/* $NetBSD: rijndael-alg-fst.c,v 1.4 2006/09/09 16:22:36 manu Exp $ */ /* $KAME: rijndael-alg-fst.c,v 1.1.1.1 2001/08/08 09:56:23 sakane Exp $ */ /* * rijndael-alg-fst.c v2.3 April '2000 * * Optimised ANSI C code * * authors: v1.0: Antoon Bosselaers * v2.0: Vincent Rijmen * v2.3: Paulo Barreto * * This code is placed in the public domain. */ #include "config.h" #include <sys/cdefs.h> #include <sys/types.h> #ifdef _KERNEL #include <sys/systm.h> #else #include <string.h> #endif #include <crypto/rijndael/rijndael-alg-fst.h> #include <crypto/rijndael/rijndael_local.h> #include <crypto/rijndael/boxes-fst.dat> #include <err.h> #define bcopy(a, b, c) memcpy((b), (a), (c)) #define bzero(a, b) memset((a), 0, (b)) #define panic(a) err(1, (a)) int rijndaelKeySched(word8 k[MAXKC][4], word8 W[MAXROUNDS+1][4][4], int ROUNDS) { /* Calculate the necessary round keys * The number of calculations depends on keyBits and blockBits */ int j, r, t, rconpointer = 0; union { word8 x8[MAXKC][4]; word32 x32[MAXKC]; } xtk; #define tk xtk.x8 int KC = ROUNDS - 6; for (j = KC-1; j >= 0; j--) { *((word32*)tk[j]) = *((word32*)k[j]); } r = 0; t = 0; /* copy values into round key array */ for (j = 0; (j < KC) && (r < ROUNDS + 1); ) { for (; (j < KC) && (t < 4); j++, t++) { *((word32*)W[r][t]) = *((word32*)tk[j]); } if (t == 4) { r++; t = 0; } } while (r < ROUNDS + 1) { /* while not enough round key material calculated */ /* calculate new values */ tk[0][0] ^= S[tk[KC-1][1]]; tk[0][1] ^= S[tk[KC-1][2]]; tk[0][2] ^= S[tk[KC-1][3]]; tk[0][3] ^= S[tk[KC-1][0]]; tk[0][0] ^= rcon[rconpointer++]; if (KC != 8) { for (j = 1; j < KC; j++) { *((word32*)tk[j]) ^= *((word32*)tk[j-1]); } } else { for (j = 1; j < KC/2; j++) { *((word32*)tk[j]) ^= *((word32*)tk[j-1]); } tk[KC/2][0] ^= S[tk[KC/2 - 1][0]]; tk[KC/2][1] ^= S[tk[KC/2 - 1][1]]; tk[KC/2][2] ^= S[tk[KC/2 - 1][2]]; tk[KC/2][3] ^= S[tk[KC/2 - 1][3]]; for (j = KC/2 + 1; j < KC; j++) { *((word32*)tk[j]) ^= *((word32*)tk[j-1]); } } /* copy values into round key array */ for (j = 0; (j < KC) && (r < ROUNDS + 1); ) { for (; (j < KC) && (t < 4); j++, t++) { *((word32*)W[r][t]) = *((word32*)tk[j]); } if (t == 4) { r++; t = 0; } } } return 0; #undef tk } int rijndaelKeyEncToDec(word8 W[MAXROUNDS+1][4][4], int ROUNDS) { int r; word8 *w; for (r = 1; r < ROUNDS; r++) { w = W[r][0]; *((word32*)w) = *((const word32*)U1[w[0]]) ^ *((const word32*)U2[w[1]]) ^ *((const word32*)U3[w[2]]) ^ *((const word32*)U4[w[3]]); w = W[r][1]; *((word32*)w) = *((const word32*)U1[w[0]]) ^ *((const word32*)U2[w[1]]) ^ *((const word32*)U3[w[2]]) ^ *((const word32*)U4[w[3]]); w = W[r][2]; *((word32*)w) = *((const word32*)U1[w[0]]) ^ *((const word32*)U2[w[1]]) ^ *((const word32*)U3[w[2]]) ^ *((const word32*)U4[w[3]]); w = W[r][3]; *((word32*)w) = *((const word32*)U1[w[0]]) ^ *((const word32*)U2[w[1]]) ^ *((const word32*)U3[w[2]]) ^ *((const word32*)U4[w[3]]); } return 0; } /** * Encrypt a single block. */ int rijndaelEncrypt(word8 in[16], word8 out[16], word8 rk[MAXROUNDS+1][4][4], int ROUNDS) { int r; union { word8 x8[16]; word32 x32[4]; } xa, xb; #define a xa.x8 #define b xb.x8 union { word8 x8[4][4]; word32 x32[4]; } xtemp; #define temp xtemp.x8 memcpy(a, in, sizeof a); *((word32*)temp[0]) = *((word32*)(a )) ^ *((word32*)rk[0][0]); *((word32*)temp[1]) = *((word32*)(a+ 4)) ^ *((word32*)rk[0][1]); *((word32*)temp[2]) = *((word32*)(a+ 8)) ^ *((word32*)rk[0][2]); *((word32*)temp[3]) = *((word32*)(a+12)) ^ *((word32*)rk[0][3]); *((word32*)(b )) = *((const word32*)T1[temp[0][0]]) ^ *((const word32*)T2[temp[1][1]]) ^ *((const word32*)T3[temp[2][2]]) ^ *((const word32*)T4[temp[3][3]]); *((word32*)(b + 4)) = *((const word32*)T1[temp[1][0]]) ^ *((const word32*)T2[temp[2][1]]) ^ *((const word32*)T3[temp[3][2]]) ^ *((const word32*)T4[temp[0][3]]); *((word32*)(b + 8)) = *((const word32*)T1[temp[2][0]]) ^ *((const word32*)T2[temp[3][1]]) ^ *((const word32*)T3[temp[0][2]]) ^ *((const word32*)T4[temp[1][3]]); *((word32*)(b +12)) = *((const word32*)T1[temp[3][0]]) ^ *((const word32*)T2[temp[0][1]]) ^ *((const word32*)T3[temp[1][2]]) ^ *((const word32*)T4[temp[2][3]]); for (r = 1; r < ROUNDS-1; r++) { *((word32*)temp[0]) = *((word32*)(b )) ^ *((word32*)rk[r][0]); *((word32*)temp[1]) = *((word32*)(b+ 4)) ^ *((word32*)rk[r][1]); *((word32*)temp[2]) = *((word32*)(b+ 8)) ^ *((word32*)rk[r][2]); *((word32*)temp[3]) = *((word32*)(b+12)) ^ *((word32*)rk[r][3]); *((word32*)(b )) = *((const word32*)T1[temp[0][0]]) ^ *((const word32*)T2[temp[1][1]]) ^ *((const word32*)T3[temp[2][2]]) ^ *((const word32*)T4[temp[3][3]]); *((word32*)(b + 4)) = *((const word32*)T1[temp[1][0]]) ^ *((const word32*)T2[temp[2][1]]) ^ *((const word32*)T3[temp[3][2]]) ^ *((const word32*)T4[temp[0][3]]); *((word32*)(b + 8)) = *((const word32*)T1[temp[2][0]]) ^ *((const word32*)T2[temp[3][1]]) ^ *((const word32*)T3[temp[0][2]]) ^ *((const word32*)T4[temp[1][3]]); *((word32*)(b +12)) = *((const word32*)T1[temp[3][0]]) ^ *((const word32*)T2[temp[0][1]]) ^ *((const word32*)T3[temp[1][2]]) ^ *((const word32*)T4[temp[2][3]]); } /* last round is special */ *((word32*)temp[0]) = *((word32*)(b )) ^ *((word32*)rk[ROUNDS-1][0]); *((word32*)temp[1]) = *((word32*)(b+ 4)) ^ *((word32*)rk[ROUNDS-1][1]); *((word32*)temp[2]) = *((word32*)(b+ 8)) ^ *((word32*)rk[ROUNDS-1][2]); *((word32*)temp[3]) = *((word32*)(b+12)) ^ *((word32*)rk[ROUNDS-1][3]); b[ 0] = T1[temp[0][0]][1]; b[ 1] = T1[temp[1][1]][1]; b[ 2] = T1[temp[2][2]][1]; b[ 3] = T1[temp[3][3]][1]; b[ 4] = T1[temp[1][0]][1]; b[ 5] = T1[temp[2][1]][1]; b[ 6] = T1[temp[3][2]][1]; b[ 7] = T1[temp[0][3]][1]; b[ 8] = T1[temp[2][0]][1]; b[ 9] = T1[temp[3][1]][1]; b[10] = T1[temp[0][2]][1]; b[11] = T1[temp[1][3]][1]; b[12] = T1[temp[3][0]][1]; b[13] = T1[temp[0][1]][1]; b[14] = T1[temp[1][2]][1]; b[15] = T1[temp[2][3]][1]; *((word32*)(b )) ^= *((word32*)rk[ROUNDS][0]); *((word32*)(b+ 4)) ^= *((word32*)rk[ROUNDS][1]); *((word32*)(b+ 8)) ^= *((word32*)rk[ROUNDS][2]); *((word32*)(b+12)) ^= *((word32*)rk[ROUNDS][3]); memcpy(out, b, sizeof b /* XXX out */); return 0; #undef a #undef b #undef temp } #ifdef INTERMEDIATE_VALUE_KAT /** * Encrypt only a certain number of rounds. * Only used in the Intermediate Value Known Answer Test. */ int rijndaelEncryptRound(word8 a[4][4], word8 rk[MAXROUNDS+1][4][4], int ROUNDS, int rounds) { int r; word8 temp[4][4]; /* make number of rounds sane */ if (rounds > ROUNDS) { rounds = ROUNDS; } *((word32*)a[0]) = *((word32*)a[0]) ^ *((word32*)rk[0][0]); *((word32*)a[1]) = *((word32*)a[1]) ^ *((word32*)rk[0][1]); *((word32*)a[2]) = *((word32*)a[2]) ^ *((word32*)rk[0][2]); *((word32*)a[3]) = *((word32*)a[3]) ^ *((word32*)rk[0][3]); for (r = 1; (r <= rounds) && (r < ROUNDS); r++) { *((word32*)temp[0]) = *((const word32*)T1[a[0][0]]) ^ *((const word32*)T2[a[1][1]]) ^ *((const word32*)T3[a[2][2]]) ^ *((const word32*)T4[a[3][3]]); *((word32*)temp[1]) = *((const word32*)T1[a[1][0]]) ^ *((const word32*)T2[a[2][1]]) ^ *((const word32*)T3[a[3][2]]) ^ *((const word32*)T4[a[0][3]]); *((word32*)temp[2]) = *((const word32*)T1[a[2][0]]) ^ *((const word32*)T2[a[3][1]]) ^ *((const word32*)T3[a[0][2]]) ^ *((const word32*)T4[a[1][3]]); *((word32*)temp[3]) = *((const word32*)T1[a[3][0]]) ^ *((const word32*)T2[a[0][1]]) ^ *((const word32*)T3[a[1][2]]) ^ *((const word32*)T4[a[2][3]]); *((word32*)a[0]) = *((word32*)temp[0]) ^ *((word32*)rk[r][0]); *((word32*)a[1]) = *((word32*)temp[1]) ^ *((word32*)rk[r][1]); *((word32*)a[2]) = *((word32*)temp[2]) ^ *((word32*)rk[r][2]); *((word32*)a[3]) = *((word32*)temp[3]) ^ *((word32*)rk[r][3]); } if (rounds == ROUNDS) { /* last round is special */ temp[0][0] = T1[a[0][0]][1]; temp[0][1] = T1[a[1][1]][1]; temp[0][2] = T1[a[2][2]][1]; temp[0][3] = T1[a[3][3]][1]; temp[1][0] = T1[a[1][0]][1]; temp[1][1] = T1[a[2][1]][1]; temp[1][2] = T1[a[3][2]][1]; temp[1][3] = T1[a[0][3]][1]; temp[2][0] = T1[a[2][0]][1]; temp[2][1] = T1[a[3][1]][1]; temp[2][2] = T1[a[0][2]][1]; temp[2][3] = T1[a[1][3]][1]; temp[3][0] = T1[a[3][0]][1]; temp[3][1] = T1[a[0][1]][1]; temp[3][2] = T1[a[1][2]][1]; temp[3][3] = T1[a[2][3]][1]; *((word32*)a[0]) = *((word32*)temp[0]) ^ *((word32*)rk[ROUNDS][0]); *((word32*)a[1]) = *((word32*)temp[1]) ^ *((word32*)rk[ROUNDS][1]); *((word32*)a[2]) = *((word32*)temp[2]) ^ *((word32*)rk[ROUNDS][2]); *((word32*)a[3]) = *((word32*)temp[3]) ^ *((word32*)rk[ROUNDS][3]); } return 0; } #endif /* INTERMEDIATE_VALUE_KAT */ /** * Decrypt a single block. */ int rijndaelDecrypt(word8 in[16], word8 out[16], word8 rk[MAXROUNDS+1][4][4], int ROUNDS) { int r; union { word8 x8[16]; word32 x32[4]; } xa, xb; #define a xa.x8 #define b xb.x8 union { word8 x8[4][4]; word32 x32[4]; } xtemp; #define temp xtemp.x8 memcpy(a, in, sizeof a); *((word32*)temp[0]) = *((word32*)(a )) ^ *((word32*)rk[ROUNDS][0]); *((word32*)temp[1]) = *((word32*)(a+ 4)) ^ *((word32*)rk[ROUNDS][1]); *((word32*)temp[2]) = *((word32*)(a+ 8)) ^ *((word32*)rk[ROUNDS][2]); *((word32*)temp[3]) = *((word32*)(a+12)) ^ *((word32*)rk[ROUNDS][3]); *((word32*)(b )) = *((const word32*)T5[temp[0][0]]) ^ *((const word32*)T6[temp[3][1]]) ^ *((const word32*)T7[temp[2][2]]) ^ *((const word32*)T8[temp[1][3]]); *((word32*)(b+ 4)) = *((const word32*)T5[temp[1][0]]) ^ *((const word32*)T6[temp[0][1]]) ^ *((const word32*)T7[temp[3][2]]) ^ *((const word32*)T8[temp[2][3]]); *((word32*)(b+ 8)) = *((const word32*)T5[temp[2][0]]) ^ *((const word32*)T6[temp[1][1]]) ^ *((const word32*)T7[temp[0][2]]) ^ *((const word32*)T8[temp[3][3]]); *((word32*)(b+12)) = *((const word32*)T5[temp[3][0]]) ^ *((const word32*)T6[temp[2][1]]) ^ *((const word32*)T7[temp[1][2]]) ^ *((const word32*)T8[temp[0][3]]); for (r = ROUNDS-1; r > 1; r--) { *((word32*)temp[0]) = *((word32*)(b )) ^ *((word32*)rk[r][0]); *((word32*)temp[1]) = *((word32*)(b+ 4)) ^ *((word32*)rk[r][1]); *((word32*)temp[2]) = *((word32*)(b+ 8)) ^ *((word32*)rk[r][2]); *((word32*)temp[3]) = *((word32*)(b+12)) ^ *((word32*)rk[r][3]); *((word32*)(b )) = *((const word32*)T5[temp[0][0]]) ^ *((const word32*)T6[temp[3][1]]) ^ *((const word32*)T7[temp[2][2]]) ^ *((const word32*)T8[temp[1][3]]); *((word32*)(b+ 4)) = *((const word32*)T5[temp[1][0]]) ^ *((const word32*)T6[temp[0][1]]) ^ *((const word32*)T7[temp[3][2]]) ^ *((const word32*)T8[temp[2][3]]); *((word32*)(b+ 8)) = *((const word32*)T5[temp[2][0]]) ^ *((const word32*)T6[temp[1][1]]) ^ *((const word32*)T7[temp[0][2]]) ^ *((const word32*)T8[temp[3][3]]); *((word32*)(b+12)) = *((const word32*)T5[temp[3][0]]) ^ *((const word32*)T6[temp[2][1]]) ^ *((const word32*)T7[temp[1][2]]) ^ *((const word32*)T8[temp[0][3]]); } /* last round is special */ *((word32*)temp[0]) = *((word32*)(b )) ^ *((word32*)rk[1][0]); *((word32*)temp[1]) = *((word32*)(b+ 4)) ^ *((word32*)rk[1][1]); *((word32*)temp[2]) = *((word32*)(b+ 8)) ^ *((word32*)rk[1][2]); *((word32*)temp[3]) = *((word32*)(b+12)) ^ *((word32*)rk[1][3]); b[ 0] = S5[temp[0][0]]; b[ 1] = S5[temp[3][1]]; b[ 2] = S5[temp[2][2]]; b[ 3] = S5[temp[1][3]]; b[ 4] = S5[temp[1][0]]; b[ 5] = S5[temp[0][1]]; b[ 6] = S5[temp[3][2]]; b[ 7] = S5[temp[2][3]]; b[ 8] = S5[temp[2][0]]; b[ 9] = S5[temp[1][1]]; b[10] = S5[temp[0][2]]; b[11] = S5[temp[3][3]]; b[12] = S5[temp[3][0]]; b[13] = S5[temp[2][1]]; b[14] = S5[temp[1][2]]; b[15] = S5[temp[0][3]]; *((word32*)(b )) ^= *((word32*)rk[0][0]); *((word32*)(b+ 4)) ^= *((word32*)rk[0][1]); *((word32*)(b+ 8)) ^= *((word32*)rk[0][2]); *((word32*)(b+12)) ^= *((word32*)rk[0][3]); memcpy(out, b, sizeof b /* XXX out */); return 0; #undef a #undef b #undef temp } #ifdef INTERMEDIATE_VALUE_KAT /** * Decrypt only a certain number of rounds. * Only used in the Intermediate Value Known Answer Test. * Operations rearranged such that the intermediate values * of decryption correspond with the intermediate values * of encryption. */ int rijndaelDecryptRound(word8 a[4][4], word8 rk[MAXROUNDS+1][4][4], int ROUNDS, int rounds) { int r, i; word8 temp[4], shift; /* make number of rounds sane */ if (rounds > ROUNDS) { rounds = ROUNDS; } /* first round is special: */ *(word32 *)a[0] ^= *(word32 *)rk[ROUNDS][0]; *(word32 *)a[1] ^= *(word32 *)rk[ROUNDS][1]; *(word32 *)a[2] ^= *(word32 *)rk[ROUNDS][2]; *(word32 *)a[3] ^= *(word32 *)rk[ROUNDS][3]; for (i = 0; i < 4; i++) { a[i][0] = Si[a[i][0]]; a[i][1] = Si[a[i][1]]; a[i][2] = Si[a[i][2]]; a[i][3] = Si[a[i][3]]; } for (i = 1; i < 4; i++) { shift = (4 - i) & 3; temp[0] = a[(0 + shift) & 3][i]; temp[1] = a[(1 + shift) & 3][i]; temp[2] = a[(2 + shift) & 3][i]; temp[3] = a[(3 + shift) & 3][i]; a[0][i] = temp[0]; a[1][i] = temp[1]; a[2][i] = temp[2]; a[3][i] = temp[3]; } /* ROUNDS-1 ordinary rounds */ for (r = ROUNDS-1; r > rounds; r--) { *(word32 *)a[0] ^= *(word32 *)rk[r][0]; *(word32 *)a[1] ^= *(word32 *)rk[r][1]; *(word32 *)a[2] ^= *(word32 *)rk[r][2]; *(word32 *)a[3] ^= *(word32 *)rk[r][3]; *((word32*)a[0]) = *((const word32*)U1[a[0][0]]) ^ *((const word32*)U2[a[0][1]]) ^ *((const word32*)U3[a[0][2]]) ^ *((const word32*)U4[a[0][3]]); *((word32*)a[1]) = *((const word32*)U1[a[1][0]]) ^ *((const word32*)U2[a[1][1]]) ^ *((const word32*)U3[a[1][2]]) ^ *((const word32*)U4[a[1][3]]); *((word32*)a[2]) = *((const word32*)U1[a[2][0]]) ^ *((const word32*)U2[a[2][1]]) ^ *((const word32*)U3[a[2][2]]) ^ *((const word32*)U4[a[2][3]]); *((word32*)a[3]) = *((const word32*)U1[a[3][0]]) ^ *((const word32*)U2[a[3][1]]) ^ *((const word32*)U3[a[3][2]]) ^ *((const word32*)U4[a[3][3]]); for (i = 0; i < 4; i++) { a[i][0] = Si[a[i][0]]; a[i][1] = Si[a[i][1]]; a[i][2] = Si[a[i][2]]; a[i][3] = Si[a[i][3]]; } for (i = 1; i < 4; i++) { shift = (4 - i) & 3; temp[0] = a[(0 + shift) & 3][i]; temp[1] = a[(1 + shift) & 3][i]; temp[2] = a[(2 + shift) & 3][i]; temp[3] = a[(3 + shift) & 3][i]; a[0][i] = temp[0]; a[1][i] = temp[1]; a[2][i] = temp[2]; a[3][i] = temp[3]; } } if (rounds == 0) { /* End with the extra key addition */ *(word32 *)a[0] ^= *(word32 *)rk[0][0]; *(word32 *)a[1] ^= *(word32 *)rk[0][1]; *(word32 *)a[2] ^= *(word32 *)rk[0][2]; *(word32 *)a[3] ^= *(word32 *)rk[0][3]; } return 0; } #endif /* INTERMEDIATE_VALUE_KAT */