// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_AUTODIFF_JACOBIAN_H #define EIGEN_AUTODIFF_JACOBIAN_H namespace Eigen { template<typename Functor> class AutoDiffJacobian : public Functor { public: AutoDiffJacobian() : Functor() {} AutoDiffJacobian(const Functor& f) : Functor(f) {} // forward constructors #if EIGEN_HAS_VARIADIC_TEMPLATES template<typename... T> AutoDiffJacobian(const T& ...Values) : Functor(Values...) {} #else template<typename T0> AutoDiffJacobian(const T0& a0) : Functor(a0) {} template<typename T0, typename T1> AutoDiffJacobian(const T0& a0, const T1& a1) : Functor(a0, a1) {} template<typename T0, typename T1, typename T2> AutoDiffJacobian(const T0& a0, const T1& a1, const T2& a2) : Functor(a0, a1, a2) {} #endif typedef typename Functor::InputType InputType; typedef typename Functor::ValueType ValueType; typedef typename ValueType::Scalar Scalar; enum { InputsAtCompileTime = InputType::RowsAtCompileTime, ValuesAtCompileTime = ValueType::RowsAtCompileTime }; typedef Matrix<Scalar, ValuesAtCompileTime, InputsAtCompileTime> JacobianType; typedef typename JacobianType::Index Index; typedef Matrix<Scalar, InputsAtCompileTime, 1> DerivativeType; typedef AutoDiffScalar<DerivativeType> ActiveScalar; typedef Matrix<ActiveScalar, InputsAtCompileTime, 1> ActiveInput; typedef Matrix<ActiveScalar, ValuesAtCompileTime, 1> ActiveValue; #if EIGEN_HAS_VARIADIC_TEMPLATES // Some compilers don't accept variadic parameters after a default parameter, // i.e., we can't just write _jac=0 but we need to overload operator(): EIGEN_STRONG_INLINE void operator() (const InputType& x, ValueType* v) const { this->operator()(x, v, 0); } template<typename... ParamsType> void operator() (const InputType& x, ValueType* v, JacobianType* _jac, const ParamsType&... Params) const #else void operator() (const InputType& x, ValueType* v, JacobianType* _jac=0) const #endif { eigen_assert(v!=0); if (!_jac) { #if EIGEN_HAS_VARIADIC_TEMPLATES Functor::operator()(x, v, Params...); #else Functor::operator()(x, v); #endif return; } JacobianType& jac = *_jac; ActiveInput ax = x.template cast<ActiveScalar>(); ActiveValue av(jac.rows()); if(InputsAtCompileTime==Dynamic) for (Index j=0; j<jac.rows(); j++) av[j].derivatives().resize(x.rows()); for (Index i=0; i<jac.cols(); i++) ax[i].derivatives() = DerivativeType::Unit(x.rows(),i); #if EIGEN_HAS_VARIADIC_TEMPLATES Functor::operator()(ax, &av, Params...); #else Functor::operator()(ax, &av); #endif for (Index i=0; i<jac.rows(); i++) { (*v)[i] = av[i].value(); jac.row(i) = av[i].derivatives(); } } }; } #endif // EIGEN_AUTODIFF_JACOBIAN_H