// Copyright (c) 2010 Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // range_map_unittest.cc: Unit tests for RangeMap // // Author: Mark Mentovai #include <limits.h> #include <stdio.h> #include "processor/range_map-inl.h" #include "common/scoped_ptr.h" #include "processor/linked_ptr.h" #include "processor/logging.h" namespace { using google_breakpad::linked_ptr; using google_breakpad::scoped_ptr; using google_breakpad::RangeMap; // A CountedObject holds an int. A global (not thread safe!) count of // allocated CountedObjects is maintained to help test memory management. class CountedObject { public: explicit CountedObject(int id) : id_(id) { ++count_; } ~CountedObject() { --count_; } static int count() { return count_; } int id() const { return id_; } private: static int count_; int id_; }; int CountedObject::count_; typedef int AddressType; typedef RangeMap< AddressType, linked_ptr<CountedObject> > TestMap; // RangeTest contains data to use for store and retrieve tests. See // RunTests for descriptions of the tests. struct RangeTest { // Base address to use for test AddressType address; // Size of range to use for test AddressType size; // Unique ID of range - unstorable ranges must have unique IDs too int id; // Whether this range is expected to be stored successfully or not bool expect_storable; }; // A RangeTestSet encompasses multiple RangeTests, which are run in // sequence on the same RangeMap. struct RangeTestSet { // An array of RangeTests const RangeTest *range_tests; // The number of tests in the set unsigned int range_test_count; }; // StoreTest uses the data in a RangeTest and calls StoreRange on the // test RangeMap. It returns true if the expected result occurred, and // false if something else happened. static bool StoreTest(TestMap *range_map, const RangeTest *range_test) { linked_ptr<CountedObject> object(new CountedObject(range_test->id)); bool stored = range_map->StoreRange(range_test->address, range_test->size, object); if (stored != range_test->expect_storable) { fprintf(stderr, "FAILED: " "StoreRange id %d, expected %s, observed %s\n", range_test->id, range_test->expect_storable ? "storable" : "not storable", stored ? "stored" : "not stored"); return false; } return true; } // RetrieveTest uses the data in RangeTest and calls RetrieveRange on the // test RangeMap. If it retrieves the expected value (which can be no // map entry at the specified range,) it returns true, otherwise, it returns // false. RetrieveTest will check the values around the base address and // the high address of a range to guard against off-by-one errors. static bool RetrieveTest(TestMap *range_map, const RangeTest *range_test) { for (unsigned int side = 0; side <= 1; ++side) { // When side == 0, check the low side (base address) of each range. // When side == 1, check the high side (base + size) of each range. // Check one-less and one-greater than the target address in addition // to the target address itself. // If the size of the range is only 1, don't check one greater than // the base or one less than the high - for a successfully stored // range, these tests would erroneously fail because the range is too // small. AddressType low_offset = -1; AddressType high_offset = 1; if (range_test->size == 1) { if (!side) // When checking the low side, high_offset = 0; // don't check one over the target. else // When checking the high side, low_offset = 0; // don't check one under the target. } for (AddressType offset = low_offset; offset <= high_offset; ++offset) { AddressType address = offset + (!side ? range_test->address : range_test->address + range_test->size - 1); bool expected_result = false; // This is correct for tests not stored. if (range_test->expect_storable) { if (offset == 0) // When checking the target address, expected_result = true; // test should always succeed. else if (offset == -1) // When checking one below the target, expected_result = side; // should fail low and succeed high. else // When checking one above the target, expected_result = !side; // should succeed low and fail high. } linked_ptr<CountedObject> object; AddressType retrieved_base = AddressType(); AddressType retrieved_size = AddressType(); bool retrieved = range_map->RetrieveRange(address, &object, &retrieved_base, &retrieved_size); bool observed_result = retrieved && object->id() == range_test->id; if (observed_result != expected_result) { fprintf(stderr, "FAILED: " "RetrieveRange id %d, side %d, offset %d, " "expected %s, observed %s\n", range_test->id, side, offset, expected_result ? "true" : "false", observed_result ? "true" : "false"); return false; } // If a range was successfully retrieved, check that the returned // bounds match the range as stored. if (observed_result == true && (retrieved_base != range_test->address || retrieved_size != range_test->size)) { fprintf(stderr, "FAILED: " "RetrieveRange id %d, side %d, offset %d, " "expected base/size %d/%d, observed %d/%d\n", range_test->id, side, offset, range_test->address, range_test->size, retrieved_base, retrieved_size); return false; } // Now, check RetrieveNearestRange. The nearest range is always // expected to be different from the test range when checking one // less than the low side. bool expected_nearest = range_test->expect_storable; if (!side && offset < 0) expected_nearest = false; linked_ptr<CountedObject> nearest_object; AddressType nearest_base = AddressType(); AddressType nearest_size = AddressType(); bool retrieved_nearest = range_map->RetrieveNearestRange(address, &nearest_object, &nearest_base, &nearest_size); // When checking one greater than the high side, RetrieveNearestRange // should usually return the test range. When a different range begins // at that address, though, then RetrieveNearestRange should return the // range at the address instead of the test range. if (side && offset > 0 && nearest_base == address) { expected_nearest = false; } bool observed_nearest = retrieved_nearest && nearest_object->id() == range_test->id; if (observed_nearest != expected_nearest) { fprintf(stderr, "FAILED: " "RetrieveNearestRange id %d, side %d, offset %d, " "expected %s, observed %s\n", range_test->id, side, offset, expected_nearest ? "true" : "false", observed_nearest ? "true" : "false"); return false; } // If a range was successfully retrieved, check that the returned // bounds match the range as stored. if (expected_nearest && (nearest_base != range_test->address || nearest_size != range_test->size)) { fprintf(stderr, "FAILED: " "RetrieveNearestRange id %d, side %d, offset %d, " "expected base/size %d/%d, observed %d/%d\n", range_test->id, side, offset, range_test->address, range_test->size, nearest_base, nearest_size); return false; } } } return true; } // Test RetrieveRangeAtIndex, which is supposed to return objects in order // according to their addresses. This test is performed by looping through // the map, calling RetrieveRangeAtIndex for all possible indices in sequence, // and verifying that each call returns a different object than the previous // call, and that ranges are returned with increasing base addresses. Returns // false if the test fails. static bool RetrieveIndexTest(TestMap *range_map, int set) { linked_ptr<CountedObject> object; CountedObject *last_object = NULL; AddressType last_base = 0; int object_count = range_map->GetCount(); for (int object_index = 0; object_index < object_count; ++object_index) { AddressType base; if (!range_map->RetrieveRangeAtIndex(object_index, &object, &base, NULL)) { fprintf(stderr, "FAILED: RetrieveRangeAtIndex set %d index %d, " "expected success, observed failure\n", set, object_index); return false; } if (!object.get()) { fprintf(stderr, "FAILED: RetrieveRangeAtIndex set %d index %d, " "expected object, observed NULL\n", set, object_index); return false; } // It's impossible to do these comparisons unless there's a previous // object to compare against. if (last_object) { // The object must be different from the last one. if (object->id() == last_object->id()) { fprintf(stderr, "FAILED: RetrieveRangeAtIndex set %d index %d, " "expected different objects, observed same objects (%d)\n", set, object_index, object->id()); return false; } // Each object must have a base greater than the previous object's base. if (base <= last_base) { fprintf(stderr, "FAILED: RetrieveRangeAtIndex set %d index %d, " "expected different bases, observed same bases (%d)\n", set, object_index, base); return false; } } last_object = object.get(); last_base = base; } // Make sure that RetrieveRangeAtIndex doesn't allow lookups at indices that // are too high. if (range_map->RetrieveRangeAtIndex(object_count, &object, NULL, NULL)) { fprintf(stderr, "FAILED: RetrieveRangeAtIndex set %d index %d (too large), " "expected failure, observed success\n", set, object_count); return false; } return true; } // Additional RetriveAtIndex test to expose the bug in RetrieveRangeAtIndex(). // Bug info: RetrieveRangeAtIndex() previously retrieves the high address of // entry, however, it is supposed to retrieve the base address of entry as // stated in the comment in range_map.h. static bool RetriveAtIndexTest2() { scoped_ptr<TestMap> range_map(new TestMap()); // Store ranges with base address = 2 * object_id: const int range_size = 2; for (int object_id = 0; object_id < 100; ++object_id) { linked_ptr<CountedObject> object(new CountedObject(object_id)); int base_address = 2 * object_id; range_map->StoreRange(base_address, range_size, object); } linked_ptr<CountedObject> object; int object_count = range_map->GetCount(); for (int object_index = 0; object_index < object_count; ++object_index) { AddressType base; if (!range_map->RetrieveRangeAtIndex(object_index, &object, &base, NULL)) { fprintf(stderr, "FAILED: RetrieveAtIndexTest2 index %d, " "expected success, observed failure\n", object_index); return false; } int expected_base = 2 * object->id(); if (base != expected_base) { fprintf(stderr, "FAILED: RetriveAtIndexTest2 index %d, " "expected base %d, observed base %d", object_index, expected_base, base); return false; } } return true; } // RunTests runs a series of test sets. static bool RunTests() { // These tests will be run sequentially. The first set of tests exercises // most functions of RangeTest, and verifies all of the bounds-checking. const RangeTest range_tests_0[] = { { INT_MIN, 16, 1, true }, // lowest possible range { -2, 5, 2, true }, // a range through zero { INT_MAX - 9, 11, 3, false }, // tests anti-overflow { INT_MAX - 9, 10, 4, true }, // highest possible range { 5, 0, 5, false }, // tests anti-zero-size { 5, 1, 6, true }, // smallest possible range { -20, 15, 7, true }, // entirely negative { 10, 10, 10, true }, // causes the following tests to fail { 9, 10, 11, false }, // one-less base, one-less high { 9, 11, 12, false }, // one-less base, identical high { 9, 12, 13, false }, // completely contains existing { 10, 9, 14, false }, // identical base, one-less high { 10, 10, 15, false }, // exactly identical to existing range { 10, 11, 16, false }, // identical base, one-greater high { 11, 8, 17, false }, // contained completely within { 11, 9, 18, false }, // one-greater base, identical high { 11, 10, 19, false }, // one-greater base, one-greater high { 9, 2, 20, false }, // overlaps bottom by one { 10, 1, 21, false }, // overlaps bottom by one, contained { 19, 1, 22, false }, // overlaps top by one, contained { 19, 2, 23, false }, // overlaps top by one { 9, 1, 24, true }, // directly below without overlap { 20, 1, 25, true }, // directly above without overlap { 6, 3, 26, true }, // exactly between two ranges, gapless { 7, 3, 27, false }, // tries to span two ranges { 7, 5, 28, false }, // tries to span three ranges { 4, 20, 29, false }, // tries to contain several ranges { 30, 50, 30, true }, { 90, 25, 31, true }, { 35, 65, 32, false }, // tries to span two noncontiguous { 120, 10000, 33, true }, // > 8-bit { 20000, 20000, 34, true }, // > 8-bit { 0x10001, 0x10001, 35, true }, // > 16-bit { 27, -1, 36, false } // tests high < base }; // Attempt to fill the entire space. The entire space must be filled with // three stores because AddressType is signed for these tests, so RangeMap // treats the size as signed and rejects sizes that appear to be negative. // Even if these tests were run as unsigned, two stores would be needed // to fill the space because the entire size of the space could only be // described by using one more bit than would be present in AddressType. const RangeTest range_tests_1[] = { { INT_MIN, INT_MAX, 50, true }, // From INT_MIN to -2, inclusive { -1, 2, 51, true }, // From -1 to 0, inclusive { 1, INT_MAX, 52, true }, // From 1 to INT_MAX, inclusive { INT_MIN, INT_MAX, 53, false }, // Can't fill the space twice { -1, 2, 54, false }, { 1, INT_MAX, 55, false }, { -3, 6, 56, false }, // -3 to 2, inclusive - spans 3 ranges }; // A light round of testing to verify that RetrieveRange does the right // the right thing at the extremities of the range when nothing is stored // there. Checks are forced without storing anything at the extremities // by setting size = 0. const RangeTest range_tests_2[] = { { INT_MIN, 0, 100, false }, // makes RetrieveRange check low end { -1, 3, 101, true }, { INT_MAX, 0, 102, false }, // makes RetrieveRange check high end }; // Similar to the previous test set, but with a couple of ranges closer // to the extremities. const RangeTest range_tests_3[] = { { INT_MIN + 1, 1, 110, true }, { INT_MAX - 1, 1, 111, true }, { INT_MIN, 0, 112, false }, // makes RetrieveRange check low end { INT_MAX, 0, 113, false } // makes RetrieveRange check high end }; // The range map is cleared between sets of tests listed here. const RangeTestSet range_test_sets[] = { { range_tests_0, sizeof(range_tests_0) / sizeof(RangeTest) }, { range_tests_1, sizeof(range_tests_1) / sizeof(RangeTest) }, { range_tests_2, sizeof(range_tests_2) / sizeof(RangeTest) }, { range_tests_3, sizeof(range_tests_3) / sizeof(RangeTest) }, { range_tests_0, sizeof(range_tests_0) / sizeof(RangeTest) } // Run again }; // Maintain the range map in a pointer so that deletion can be meaningfully // tested. scoped_ptr<TestMap> range_map(new TestMap()); // Run all of the test sets in sequence. unsigned int range_test_set_count = sizeof(range_test_sets) / sizeof(RangeTestSet); for (unsigned int range_test_set_index = 0; range_test_set_index < range_test_set_count; ++range_test_set_index) { const RangeTest *range_tests = range_test_sets[range_test_set_index].range_tests; unsigned int range_test_count = range_test_sets[range_test_set_index].range_test_count; // Run the StoreRange test, which validates StoreRange and initializes // the RangeMap with data for the RetrieveRange test. int stored_count = 0; // The number of ranges successfully stored for (unsigned int range_test_index = 0; range_test_index < range_test_count; ++range_test_index) { const RangeTest *range_test = &range_tests[range_test_index]; if (!StoreTest(range_map.get(), range_test)) return false; if (range_test->expect_storable) ++stored_count; } // There should be exactly one CountedObject for everything successfully // stored in the RangeMap. if (CountedObject::count() != stored_count) { fprintf(stderr, "FAILED: " "stored object counts don't match, expected %d, observed %d\n", stored_count, CountedObject::count()); return false; } // The RangeMap's own count of objects should also match. if (range_map->GetCount() != stored_count) { fprintf(stderr, "FAILED: stored object count doesn't match GetCount, " "expected %d, observed %d\n", stored_count, range_map->GetCount()); return false; } // Run the RetrieveRange test for (unsigned int range_test_index = 0; range_test_index < range_test_count; ++range_test_index) { const RangeTest *range_test = &range_tests[range_test_index]; if (!RetrieveTest(range_map.get(), range_test)) return false; } if (!RetrieveIndexTest(range_map.get(), range_test_set_index)) return false; // Clear the map between test sets. If this is the final test set, // delete the map instead to test destruction. if (range_test_set_index < range_test_set_count - 1) range_map->Clear(); else range_map.reset(); // Test that all stored objects are freed when the RangeMap is cleared // or deleted. if (CountedObject::count() != 0) { fprintf(stderr, "FAILED: " "did not free all objects after %s, %d still allocated\n", range_test_set_index < range_test_set_count - 1 ? "clear" : "delete", CountedObject::count()); return false; } } if (!RetriveAtIndexTest2()) { fprintf(stderr, "FAILED: did not pass RetrieveAtIndexTest2()\n"); return false; } return true; } } // namespace int main(int argc, char **argv) { BPLOG_INIT(&argc, &argv); return RunTests() ? 0 : 1; }