// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2015 Benoit Steiner <benoit.steiner.goog@gmail.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #include "main.h" #include <Eigen/CXX11/Tensor> #if EIGEN_COMP_MSVC #define EIGEN_NO_INT128 #else typedef __uint128_t uint128_t; #endif // Only run the test on compilers that support 128bit integers natively #ifndef EIGEN_NO_INT128 using Eigen::internal::TensorUInt128; using Eigen::internal::static_val; void VERIFY_EQUAL(TensorUInt128<uint64_t, uint64_t> actual, uint128_t expected) { bool matchl = actual.lower() == static_cast<uint64_t>(expected); bool matchh = actual.upper() == static_cast<uint64_t>(expected >> 64); if (!matchl || !matchh) { const char* testname = g_test_stack.back().c_str(); std::cerr << "Test " << testname << " failed in " << __FILE__ << " (" << __LINE__ << ")" << std::endl; abort(); } } void test_add() { uint64_t incr = internal::random<uint64_t>(1, 9999999999); for (uint64_t i1 = 0; i1 < 100; ++i1) { for (uint64_t i2 = 1; i2 < 100 * incr; i2 += incr) { TensorUInt128<uint64_t, uint64_t> i(i1, i2); uint128_t a = (static_cast<uint128_t>(i1) << 64) + static_cast<uint128_t>(i2); for (uint64_t j1 = 0; j1 < 100; ++j1) { for (uint64_t j2 = 1; j2 < 100 * incr; j2 += incr) { TensorUInt128<uint64_t, uint64_t> j(j1, j2); uint128_t b = (static_cast<uint128_t>(j1) << 64) + static_cast<uint128_t>(j2); TensorUInt128<uint64_t, uint64_t> actual = i + j; uint128_t expected = a + b; VERIFY_EQUAL(actual, expected); } } } } } void test_sub() { uint64_t incr = internal::random<uint64_t>(1, 9999999999); for (uint64_t i1 = 0; i1 < 100; ++i1) { for (uint64_t i2 = 1; i2 < 100 * incr; i2 += incr) { TensorUInt128<uint64_t, uint64_t> i(i1, i2); uint128_t a = (static_cast<uint128_t>(i1) << 64) + static_cast<uint128_t>(i2); for (uint64_t j1 = 0; j1 < 100; ++j1) { for (uint64_t j2 = 1; j2 < 100 * incr; j2 += incr) { TensorUInt128<uint64_t, uint64_t> j(j1, j2); uint128_t b = (static_cast<uint128_t>(j1) << 64) + static_cast<uint128_t>(j2); TensorUInt128<uint64_t, uint64_t> actual = i - j; uint128_t expected = a - b; VERIFY_EQUAL(actual, expected); } } } } } void test_mul() { uint64_t incr = internal::random<uint64_t>(1, 9999999999); for (uint64_t i1 = 0; i1 < 100; ++i1) { for (uint64_t i2 = 1; i2 < 100 * incr; i2 += incr) { TensorUInt128<uint64_t, uint64_t> i(i1, i2); uint128_t a = (static_cast<uint128_t>(i1) << 64) + static_cast<uint128_t>(i2); for (uint64_t j1 = 0; j1 < 100; ++j1) { for (uint64_t j2 = 1; j2 < 100 * incr; j2 += incr) { TensorUInt128<uint64_t, uint64_t> j(j1, j2); uint128_t b = (static_cast<uint128_t>(j1) << 64) + static_cast<uint128_t>(j2); TensorUInt128<uint64_t, uint64_t> actual = i * j; uint128_t expected = a * b; VERIFY_EQUAL(actual, expected); } } } } } void test_div() { uint64_t incr = internal::random<uint64_t>(1, 9999999999); for (uint64_t i1 = 0; i1 < 100; ++i1) { for (uint64_t i2 = 1; i2 < 100 * incr; i2 += incr) { TensorUInt128<uint64_t, uint64_t> i(i1, i2); uint128_t a = (static_cast<uint128_t>(i1) << 64) + static_cast<uint128_t>(i2); for (uint64_t j1 = 0; j1 < 100; ++j1) { for (uint64_t j2 = 1; j2 < 100 * incr; j2 += incr) { TensorUInt128<uint64_t, uint64_t> j(j1, j2); uint128_t b = (static_cast<uint128_t>(j1) << 64) + static_cast<uint128_t>(j2); TensorUInt128<uint64_t, uint64_t> actual = i / j; uint128_t expected = a / b; VERIFY_EQUAL(actual, expected); } } } } } void test_misc1() { uint64_t incr = internal::random<uint64_t>(1, 9999999999); for (uint64_t i2 = 1; i2 < 100 * incr; i2 += incr) { TensorUInt128<static_val<0>, uint64_t> i(0, i2); uint128_t a = static_cast<uint128_t>(i2); for (uint64_t j2 = 1; j2 < 100 * incr; j2 += incr) { TensorUInt128<static_val<0>, uint64_t> j(0, j2); uint128_t b = static_cast<uint128_t>(j2); uint64_t actual = (i * j).upper(); uint64_t expected = (a * b) >> 64; VERIFY_IS_EQUAL(actual, expected); } } } void test_misc2() { int64_t incr = internal::random<int64_t>(1, 100); for (int64_t log_div = 0; log_div < 63; ++log_div) { for (int64_t divider = 1; divider <= 1000000 * incr; divider += incr) { uint64_t expected = (static_cast<uint128_t>(1) << (64+log_div)) / static_cast<uint128_t>(divider) - (static_cast<uint128_t>(1) << 64) + 1; uint64_t shift = 1ULL << log_div; TensorUInt128<uint64_t, uint64_t> result = (TensorUInt128<uint64_t, static_val<0> >(shift, 0) / TensorUInt128<static_val<0>, uint64_t>(divider) - TensorUInt128<static_val<1>, static_val<0> >(1, 0) + TensorUInt128<static_val<0>, static_val<1> >(1)); uint64_t actual = static_cast<uint64_t>(result); VERIFY_IS_EQUAL(actual, expected); } } } #endif void test_cxx11_tensor_uint128() { #ifdef EIGEN_NO_INT128 // Skip the test on compilers that don't support 128bit integers natively return; #else CALL_SUBTEST_1(test_add()); CALL_SUBTEST_2(test_sub()); CALL_SUBTEST_3(test_mul()); CALL_SUBTEST_4(test_div()); CALL_SUBTEST_5(test_misc1()); CALL_SUBTEST_6(test_misc2()); #endif }