// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2012 Desire NUENTSA WAKAM <desire.nuentsa_wakam@inria.fr // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_ITERSCALING_H #define EIGEN_ITERSCALING_H namespace Eigen { /** * \ingroup IterativeSolvers_Module * \brief iterative scaling algorithm to equilibrate rows and column norms in matrices * * This class can be used as a preprocessing tool to accelerate the convergence of iterative methods * * This feature is useful to limit the pivoting amount during LU/ILU factorization * The scaling strategy as presented here preserves the symmetry of the problem * NOTE It is assumed that the matrix does not have empty row or column, * * Example with key steps * \code * VectorXd x(n), b(n); * SparseMatrix<double> A; * // fill A and b; * IterScaling<SparseMatrix<double> > scal; * // Compute the left and right scaling vectors. The matrix is equilibrated at output * scal.computeRef(A); * // Scale the right hand side * b = scal.LeftScaling().cwiseProduct(b); * // Now, solve the equilibrated linear system with any available solver * * // Scale back the computed solution * x = scal.RightScaling().cwiseProduct(x); * \endcode * * \tparam _MatrixType the type of the matrix. It should be a real square sparsematrix * * References : D. Ruiz and B. Ucar, A Symmetry Preserving Algorithm for Matrix Scaling, INRIA Research report RR-7552 * * \sa \ref IncompleteLUT */ template<typename _MatrixType> class IterScaling { public: typedef _MatrixType MatrixType; typedef typename MatrixType::Scalar Scalar; typedef typename MatrixType::Index Index; public: IterScaling() { init(); } IterScaling(const MatrixType& matrix) { init(); compute(matrix); } ~IterScaling() { } /** * Compute the left and right diagonal matrices to scale the input matrix @p mat * * FIXME This algorithm will be modified such that the diagonal elements are permuted on the diagonal. * * \sa LeftScaling() RightScaling() */ void compute (const MatrixType& mat) { using std::abs; int m = mat.rows(); int n = mat.cols(); eigen_assert((m>0 && m == n) && "Please give a non - empty matrix"); m_left.resize(m); m_right.resize(n); m_left.setOnes(); m_right.setOnes(); m_matrix = mat; VectorXd Dr, Dc, DrRes, DcRes; // Temporary Left and right scaling vectors Dr.resize(m); Dc.resize(n); DrRes.resize(m); DcRes.resize(n); double EpsRow = 1.0, EpsCol = 1.0; int its = 0; do { // Iterate until the infinite norm of each row and column is approximately 1 // Get the maximum value in each row and column Dr.setZero(); Dc.setZero(); for (int k=0; k<m_matrix.outerSize(); ++k) { for (typename MatrixType::InnerIterator it(m_matrix, k); it; ++it) { if ( Dr(it.row()) < abs(it.value()) ) Dr(it.row()) = abs(it.value()); if ( Dc(it.col()) < abs(it.value()) ) Dc(it.col()) = abs(it.value()); } } for (int i = 0; i < m; ++i) { Dr(i) = std::sqrt(Dr(i)); Dc(i) = std::sqrt(Dc(i)); } // Save the scaling factors for (int i = 0; i < m; ++i) { m_left(i) /= Dr(i); m_right(i) /= Dc(i); } // Scale the rows and the columns of the matrix DrRes.setZero(); DcRes.setZero(); for (int k=0; k<m_matrix.outerSize(); ++k) { for (typename MatrixType::InnerIterator it(m_matrix, k); it; ++it) { it.valueRef() = it.value()/( Dr(it.row()) * Dc(it.col()) ); // Accumulate the norms of the row and column vectors if ( DrRes(it.row()) < abs(it.value()) ) DrRes(it.row()) = abs(it.value()); if ( DcRes(it.col()) < abs(it.value()) ) DcRes(it.col()) = abs(it.value()); } } DrRes.array() = (1-DrRes.array()).abs(); EpsRow = DrRes.maxCoeff(); DcRes.array() = (1-DcRes.array()).abs(); EpsCol = DcRes.maxCoeff(); its++; }while ( (EpsRow >m_tol || EpsCol > m_tol) && (its < m_maxits) ); m_isInitialized = true; } /** Compute the left and right vectors to scale the vectors * the input matrix is scaled with the computed vectors at output * * \sa compute() */ void computeRef (MatrixType& mat) { compute (mat); mat = m_matrix; } /** Get the vector to scale the rows of the matrix */ VectorXd& LeftScaling() { return m_left; } /** Get the vector to scale the columns of the matrix */ VectorXd& RightScaling() { return m_right; } /** Set the tolerance for the convergence of the iterative scaling algorithm */ void setTolerance(double tol) { m_tol = tol; } protected: void init() { m_tol = 1e-10; m_maxits = 5; m_isInitialized = false; } MatrixType m_matrix; mutable ComputationInfo m_info; bool m_isInitialized; VectorXd m_left; // Left scaling vector VectorXd m_right; // m_right scaling vector double m_tol; int m_maxits; // Maximum number of iterations allowed }; } #endif