// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> /* NOTE The functions of this file have been adapted from the GMM++ library */ //======================================================================== // // Copyright (C) 2002-2007 Yves Renard // // This file is a part of GETFEM++ // // Getfem++ is free software; you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as // published by the Free Software Foundation; version 2.1 of the License. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // You should have received a copy of the GNU Lesser General Public // License along with this program; if not, write to the Free Software // Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, // USA. // //======================================================================== #include "../../../../Eigen/src/Core/util/NonMPL2.h" #ifndef EIGEN_CONSTRAINEDCG_H #define EIGEN_CONSTRAINEDCG_H #include <Eigen/Core> namespace Eigen { namespace internal { /** \ingroup IterativeSolvers_Module * Compute the pseudo inverse of the non-square matrix C such that * \f$ CINV = (C * C^T)^{-1} * C \f$ based on a conjugate gradient method. * * This function is internally used by constrained_cg. */ template <typename CMatrix, typename CINVMatrix> void pseudo_inverse(const CMatrix &C, CINVMatrix &CINV) { // optimisable : copie de la ligne, precalcul de C * trans(C). typedef typename CMatrix::Scalar Scalar; typedef typename CMatrix::Index Index; // FIXME use sparse vectors ? typedef Matrix<Scalar,Dynamic,1> TmpVec; Index rows = C.rows(), cols = C.cols(); TmpVec d(rows), e(rows), l(cols), p(rows), q(rows), r(rows); Scalar rho, rho_1, alpha; d.setZero(); typedef Triplet<double> T; std::vector<T> tripletList; for (Index i = 0; i < rows; ++i) { d[i] = 1.0; rho = 1.0; e.setZero(); r = d; p = d; while (rho >= 1e-38) { /* conjugate gradient to compute e */ /* which is the i-th row of inv(C * trans(C)) */ l = C.transpose() * p; q = C * l; alpha = rho / p.dot(q); e += alpha * p; r += -alpha * q; rho_1 = rho; rho = r.dot(r); p = (rho/rho_1) * p + r; } l = C.transpose() * e; // l is the i-th row of CINV // FIXME add a generic "prune/filter" expression for both dense and sparse object to sparse for (Index j=0; j<l.size(); ++j) if (l[j]<1e-15) tripletList.push_back(T(i,j,l(j))); d[i] = 0.0; } CINV.setFromTriplets(tripletList.begin(), tripletList.end()); } /** \ingroup IterativeSolvers_Module * Constrained conjugate gradient * * Computes the minimum of \f$ 1/2((Ax).x) - bx \f$ under the contraint \f$ Cx \le f \f$ */ template<typename TMatrix, typename CMatrix, typename VectorX, typename VectorB, typename VectorF> void constrained_cg(const TMatrix& A, const CMatrix& C, VectorX& x, const VectorB& b, const VectorF& f, IterationController &iter) { using std::sqrt; typedef typename TMatrix::Scalar Scalar; typedef typename TMatrix::Index Index; typedef Matrix<Scalar,Dynamic,1> TmpVec; Scalar rho = 1.0, rho_1, lambda, gamma; Index xSize = x.size(); TmpVec p(xSize), q(xSize), q2(xSize), r(xSize), old_z(xSize), z(xSize), memox(xSize); std::vector<bool> satured(C.rows()); p.setZero(); iter.setRhsNorm(sqrt(b.dot(b))); // gael vect_sp(PS, b, b) if (iter.rhsNorm() == 0.0) iter.setRhsNorm(1.0); SparseMatrix<Scalar,RowMajor> CINV(C.rows(), C.cols()); pseudo_inverse(C, CINV); while(true) { // computation of residual old_z = z; memox = x; r = b; r += A * -x; z = r; bool transition = false; for (Index i = 0; i < C.rows(); ++i) { Scalar al = C.row(i).dot(x) - f.coeff(i); if (al >= -1.0E-15) { if (!satured[i]) { satured[i] = true; transition = true; } Scalar bb = CINV.row(i).dot(z); if (bb > 0.0) // FIXME: we should allow that: z += -bb * C.row(i); for (typename CMatrix::InnerIterator it(C,i); it; ++it) z.coeffRef(it.index()) -= bb*it.value(); } else satured[i] = false; } // descent direction rho_1 = rho; rho = r.dot(z); if (iter.finished(rho)) break; if (iter.noiseLevel() > 0 && transition) std::cerr << "CCG: transition\n"; if (transition || iter.first()) gamma = 0.0; else gamma = (std::max)(0.0, (rho - old_z.dot(z)) / rho_1); p = z + gamma*p; ++iter; // one dimensionnal optimization q = A * p; lambda = rho / q.dot(p); for (Index i = 0; i < C.rows(); ++i) { if (!satured[i]) { Scalar bb = C.row(i).dot(p) - f[i]; if (bb > 0.0) lambda = (std::min)(lambda, (f.coeff(i)-C.row(i).dot(x)) / bb); } } x += lambda * p; memox -= x; } } } // end namespace internal } // end namespace Eigen #endif // EIGEN_CONSTRAINEDCG_H