// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #include "main.h" #include <Eigen/CXX11/Tensor> using Eigen::Tensor; using Eigen::RowMajor; static void test_0d() { Tensor<int, 0> scalar1; Tensor<int, 0, RowMajor> scalar2; TensorMap<Tensor<const int, 0> > scalar3(scalar1.data()); TensorMap<Tensor<const int, 0, RowMajor> > scalar4(scalar2.data()); scalar1() = 7; scalar2() = 13; VERIFY_IS_EQUAL(scalar1.rank(), 0); VERIFY_IS_EQUAL(scalar1.size(), 1); VERIFY_IS_EQUAL(scalar3(), 7); VERIFY_IS_EQUAL(scalar4(), 13); } static void test_1d() { Tensor<int, 1> vec1(6); Tensor<int, 1, RowMajor> vec2(6); TensorMap<Tensor<const int, 1> > vec3(vec1.data(), 6); TensorMap<Tensor<const int, 1, RowMajor> > vec4(vec2.data(), 6); vec1(0) = 4; vec2(0) = 0; vec1(1) = 8; vec2(1) = 1; vec1(2) = 15; vec2(2) = 2; vec1(3) = 16; vec2(3) = 3; vec1(4) = 23; vec2(4) = 4; vec1(5) = 42; vec2(5) = 5; VERIFY_IS_EQUAL(vec1.rank(), 1); VERIFY_IS_EQUAL(vec1.size(), 6); VERIFY_IS_EQUAL(vec1.dimension(0), 6); VERIFY_IS_EQUAL(vec3(0), 4); VERIFY_IS_EQUAL(vec3(1), 8); VERIFY_IS_EQUAL(vec3(2), 15); VERIFY_IS_EQUAL(vec3(3), 16); VERIFY_IS_EQUAL(vec3(4), 23); VERIFY_IS_EQUAL(vec3(5), 42); VERIFY_IS_EQUAL(vec4(0), 0); VERIFY_IS_EQUAL(vec4(1), 1); VERIFY_IS_EQUAL(vec4(2), 2); VERIFY_IS_EQUAL(vec4(3), 3); VERIFY_IS_EQUAL(vec4(4), 4); VERIFY_IS_EQUAL(vec4(5), 5); } static void test_2d() { Tensor<int, 2> mat1(2,3); Tensor<int, 2, RowMajor> mat2(2,3); mat1(0,0) = 0; mat1(0,1) = 1; mat1(0,2) = 2; mat1(1,0) = 3; mat1(1,1) = 4; mat1(1,2) = 5; mat2(0,0) = 0; mat2(0,1) = 1; mat2(0,2) = 2; mat2(1,0) = 3; mat2(1,1) = 4; mat2(1,2) = 5; TensorMap<Tensor<const int, 2> > mat3(mat1.data(), 2, 3); TensorMap<Tensor<const int, 2, RowMajor> > mat4(mat2.data(), 2, 3); VERIFY_IS_EQUAL(mat3.rank(), 2); VERIFY_IS_EQUAL(mat3.size(), 6); VERIFY_IS_EQUAL(mat3.dimension(0), 2); VERIFY_IS_EQUAL(mat3.dimension(1), 3); VERIFY_IS_EQUAL(mat4.rank(), 2); VERIFY_IS_EQUAL(mat4.size(), 6); VERIFY_IS_EQUAL(mat4.dimension(0), 2); VERIFY_IS_EQUAL(mat4.dimension(1), 3); VERIFY_IS_EQUAL(mat3(0,0), 0); VERIFY_IS_EQUAL(mat3(0,1), 1); VERIFY_IS_EQUAL(mat3(0,2), 2); VERIFY_IS_EQUAL(mat3(1,0), 3); VERIFY_IS_EQUAL(mat3(1,1), 4); VERIFY_IS_EQUAL(mat3(1,2), 5); VERIFY_IS_EQUAL(mat4(0,0), 0); VERIFY_IS_EQUAL(mat4(0,1), 1); VERIFY_IS_EQUAL(mat4(0,2), 2); VERIFY_IS_EQUAL(mat4(1,0), 3); VERIFY_IS_EQUAL(mat4(1,1), 4); VERIFY_IS_EQUAL(mat4(1,2), 5); } static void test_3d() { Tensor<int, 3> mat1(2,3,7); Tensor<int, 3, RowMajor> mat2(2,3,7); int val = 0; for (int i = 0; i < 2; ++i) { for (int j = 0; j < 3; ++j) { for (int k = 0; k < 7; ++k) { mat1(i,j,k) = val; mat2(i,j,k) = val; val++; } } } TensorMap<Tensor<const int, 3> > mat3(mat1.data(), 2, 3, 7); TensorMap<Tensor<const int, 3, RowMajor> > mat4(mat2.data(), 2, 3, 7); VERIFY_IS_EQUAL(mat3.rank(), 3); VERIFY_IS_EQUAL(mat3.size(), 2*3*7); VERIFY_IS_EQUAL(mat3.dimension(0), 2); VERIFY_IS_EQUAL(mat3.dimension(1), 3); VERIFY_IS_EQUAL(mat3.dimension(2), 7); VERIFY_IS_EQUAL(mat4.rank(), 3); VERIFY_IS_EQUAL(mat4.size(), 2*3*7); VERIFY_IS_EQUAL(mat4.dimension(0), 2); VERIFY_IS_EQUAL(mat4.dimension(1), 3); VERIFY_IS_EQUAL(mat4.dimension(2), 7); val = 0; for (int i = 0; i < 2; ++i) { for (int j = 0; j < 3; ++j) { for (int k = 0; k < 7; ++k) { VERIFY_IS_EQUAL(mat3(i,j,k), val); VERIFY_IS_EQUAL(mat4(i,j,k), val); val++; } } } } static void test_from_tensor() { Tensor<int, 3> mat1(2,3,7); Tensor<int, 3, RowMajor> mat2(2,3,7); int val = 0; for (int i = 0; i < 2; ++i) { for (int j = 0; j < 3; ++j) { for (int k = 0; k < 7; ++k) { mat1(i,j,k) = val; mat2(i,j,k) = val; val++; } } } TensorMap<Tensor<int, 3> > mat3(mat1); TensorMap<Tensor<int, 3, RowMajor> > mat4(mat2); VERIFY_IS_EQUAL(mat3.rank(), 3); VERIFY_IS_EQUAL(mat3.size(), 2*3*7); VERIFY_IS_EQUAL(mat3.dimension(0), 2); VERIFY_IS_EQUAL(mat3.dimension(1), 3); VERIFY_IS_EQUAL(mat3.dimension(2), 7); VERIFY_IS_EQUAL(mat4.rank(), 3); VERIFY_IS_EQUAL(mat4.size(), 2*3*7); VERIFY_IS_EQUAL(mat4.dimension(0), 2); VERIFY_IS_EQUAL(mat4.dimension(1), 3); VERIFY_IS_EQUAL(mat4.dimension(2), 7); val = 0; for (int i = 0; i < 2; ++i) { for (int j = 0; j < 3; ++j) { for (int k = 0; k < 7; ++k) { VERIFY_IS_EQUAL(mat3(i,j,k), val); VERIFY_IS_EQUAL(mat4(i,j,k), val); val++; } } } TensorFixedSize<int, Sizes<2,3,7> > mat5; val = 0; for (int i = 0; i < 2; ++i) { for (int j = 0; j < 3; ++j) { for (int k = 0; k < 7; ++k) { array<ptrdiff_t, 3> coords; coords[0] = i; coords[1] = j; coords[2] = k; mat5(coords) = val; val++; } } } TensorMap<TensorFixedSize<int, Sizes<2,3,7> > > mat6(mat5); VERIFY_IS_EQUAL(mat6.rank(), 3); VERIFY_IS_EQUAL(mat6.size(), 2*3*7); VERIFY_IS_EQUAL(mat6.dimension(0), 2); VERIFY_IS_EQUAL(mat6.dimension(1), 3); VERIFY_IS_EQUAL(mat6.dimension(2), 7); val = 0; for (int i = 0; i < 2; ++i) { for (int j = 0; j < 3; ++j) { for (int k = 0; k < 7; ++k) { VERIFY_IS_EQUAL(mat6(i,j,k), val); val++; } } } } static int f(const TensorMap<Tensor<int, 3> >& tensor) { // Size<0> empty; EIGEN_STATIC_ASSERT((internal::array_size<Sizes<> >::value == 0), YOU_MADE_A_PROGRAMMING_MISTAKE); EIGEN_STATIC_ASSERT((internal::array_size<DSizes<int, 0> >::value == 0), YOU_MADE_A_PROGRAMMING_MISTAKE); Tensor<int, 0> result = tensor.sum(); return result(); } static void test_casting() { Tensor<int, 3> tensor(2,3,7); int val = 0; for (int i = 0; i < 2; ++i) { for (int j = 0; j < 3; ++j) { for (int k = 0; k < 7; ++k) { tensor(i,j,k) = val; val++; } } } TensorMap<Tensor<int, 3> > map(tensor); int sum1 = f(map); int sum2 = f(tensor); VERIFY_IS_EQUAL(sum1, sum2); VERIFY_IS_EQUAL(sum1, 861); } void test_cxx11_tensor_map() { CALL_SUBTEST(test_0d()); CALL_SUBTEST(test_1d()); CALL_SUBTEST(test_2d()); CALL_SUBTEST(test_3d()); CALL_SUBTEST(test_from_tensor()); CALL_SUBTEST(test_casting()); }