// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2009 Ilya Baran <ibaran@mit.edu> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_BVALGORITHMS_H #define EIGEN_BVALGORITHMS_H namespace Eigen { namespace internal { #ifndef EIGEN_PARSED_BY_DOXYGEN template<typename BVH, typename Intersector> bool intersect_helper(const BVH &tree, Intersector &intersector, typename BVH::Index root) { typedef typename BVH::Index Index; typedef typename BVH::VolumeIterator VolIter; typedef typename BVH::ObjectIterator ObjIter; VolIter vBegin = VolIter(), vEnd = VolIter(); ObjIter oBegin = ObjIter(), oEnd = ObjIter(); std::vector<Index> todo(1, root); while(!todo.empty()) { tree.getChildren(todo.back(), vBegin, vEnd, oBegin, oEnd); todo.pop_back(); for(; vBegin != vEnd; ++vBegin) //go through child volumes if(intersector.intersectVolume(tree.getVolume(*vBegin))) todo.push_back(*vBegin); for(; oBegin != oEnd; ++oBegin) //go through child objects if(intersector.intersectObject(*oBegin)) return true; //intersector said to stop query } return false; } #endif //not EIGEN_PARSED_BY_DOXYGEN template<typename Volume1, typename Object1, typename Object2, typename Intersector> struct intersector_helper1 { intersector_helper1(const Object2 &inStored, Intersector &in) : stored(inStored), intersector(in) {} bool intersectVolume(const Volume1 &vol) { return intersector.intersectVolumeObject(vol, stored); } bool intersectObject(const Object1 &obj) { return intersector.intersectObjectObject(obj, stored); } Object2 stored; Intersector &intersector; private: intersector_helper1& operator=(const intersector_helper1&); }; template<typename Volume2, typename Object2, typename Object1, typename Intersector> struct intersector_helper2 { intersector_helper2(const Object1 &inStored, Intersector &in) : stored(inStored), intersector(in) {} bool intersectVolume(const Volume2 &vol) { return intersector.intersectObjectVolume(stored, vol); } bool intersectObject(const Object2 &obj) { return intersector.intersectObjectObject(stored, obj); } Object1 stored; Intersector &intersector; private: intersector_helper2& operator=(const intersector_helper2&); }; } // end namespace internal /** Given a BVH, runs the query encapsulated by \a intersector. * The Intersector type must provide the following members: \code bool intersectVolume(const BVH::Volume &volume) //returns true if volume intersects the query bool intersectObject(const BVH::Object &object) //returns true if the search should terminate immediately \endcode */ template<typename BVH, typename Intersector> void BVIntersect(const BVH &tree, Intersector &intersector) { internal::intersect_helper(tree, intersector, tree.getRootIndex()); } /** Given two BVH's, runs the query on their Cartesian product encapsulated by \a intersector. * The Intersector type must provide the following members: \code bool intersectVolumeVolume(const BVH1::Volume &v1, const BVH2::Volume &v2) //returns true if product of volumes intersects the query bool intersectVolumeObject(const BVH1::Volume &v1, const BVH2::Object &o2) //returns true if the volume-object product intersects the query bool intersectObjectVolume(const BVH1::Object &o1, const BVH2::Volume &v2) //returns true if the volume-object product intersects the query bool intersectObjectObject(const BVH1::Object &o1, const BVH2::Object &o2) //returns true if the search should terminate immediately \endcode */ template<typename BVH1, typename BVH2, typename Intersector> void BVIntersect(const BVH1 &tree1, const BVH2 &tree2, Intersector &intersector) //TODO: tandem descent when it makes sense { typedef typename BVH1::Index Index1; typedef typename BVH2::Index Index2; typedef internal::intersector_helper1<typename BVH1::Volume, typename BVH1::Object, typename BVH2::Object, Intersector> Helper1; typedef internal::intersector_helper2<typename BVH2::Volume, typename BVH2::Object, typename BVH1::Object, Intersector> Helper2; typedef typename BVH1::VolumeIterator VolIter1; typedef typename BVH1::ObjectIterator ObjIter1; typedef typename BVH2::VolumeIterator VolIter2; typedef typename BVH2::ObjectIterator ObjIter2; VolIter1 vBegin1 = VolIter1(), vEnd1 = VolIter1(); ObjIter1 oBegin1 = ObjIter1(), oEnd1 = ObjIter1(); VolIter2 vBegin2 = VolIter2(), vEnd2 = VolIter2(), vCur2 = VolIter2(); ObjIter2 oBegin2 = ObjIter2(), oEnd2 = ObjIter2(), oCur2 = ObjIter2(); std::vector<std::pair<Index1, Index2> > todo(1, std::make_pair(tree1.getRootIndex(), tree2.getRootIndex())); while(!todo.empty()) { tree1.getChildren(todo.back().first, vBegin1, vEnd1, oBegin1, oEnd1); tree2.getChildren(todo.back().second, vBegin2, vEnd2, oBegin2, oEnd2); todo.pop_back(); for(; vBegin1 != vEnd1; ++vBegin1) { //go through child volumes of first tree const typename BVH1::Volume &vol1 = tree1.getVolume(*vBegin1); for(vCur2 = vBegin2; vCur2 != vEnd2; ++vCur2) { //go through child volumes of second tree if(intersector.intersectVolumeVolume(vol1, tree2.getVolume(*vCur2))) todo.push_back(std::make_pair(*vBegin1, *vCur2)); } for(oCur2 = oBegin2; oCur2 != oEnd2; ++oCur2) {//go through child objects of second tree Helper1 helper(*oCur2, intersector); if(internal::intersect_helper(tree1, helper, *vBegin1)) return; //intersector said to stop query } } for(; oBegin1 != oEnd1; ++oBegin1) { //go through child objects of first tree for(vCur2 = vBegin2; vCur2 != vEnd2; ++vCur2) { //go through child volumes of second tree Helper2 helper(*oBegin1, intersector); if(internal::intersect_helper(tree2, helper, *vCur2)) return; //intersector said to stop query } for(oCur2 = oBegin2; oCur2 != oEnd2; ++oCur2) {//go through child objects of second tree if(intersector.intersectObjectObject(*oBegin1, *oCur2)) return; //intersector said to stop query } } } } namespace internal { #ifndef EIGEN_PARSED_BY_DOXYGEN template<typename BVH, typename Minimizer> typename Minimizer::Scalar minimize_helper(const BVH &tree, Minimizer &minimizer, typename BVH::Index root, typename Minimizer::Scalar minimum) { typedef typename Minimizer::Scalar Scalar; typedef typename BVH::Index Index; typedef std::pair<Scalar, Index> QueueElement; //first element is priority typedef typename BVH::VolumeIterator VolIter; typedef typename BVH::ObjectIterator ObjIter; VolIter vBegin = VolIter(), vEnd = VolIter(); ObjIter oBegin = ObjIter(), oEnd = ObjIter(); std::priority_queue<QueueElement, std::vector<QueueElement>, std::greater<QueueElement> > todo; //smallest is at the top todo.push(std::make_pair(Scalar(), root)); while(!todo.empty()) { tree.getChildren(todo.top().second, vBegin, vEnd, oBegin, oEnd); todo.pop(); for(; oBegin != oEnd; ++oBegin) //go through child objects minimum = (std::min)(minimum, minimizer.minimumOnObject(*oBegin)); for(; vBegin != vEnd; ++vBegin) { //go through child volumes Scalar val = minimizer.minimumOnVolume(tree.getVolume(*vBegin)); if(val < minimum) todo.push(std::make_pair(val, *vBegin)); } } return minimum; } #endif //not EIGEN_PARSED_BY_DOXYGEN template<typename Volume1, typename Object1, typename Object2, typename Minimizer> struct minimizer_helper1 { typedef typename Minimizer::Scalar Scalar; minimizer_helper1(const Object2 &inStored, Minimizer &m) : stored(inStored), minimizer(m) {} Scalar minimumOnVolume(const Volume1 &vol) { return minimizer.minimumOnVolumeObject(vol, stored); } Scalar minimumOnObject(const Object1 &obj) { return minimizer.minimumOnObjectObject(obj, stored); } Object2 stored; Minimizer &minimizer; private: minimizer_helper1& operator=(const minimizer_helper1&); }; template<typename Volume2, typename Object2, typename Object1, typename Minimizer> struct minimizer_helper2 { typedef typename Minimizer::Scalar Scalar; minimizer_helper2(const Object1 &inStored, Minimizer &m) : stored(inStored), minimizer(m) {} Scalar minimumOnVolume(const Volume2 &vol) { return minimizer.minimumOnObjectVolume(stored, vol); } Scalar minimumOnObject(const Object2 &obj) { return minimizer.minimumOnObjectObject(stored, obj); } Object1 stored; Minimizer &minimizer; private: minimizer_helper2& operator=(const minimizer_helper2&); }; } // end namespace internal /** Given a BVH, runs the query encapsulated by \a minimizer. * \returns the minimum value. * The Minimizer type must provide the following members: \code typedef Scalar //the numeric type of what is being minimized--not necessarily the Scalar type of the BVH (if it has one) Scalar minimumOnVolume(const BVH::Volume &volume) Scalar minimumOnObject(const BVH::Object &object) \endcode */ template<typename BVH, typename Minimizer> typename Minimizer::Scalar BVMinimize(const BVH &tree, Minimizer &minimizer) { return internal::minimize_helper(tree, minimizer, tree.getRootIndex(), (std::numeric_limits<typename Minimizer::Scalar>::max)()); } /** Given two BVH's, runs the query on their cartesian product encapsulated by \a minimizer. * \returns the minimum value. * The Minimizer type must provide the following members: \code typedef Scalar //the numeric type of what is being minimized--not necessarily the Scalar type of the BVH (if it has one) Scalar minimumOnVolumeVolume(const BVH1::Volume &v1, const BVH2::Volume &v2) Scalar minimumOnVolumeObject(const BVH1::Volume &v1, const BVH2::Object &o2) Scalar minimumOnObjectVolume(const BVH1::Object &o1, const BVH2::Volume &v2) Scalar minimumOnObjectObject(const BVH1::Object &o1, const BVH2::Object &o2) \endcode */ template<typename BVH1, typename BVH2, typename Minimizer> typename Minimizer::Scalar BVMinimize(const BVH1 &tree1, const BVH2 &tree2, Minimizer &minimizer) { typedef typename Minimizer::Scalar Scalar; typedef typename BVH1::Index Index1; typedef typename BVH2::Index Index2; typedef internal::minimizer_helper1<typename BVH1::Volume, typename BVH1::Object, typename BVH2::Object, Minimizer> Helper1; typedef internal::minimizer_helper2<typename BVH2::Volume, typename BVH2::Object, typename BVH1::Object, Minimizer> Helper2; typedef std::pair<Scalar, std::pair<Index1, Index2> > QueueElement; //first element is priority typedef typename BVH1::VolumeIterator VolIter1; typedef typename BVH1::ObjectIterator ObjIter1; typedef typename BVH2::VolumeIterator VolIter2; typedef typename BVH2::ObjectIterator ObjIter2; VolIter1 vBegin1 = VolIter1(), vEnd1 = VolIter1(); ObjIter1 oBegin1 = ObjIter1(), oEnd1 = ObjIter1(); VolIter2 vBegin2 = VolIter2(), vEnd2 = VolIter2(), vCur2 = VolIter2(); ObjIter2 oBegin2 = ObjIter2(), oEnd2 = ObjIter2(), oCur2 = ObjIter2(); std::priority_queue<QueueElement, std::vector<QueueElement>, std::greater<QueueElement> > todo; //smallest is at the top Scalar minimum = (std::numeric_limits<Scalar>::max)(); todo.push(std::make_pair(Scalar(), std::make_pair(tree1.getRootIndex(), tree2.getRootIndex()))); while(!todo.empty()) { tree1.getChildren(todo.top().second.first, vBegin1, vEnd1, oBegin1, oEnd1); tree2.getChildren(todo.top().second.second, vBegin2, vEnd2, oBegin2, oEnd2); todo.pop(); for(; oBegin1 != oEnd1; ++oBegin1) { //go through child objects of first tree for(oCur2 = oBegin2; oCur2 != oEnd2; ++oCur2) {//go through child objects of second tree minimum = (std::min)(minimum, minimizer.minimumOnObjectObject(*oBegin1, *oCur2)); } for(vCur2 = vBegin2; vCur2 != vEnd2; ++vCur2) { //go through child volumes of second tree Helper2 helper(*oBegin1, minimizer); minimum = (std::min)(minimum, internal::minimize_helper(tree2, helper, *vCur2, minimum)); } } for(; vBegin1 != vEnd1; ++vBegin1) { //go through child volumes of first tree const typename BVH1::Volume &vol1 = tree1.getVolume(*vBegin1); for(oCur2 = oBegin2; oCur2 != oEnd2; ++oCur2) {//go through child objects of second tree Helper1 helper(*oCur2, minimizer); minimum = (std::min)(minimum, internal::minimize_helper(tree1, helper, *vBegin1, minimum)); } for(vCur2 = vBegin2; vCur2 != vEnd2; ++vCur2) { //go through child volumes of second tree Scalar val = minimizer.minimumOnVolumeVolume(vol1, tree2.getVolume(*vCur2)); if(val < minimum) todo.push(std::make_pair(val, std::make_pair(*vBegin1, *vCur2))); } } } return minimum; } } // end namespace Eigen #endif // EIGEN_BVALGORITHMS_H