// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2014 Navdeep Jaitly <ndjaitly@google.com and // Benoit Steiner <benoit.steiner.goog@gmail.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #include "main.h" #include <Eigen/CXX11/Tensor> using Eigen::Tensor; using Eigen::array; template <int DataLayout> static void test_simple_reverse() { Tensor<float, 4, DataLayout> tensor(2,3,5,7); tensor.setRandom(); array<bool, 4> dim_rev; dim_rev[0] = false; dim_rev[1] = true; dim_rev[2] = true; dim_rev[3] = false; Tensor<float, 4, DataLayout> reversed_tensor; reversed_tensor = tensor.reverse(dim_rev); VERIFY_IS_EQUAL(reversed_tensor.dimension(0), 2); VERIFY_IS_EQUAL(reversed_tensor.dimension(1), 3); VERIFY_IS_EQUAL(reversed_tensor.dimension(2), 5); VERIFY_IS_EQUAL(reversed_tensor.dimension(3), 7); for (int i = 0; i < 2; ++i) { for (int j = 0; j < 3; ++j) { for (int k = 0; k < 5; ++k) { for (int l = 0; l < 7; ++l) { VERIFY_IS_EQUAL(tensor(i,j,k,l), reversed_tensor(i,2-j,4-k,l)); } } } } dim_rev[0] = true; dim_rev[1] = false; dim_rev[2] = false; dim_rev[3] = false; reversed_tensor = tensor.reverse(dim_rev); VERIFY_IS_EQUAL(reversed_tensor.dimension(0), 2); VERIFY_IS_EQUAL(reversed_tensor.dimension(1), 3); VERIFY_IS_EQUAL(reversed_tensor.dimension(2), 5); VERIFY_IS_EQUAL(reversed_tensor.dimension(3), 7); for (int i = 0; i < 2; ++i) { for (int j = 0; j < 3; ++j) { for (int k = 0; k < 5; ++k) { for (int l = 0; l < 7; ++l) { VERIFY_IS_EQUAL(tensor(i,j,k,l), reversed_tensor(1-i,j,k,l)); } } } } dim_rev[0] = true; dim_rev[1] = false; dim_rev[2] = false; dim_rev[3] = true; reversed_tensor = tensor.reverse(dim_rev); VERIFY_IS_EQUAL(reversed_tensor.dimension(0), 2); VERIFY_IS_EQUAL(reversed_tensor.dimension(1), 3); VERIFY_IS_EQUAL(reversed_tensor.dimension(2), 5); VERIFY_IS_EQUAL(reversed_tensor.dimension(3), 7); for (int i = 0; i < 2; ++i) { for (int j = 0; j < 3; ++j) { for (int k = 0; k < 5; ++k) { for (int l = 0; l < 7; ++l) { VERIFY_IS_EQUAL(tensor(i,j,k,l), reversed_tensor(1-i,j,k,6-l)); } } } } } template <int DataLayout> static void test_expr_reverse(bool LValue) { Tensor<float, 4, DataLayout> tensor(2,3,5,7); tensor.setRandom(); array<bool, 4> dim_rev; dim_rev[0] = false; dim_rev[1] = true; dim_rev[2] = false; dim_rev[3] = true; Tensor<float, 4, DataLayout> expected(2, 3, 5, 7); if (LValue) { expected.reverse(dim_rev) = tensor; } else { expected = tensor.reverse(dim_rev); } Tensor<float, 4, DataLayout> result(2,3,5,7); array<ptrdiff_t, 4> src_slice_dim; src_slice_dim[0] = 2; src_slice_dim[1] = 3; src_slice_dim[2] = 1; src_slice_dim[3] = 7; array<ptrdiff_t, 4> src_slice_start; src_slice_start[0] = 0; src_slice_start[1] = 0; src_slice_start[2] = 0; src_slice_start[3] = 0; array<ptrdiff_t, 4> dst_slice_dim = src_slice_dim; array<ptrdiff_t, 4> dst_slice_start = src_slice_start; for (int i = 0; i < 5; ++i) { if (LValue) { result.slice(dst_slice_start, dst_slice_dim).reverse(dim_rev) = tensor.slice(src_slice_start, src_slice_dim); } else { result.slice(dst_slice_start, dst_slice_dim) = tensor.slice(src_slice_start, src_slice_dim).reverse(dim_rev); } src_slice_start[2] += 1; dst_slice_start[2] += 1; } VERIFY_IS_EQUAL(result.dimension(0), 2); VERIFY_IS_EQUAL(result.dimension(1), 3); VERIFY_IS_EQUAL(result.dimension(2), 5); VERIFY_IS_EQUAL(result.dimension(3), 7); for (int i = 0; i < expected.dimension(0); ++i) { for (int j = 0; j < expected.dimension(1); ++j) { for (int k = 0; k < expected.dimension(2); ++k) { for (int l = 0; l < expected.dimension(3); ++l) { VERIFY_IS_EQUAL(result(i,j,k,l), expected(i,j,k,l)); } } } } dst_slice_start[2] = 0; result.setRandom(); for (int i = 0; i < 5; ++i) { if (LValue) { result.slice(dst_slice_start, dst_slice_dim).reverse(dim_rev) = tensor.slice(dst_slice_start, dst_slice_dim); } else { result.slice(dst_slice_start, dst_slice_dim) = tensor.reverse(dim_rev).slice(dst_slice_start, dst_slice_dim); } dst_slice_start[2] += 1; } for (int i = 0; i < expected.dimension(0); ++i) { for (int j = 0; j < expected.dimension(1); ++j) { for (int k = 0; k < expected.dimension(2); ++k) { for (int l = 0; l < expected.dimension(3); ++l) { VERIFY_IS_EQUAL(result(i,j,k,l), expected(i,j,k,l)); } } } } } void test_cxx11_tensor_reverse() { CALL_SUBTEST(test_simple_reverse<ColMajor>()); CALL_SUBTEST(test_simple_reverse<RowMajor>()); CALL_SUBTEST(test_expr_reverse<ColMajor>(true)); CALL_SUBTEST(test_expr_reverse<RowMajor>(true)); CALL_SUBTEST(test_expr_reverse<ColMajor>(false)); CALL_SUBTEST(test_expr_reverse<RowMajor>(false)); }