// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2015 // Mehdi Goli Codeplay Software Ltd. // Ralph Potter Codeplay Software Ltd. // Luke Iwanski Codeplay Software Ltd. // Contact: <eigen@codeplay.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #define EIGEN_TEST_NO_LONGDOUBLE #define EIGEN_TEST_NO_COMPLEX #define EIGEN_TEST_FUNC cxx11_tensor_reduction_sycl #define EIGEN_DEFAULT_DENSE_INDEX_TYPE int #define EIGEN_USE_SYCL #include "main.h" #include <unsupported/Eigen/CXX11/Tensor> static void test_full_reductions_sycl(const Eigen::SyclDevice& sycl_device) { const int num_rows = 452; const int num_cols = 765; array<int, 2> tensorRange = {{num_rows, num_cols}}; Tensor<float, 2> in(tensorRange); Tensor<float, 0> full_redux; Tensor<float, 0> full_redux_gpu; in.setRandom(); full_redux = in.sum(); float* gpu_in_data = static_cast<float*>(sycl_device.allocate(in.dimensions().TotalSize()*sizeof(float))); float* gpu_out_data =(float*)sycl_device.allocate(sizeof(float)); TensorMap<Tensor<float, 2> > in_gpu(gpu_in_data, tensorRange); TensorMap<Tensor<float, 0> > out_gpu(gpu_out_data); sycl_device.memcpyHostToDevice(gpu_in_data, in.data(),(in.dimensions().TotalSize())*sizeof(float)); out_gpu.device(sycl_device) = in_gpu.sum(); sycl_device.memcpyDeviceToHost(full_redux_gpu.data(), gpu_out_data, sizeof(float)); // Check that the CPU and GPU reductions return the same result. VERIFY_IS_APPROX(full_redux_gpu(), full_redux()); sycl_device.deallocate(gpu_in_data); sycl_device.deallocate(gpu_out_data); } static void test_first_dim_reductions_sycl(const Eigen::SyclDevice& sycl_device) { int dim_x = 145; int dim_y = 1; int dim_z = 67; array<int, 3> tensorRange = {{dim_x, dim_y, dim_z}}; Eigen::array<int, 1> red_axis; red_axis[0] = 0; array<int, 2> reduced_tensorRange = {{dim_y, dim_z}}; Tensor<float, 3> in(tensorRange); Tensor<float, 2> redux(reduced_tensorRange); Tensor<float, 2> redux_gpu(reduced_tensorRange); in.setRandom(); redux= in.sum(red_axis); float* gpu_in_data = static_cast<float*>(sycl_device.allocate(in.dimensions().TotalSize()*sizeof(float))); float* gpu_out_data = static_cast<float*>(sycl_device.allocate(redux_gpu.dimensions().TotalSize()*sizeof(float))); TensorMap<Tensor<float, 3> > in_gpu(gpu_in_data, tensorRange); TensorMap<Tensor<float, 2> > out_gpu(gpu_out_data, reduced_tensorRange); sycl_device.memcpyHostToDevice(gpu_in_data, in.data(),(in.dimensions().TotalSize())*sizeof(float)); out_gpu.device(sycl_device) = in_gpu.sum(red_axis); sycl_device.memcpyDeviceToHost(redux_gpu.data(), gpu_out_data, redux_gpu.dimensions().TotalSize()*sizeof(float)); // Check that the CPU and GPU reductions return the same result. for(int j=0; j<reduced_tensorRange[0]; j++ ) for(int k=0; k<reduced_tensorRange[1]; k++ ) VERIFY_IS_APPROX(redux_gpu(j,k), redux(j,k)); sycl_device.deallocate(gpu_in_data); sycl_device.deallocate(gpu_out_data); } static void test_last_dim_reductions_sycl(const Eigen::SyclDevice &sycl_device) { int dim_x = 567; int dim_y = 1; int dim_z = 47; array<int, 3> tensorRange = {{dim_x, dim_y, dim_z}}; Eigen::array<int, 1> red_axis; red_axis[0] = 2; array<int, 2> reduced_tensorRange = {{dim_x, dim_y}}; Tensor<float, 3> in(tensorRange); Tensor<float, 2> redux(reduced_tensorRange); Tensor<float, 2> redux_gpu(reduced_tensorRange); in.setRandom(); redux= in.sum(red_axis); float* gpu_in_data = static_cast<float*>(sycl_device.allocate(in.dimensions().TotalSize()*sizeof(float))); float* gpu_out_data = static_cast<float*>(sycl_device.allocate(redux_gpu.dimensions().TotalSize()*sizeof(float))); TensorMap<Tensor<float, 3> > in_gpu(gpu_in_data, tensorRange); TensorMap<Tensor<float, 2> > out_gpu(gpu_out_data, reduced_tensorRange); sycl_device.memcpyHostToDevice(gpu_in_data, in.data(),(in.dimensions().TotalSize())*sizeof(float)); out_gpu.device(sycl_device) = in_gpu.sum(red_axis); sycl_device.memcpyDeviceToHost(redux_gpu.data(), gpu_out_data, redux_gpu.dimensions().TotalSize()*sizeof(float)); // Check that the CPU and GPU reductions return the same result. for(int j=0; j<reduced_tensorRange[0]; j++ ) for(int k=0; k<reduced_tensorRange[1]; k++ ) VERIFY_IS_APPROX(redux_gpu(j,k), redux(j,k)); sycl_device.deallocate(gpu_in_data); sycl_device.deallocate(gpu_out_data); } void test_cxx11_tensor_reduction_sycl() { cl::sycl::gpu_selector s; Eigen::SyclDevice sycl_device(s); CALL_SUBTEST((test_full_reductions_sycl(sycl_device))); CALL_SUBTEST((test_first_dim_reductions_sycl(sycl_device))); CALL_SUBTEST((test_last_dim_reductions_sycl(sycl_device))); }