |Args| is a raw // pointer to a RefCounted type. // Implementation note: This non-specialized case handles zero-arity case only. // Non-zero-arity cases should be handled by the specialization below. template <typename... Args> struct HasRefCountedTypeAsRawPtr : std::false_type {}; // Implementation note: Select true_type if the first parameter is a raw pointer // to a RefCounted type. Otherwise, skip the first parameter and check rest of // parameters recursively. template <typename T, typename... Args> struct HasRefCountedTypeAsRawPtr<T, Args...> : std::conditional<NeedsScopedRefptrButGetsRawPtr<T>::value, std::true_type, HasRefCountedTypeAsRawPtr<Args...>>::type {}; // ForceVoidReturn<> // // Set of templates that support forcing the function return type to void. template <typename Sig> struct ForceVoidReturn; template <typename R, typename... Args> struct ForceVoidReturn<R(Args...)> { using RunType = void(Args...); }; // FunctorTraits<> // // See description at top of file. template <typename Functor, typename SFINAE = void> struct FunctorTraits; // For a callable type that is convertible to the corresponding function type. // This specialization is intended to allow binding captureless lambdas by // base::Bind(), based on the fact that captureless lambdas can be convertible // to the function type while capturing lambdas can't. template <typename Functor> struct FunctorTraits< Functor, typename std::enable_if<IsConvertibleToRunType<Functor>::value>::type> { using RunType = ExtractCallableRunType<Functor>; static constexpr bool is_method = false; static constexpr bool is_nullable = false; template <typename... RunArgs> static ExtractReturnType<RunType> Invoke(const Functor& functor, RunArgs&&... args) { return functor(std::forward<RunArgs>(args)...); } }; // For functions. template <typename R, typename... Args> struct FunctorTraits<R (*)(Args...)> { using RunType = R(Args...); static constexpr bool is_method = false; static constexpr bool is_nullable = true; template <typename... RunArgs> static R Invoke(R (*function)(Args...), RunArgs&&... args) { return function(std::forward<RunArgs>(args)...); } }; #if defined(OS_WIN) && !defined(ARCH_CPU_X86_64) // For functions. template <typename R, typename... Args> struct FunctorTraits<R(__stdcall*)(Args...)> { using RunType = R(Args...); static constexpr bool is_method = false; static constexpr bool is_nullable = true; template <typename... RunArgs> static R Invoke(R(__stdcall* function)(Args...), RunArgs&&... args) { return function(std::forward<RunArgs>(args)...); } }; // For functions. template <typename R, typename... Args> struct FunctorTraits<R(__fastcall*)(Args...)> { using RunType = R(Args...); static constexpr bool is_method = false; static constexpr bool is_nullable = true; template <typename... RunArgs> static R Invoke(R(__fastcall* function)(Args...), RunArgs&&... args) { return function(std::forward<RunArgs>(args)...); } }; #endif // defined(OS_WIN) && !defined(ARCH_CPU_X86_64) // For methods. template <typename R, typename Receiver, typename... Args> struct FunctorTraits<R (Receiver::*)(Args...)> { using RunType = R(Receiver*, Args...); static constexpr bool is_method = true; static constexpr bool is_nullable = true; template <typename ReceiverPtr, typename... RunArgs> static R Invoke(R (Receiver::*method)(Args...), ReceiverPtr&& receiver_ptr, RunArgs&&... args) { // Clang skips CV qualifier check on a method pointer invocation when the // receiver is a subclass. Store the receiver into a const reference to // T to ensure the CV check works. // https://llvm.org/bugs/show_bug.cgi?id=27037 Receiver& receiver = *receiver_ptr; return (receiver.*method)(std::forward<RunArgs>(args)...); } }; // For const methods. template <typename R, typename Receiver, typename... Args> struct FunctorTraits<R (Receiver::*)(Args...) const> { using RunType = R(const Receiver*, Args...); static constexpr bool is_method = true; static constexpr bool is_nullable = true; template <typename ReceiverPtr, typename... RunArgs> static R Invoke(R (Receiver::*method)(Args...) const, ReceiverPtr&& receiver_ptr, RunArgs&&... args) { // Clang skips CV qualifier check on a method pointer invocation when the // receiver is a subclass. Store the receiver into a const reference to // T to ensure the CV check works. // https://llvm.org/bugs/show_bug.cgi?id=27037 const Receiver& receiver = *receiver_ptr; return (receiver.*method)(std::forward<RunArgs>(args)...); } }; // For IgnoreResults. template <typename T> struct FunctorTraits<IgnoreResultHelper<T>> : FunctorTraits<T> { using RunType = typename ForceVoidReturn<typename FunctorTraits<T>::RunType>::RunType; template <typename IgnoreResultType, typename... RunArgs> static void Invoke(IgnoreResultType&& ignore_result_helper, RunArgs&&... args) { FunctorTraits<T>::Invoke(ignore_result_helper.functor_, std::forward<RunArgs>(args)...); } }; // For Callbacks. template <typename R, typename... Args, CopyMode copy_mode> struct FunctorTraits<Callback<R(Args...), copy_mode>> { using RunType = R(Args...); static constexpr bool is_method = false; static constexpr bool is_nullable = true; template <typename CallbackType, typename... RunArgs> static R Invoke(CallbackType&& callback, RunArgs&&... args) { DCHECK(!callback.is_null()); return std::forward<CallbackType>(callback).Run( std::forward<RunArgs>(args)...); } }; // InvokeHelper<> // // There are 2 logical InvokeHelper<> specializations: normal, WeakCalls. // // The normal type just calls the underlying runnable. // // WeakCalls need special syntax that is applied to the first argument to check // if they should no-op themselves. template <bool is_weak_call, typename ReturnType> struct InvokeHelper; template <typename ReturnType> struct InvokeHelper<false, ReturnType> { template <typename Functor, typename... RunArgs> static inline ReturnType MakeItSo(Functor&& functor, RunArgs&&... args) { using Traits = FunctorTraits<typename std::decay<Functor>::type>; return Traits::Invoke(std::forward<Functor>(functor), std::forward<RunArgs>(args)...); } }; template <typename ReturnType> struct InvokeHelper<true, ReturnType> { // WeakCalls are only supported for functions with a void return type. // Otherwise, the function result would be undefined if the the WeakPtr<> // is invalidated. static_assert(std::is_void<ReturnType>::value, "weak_ptrs can only bind to methods without return values"); template <typename Functor, typename BoundWeakPtr, typename... RunArgs> static inline void MakeItSo(Functor&& functor, BoundWeakPtr&& weak_ptr, RunArgs&&... args) { if (!weak_ptr) return; using Traits = FunctorTraits<typename std::decay<Functor>::type>; Traits::Invoke(std::forward<Functor>(functor), std::forward<BoundWeakPtr>(weak_ptr), std::forward<RunArgs>(args)...); } }; // Invoker<> // // See description at the top of the file. template <typename StorageType, typename UnboundRunType> struct Invoker; template <typename StorageType, typename R, typename... UnboundArgs> struct Invoker<StorageType, R(UnboundArgs...)> { static R Run(BindStateBase* base, UnboundArgs&&... unbound_args) { // Local references to make debugger stepping easier. If in a debugger, // you really want to warp ahead and step through the // InvokeHelper<>::MakeItSo() call below. const StorageType* storage = static_cast<StorageType*>(base); static constexpr size_t num_bound_args = std::tuple_size<decltype(storage->bound_args_)>::value; return RunImpl(storage->functor_, storage->bound_args_, MakeIndexSequence<num_bound_args>(), std::forward<UnboundArgs>(unbound_args)...); } private: template <typename Functor, typename BoundArgsTuple, size_t... indices> static inline R RunImpl(Functor&& functor, BoundArgsTuple&& bound, IndexSequence<indices...>, UnboundArgs&&... unbound_args) { static constexpr bool is_method = FunctorTraits<typename std::decay<Functor>::type>::is_method; using DecayedArgsTuple = typename std::decay<BoundArgsTuple>::type; static constexpr bool is_weak_call = IsWeakMethod<is_method, typename std::tuple_element< indices, DecayedArgsTuple>::type...>::value; return InvokeHelper<is_weak_call, R>::MakeItSo( std::forward<Functor>(functor), Unwrap(base::get<indices>(std::forward<BoundArgsTuple>(bound)))..., std::forward<UnboundArgs>(unbound_args)...); } }; // Used to implement MakeUnboundRunType. template <typename Functor, typename... BoundArgs> struct MakeUnboundRunTypeImpl { using RunType = typename FunctorTraits<typename std::decay<Functor>::type>::RunType; using ReturnType = ExtractReturnType<RunType>; using Args = ExtractArgs<RunType>; using UnboundArgs = DropTypeListItem<sizeof...(BoundArgs), Args>; using Type = MakeFunctionType<ReturnType, UnboundArgs>; }; template <typename Functor> typename std::enable_if<FunctorTraits<Functor>::is_nullable, bool>::type IsNull(const Functor& functor) { return !functor; } template <typename Functor> typename std::enable_if<!FunctorTraits<Functor>::is_nullable, bool>::type IsNull(const Functor&) { return false; } // BindState<> // // This stores all the state passed into Bind(). template <typename Functor, typename... BoundArgs> struct BindState final : BindStateBase { template <typename ForwardFunctor, typename... ForwardBoundArgs> explicit BindState(ForwardFunctor&& functor, ForwardBoundArgs&&... bound_args) : BindStateBase(&Destroy), functor_(std::forward<ForwardFunctor>(functor)), bound_args_(std::forward<ForwardBoundArgs>(bound_args)...) { DCHECK(!IsNull(functor_)); } Functor functor_; std::tuple<BoundArgs...> bound_args_; private: ~BindState() {} static void Destroy(BindStateBase* self) { delete static_cast<BindState*>(self); } }; // Used to implement MakeBindStateType. template <bool is_method, typename Functor, typename... BoundArgs> struct MakeBindStateTypeImpl; template <typename Functor, typename... BoundArgs> struct MakeBindStateTypeImpl<false, Functor, BoundArgs...> { static_assert(!HasRefCountedTypeAsRawPtr<BoundArgs...>::value, "A parameter is a refcounted type and needs scoped_refptr."); using Type = BindState<typename std::decay<Functor>::type, typename std::decay<BoundArgs>::type...>; }; template <typename Functor> struct MakeBindStateTypeImpl<true, Functor> { using Type = BindState<typename std::decay<Functor>::type>; }; template <typename Functor, typename Receiver, typename... BoundArgs> struct MakeBindStateTypeImpl<true, Functor, Receiver, BoundArgs...> { static_assert( !std::is_array<typename std::remove_reference<Receiver>::type>::value, "First bound argument to a method cannot be an array."); static_assert(!HasRefCountedTypeAsRawPtr<BoundArgs...>::value, "A parameter is a refcounted type and needs scoped_refptr."); private: using DecayedReceiver = typename std::decay<Receiver>::type; public: using Type = BindState< typename std::decay<Functor>::type, typename std::conditional< std::is_pointer<DecayedReceiver>::value, scoped_refptr<typename std::remove_pointer<DecayedReceiver>::type>, DecayedReceiver>::type, typename std::decay<BoundArgs>::type...>; }; template <typename Functor, typename... BoundArgs> using MakeBindStateType = typename MakeBindStateTypeImpl< FunctorTraits<typename std::decay<Functor>::type>::is_method, Functor, BoundArgs...>::Type; } // namespace internal // Returns a RunType of bound functor. // E.g. MakeUnboundRunType<R(A, B, C), A, B> is evaluated to R(C). template <typename Functor, typename... BoundArgs> using MakeUnboundRunType = typename internal::MakeUnboundRunTypeImpl<Functor, BoundArgs...>::Type; } // namespace base #endif // BASE_BIND_INTERNAL_H_