namespace Eigen { namespace internal { template <typename Scalar> void dogleg( const Matrix< Scalar, Dynamic, Dynamic > &qrfac, const Matrix< Scalar, Dynamic, 1 > &diag, const Matrix< Scalar, Dynamic, 1 > &qtb, Scalar delta, Matrix< Scalar, Dynamic, 1 > &x) { using std::abs; using std::sqrt; typedef DenseIndex Index; /* Local variables */ Index i, j; Scalar sum, temp, alpha, bnorm; Scalar gnorm, qnorm; Scalar sgnorm; /* Function Body */ const Scalar epsmch = NumTraits<Scalar>::epsilon(); const Index n = qrfac.cols(); eigen_assert(n==qtb.size()); eigen_assert(n==x.size()); eigen_assert(n==diag.size()); Matrix< Scalar, Dynamic, 1 > wa1(n), wa2(n); /* first, calculate the gauss-newton direction. */ for (j = n-1; j >=0; --j) { temp = qrfac(j,j); if (temp == 0.) { temp = epsmch * qrfac.col(j).head(j+1).maxCoeff(); if (temp == 0.) temp = epsmch; } if (j==n-1) x[j] = qtb[j] / temp; else x[j] = (qtb[j] - qrfac.row(j).tail(n-j-1).dot(x.tail(n-j-1))) / temp; } /* test whether the gauss-newton direction is acceptable. */ qnorm = diag.cwiseProduct(x).stableNorm(); if (qnorm <= delta) return; // TODO : this path is not tested by Eigen unit tests /* the gauss-newton direction is not acceptable. */ /* next, calculate the scaled gradient direction. */ wa1.fill(0.); for (j = 0; j < n; ++j) { wa1.tail(n-j) += qrfac.row(j).tail(n-j) * qtb[j]; wa1[j] /= diag[j]; } /* calculate the norm of the scaled gradient and test for */ /* the special case in which the scaled gradient is zero. */ gnorm = wa1.stableNorm(); sgnorm = 0.; alpha = delta / qnorm; if (gnorm == 0.) goto algo_end; /* calculate the point along the scaled gradient */ /* at which the quadratic is minimized. */ wa1.array() /= (diag*gnorm).array(); // TODO : once unit tests cover this part,: // wa2 = qrfac.template triangularView<Upper>() * wa1; for (j = 0; j < n; ++j) { sum = 0.; for (i = j; i < n; ++i) { sum += qrfac(j,i) * wa1[i]; } wa2[j] = sum; } temp = wa2.stableNorm(); sgnorm = gnorm / temp / temp; /* test whether the scaled gradient direction is acceptable. */ alpha = 0.; if (sgnorm >= delta) goto algo_end; /* the scaled gradient direction is not acceptable. */ /* finally, calculate the point along the dogleg */ /* at which the quadratic is minimized. */ bnorm = qtb.stableNorm(); temp = bnorm / gnorm * (bnorm / qnorm) * (sgnorm / delta); temp = temp - delta / qnorm * numext::abs2(sgnorm / delta) + sqrt(numext::abs2(temp - delta / qnorm) + (1.-numext::abs2(delta / qnorm)) * (1.-numext::abs2(sgnorm / delta))); alpha = delta / qnorm * (1. - numext::abs2(sgnorm / delta)) / temp; algo_end: /* form appropriate convex combination of the gauss-newton */ /* direction and the scaled gradient direction. */ temp = (1.-alpha) * (std::min)(sgnorm,delta); x = temp * wa1 + alpha * x; } } // end namespace internal } // end namespace Eigen